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Abstract

We investigate the issue of implementation via individually rational ex-post budget-
balanced Bayesian mechanisms. We show that all decision rules generating a nonnegative
expected social surplus are implementable if and only if the probability distribution of the
agents’ types satisfies two conditions: the well-known condition of Crémer and McLean
(1985) and the Identifiability condition introduced in this paper. These conditions are
also necessary for ex-post efficiency to be attainable. The expected social surplus in these
mechanisms can be distributed in any desirable way. The Identifiability condition, as well
as Crémer-McLean condition, are generic when there are at least three agents, and none of
them has more types than the number of type profiles of the other agents. Also generically,
any ex-post efficient decision rule can be implemented in an informed principal framework,
i.e. when the mechanism is offered by an informed participant. Only ex-post efficient
mechanisms allocating all surplus to the party designing the mechanism are both sequential
equilibrium outcomes and neutral optima, i.e. can never be blocked. Thus, an informed
principal can also extract all surplus from the other agents in a Bayesian mechanism.
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1 Introduction.

This paper focuses on three issues. First, we explore the existence of individually rational ex-
post budget-balanced Bayesian mechanisms for the implementation of a broad class of decision
rules1, including ex-post efficient ones. Then we study the related issue of surplus allocation
in such mechanisms. We also explore the issue of implementation in the informed principal
framework where the mechanism is designed not by an outsider, but by one of the agents after
she has learned her private information.

The theory of Bayesian mechanism design provides a universally accepted implementation
tool used to study a large variety of environments, including contracting, auctions, bargaining,
etc. For this reason, it is important to understand the scope and limits of Bayesian imple-
mentation. One of the well-known issues is the tension between budget balancing, individual
rationality and efficiency which one can reasonably view as desirable properties of a mech-
anism. Myerson and Satterthwaite (1983) have shown that Bayesian mechanisms possessing
these properties could fail to exist when private information is independently distributed across
agents.2 More precisely, Makowski and Mezzetti (1994) demonstrate that such mechanisms
exist if and only if the ex-ante expected deficit in the corresponding Groves mechanism does
not exceed the sum of the fees that the agents can be charged ex-ante for participating in the
mechanism. Krishna and Perry (1998) and Williams (1999) extend this result to the multidi-
mensional setting.

This condition fails in many economically important situations. For example, Rob (1989)
demonstrates that public good would not be provided efficiently. Mailath and Postlewaite
(1990) show that in any feasible mechanism the probability of the public good provision goes
to zero as the number of agents increases. With multidimensional independently distributed
types, Jehiel and Moldovanu (2001) establish that efficient mechanisms exist only in nongeneric
situations.

Relaxing one of these three requirements makes it possible to obtain positive results. Var-
ious sufficient conditions for efficient Bayesian implementation with ex-post budget balancing
but without individual rationality requirement have been derived by d’Aspremont and Gérard-
Varet (1979), d’Aspremont, Crémer and Gérard-Varet (1990) and (2003) (Compatibility), Mat-
sushima (1991), Aoyagi (1998), and Chung (1999) (Weak and Strict Regularity), Fudenberg,
Levine and Maskin (1996) (Pairwise Identifiability).

Finally, d’Aspremont, Crémer and Gérard-Varet (2004) present a necessary and sufficient
condition for balanced-budget Bayesian implementation without individual rationality. We
discuss the connection between their and our results in Subsection 3.3.

Crémer and McLean (1985) and (1988) and McAfee and Reny (1992) demonstrate that
an uninformed mechanism designer can implement an ex-post efficient decision rule, preserve
individual rationality, and extract all expected surplus from the agents if, relative to the
prior, an agent’s type contains additional information about the other agents’ types. The
mechanism designer exploits this statistical interdependence to cross-check agents’ reports,
thereby inducing each agent to reveal her type truthfully without leaving any informational
rent to her. Naturally, such mechanism is not ex-post budget-balanced. The uninformed
mechanism designer plays an important role of a budget breaker. She collects transfers from

1A decision rule is a mapping from the set of agents’ type profiles into the set of public decisions.
2Myerson and Satterthwaite (1983) focus on the case of continuous probability distribution of private infor-

mation. But their result also extends to the case of discrete probability distributions.
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the agents, and may also have to pay them in some states of the world.3 Without imposing ex-
post budget balance, McLean and Postlewaite (2002) and (2003) show that only small transfers
from/to each agent are needed to construct individually rational, ex-post efficient mechanisms
when each agent is ‘informationally small.’ That is, even if an agent misrepresents her private
information, the state of the world can still be inferred with a high degree of accuracy provided
that all other agents report truthfully.

We study implementation under all the three properties in question - interim individual
rationality, ex-post budget balancing and ex-post efficiency. Our main result establishes neces-
sary and sufficient conditions for the existence of mechanisms possessing these three properties
in the transferable utility framework. The first is already mentioned condition of Crémer and
McLean (1985). The second is Identifiability condition introduced in this paper.

In fact, these conditions guarantee that not only ex-post efficient but all ex-ante socially
rational4 decision rules- the ones that generate a nonnegative expected social surplus- are im-
plementable via an interim individually rational and ex-post budget-balanced mechanism. It
is easy to see that ex-ante social rationality of the decision rule is necessary for interim indi-
vidually rationality and ex-post budget-balancing, so our sufficiency result cannot be extended
further.

Intuitively, the Identifiability condition says the following. Suppose that the agents’ report-
ing strategies in a direct mechanism induce a probability distribution of reported type profiles
that is different from the true prior from which the types are drawn. Then there exists an agent
and her type such that, when this type is announced, the mechanism designer knows that this
agent has not committed a unilateral deviation from truthtelling. Thus, for any probability
distribution over reported type profiles, identifiability allows to determine a non-empty set of
agent types who have not deviated unilaterally. The Identifiability condition is generic when
there are at least three agents and none of them has more types than the number of type
profiles of all other agents.

To understand the role of the Identifiability condition, consider Crémer-McLean mechanism
as a benchmark. In this mechanism, the principal extracts information about an agent’s type
by offering her a lottery which has zero expected value if this agent reports her type truthfully
and a negative expected value if the agent misrepresents her type.

If we attempt to use this approach in an environment where an outside budget-breaker is not
available and so ex-post budget balance has to hold, then we have to allocate the transfers from
such lotteries to agents in an incentive compatible way. This creates an additional incentive
problem. For example, designating agent j to receive transfers from the lottery given to agent
i may induce j to misrepresent her type in a way that makes a truthful report by i to appear
untruthful which would cause i to make transfers to j.

The Identifiability Condition allows to resolve this issue and preserve individual rationality.
A detailed explanation of our mechanism is provided in Section 3. Here we just point out
that the identifiability condition allows to construct an individually rational, budget-balanced
system of transfers that not only gives a negative expected payoff to an agent misrepresenting
her type when other agents report truthfully, but also does not allow any agent to benefit by
imitating a deviation by another agent.

Importantly, the Identifiability and Crémer-McLean conditions are necessary. If either
3Ex-ante budget balance can be attained in Crémer-McLean mechanism if the mechanism designer pays each

agent an amount equal to her ex-ante expected transfer in the ensuing mechanism.
4To the best our knowledge, this term was coined by d’Aspremont and Gérard-Varet (1979). Obviously, the

class of ex-ante socially rational decision rules includes ex-post efficient ones as a special case.
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one fails, then efficient, budget-balanced implementation preserving individual rationality is
impossible under some profiles of the utility functions.

Under ex-post budget balance all surplus generated by the mechanism is distributed among
the agents and is not extracted by the outside mechanism designer as in Crémer and McLean
(1985) and (1988) and McAfee and Reny (1992). So, it is natural to consider how the sur-
plus can be allocated among the agents. We show that generically this can be done in an
arbitrary way. That is, when the Identifiability and Crémer-McLean conditions hold, there is
a mechanism distributing (ex-ante) expected social surplus across agent types in any desired
way.

The allocation of surplus result has important implications for the analysis of the so-called
informed principal problem. This problem arises when an uninformed principal is not available
to design a mechanism, and it has to be designed by one of the agents who has already learned
her private information. In this case, the choice of a mechanism by an agent serves as a
signal to the other agents about the designer’s type, and so the equilibrium mechanism has to
balance the interests of different types of the designer. These aspects make the analysis of the
informed principal problem more complex. Mechanism design by informed principal has been
studied by Myerson (1983), and Maskin and Tirole (1990) and (1992) who propose several
solution concepts to this problem. However, except for some cases, the issue of characterizing
the outcomes of this game has not been completely resolved.

We contribute to the study of the informed principal problem by demonstrating that an
ex-post efficient decision rule can generically be implemented in this environment. Specifically,
an ex-post efficient allocation profile that gives all social surplus to the agent designing the
mechanism so that each type of her gets all expected social surplus conditional on her type can
generically be supported as a sequential equilibrium outcome and a core solution. Moreover,
only such allocation profiles constitute neutral optima, i.e. ‘the smallest possible set of un-
blocked mechanisms’ (Myerson 1983). Any other allocation profile (i.e. an ex-post inefficient
one or one in which some type of the informed principal gets less then expected social surplus
conditional on her type) is not a neutral optimum: it can be blocked by some types of the
mechanism designer.

Thus, the informed principal problem need not cause any loss of efficiency. Also, an in-
formed principal, like an uninformed one, can extract all surplus from the mechanism. These
conclusions are sufficiently robust, since they hold in a sequential equilibrium, core solution
and a unique neutral optimum outcome.

We briefly address the issue of implementation via ex-post budget-balanced mechanisms
without individual rationality requirement. We show that a weaker version of the Identifiability
condition - Weak Identifiability- is necessary and sufficient for any implementable decision
rule to be implementable with ex-post budget balance. This condition also has an intuitive
economic interpretation relying on the concept of probability distributions of the reported type
profiles induced by the players’ strategies. A different necessary and sufficient condition for
such implementation - Condition C- has been previously derived by d’Aspremont, Crémer and
Gérard-Varet (2004). Naturally, our Weak Identifiability is equivalent to Condition C.

Lastly, the modelling approach in this paper and in the related literature is based on the
assumption that there is a one-to-one relationship between an agent’s payoff-relevant type and
her beliefs about other agents’ types. Although there may be situations where this is not so,
this approach is plausible in many economically significant environments, such as competition
for mineral rights where a firm’s private signal about the amount of mineral resources in
the ground determines both its expected profits and also its beliefs about the competitors.
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Similarly, when there is uncertainty about market conditions, a firm’s information about the
future demand for its product is both her payoff-relevant type, as well as the determinant of
its beliefs about the competitors’ demands.

The rest of the paper is organized as follows. In Section 2 we develop the model. Sub-
section 3.1 introduces the concept of Identifiability. In Subsection 3.2 we establish out cental
implementation results. Subsection 3.3 studies implementation without individual rational-
ity requirement. Section 4 deals with the informed principal problem. All proofs are in the
Appendix.

2 The Model

There are n agents in the economy. Agent i has privately known type θi which belongs to the
type space Θi ≡ {θ1

i , ..., θ
mi
i } of cardinality mi < ∞. A state of the world is characterized by

a profile of types θ = (θ1, ..., θn). The set of type profiles is given by Θ ≡ ∏
i=1,..n Θi which

has cardinality L ≡ ∏
i=1,...,n

mi. When focussing on agent i, we will use the notation (θ−i, θi)

for the profile of agent types, where θ−i stands for the profile of types of agents other than
i. Let Θ−i =

∏
j 6=i Θj and L−i =

∏
j 6=i mj . θ−i−j , Θ−i−j and L−i−j are defined similarly. In

Section 3 we assume the presence of a mechanism designer who does not possess any private
information. In section 4 we analyze the informed principal problem where such mechanism
designer is not available and the mechanism has to be designed by one of the informed agents.

Let X denote the set of public decisions controlled by the mechanism designer, and let
x denote a typical element of X. Agent i’s utility function is quasilinear in the decision x
and transfer ti that she receives from the mechanism and is given by ui(x, θ) + ti. Without
loss of generality, an agent’s reservation utility is normalized to zero.5 A (social) decision rule
x(.) is a function mapping the type space Θ into the set of public decisions X6. ti(θ) is a
transfer function to agent i, and t(θ) = (t1(θ), ..., tn(θ)) is a collection of transfer functions to
all agents. An allocation profile is a combination of a decision rule x(θ) with a collection of
transfer functions t(θ).

Finally, let p(θ) denote the probability distribution of the type profiles. p(.) is common
knowledge. Also, pi(θi), pi,j(θi, θj) and p(θ−i|θi) denote the marginal probability distribution
of agent i’s type, the marginal probability distribution of types of agents i and j and the
probability distribution of type profiles of agents other than i conditional on the type of agent
i, respectively. We use a similar system of notation for any other probability distribution
function introduced in the text. We will assume that pi,j(θi, θj) > 0 for any θi ∈ Θi, θj ∈ Θj

of any two agents i and j. This condition is not needed to prove our main result -Theorem 1-
if we restrict attention to ex-post efficient decision rules. Furthermore, it is clearly generic. A
straightforward but lengthy argument which we omit to conserve space shows the following.
If this condition fails, then all our results hold, but the analysis becomes more cumbersome
because we need to operate on the common knowledge partition dividing the type space into
disjoint subsets which each agent knows have occurred on the basis of her type.7

5Suppose that agent i’s utility from her outside option is equal to wi(θi, θ−i). Such environment is equivalent
to the environment where i’s utility function is given by ui(x, θ)−wi(θ)+ti and her outside option is 0. Note that
the sets of ex-post efficient decision rules and the notions of social surplus are the same in both environments.

6Note that randomization in public decisions is implicitly allowed, since X can be regarded as a set of
probability distributions over some set of “pure” outcomes.

7A description of this argument is provided in Appendix B available at
http://faculty.fuqua.duke.edu/%7Esseverin/mechsupp.pdf.
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In the case of an uninformed mechanism designer, we rely on the Revelation Principle to
restrict the analysis to the class of direct mechanisms in which the principal offers an allocation
profile to the agents. The agents then decide whether to participate in the mechanism. If they
decide to participate, the agents report their types and the allocation corresponding to the
reported type profile is implemented.

Our main goal is to provide necessary and sufficient conditions for the existence of in-
terim individually rational and ex-post budget-balanced Bayesian mechanisms implementing
desirable decision rules. Let us describe these properties formally.

We will say that the allocation profile (x(θ), t(θ)) is incentive compatible (IC) (and so,
can be implemented via a Bayesian mechanism) if for all i and k, k′ ∈ {1, ..., mi} the following
Interim Incentive Constraint ICi(θk

i , θk′
i ) (or ICi(k, k′)) holds:

∑

θ−i∈Θ−i

(
ui(x(θ−i, θ

k
i ), (θ−i, θ

k
i )) + ti(θ−i, θ

k
i )− ui(x(θ−i, θ

k′
i ), (θ−i, θ

k
i ))− ti(θ−i, θ

k′
i )

)
p(θ−i|θk

i ) ≥ 0

(1)

A decision rule x(.) is implementable if there exists a profile of transfer functions t(.) such that
(x(.), t(.)) is incentive compatible.

Interim Individual Rationality (IR) requires the following IRi(θk
i ) constraint to hold for all

i and θk
i ∈ Θi:

∑

θ−i∈Θ−i

(
ui(x(θ−i, θ

k
i ), (θ−i, θ

k
i )) + ti(θ−i, θ

k
i )

)
p(θ−i|θk

i ) ≥ 0 (2)

Ex-post Budget Balancing (BB) constraint can be written as follows:

n∑

i=1

ti(θ) = 0 ∀θ ∈ Θ (3)

A decision rule x(.) is ex-post efficient if x(θ) ∈ arg maxx∈X
∑n

i=1 ui(x, θ) for all θ ∈ Θ, i.e.
x(θ) maximizes ex-post social surplus. Since the principal always has an option to disband
the mechanism and cause the agents to take their outside options, we assume without loss of
generality that maxx∈X

∑n
i=1 ui(x, θ) ≥ 0 for all θ ∈ Θ. Finally, IR and BB together imply

the following Ex-Ante Social Rationality (EASR) condition:

∑

θ∈Θ

n∑

i=1

ui(x(θ), θ)p(θ) ≥ 0 (4)

EASR simply says that a decision rule must generate a nonnegative (ex ante) expected surplus.
Clearly, this is a very weak requirement. It is satisfied by a large variety of decision rules
including the ex-post efficient ones. Having established EASR as a necessary condition, in the
next section we characterize necessary and sufficient conditions for IR and BB implementation
of EASR and ex-post efficient decision rules.

3 Analysis.

3.1 Identifiability.

We start by introducing a condition which plays a major role in our analysis:
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Definition 1 Identifiability. The probability distribution p(.) ∈ ∆(
∏

l ml)−1 of type profiles
is identifiable if for any π̂(.) ∈ ∆(

∏
l ml)−1, π̂(.) 6= p(.) there is an agent i and her type θk

i such
that π̂i(θk

i ) > 0 and for any collection of nonnegative coefficients ck′k
i , k′ ∈ {1, ...mi},

π̂(.|θk
i ) 6=

∑

k′∈{1,...mi}
ck′k
i p(.|θk′

i ) (5)

Consider also the familiar condition of Crémer and McLean (1985) and (1988) which is neces-
sary and sufficient for full surplus extraction by the mechanism designer:

Definition 2 Say that Crémer-McLean condition holds for agent i if for any type θk
i ∈ Θi,

p(.|θk
i ) cannot be expressed as a positive linear combination of p(.|θk′

i ), k′ 6= k, i.e. for any
collection of nonnegative coefficients ck′k

i , k′ ∈ {1, ...mi}, k′ 6= k,

p(.|θk
i ) 6=

∑

k′∈{1,...,mi},k′ 6=k

ck′k
i p(.|θk′

i )

In the next subsection we show that Identifiability together with Crémer-McLean condition
are necessary and sufficient for BB, IR, efficient implementation. Although Crémer-McLean
condition is well-understood8, Identifiability is a new condition introduced in this paper. So,
before we exhibit and explain our results, let us explore it in greater detail.

First, let us examine the relationship between the Identifiability condition and the notion
of strategies chosen by the agents in a direct mechanism. For this, we need some additional
notation. Agent i’s strategy si in a direct mechanism is a vector of size m2

i such that its
(k− 1)mi + k′-th entry skk′

i denotes the probability with which agent i of type θk
i reports type

θk′
i when following si. Note that skk′

i ∈ [0, 1] and
∑mi

k′=1 skk′
i = 1 for all k, k′ ∈ {1, ..., mi}. Let

Si be the set of all such strategies si. Formally, Si =
(
∆mi−1

)mi where ∆mi−1 is an mi − 1
dimensional unit simplex in Rmi

+ . A truthful strategy s∗i of agent i is such that skk
i = 1, skk′

i = 0
for all k, k′ ∈ {1, ...,mi}, k′ 6= k.

A strategy profile s ≡ (s1, ..., sn) is a collection of strategies followed by the agents. A strat-
egy profile such that agent i follows strategy si and all other agents follow truthful strategies
is denoted by (si, s

∗
−i).

Definition 3 Say that the strategy profile s ≡ (s1, ..., sn) induces the probability distribution
of the reported type profiles π(.|s) if the type profile θ is reported with probability π(θ|s) when
the agents follow strategies s = (s1, ..., sn) and the types are drawn from the prior p(.).

Thus, π(.|s) is a probability distribution vector of size
∏

l ml with each entry corresponding to
some type profile in the natural order induced by the ordering of agents and their types. To
compute π(.|s), note that for any θ̂ ≡ (θh1

1 , ..., θhn
n ), π(θ̂|s) =

∑
(θ

k1
1 ,...,θkn

n )∈Θ

(
p(θk1

1 , ..., θkn
n )

∏n
i=1 skihi

i

)
.

Further, a strategy component vector π(.|k, k′, s∗−i) of agent i is a vector of size
∏

l ml with
entries p(θ−i|θk

i ) in positions corresponding to type profiles (θ−i, θ
k′
i ) for all θ−i ∈ Θ−i and

zeroes in all other positions. It corresponds to the probability distribution of reported type
profiles conditional on agent i having type θk

i and reporting her type as θk′
i , and all other agents

types’ being drawn from p(.|θk
i ) and reported truthfully. To differentiate between truthful and

8See also McAfee and Reny (1992) for an intuitive discussion of this condition.
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non-truthful reporting by agent i, we will say that a strategy component π(.|k, k′, s∗−i) of agent
i is a deviation component if k′ 6= k and is a truthful component if k′ = k. Note that for any
si ∈ Si, π(.|si, s∗−i) =

∑
k,k′∈{1,...,mi} skk′

i π(.|k, k′, s∗−i)pi(θk
i ).

It is natural to interpret the coefficients ck′k
i in the definition of identifiability as stemming

from i’s reporting strategy i.e. ck′k
i = sk′k

i pi(θ
k′
i )∑

k′′ s
k′′k
i pi(θk′′

i )
. Then the identifiability requires that

for each π̂(.) 6= p(.) there exists an agent i who does not have a strategy such that when i
reports some θk

i according to this strategy and the other agents report truthfully, the induced
probability distribution of the other agents’ type profiles coincides with π̂(.|θk

i ). That is,∑
k′∈{1,...,mi} sk′k

i p(θk′
i )p(.|θk′

i )
∑

k′∈{1,...,mi} sk′k
i p(θk′

i )
6= π̂(.|θk

i ) for all si.

Thus, under identifiability, when the agents’ strategies induce probability distribution
π̂(.) 6= p(.) of the reported types, the principal can identify a non-empty set of agent types
such that the agents reporting these types have not unilaterally deviated from truthtelling.
This interpretation provides a rationale for the use of the term ‘identifiability’ to name this
condition.

In comparison, Crémer-McLean condition requires that no agent possess a non-truthful
strategy which, in combination with truthtelling by other agents, induces a probability distri-
bution of the reported type profiles such that its conditional on any type θi of agent i coincides
with the conditional probability distribution p(.|θi) derived from the prior.

Next, let us introduce the following weakening of the Identifiability condition:

Definition 4 Weak Identifiability. The prior p(.) is weakly identifiable if for any agent i
and any si ∈ Si s.t. π(.|si, s

∗
−i) 6= p(.) there exists an agent j s.t. for all sj ∈ Sj

π(.|si, s
∗
−i) 6= π(.|sj , s

∗
−j) (6)

In Subsection 3.3 we show that Weak Identifiability is necessary and sufficient for budget-
balanced implementation when individual rationality is not required. To understand why
Identifiability is stronger than Weak Identifiability, note that Weak Identifiability requires
that for every π̂(.) 6= p(.) there exists some agent i who cannot induce π̂(.) by a unilateral
deviation from truthtelling, i.e. π̂(.) 6= π(.|si, s∗−i) for any si ∈ Si. But even if p(.) is weakly
identifiable, it may fail to be identifiable if for every agent i there exists a collection of strategies
{si(r)}r=1,...,mi s.t. the conditional of π(.|si(r), s∗−i) on θr

i is equal to π̂(.|θr
i ) for some π̂(.)

(although for some i there is no strategy si ∈ Si such that π(.|si, s∗−i) = π̂(.)).
The following Lemma further highlights the distinction between Identifiability and Weak

Identifiability. More importantly, the Lemma will be useful for explaining the necessity part
of Theorem 1 in the next subsection.

Lemma 1 The probability distribution p(.) is identifiable if and only if for any agent i, any
si ∈ Si s.t. π(.|si, s

∗
−i) 6= p(.) and any collection of coefficients bk

i ≥ 0, k ∈ {1, ..., mi}, there
exists an agent j s.t. for any sj ∈ Sj and any collection of coefficients bh

j ≥ 0, h ∈ {1, ...,mj},

π(.|si, s
∗
−i) +

∑

k∈{1,...,mi}
bk
i π(.|k, k, s∗−i) 6= π(.|sj , s

∗
−j) +

∑

h∈{1,...,mj}
bh
j π(.|h, h, s∗−j) (7)
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We conclude this subsection with the following lemma which connects the Identifiability
condition with the familiar notion of linear independence. It implies that the Identifiability
condition is easy to satisfy.

Lemma 2 The probability distribution p(.) is identifiable if for some agent i and each k ∈
{1, ..., mi} there exists an agent jk and hk ∈ {1, ..., mjk

} such that mi + mjk
− 1 conditional

probability vectors p(.|θk′
i , θhk

jk
), p(.|θk

i , θh′
jk

), k′ ∈ {1, ..., mi}, h′ ∈ {1, ..., mjk
}, h′ 6= hk, are

linearly independent.

Proof: See the appendix.
The condition of Lemma 2 is significantly stronger than Identifiability, as one can infer from

the respective dimensionality requirements. Indeed, Lemma 2 implies that p(.) is identifiable if
for some i and j the collection of mi +mj−1 vectors p(.|θk

i , θh
j ), k ∈ {1, ..., mi}, h ∈ {1, ..., mj}

is linearly independent. For this, it is necessary that
∏

l 6=i,j ml ≥ mi + mj − 1. In contrast,
Lemma 3 below demonstrates that agent i is generically identifiable when

∏
l 6=i ml ≥ mi.

3.2 Main Result.

The main result of this paper is stated in the following theorem:

Theorem 1 Sufficiency. Any ex-ante socially rational decision rule is implementable via an
interim individually rational and ex-post budget balanced Bayesian mechanism if the prior p(.)
is identifiable and Crémer-McLean condition holds for all agents.

Necessity. An ex-post efficient decision rule is implementable via an interim individually
rational, ex-post budget-balanced Bayesian mechanism under any profile of the utility functions
(quasilinear in transfers) only if the prior p(.) is identifiable and Crémer-McLean condition
holds for all agents.

Remark. The necessity part of the Theorem is established for ex-post efficient, rather
than ex-ante socially rational decision rules because failure of ex-post efficiency is arguably a
more significant problem. A careful reading of the Step 6 in the proof should convince a reader
that decision rules that are not ex-post efficient but are ex-ante socially rational may also fail
to be implementable if the identifiability condition does not hold.

To explain the intuition behind Theorem 1, it is useful to start the discussion from a natural
benchmark. So, let us highlight the relationship between our results and the work of Crémer
and McLean (1985) and (1988) on the surplus extraction by the mechanism designer. Below,
we will also discuss the link to the literature on implementation with ex-post budget balancing,
but without interim individual rationality.

The mechanism of Crémer and McLean (1988) elicits the agents’ private information with-
out leaving any informational rents to them by means of lotteries - systems of transfers to/from
each agent which depend on the whole profile of the reported types. The lotteries are con-
structed in such a way that the loss from a misrepresentation in a lottery for any agent always
exceeds any potential gain from a better allocation x(.). Crémer and McLean condition de-
scribed in Definition 2 is necessary and sufficient for such lotteries to exist.

This method works successfully in the presence of an outside principal who acts as a
budget-breaker, or a residual claimant, for the lotteries offered to the agents. In contrast,
in our budget-balanced framework all payments to/by any particular agent have to be made
by/distributed to other agents. Consequently, we must designate residual claimant(s) for the
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lottery given to each agent, which raises the issue of the incentives of the residual claimants.
For example, designating agent j as a residual claimant for the lottery given to agent i may
generate incentives for j to ‘rig the lottery:’ misrepresent her type in a way that makes a
truthful report by i to appear untruthful and, thus, to cause i to make transfers to j.

It is natural to consider the following candidate for an optimal mechanism which allows
to resolve the issue of the incentives of residual claimants. Suppose that we divide all agents
into groups and run a separate Crémer-McLean mechanism in each group using an agent
outside the group as a residual claimant for the balance of transfers from/to this group. The
incentive compatibility of this mechanism can be ensured by making the lotteries in each
group independent of the residual claimant’s reported type. Clearly, such mechanism will also
be budget balanced. However, it could fail to be individually rational for the residual claimants,
because the aggregate transfer between each group and its residual claimant will be determined
independently of the residual claimant’s reported type. But, given statistical interdependence
between the agents’ types, the probability distribution of these aggregate transfers and hence
the expected utility of the residual claimant will be dependent on her type. In particular, for
some values of her private information the residual claimant could expect a negative payoff, in
which case she would refuse to participate in this mechanism. Therefore, such mechanism would
not work in general. Its failure highlights the role of individual rationality, and illustrates the
difference between our environment and the ones with ex-post budget-balancing but without
individual rationality requirement as in Aoyagi (1998) and d’Aspremont, Crémer and Gérard-
Varet (2004). Indeed, a mechanism of this kind is used by Aoyagi (1998). In contrast, in
our mechanism every agent’s allocation typically has to depend on the reported types of all
agents, which could generate an opportunity for residual claimants to increase their payoffs by
mimicking other agents’ deviations.

To summarize, we need to deal with three issues within a balanced budget framework: (i)
an agent misrepresenting her type in a way which is indistinguishable from truthtelling; (ii)
“Mimicry:” an agent misrepresenting her type in a way which is statistically indistinguishable
from some misrepresentation by another agent; (iii) the individual rationality. The tension
between the second and the third issues was described above.

Consider how these issues can be resolved when Identifiability and Crémer-McLean con-
ditions hold. Under Identifiability, if the probability distribution of reported type profiles is
π̂(.) 6= p(.), then the mechanism designer can identify a non-empty set of agent types such that
the agents reporting these types are surely truthful.

Moreover, since the Identifiability condition requires this to be true for all probability
distributions of reported type profiles, there are sufficiently many such agent types to cover the
whole type space under any π̂(.). Precisely, suppose that π̂(θ̂) 6= p(θ̂) for some θ̂ ≡ (θ̂1, ..., θ̂n).
Then there exists an agent i s.t. π̂(.|θ̂i) 6= π[(.|si, s

∗
−i)|θ̂i] for all si ∈ Si (where π[(.|si, s

∗
−i)|θ̂i]

denotes the conditional of π(.|si, s
∗
−i) on θ̂i).

In turn, Crémer-McLean condition implies that no agent can perfectly ‘hide’ her deviation
from truth-telling, i.e. no agent i has a non-truthful reporting strategy si s.t. sk′k

i > 0 for
some k 6= k′ but which in combination with truthtelling by other agents generates probability
distribution π[(.|si, s

∗
−i) satisfying π[(.|si, s

∗
−i)|θk

i ] = p(.|θk
i ).

Therefore, we can construct a budget-balanced system of transfers t(θ) = (t1(θ), ..., tn(θ))
s.t. (i)

∑
θ−i∈Θ−i

ti(θ−i, θi)p(θ−i|θi) = 0 for all i, θi ∈ Θi, (ii)
∑

θ−i∈Θ−i
ti(θ−i, θi)π̂(θ−i|θi) > 0 if

π̂(.|θi) 6= p(.|θi) and π̂(.|θi) 6= π[(.|si, s
∗
−i)|θi] for all si ∈ s∗i , (iii)

∑
θ−i∈Θ−i

ti(θ−i, θi)π̂(θ−i|θi) <
0 if π̂(.|θi) 6= p(.|θi) and π̂(.|θi) = π[(.|si, s

∗
−i)|θi] for some si.
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Thus, the system of transfers t(.) always punishes an agent who could have misrepresented
her type unilaterally by giving her a negative expected transfer, and gives a strictly positive
payoff to an agent who could not have done so9.

This implies that t(.) is both individually rational and strictly incentive compatible, i.e.
∑

θ−i∈Θ−i

ti(θ−i, θi)p(θ−i|θi) = 0 and
∑

θ−i∈Θ−i

ti(θ−i, θ
′
i)p(θ−i|θi) < 0 for all θi 6= θ′i (8)

To reiterate, is it possible to ensure that t(.) is budget balanced because for any probability
distribution of reported type profiles there is a sufficiently large set of agent types who could
not have unilaterally deviated, and who are therefore given a positive expected transfer.

By scaling the transfers up appropriately, the mechanism designer can elicit type informa-
tion from the agents at no cost, irrespective of the decision rule x(.). To these transfers, she can
also add budget-balanced transfers that compensate agents for the utility consequences of the
public decision x(.) and allocate the social surplus without affecting the incentive compatibil-
ity of the mechanism. This explains the sufficiency of the Identifiability and Crémer-McLean
conditions.

The necessity part of Theorem 1 can be explained using a similar logic. If the Identifiability
condition fails, then by Lemma 1 there is a collection of strategies (s1, ..., sn) with si 6= s∗i for
some i and nonnegative coefficients {bk1

1 , ..., bkn
n } s.t.

∑

k1∈{1,...,m1}
bk1
1 π(.|k1, k1, s

∗
−1) + π(.|s1, s

∗
−1) = ... =

∑

kn∈{1,...,mn}
bkn
n π(.|kn, kn, s∗−n) + π(.|sn, s∗−n) = π̂

(9)

Let us show that in this case there is no budget-balanced system of transfers (t1(θ), ..., tn(θ))
which is strictly incentive compatible and individually rational, i.e. satisfies (8). Indeed, since
si 6= s∗i , (8) implies that ti(.)× π(.|si, s

∗
−i) < 0. Also, (8) implies that tl(.)× π(.|sl, s

∗
−l) ≤ 0 for

all l 6= i and sl ∈ Sl, and tl(.)× π(.|kl, kl, s
∗
−l) = 0 for all l. So, if both (8) and (9) hold, then

ti(.)π̂ < 0 and tl(.)π̂ ≤ 0 for all l 6= i. Summing up, we get (
∑

l tl(.)) π̂ < 0 which contradicts
budget-balancing.

Similarly, if Crémer-McLean condition fails for agent i, then there is a strategy si 6= s∗i and
bki
i ≥ 0, ki = 1, ..., mi such that

∑
ki∈{1,...,mi} bki

i π(.|ki, ki, s
∗
−i)+π(.|si, s

∗
−i) = αp(.) for some α >

0. But this contradicts (8) which implies that ti(.)×
(∑

ki∈{1,...,mi} bki
i π(.|ki, ki, s

∗
−i) + π(.|si, s

∗
−i)

)
<

0 and, on the other hand, ti(.)p(.) = 0.
The non-existence of a system of transfers satisfying (8) means that the mechanism has

to provide informational rents to prevent agents from engaging in some deviations. We then
show that the sum of expected informational rents that need to be given to the agents exceeds
the expected social surplus for a class of utility function profiles, even though the decision rule
is ex-post efficient. Then efficient implementation is impossible. Note that the same logic is
behind the impossibility result of Myerson and Satterthwaite (1983). The difference is that
in our case the mechanism may have to pay informational rents only to some subset of agent
types (this could even be a single type). Yet, as our proof demonstrates, this could be enough
to make implementation impossible.

9Informally, we can say that Crémer-McLean condition makes it possible to detect the deviators and punish
them, while the Identifiability condition makes it possible to identify those who could not have deviated and,
therefore, could be given the proceeds from punishments.
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Note that Crémer and McLean (1988) show that their condition is necessary for surplus
extraction in their environment, but not for implementation per se. In contrast, we establish
that this condition is, in fact, necessary for implementation.

With ex-post budget balance, all social surplus generated by the mechanism is allocated
to the agents. Thus, it is natural to investigate how this surplus can be distributed across the
agents and agent types. The next result shows that this can be done in an arbitrary way.

Theorem 2 Consider any EASR decision rule x(θ), and suppose that the prior p(.) is iden-
tifiable and Crémer-McLean condition holds for all agents. Then for any collection of

∑
i mi

nonnegative constants vi(θi) satisfying:
∑

i∈{1,...,n},θi∈Θi

vi(θi)pi(θi) =
∑

i∈{1,...,n},θ∈Θ

ui(x(θ), θ)p(θ) (10)

there exists an IC, BB, and IR Bayesian mechanism (x(θ), t(θ)) s.t. the expected surplus of
type θi of agent i is equal to vi(θi), i.e.

∑

θ−i∈Θ−i

(ui(x(θ−i, θi), (θ−i, θi)) + ti(θ−i, θi))p(θ−i|θi) = vi(θi)

Proof: See the Appendix.

An interesting aspect of Theorem 2 is that, compared to Theorem 1, no additional con-
ditions are required to achieve the desired allocation of surplus. To understand why this is
so, refer to the method of lotteries described above. These lotteries guarantee strict incentive
compatibility of truthtelling and binding individual rationality for all types. Given that the
expected losses from non-truthful reporting can be made arbitrarily large, the mechanism will
remain incentive compatible even if we add to it transfers distributing the expected social
surplus in any desirable way.

This result is of independent interest because the existence of an efficient, individually
rational, balanced-budget mechanism does not by itself guarantee that the social surplus can
be allocated arbitrarily. For example, one can show that such a mechanism exists if there is
an agent î whose type is distributed independently of all other agents’ types, the prior over
other agents’ types p−î is identifiable and Crémer-McLean condition holds for all agents other
than î. However, agent î must receive at least some, and sometimes all social surplus. So,
identifiability is an essential requirement guaranteeing the freedom in surplus allocation.

Next, we study whether a sufficiently large set of probability distributions is identifiable
and satisfies Crémer-McLean conditions for all agents.

Using Lemma 2, it is relatively straightforward to show that identifiability is generic if
L−i−j ≥ mi + mj − 1 for some i and j. However, the following Lemma demonstrates that this
dimensionality requirement can be significantly relaxed.

Lemma 3 Genericity of Identifiability. Suppose that there are at least three agents (n ≥
3) and Πj 6=imj ≥ mi for all i. Also, if n = 3 then at least one of the agents has at least three
types. Then almost all probability distributions p(.) are identifiable.

In the proof of Lemma 3 we use a measure-theoretic definition of genericity and show that
the set of probability distributions which are not identifiable has (Lebesgue) measure zero.
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Precisely, the proof establishes that p(.) is not identifiable only if a set of non-degenerate
polynomials in the entries of p(.) are non-zero. This argument also implies that identifiability
is generic in the topological sense, i.e. holds on an open dense set in the topology generated
by the Euclidian metric.

It is easy to see that Crémer-McLean condition for agent i holds generically when mi ≤∏
l 6=i ml. This also follows from Fact 2 in Step 3 of the proof of Lemma 3. Since a finite union

of sets of measure zero has measure zero, while an intersection of a finite number of open and
dense sets is open and dense, we conclude that both conditions of Theorems 1 and 2 are generic
when the dimensionality requirements of Lemma 3 hold.

The proof of Lemma 3 is quite involved because there is no simple method to construct an
efficient, IR, BB mechanism. In contrast, if individual rationality requirement is left out, this
can be done by relying either on Cauchy-Schwartz inequality or the scoring rule (see Aoyagi
(1998) or d’Aspremont, Crémer and Gérard-Varet (2004)). But if we take the mechanism
constructed in either of these papers and attempt to adjust it to make the individual rationality
hold, then either incentive compatibility or budget-balancing would be violated.

When mi > Πj 6=imj for some i, then Crémer McLean condition is not generic for i, which
also implies that i is not generically identifiable. It is possible to show directly that the
identifiability condition fails when n = 2 and m1 = m2. We conjecture that the same result
holds for m1 6= m2. Finally, for n = 3 and m1 = m2 = m3 = 2 we can show by direct
computation that p(.) is identifiable if at least one of the following inequalities is satisfied
(where pk1k2k3 denotes the probability that the agents 1,2 and 3 have types k1, k2, and k3

respectively): (p211p222 − p212p221)(p121p222 − p122p221) < 0;
(p121p112 − p122p111)(p121p222 − p122p221) < 0; (p212p111 − p112p211)(p121p222 − p122p221) < 0.
In this case, and provided that the elements of p(.) are drawn uniformly, 88% of the probability
distributions are identifiable.

We complete this section by illustrating our results with two examples.
Example 1. Bargaining and Trade. There are 2 buyers and 2 sellers each of whom

can produce one unit of the good. A buyer’s valuation is equal to v with probability p and v
with probability (1− p). A seller’s cost is equal to c with probability q and c with probability
(1− q). Further, v > c > v > c. Let ∆v = v − v, and ∆c = c− c.

If the costs and valuations are distributed independently, then following the method of My-
erson and Satterthwaite (1983), we can show that an efficient, IR, BB Bayesian mechanism
does not exist if the sum of (ex-ante) expected informational rents of all traders Eπ in an effi-
cient, IR mechanism exceeds total (ex-ante) expected surplus ES. Using standard techniques,
we find that Eπ = 2(1− p)q(1 + p(1− q)) (∆v + ∆c) and
ES = 2(v− c)(1− q)2(1− p) + 2(v− c)p2q + 2(v− c)(1− p)q(1− q + p). Fixing p, q ∈ (0, 1), it
is easy to see that Eπ > ES if c− v is sufficiently large compared to both v − c and v − c.

However, by Lemma 3 all traders are generically identifiable. In particular, let us modify
the joint probability distribution of their types slightly and suppose that the most efficient
type profile (v, v, c, c) occurs with probability (1 − p)2q2 + δ, the most inefficient type profile
(v, v, c, c) occurs with probability p2(1− q)2 − δ, for δ 6= 0, δ ∈ (−(1− p)2q2, p2(1− q)2), and
all other type profiles occur with the same probabilities as in the independence case. Then it
is easy to check that the probability distribution over the buyers’ values and the sellers costs is
identifiable (one can use Condition G in the proof of Lemma 3 to do so) and Crémer-McLean
condition holds for all traders, and so an ex-post efficient, IR, BB mechanism exists.
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Example 2. Public Good. A number of authors starting from Rob (1989) and Mailath
and Postlewaite (1990) have established the impossibility of efficient public good provision via
an IR and BB mechanism when the agents’ valuations for the public good are privately known
and independently distributed. The inefficiency becomes more severe as the number of agents
increases. We use the following simple example to illustrate this.

There are 4 consumers. A consumer’s valuation of the public good is v with probability
p and v with probability (1 − p), where v > v. The cost of the public good is C satisfying
2(v + v) < C = 3v + v− ε for ε > 0. Thus, the public good should be provided if at least three
consumers have valuations v for it.

Let us consider whether the public good can be provided efficiently when the valuations are
distributed independently. By IR, a consumer with valuation v cannot pay more than v if the
public good is provided. If every consumer reports truthfully and the mechanism is efficient,
then a consumer with valuation v must get an expected payoff of at least (v−v)(1−p)3. Thus,
the mechanism must generate at least SP = 4(1− p)4(v − v) of (ex-ante) expected surplus to
cover the informational rents. However, the total amount of expected surplus available in an
efficient mechanism is no more than SA = 3εp(1− p)3 + (1− p)4(v − v + ε).

Clearly, SP > SA when ε is small enough. So, an efficient IR, BB mechanism does not
exist when valuation are independently distributed. On the other hand, by Lemma 3 almost
all probability distributions of the type profiles are identifiable. For example, suppose that
the type profiles (v, v, v, v) and (v, v, v, v) occur with probabilities p4 + δ and (1 − p)4 + δ
respectively, where |δ| is positive and not too large, while the probability of any other type
profile differs from its probability in the independence case by −δ/7. The parameter δ measures
the strength of correlation between types. It is easy to check that in this case p(.) is identifiable
(use Condition G in the proof of Lemma 3) and Crémer-McLean condition holds for all agents,
and so an ex-post efficient, BB, IR mechanism exists.

3.3 Mechanisms without Individual Rationality.

Several authors have explored the issue of implementation via ex-post budget-balanced mech-
anisms, without imposing individual rationality. This literature includes d’Aspremont and
Gérard-Varet (1979), d’Aspremont, Crémer and Gérard-Varet (1990), (2003) and (2004), Mat-
sushima (1991), Fudenberg, Levine and Maskin (1996), Aoyagi (1998), and Chung (1999).

d’Aspremont, Crémer and Gérard-Varet (2004) provide necessary and sufficient condi-
tions for balanced-budget Bayesian implementation and show that these conditions are strictly
weaker than the ones studied by the other authors. Their Lemma 1 says that any Bayesian
implementable allocation profile can also be implemented with ex-post budget balance if and
only if the following Condition C is satisfied:
For every function R(.) : Θ 7→ R, there exists a transfer rule t(θ) ≡ (t1(θ), ..., tn(θ)) such that:

(i)
∑

i∈{1,...,n}
ti(θ) = R(θ) for all θ ∈ Θ

(ii)
∑

θ−i∈Θ−i

ti(θ−i, θi)p(θ−i|θi) ≥
∑

θ−i∈Θ−i

ti(θ−i, θ
′
i)p(θ−i|θi) for all i ∈ {1, ..., n}, θi, θ

′
i ∈ Θi, θi 6= θ′i

Using the approach developed in the previous sections, we can show that Weak Identifi-
ability is an alternative condition for such implementation. Recall that Weak Identifiability
says that any probability distribution of reported type profiles different from the prior, which
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can be induced by a unilateral deviation from truthtelling by some agent i, cannot be induced
by such deviation of some other agent j (see Definition 4). Then we have:

Lemma 4 Condition C holds if and only if Weak Identifiability Condition holds.

Proof: See the Appendix.
d’Aspremont, Crémer and Gérard-Varet (2004) have also shown that any decision rule

is implementable via an ex-post budget-balanced Bayesian mechanism if and only if both
condition C and the following ‘no free beliefs’ condition hold: p(.|θi) 6= p(.|θ′i) for all i, θi, θ

′
i ∈

Θi. Intuitively, the ‘no free beliefs’ condition guarantees that the incentive constraints in part
(ii) of Condition C can be made to hold strictly.

Thus, by Lemma 4, Weak Identifiability together with the ‘no free beliefs’ condition are also
necessary and sufficient for ex-post budget-balanced Bayesian implementation of all decision
rules. The intuition for this result is similar to that for Theorem 1, but there are also important
differences between the two.

In particular, since the IR constraints do not have to hold, it is sufficient to determine
the set of agents -not agent types- who could not have deviated, reward them and punish
the agents who could have deviated. Weak Identifiability condition allows to do so, as it
guarantees that the set of agents who are surely not unilateral deviators from truthtelling is
non-empty under any probability distribution of the reported type profiles. Formally, for any
probability distribution π̂ 6= p(.) of reported type profiles, we can divide all agents into two
sets: D(π̂) ≡ {i|∃si ∈ Si s.t. π̂ = π(.|si, s

∗
−i)} and ND(π̂) ≡ {i|π̂ 6= π(.|si, s

∗
−i) ∀ si ∈ Si}.

The set D(π̂) includes potential deviators who could have induced π̂ by a unilateral deviation
from truthtelling, while the set ND(π̂) includes agents who are surely not unilateral deviators
from truthtelling when the probability distribution of the reported type profiles is π̂. Weak
Identifiability guarantees that ND(π̂) is non-empty for all π̂ 6= p(.).

Therefore, we can construct a system of transfers such that under π̂ 6= p(.) an agent from
ND(π̂) (D(π̂)) gets a positive (negative) expected transfer, and rewards and punishments offset
each other to balance the budget. Also, under p(.) every agent’s (ex-ante) expected transfer
is set to be zero. Then some agent types may end up with negative expected transfers even if
everyone is truthful. But, nevertheless, each type gets a higher payoff by reporting truthfully
than by misrepresenting.

Finally, the ‘no free beliefs’ condition guarantees that the agents are strictly (and not just
weakly) better off when reporting their types truthfully.

4 The Informed Principal Problem.

In this section we study an environment where an uninformed mechanism designer is not avail-
able, and so the mechanism has to be designed by one of the agents (referred to as the primary
agent in the sequel) after all the agents have already learned their private information.10 In
the literature this is known as an ‘informed principal problem.’ Since different types of the
primary agent may decide to offer different mechanisms, the choice of a mechanism provides
a signal on the basis of which the other agents update their beliefs about the primary agent’s
type. Naturally, the outcome of this inference process could affect the agents’ incentive. As a

10The absence of a mechanism designer is natural in many contexts. For example, in collusion context the
parties have to agree upon a mechanism for collusion.
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result, the informed principal problem is more complex to analyze and solve than a standard
mechanism design problem.11

In this section we advance the investigation of the informed principal problem by showing
that generically it possesses an ex-post efficient solution allocating all social surplus to the
primary agent. The explanation for this result is fairly simple. By Theorem 2, generically
there exists a class of ex-post-efficient, IR and BB mechanisms M c1 in which one agent (say,
agent 1) gets all expected social surplus. It is intuitive to conjecture that agent 1 would choose
a mechanism from class M c1 when she acts as an informed principal. Clearly, agent 1 cannot
obtain more surplus, as this would violate the individual rationality, and getting less would be
dominated. As far as the distribution of surplus, a natural outcome is for each type of agent
1 to obtain all expected social surplus conditional on her type. In this section we confirm this
conjecture formally, and show that the described outcome is fairly robust to the choice of a
solution concept.

We start by describing the informed principal game Γ and introducing the necessary nota-
tion. Without loss of generality assume that agent 1 is the primary agent who has the authority
to propose and implement the mechanism. The timeline of the game Γ is as follows:

• Stage 1. All agents learn their types.

• Stage 2. Agent 1 proposes a mechanism M which can be represented as an outcome
function M :

∏
i=1,...,n Si 7→ Y from the set of agents’ strategy profiles into the set of

outcomes Y . Y is the set of all budget-balanced allocations (x, t1, ..., tn), with x ∈ X.

• Stage 3. Agents 2 to n simultaneously decide whether to participate in the mechanism.

• Stage 4. If all agents have agreed to participate, the mechanism M is implemented.12

The outcome is determined by the agents’ strategy choices and the outcome function of
M .

Let Z denote the set of admissible mechanisms. We will require the continuation game
following the offer of a mechanism from the set Z to possess a sequential equilibrium for arbi-
trary agents’ beliefs at stage 3. This can be ensured by simply assuming that all mechanisms
in Z are finite, i.e. have a finite set of terminal nodes, or a finite set of outcomes assigned to
the terminal nodes.

Without loss of generality, we can assume that all mechanisms in Z are direct, so that
any mechanism M from Z can be represented as an outcome function (x(.), t(.)) mapping the
agents’ reported type profiles into the allocation profiles. The individual rationality of the
mechanism M has to be defined with respect to the agents’ beliefs at stage 3 which we denote
by b3

i (θ−i|θi,M), while the incentive compatibility of the mechanism has to be defined with

11If a mechanism designer is not available, but the mechanism can be designed at an ex-ante stage when no
agent has learned her private information, then it is reasonable to expect that an ex-post efficient decision rule
would be implemented and the allocation of surplus would be determined by the ex-ante distribution of the
bargaining power.

12For simplicity, we assume that the mechanism is not implemented and all agents get their outside options
if at least one of them drops out at stage 3. However, the outcomes of our mechanism can be obtained under
the same solution concepts if we make alternative assumptions regarding the play of the mechanism following
the refusal of some subset of agents to participate in it. To do so, we can simply define the outcome function of
a mechanism as a mapping from

∏
i=1,...,n (∅ ∪ Si) into Y where ∅ denotes an agent’s refusal to participate in

the mechanism at stage 3, and the outcome function is restricted to have zero transfers for the agents who have
refused to participate in the mechanism.
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respect to their posterior beliefs at stage 4 denoted by b4
i (θ−i|θi,M). That is, the individual

rationality (incentive) constraints are given by the same inequalities as in (2) ((1)), with the
only difference that for i ∈ {1, ..., n} we use her beliefs b3

i (θ−i|θi,M) at stage 3 (b4
i (θ−i|θi,M)

at stage 413), instead of her prior beliefs pi(θ−i|θi).
The Inscrutability Principle of Myerson (1983) says that without loss of generality on

the equilibrium path all types of the primary agent offer the same mechanism, so that the
other agents do not change their prior beliefs at stage 3. A mechanism with this property is
called inscrutable. The Inscrutability Principle holds because for any mechanism in which the
primary agent reveals some information about her type at the mechanism-proposal stage 2,
there is an outcome-equivalent inscrutable mechanism in which the primary agent reveals her
private information only through her type announcement in stage 4.

The Inscrutability Principle is useful for characterizing solutions to the informed principal
problem and describing the corresponding mechanisms. However, we still need to consider
all possible deviations from the candidate mechanism, including deviations to non-inscrutable
mechanisms. In particular, we have to consider deviations where some, but not all types of
the primary agent choose to offer a mechanism different from the candidate solution. Such a
deviation would cause the other agents to update their priors beliefs in a non-trivial manner
at stage 3. Their updated beliefs will then be concentrated on the set of deviating types.
The following concept will be useful in the analysis of such situations. Say that a mechanism
(x(θ), t(θ)) is incentive compatible given a subset R of Θ1 if (x(θ), t(θ)) satisfies standard
interim incentive constraints of agent 1 given by (1), while for any agent i ∈ {2, ..., n} the
following incentive constraints hold ∀θi ∈ Θi:

∑

θ−1−i∈Θ−1−i,θ1∈R

(
ui(x(θ−i, θi), (θ−i, θi)) + ti(θ−i, θi)− ui(x(θ−i, θ

′
i), (θ−i, θi))− ti(θ−i, θ

′
i)

)
p(θ−i|θi) ≥ 0

(11)

We will now introduce our solution concepts. A standard solution concept for extensive form
games with incomplete information is sequential equilibrium. It is well-known that sequential
equilibrium allows too much freedom in the specification of posterior beliefs off the equilibrium
path. Therefore, we strengthen our analysis by relying on two additional solution concepts:
core mechanism and neutral optimum proposed by Myerson (1983).

The neutral optimum concept is based on the notion of blocking. To define it, let {Ui(θi|M)}θi∈Θi

be the vector of expected payoffs of agent i in an incentive-compatible mechanism M . Next, let
B(Γ) denote a set of blocked expected payoff vectors of agent 1 in game Γ. Following Myerson
(1983), we require B(Γ) to satisfy the following axioms:

Axiom 1 (Domination) For any vectors w(.) and z(.) in Rm1, if w(.) ∈ B(Γ), and z(θ1) ≤
w(θ1) for every θ1 ∈ Θ1, then z(.) ∈ B(Γ).

Axiom 2 (Openness) B(Γ) is open in the set of feasible expected payoff vectors.14

13Since stage 4 is reached only if at stage 3 all agents have agreed to participate in the mechanism, we can
omit the dependence of stage 4 beliefs on stage 3 participation decisions.

14Here we make a slight departure from Myerson’s definition which requires B(Γ) to be open in Rm1 . Note
that Myerson’s proofs of existence of a neutral optimum and characterization results apply verbatim with our
notion of openness. It appears quite natural to require B(Γ) to be open relative to the set of feasible payoff
vectors. Particularly, since otherwise it will never be possible to block any point on the ‘upper’ boundary of the
set of feasible expected payoff vectors of agent 1. This boundary is given by {z(.) ∈ Rm1

+ :
∑

θ1∈Θ1
z(θ1)p1(θ1) =∑

i,θ∈Θ ui(x
∗(θ), θ)p(θ)}, where x∗(.) is an ex-post efficient decision rule.
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Axiom 3 (Extension) Let Γ̄ be an informed principal problem that differs from Γ only because
its feasible action set X̄ includes the feasible action set X of Γ, i.e. X ⊂ X̄. Then B(Γ) ⊂
B(Γ̄).

Axiom 4 (Strong Solutions) If mechanism M is incentive compatible given any θ1 ∈ Θ1

and there does not exist another incentive compatible mechanism M ′ satisfying U1(M |θ1) ≤
U1(M ′|θ1) for all θ1 ∈ Θ1 with strict inequality for at least one θ1, then U1(M |θ1) 6∈ B(Γ).
Such mechanism is called a strong solution.

These axioms do not define the set of blocked payoff vectors B(Γ) uniquely. Rather, there
may be several sets of blocked allocations B(Γ). To avoid ambiguity, let I be the index set of
all sets of payoff vectors blocked by some concept of blocking satisfying Axioms 1-4, and let
B∗(Γ) denote the union of all sets of blocked payoff vectors, i.e. B∗(Γ) = ∪k∈IBk(Γ). Thus,
a payoff vector is not in B∗(Γ) if it cannot be blocked by any concept of blocking satisfying
Axioms 1-4.

Definition 5 (Myerson 1983) An IR, BB mechanism M̃ is a neutral optimum if it is incen-
tive compatible with respect to prior beliefs and the vector {U(M̃ |θ1)} of the expected payoffs
of agent 1 does not belong to B∗(Γ).

The core mechanism is defined as follows:

Definition 6 (Myerson 1983) An IR, BB mechanism M̃ is a core mechanism if it is incentive
compatible (with respect to prior beliefs) and there does not exist any other IR, BB mechanism
M̂ such that {

θ1 ∈ Θ1|U1(M̂ |θ1) > U1(M̃ |θ1)
}
6= ∅

and M̂ is incentive compatible given any set S satisfying
{

θ1 ∈ Θ1|U1(M̂ |θ1) > U1(M̃ |θ1)
}
⊂ S ⊂ Θ1.

The attractiveness of the neutral optimum as a solution concept stems from the fact that a
number of other solution concepts, including sequential equilibrium and core mechanisms, give
rise to sets of outcomes that can be described via some concept of blocking satisfying the
Axioms 1-4. Since neutral optima correspond to the smallest set of mechanisms unblocked ac-
cording to these axioms, it follows that a neutral optimum also constitutes a solution according
to those other solution concepts. In particular, Theorem 5 in (Myerson 1983) shows that any
neutral optimum is also a sequential equilibrium and a core mechanism.

The main result of this section provides a generic characterization of the set of neutral
optima.

Theorem 3 Suppose that p(.) is identifiable and Crémer-McLean condition holds. Then the
set of neutral optima consists of budget-balanced mechanisms (x(θ), t(θ)) which are incentive
compatible and individually rational with respect to prior beliefs and possess the following prop-
erties:

(i) x(θ) ∈ arg max
x∈X

∑

i

ui(x, θ) ∀θ ∈ Θ

(ii) ∀θ1 ∈ Θ1

∑

θ−1

(u1(x(θ−1, θ1), (θ−1, θ1)) + t1(θ−1, θ1)) p(θ−1|θ1) =
∑

i,θ−1

ui(x(θ−1, θ1), (θ−1, θ1))p(θ−1|θ1)
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Theorem 3 says that a neutral optimum outcome is generically unique. It must be ex-post
efficient and allocate all surplus to the primary agent in such a way that each type of the
primary agent gets all the expected social surplus conditional on her type. By Theorems 1 and
2 and Lemma 3, the existence of such mechanism is generic.

In the appendix we also demonstrate how a neutral optimum mechanism can be supported
as a sequential equilibrium.

5 Conclusions.

In this paper we have characterized necessary and sufficient conditions for ex-post budget-
balanced, interim individually rational efficient Bayesian implementation. These conditions
are a well-known Crémer-McLean condition and Identifiability condition introduced in this
paper. They hold generically when there are at least three agents and none of them has more
types than the number of different type profiles of the other agents. We have provided an
intuitive explanation of the mechanisms that have the above properties and shown that these
mechanisms allow to distribute the social surplus between agent types in any desirable way.

An extension of our results demonstrates that, also generically, efficiency is attainable in
an informed principal framework, and the informed principal can extract all surplus from the
other agents. We believe that our results can be extended to the case of continuous type
distribution, and we plan to address this issue in our future work.

6 Appendix

Proof of Lemma 1: Suppose that p(.) is not identifiable, i.e. for some π̂(.) 6= p(.) there exist
collections of nonnegative coefficients ckk′

i s.t. π̂(.|θk′
i ) =

∑
k∈{1,...,mi} ckk′

i p(.|θk
i ) for all i and

k, k′ ∈ {1, ...,mi}.
Let L = maxi

{
maxk

∑
k′ c

kk′
i

p(θk
i )

}
, and for every i, k, k′ ∈ {1, ..., mi}, k 6= k′ set:

skk′
i =

ckk′
i π̂i(θk′

i )
p(θk

i )L
; skk

i = 1−
∑

k′ 6=k

skk′
i ≥ 0; bk

i = pi(θk
i )(1− skk

i ) +
ckk
i π̂i(θk

i )
L

≥ 0

Then for all i we have π(.|si, s
∗
−i) +

∑
k bk

i π(.|k, k, s∗−i) = π̂(.)
L + p.

Conversely, suppose that for some π̂(.) 6= αp(.), α ≥ 0, and every agent i there exists si ∈ Si

and bk
i ≥ 0, k ∈ {1, ..., mi} s.t. π(.|si, s

∗
−i) +

∑
k bk

i π(.|k, k, s∗−i) = π̂(.). Then
∑

k bk
i =

∑
h bh

j

for all i and j, and π̃(.) ≡ π̂(.)

1+
∑

k bk
i
∈ ∆

∏
l ml−1. Then we have:

∑

k,k′

skk′
i pi(θk

i )
1 +

∑
k bk

i

π(.|k, k′, s∗−i) +
∑

k

bk
i

1 +
∑

k bk
i

π(.|k, k, s∗−i) = π̃(.)

So, for all i and all k′ ∈ {1, ..., mi} we have:

π̃(.|θk′
i ) =

∑

k 6=k′

skk′
i pi(θk

i )
(1 +

∑
k bk

i )pi(θk′
i )

p(.|θk
i ) +

(
sk′k′
i p(θk′

i ) + bk′
i

(1 +
∑

k bk
i )p(θk′

i )

)
p(.|θk′

i )

Thus, p(.) is not identifiable. Q.E.D.
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Proof of Lemma 2: Suppose that p(.) is not identifiable. Let us show that for any agent
i there exists k ∈ {1, ...,mi} such that for all j 6= i and h ∈ {1, ..., mj} the conditional
probability vectors p−i−j(.|θk′

i , θh
j ), p−i−j(.|θk

i , θh′
j ), k′ ∈ {1, ...,mi}, h′ ∈ {1, ..., mjk

}, h′ 6= h,
are not linearly independent.

Since p(.) is not identifiable, there exists π(.) ∈ ∆
∏

l ml−1, π(.) 6= p(.), such that for any
i and k ∈ {1, ..., mi} there is a collection of nonnegative coefficients {ck′k

i }, k′ ∈ {1, ..., mi},
satisfying π(.|θk

i ) =
∑

k′∈{1,...mi} ck′k
i p(.|θk′

i ). In particular, choose k such that π(.|θk
i ) 6= p(.|θk

i )
(such k exists because π(.) 6= p(.)). Then ck′k

i > 0 for some k′ 6= k. Thus, for all θ−i ∈ Θ−i we
have:

π(θ−i, θ
k
i ) = πi(θk

i )
∑

k′∈{1,...mi}
ck′k
i p(θ−i|θk′

i ).

Similarly, for any other agent j, any h ∈ {1, ...,mj} and any θ−j ∈ Θ−j we have:

π(θ−j , θ
h
j ) = πj(θh

j )
∑

h′∈{1,...mj}
ch′h
j p(θ−j |θh′

j ).

Combining the last two expressions and using the fact that p(θ−i−j , θ
h
j |θk

i ) = p(θ−i−j |θk
i , θh

j )p(θh
j |θk

i )
and similarly p(θ−i−j , θ

k
i |θh

j ) = p(θ−i−j |θk
i , θh

j )p(θk
i |θh

j ), we obtain that for all θ−i−j ∈ Θ−i−j :

π(θ−i−j , θ
k
i , θh

j ) = πi(θk
i )

∑

k′∈{1,...mi}
ck′k
i p(θh

j |θk
i )p(θ−i−j |θk′

i , θh
j ) = πj(θh

j )
∑

h′∈{1,...mj}
ch′h
j p(θk

i |θh
j )p(θ−i−j |θk

i , θh′
j )

(12)

Since ck′k
i > 0 for some k′ 6= k, (12) implies that p−i−j(.|θk′

i , θh
j ), p−i−j(.|θk

i , θh′
j ), k′ ∈

{1, ..., mi}, h′ ∈ {1, ..., mj}, h′ 6= h, are not linearly independent. Q.E.D.

Proof of Theorem 1: The theorem will be proved in a number of steps. Throughout, x(.) is
an arbitrary EASR decision rule.

Step 1. Restatement of the Problem. To begin with, let us rewrite IC, IR and BB
constraints given by (1), (2) and (3) respectively in a matrix form. Let Bi be a matrix of
size mi(mi − 1) × L each row of which corresponds to a different IC constraint of agent i.
All rows from (k − 1)(mi − 1) + 1 to k(mi − 1) of Bi correspond to incentive constraints of
type k ∈ {1, ..., mi} of agent i, and each column corresponds to one of L ≡ ∏

l ml possible
type profiles in the natural order induced by the ordering of agents and their types. Then,
the row corresponding to ICi(k, k′) is equal to π(.|k, k, s∗−i) − π(.|k, k′, s∗−i), the difference of
the corresponding truthtelling and deviation components of agent i. Its entry in the column
corresponding to the type profile (θ−i, θ

k
i ) for some θ−i ∈ Θ−i is equal to p(θ−i|θk

i ), its entry in
the column corresponding to the type profile (θ−i, θ

k′
i ) is equal to −p(θ−i|θk

i ), while the entries
in all other columns are zero.

To rewrite the IR constraints, we use mi×L matrix Pi formed by stacking the truthtelling
components of agent i one on top of another. The k-th row of this matrix corresponds to
IRi(θk

i ) and is equal to π(.|k, k, s∗−i). Its entry in the column corresponding to the type profile
(θ−i, θ

k
i ) for some θ−i ∈ Θ−i is equal to p(θ−i|θk

i ), and entries in all other columns are zero.
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Also, for all i ∈ {1, ..., n} and k, k′ ∈ {1, ..., mi} s.t. k 6= k′, let

ūik =
∑

θ−i∈Θ−i

ui(x(θ−i, θ
k
i ), (θ−i, θ

k
i ))p(θ−i|θk

i ) (13)

ûikk′ =
∑

θ−i∈Θ−i

(
ui(x(θ−i, θ

k
i ), (θ−i, θ

k
i ))− ui(x(θ−i, θ

k′
i ), (θ−i, θ

k
i ))

)
p(θ−i|θk

i ) (14)

Construct vectors ūi and ûi by concatenating ūik and ûikk′ , i.e. ūi = (ūi1, ..., ūimi)
′ and

ûi = (ûi12, ..., ûi1mi , ..., ûimi1, ..., ûimi(mi−1))′ where prime denotes a transpose. Let I be an
identity matrix of size L× L. Then (1), (2) and (3) can respectively be rewritten as follows:

(IC)

∥∥∥∥∥∥∥∥

B1 0 0 0
0 B2 0 0
0 0 ... 0
0 0 0 Bn

∥∥∥∥∥∥∥∥
×




t1
t2
...
tn


 ≥




−û1

−û2

...
−ûn




(IR)

∥∥∥∥∥∥∥∥

P1 0 0 0
0 P2 0 0
0 0 ... 0
0 0 0 Pn

∥∥∥∥∥∥∥∥
×




t1
t2
...
tn


 ≥




−ū1

−ū2

...
−ūn




(BB)
∥∥ I I ... I

∥∥×




t1
t2
...
tn


 =

[
0

]

(15)

Thus, the decision rule x(θ) is implementable via a BB and IR Bayesian mechanism if and
only if there exists a solution (t1, ..., tn) to the system (15).

Step 2. Necessary and Sufficient Conditions for the Existence of a solution to (15).

The Theorem of The Alternative: Consider a system of linear inequalities:

Sx ≥ a
Tx = b

(16)

where a and b are fixed vectors of size l1 and l2 respectively, while S and T are fixed matrices
of size l1 × l3 and l2 × l3 respectively.

System (16) has a solution x∗ if and only if for any row vector λS of size l1 with nonnegative
entries and any row vector λT of size l2 such that λSS + λT T = 0, we have:

λT b + λSa ≤ 0.

For the proof of the Theorem of the Alternative see Mangasarian (1969) (page 34). Using
the Theorem and exploiting the block structure of matrices in (15), we conclude that system
(15) has a solution if and only if the following property holds:

Property D. Consider any collection of row vectors {γ1, ..., γn}, {λ1, ..., λn}, µ where γi

is of size mi(mi − 1), λi is of size mi, γi ≥ 0, λi ≥ 0 for all i = 1, ..., n, and µ is of size L

such that γiBi + λiPi + µ = 0 for all i = 1, ..., n, (17)
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Then,
∑

i=1,...,n γiûi +
∑

i=1,...,n λiūi ≥ 0

In the rest of the proof we will show that Property D holds under the conditions of
the Theorem. So, let γi, λi, µ be an arbitrary collection of vectors satisfying the conditions of
Property D. Let γkk′

i denote the entry of vector γi corresponding to the incentive constraint
ICi(k, k′). Note that this entry is (k− 1)(mi− 1)+ k′-th if k′ < k and (k− 1)(mi− 1)+ k′− 1-
th if k′ > k. Also, let λk

i denote the k-th entry of vector λi corresponding to the individual
rationality constraint IRi(k).

Step 3. γi = 0 for all i.
Proof: The proof is by contradiction. So, suppose that γh1h2

j > 0 for some j, and h1, h2 ∈
{1, ..., mj}, h1 6= h2. Let us show that either p(.) is not identifiable or Crémer-McLean condition
fails for j. By (17), we have:

γiBi + λiPi = γlBl + λlPl for all i, l ∈ {1, ..., n} (18)

By definition, for all i, γiBi =
∑

k,k′∈{1,...,mi},k′ 6=k γkk′
i (π(.|k, k, s∗−i)− π(.|k, k′, s∗−i)),

and λiPi =
∑

k∈{1,...,mi} λk
i π(.|k, k, s∗−i).

Let F = maxi

{
maxk

∑
k′:k′ 6=k γkk′

i +λk
i

pi(θk
i )

}
> 0, and set γkk

i to satisfy γkk
i = Fp(θk

i ) −
∑

k′:k′ 6=k γkk′
i − λk

i ≥ 0. Then γiBi + λiPi = Fp(.) − ∑
k,k′∈{1,...,mi} γkk′

i π(.|k, k′, s∗−i). Thus,
(18) implies that

∑
k,k′∈{1,...,mi} γkk′

i π(.|k, k′, s∗−i) =
∑

h,h′∈{1,...,ml} γhh′
l π(.|h, h′, s∗−l) for all i, l.

Summing up over all θ ∈ Θ, we conclude that for all i
∑

k,k′∈{1,...,mi} γkk′
i = K for some

K > 0. K > 0 since γh1h2
j > 0 for some h1 6= h2. Hence,

∑
k,k′∈{1,...,mi} γkk′

i π(.|k,k′,s∗−i)

K =
∑

h,h′∈{1,...,ml} γhh′
l π(.|h,h′,s∗−l)

K is an element of ∆
∏

l ml−1 which we denote by π̂(.).

If π̂ 6= p(.), then p(.) is not identifiable, because π̂−i(.|θk
i ) =

∑
k′∈{1,...,mi}

γkk′
i
K p−i(.|θk′

i ) for
all i and k. If π̂ = p(.), then Crémer-McLean condition fails for j because γh1h2

j > 0 j for some
h1 6= h2.

Step 4. There exists Λ̄, s.t. λk
i

pi(θk
i )

= Λ̄ ≥ 0 for all i and k ∈ {1, ..., mi}.
Step 3 and equation (18) imply that

λiPi = λjPj for all i, j ∈ {1, ..., n}

which is equivalent to: λk
i p(θ−i−j , θ

h
j |θk

i ) = λh
j p(θ−i−j , θ

k
i |θh

j ) for all k ∈ {1, ..., mi}, h ∈
{1, ..., mj} and θ−i−j ∈ Θ−i−j . Then the statement of Step 4 follows because pi,j(θi, θj) > 0
for all θi ∈ Θi, θj ∈ Θj and p(θ−i−j , θ

h
j |θk

i )pi(θk
i ) = p(θ−i−j , θ

k
i |θh

j )pj(θh
j ).

Step 5. To establish Property D, we need to show that
∑

i=1,...,n γiûi +
∑

i=1,...,n λiūi ≥ 0.
By Step 3, γi = 0 for all i. Step 4 implies that

∑
i=1,...,n λiūi = Λ̄

∑
i=1,...,n

∑
k=1,...,mi

ūk
i pi(θk

i ).
Recall that Λ̄ ≥ 0 by assumption of Property D, while∑

i=1,...,n

∑
k=1,...,mi

ūk
i pi(θk

i ) =
∑

θ∈Θ

∑n
i=1 ui(x(θ), θ)p(θ) ≥ 0 by EASR. Q.E.D.

Step 6. Necessity:
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If either p(.) is not identifiable or Crémer-McLean condition fails for some agent i, then
there exists a profile of utility functions s.t. an ex-post efficient, IR, BB mechanism does not
exist.

If p(.) is not identifiable, there exists π(.) ∈ ∆
∏

l ml−1, π(.) 6= p(.), s.t. for all l and h′

π(.|θh′
l ) =

∑
h∈{1,...,ml} chh′

l p(.|θh
l ) for some collection of nonnegative coefficients chh′

l . Since
π(.) 6= p, for all l there exists h1, h2 ∈ {1, ..., ml} s.t. ch1h2

l > 0. Set γ̂hh′
l = chh′

l pl(θh′
l ) for

all h 6= h′, F̂ = maxl{maxh
∑

h′
chh′
l pl(θ

h′
l )

pl(θ
h
l )

}, and λ̂h
l = F̂ pl(θh

l ) −∑
h′ c

hh′
l pl(θh′

l ) ≥ 0 for all h.
Then for all l:

γ̂lBl + λ̂lPl =
∑

h,h′:h6=h′
chh′
l pl(θh′

l )(π(.|h, h, s∗−l)− π(.|h, h′, s∗−l))+

∑

h

(F̂ pl(θh
l )−

∑

h′
chh′
l pl(θh′

l ))π(.|h, h, s∗−l) = F̂ p(.)− π(.)

Similarly, if Crémer-McLean condition fails for some agent i then there exist r′ ∈ {1, ..., mi}
s.t. p(.|θr′

i ) =
∑

k∈{1,...,mi} ckr′
i p(.|θk

i ) with ckr′
i ≥ 0 for all k and crr′

i > 0 for some r 6= r′.
Then set γ̂kr′

i = ckr′
i pi(θr′

i ) for all k 6= r′, γ̂kk′
i = 0 for k′ 6= r′ and γ̂hh′

j = 0 for all j 6= i, and

h, h′ ∈ {1, ..., mj}. Also, let F̃ = p(θr′
i )maxk

ckr′
i

p(θk
i )

, and set λ̂k
i = F̃ p(θk

i )− ckr′
i p(θr′

i ) for k 6= r′

and λ̂r′
i = (F̃ +1−cr′r′

i )p(θr′
i ). Finally, set λ̂h

j = F̃ p(θh
j ) for j 6= i and all h ∈ {1, ..., mj}. Then,

γ̂lBl + λ̂lPl = F̃ p(.) for all l. Thus, in both cases we have γ̂iBi + λ̂iPi = γ̂lBl + λ̂lPl for all l
with γ̂rr′

i > 0 for some r, r′.

Next, let X ≡ {x1, x2} and consider the following profile of the utility functions:
(i) ul(x1, θ) = a > 0 for all l ∈ {1, ..., n}, θ ∈ Θ.
(ii) for all l 6= i and θ−i ∈ Θ−i: ul(x2, (θ−i, θi)) = a if θi 6= θr

i ; ul(x2, (θ−i, θ
r
i )) = a− zA > 0.

(iii) for all θ−i ∈ Θ−i ui(x2, (θ−i, θ
r′
i )) = a + ε > 0, ui(x2, (θ−i, θ

r
i )) = a + A, ui(x2, (θ−i, θi)) =

a− δ if θi 6∈ {θr
i , θ

r′
i }.

where A > 0, z > 1/(n− 1), ε > 0, δ > 0.
Then the unique ex-post efficient decision rule x∗(θ) is such that:

x∗(θ−i, θi) =
{

x1, if θi 6= θr′
i

x2, if θi = θr′
i

(19)

By Property D in Step 2, x∗(θ) is not implementable if:
∑

l∈{1,...,n}

∑

k,k′∈{1,...,ml}
γ̂kk′

l ûlkk′ +
∑

l∈{1,...,n}

∑

k∈{1,...,ml}
λ̂k

l ūlk < 0 (20)

By the definitions of ûlkk′ , ūlk (see (13) and (14) respectively) and x∗(.), we obtain:

ūlk = a for all l 6= i and k ∈ {1, ..., ml}, ūik =
{

a, if k 6= r′

(a + ε), if k = r′

ûlkk′ = 0 for all l 6= i and k, k′ ∈ {1, ..., ml}, ûikk′ =





−A, if k = r, k′ = r′

ε, if k = r′ and any k′ 6= r′

δ, if k 6∈ {r, r′}, k′ = r′

0, otherwise
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Substituting these values into (20), we obtain that x∗(θ) is not implementable if

−γ̂rr′
i A + ε


 ∑

k={1,...,mi}
γ̂r′k

i + λ̂r′
i


 + a

∑

l∈{1,...,n},k∈{1,...,ml}
λ̂k

l + δ
∑

k 6∈{r,r′}
γ̂kr′

i < 0 (21)

Since γ̂rr′
i > 0, (21) holds when A is large enough and a, ε and δ are sufficiently small. Q.E.D.

Proof of Theorem 2:
Step 1. Fix some agent j ∈ {1, ..., n} and her type θh

j ∈ Θj. Let us show that there exists
an IC, IR and BB mechanism (x(θ), t(θ)) with vj(θh

j )pj(θh
j ) =

∑
θ∈Θ,i∈{1,...,n} ui(x(θ), θ)p(θ),

vj(θj) = 0 for θj 6= θh
j , and vi(θi) = 0 for all θi ∈ Θi, i 6= j, i.e. type θh

j obtains all expected
surplus and all other agent types are held at their reservation utility levels.

Such mechanism exists if there exists a solution to the system of inequalities and equalities
obtained from the system (15) by changing all inequalities in its subsystem IR, except for the
one corresponding to IRj(θh

j ), to strict equalities, and leaving unchanged the subsystems of
inequalities BB and IC, as well as the inequality corresponding to IRj(θh

j ).
By the Theorem of the Alternative (see Step 2 of the proof of Theorem 1), the modified

system has a solution if and only if the following Property D’ holds:

For all families of row vectors {γi}i=1,...,n ≥ 0, {λi}i=1,...,n s.t. λh
j ≥ 0 and vectors µ :

γiBi + λiPi + µ = 0 ∀i = 1, ..., n =⇒
∑

i=1,...,n

γiûi +
∑

i=1,...,n

λiūi ≥ 0 (22)

Note that Property D’ differs from Property D (see Step 2 of Theorem 1) only insofar that the
sign of all λ’s except λh

j is now unrestricted.
The rest of the proof can be completed by repeating Steps 3-5 in the proof of Theorem 1.

Steps 3-4, which establish that all γ’s are zero and λ’s are equal to each other, apply verbatim.
The arguments in these Steps rely on the nonnegativity of the entries of vectors γi, but not λi.
Since λh

j ≥ 0, we conclude that all λ’s, as well as Λ specified in Step 4 are nonnegative. So,
the argument in Step 5 of Theorem 1 also applies.

Step 2. Fix a collection of
∑

i mi nonnegative constants vi(θk
i ) satisfying (10). Define

α(i, k) = vi(θ
k
i )pi(θ

k
i )∑

i∈{1,...,n},θ∈Θ ui(x(θ),θ)p(θ) . Let (x(θ), t(i,k)(θ)) be an IC, IR and BB direct mechanism

which implements decision rule x(θ) and allocates all surplus to type θk
i of agent i. By Step 1

such mechanism exists for all i and k ∈ {1, ..., mi}.
Now consider direct mechanism (x(θ), t̄(θ)) where

t̄j(θ) =
∑

i=1,...,n

∑

k=1,...,mi

α(i, k)t(i,k)
j (θ)

(x(θ), t̄(θ)) is IC, IR and BB mechanism because IC, IR and BB constraints are linear in
transfers,

∑
i∈{1,...,n},k∈{1,...,mi} α(i, k) = 1 and all α(i, k) are nonnegative. By linearity,∑

θ−j∈Θ−j
(uj(x(θ−j , θ

h
j ), (θ−j , θ

h
j ))+ t̄j(θ−j , θ

h
j ))p(θ−j |θh

j ) = vj(θh
j ) for all j and h ∈ {1, ..., mj}.

Q.E.D.
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Proof of Lemma 3:
Step 1. Definition of genericity. The set of L-point probability distributions {p(.) ∈
RL

+|
∑

θ∈Θ p(θ) = 1, p(θ) ≥ 0} is equivalent to an L− 1 dimensional simplex ∆L−1 ⊂ RL
+. We

say that a property holds generically if it fails on a subset S ⊂ ∆L−1 of Lebesgue measure 0.
Thus, we need to show that the set of probability distributions in ∆L−1 that are not

identifiable has Lebesgue measure zero. To avoid operating on a simplex, let us introduce the
following convenient transformation. Consider an L-vector q(.) ∈ [0, 1]L. To transform it into
a probability distribution vector p(.) ∈ ∆L−1, let p(q(.))(θ) ≡ q(θ)∑

θ∈Θ q(θ) . This transformation

is a continuous open map from [0, 1]L \ 0 onto ∆L−1. Although the definition of identifiability
in the text is given for elements of ∆L−1, it applies vertbatim to any q(.) ∈ [0, 1]L\0. Then it is
easy to see that, if q(.) ∈ [0, 1]L is identifiable, then so is p(q(.)). So we can assume without loss
of generality that p(.) ∈ [0, 1]L and establish that almost all such p(.) are identifiable. With
a slight abuse of terminology, we will still refer to p(.) ∈ [0, 1]L as a probability distribution
vector.

Step 2. Let Wi (Pi) be an mi(mi−1)×L (mi×L) matrix formed by stacking all deviation
(truthtelling) component vectors of agent i on top of each other in the natural order of i’s
types. So, for k ∈ {1, ..., mi}, the ((k − 1)mi + k′)-th row of Wi is equal to π(.|k, k′, s∗−i) if
k′ < k and is equal to π(.|k, k′ + 1, s∗−i) if k′ ∈ {k, ..., mi}, while the k-th row of Pi is equal to
π(.|k, k, s∗−i). Let us define Condition G as follows:

If ψjWj + ζjPj + ψiWi + ζiPi = 0 (23)
for some row vectors ψi, ψj , ζi and ζj , then ψj ≡ 0.

Comparing Condition G to expression (7) in Lemma 1, it is easy to see that Condition G
implies that p(.) is identifiable. In fact, Condition G is significantly stronger. So, to complete
the proof, we will show that Condition G holds under almost all p(.) for j ∈ arg minl∈{1,...,n}ml

and i ∈ arg minl 6=j ml.

Step 3. Preliminary Facts.
Fact 1. A set {(x1, ..., xL) ∈ [0, 1]L|(x1, ..., xL) satisfies a finite number of polynomial equations}
has measure zero.
Fact 2. For any i, j ∈ {1, ..., n}, let M jh

i (M j
ik) be an mi × L−i−j (mj × L−i−j) matrix s.t.

M jh
i =

∥∥∥∥∥∥∥∥

p(.; θ1
i , θ

h
j )

p(.; θ2
i , θ

h
j )

...
p(.; θmi

i , θh
j )

∥∥∥∥∥∥∥∥
; M j

ik =

∥∥∥∥∥∥∥∥

p(.; θk
i , θ1

j )
p(.; θk

i , θ2
j )

...
p(.; θk

i , θ
mj

j )

∥∥∥∥∥∥∥∥

where p(.; θk
i , θh

j ) is a vector of size L−i−j each entry of which is equal to p(θ−i−j , θ
k
i , θh

j ) for
some θ−i−j ∈ Θ−i−j arranged in the natural order of agents other than i and j and their types.

Also, let M jh
i(−k) be an (mj − 1) × L−i−j matrix obtained from M jh

i by removing its k-th

row. Finally, let Y j
i(k) be an (m2

j + mi − 1)× L−i matrix such that:

Y j
i(k) =

∥∥∥∥∥∥∥∥∥∥∥

M j
ik 0 0 0

0 M j
ik 0 0

... ... ... ...

0 ... 0 M j
ik

M j1
i(−k) ... ... M

jmj

i(−k)

∥∥∥∥∥∥∥∥∥∥∥
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Then for almost all p(.) ∈ [0, 1]L:
(i) If mi ≤ L−i−j (mj ≤ L−i−j), then M jh

i (M j
ik) has full row rank, i.e. all its rows are

linearly independent, and any of its principal minors (square submatrices in the top-left corner)
are non-singular.

(ii) If m2
j + mi − 1 ≤ L−i, then the matrix Y j

i(k) has full row rank.

Proof of Fact 2. We will prove (i) for M j
ik. The proof for M jh

i is identical. First, we provide a
heuristic explanation of the argument. Let {U1, U2, ..., Umi} be a collection of principal minors
of M j

ik. All such minors exist because mj ≤ L−i−j , i.e. M j
ik has more columns than rows. The

determinant (det(.)) of Ul is a non-degenerate polynomial. The non-degeneracy follows from
the fact that it does not contain any entry of p(.) in more than one term. So, by Fact 1 the
equation det(Ul) = 0 holds on a set of p(.) ∈ [0, 1]L of measure zero.

Now, let us exhibit the proof in full detail. Note that U1 is equivalent to p(θ1
−i−j , θ

k
i , θ1

j )
where θ1

−i−j is a profile of types of players other than i and j s.t. θl = θ1
l for all l 6∈ {i, j}.

Clearly, the set of p(.) ∈ [0, 1]L s.t. p(θ1
−i−j , θ

k
i , θ1

j ) = 0 has measure zero. To proceed by
induction, suppose that the determinant of Ul for some l ∈ {1, ..., mj − 1} is equal to zero on
a subset of [0, 1]L of measure zero and consider the determinant of Ul+1. We have:

det(Ul+1) =
l+1∑

t=1

(−1)l+1+tp(θ(t)
−i−j , θ

k
i , θl+1

j ) det(U
(θ

(t)
−i−j ,θk

i ,θl+1
j )

. (24)

where p(θ(t)
−i−j , θ

k
i , θl+1

j ) is the t-th entry of the vector p(.; θk
i , θl+1

j ) and U
(θ

(t)
−i−j ,θk

i ,θl+1
j )

is the

minor of Ul+1 complementary to p(θ(t)
−i−j , θ

k
i , θl+1

j ).
Note that for all t, U

(θ
(t)
−i−j ,θk

i ,θl+1
j )

does not contain any entry of the vector p(.; θk
i , θl+1

j )

and U
(θ

(l+1)
−i−j ,θk

i ,θl+1
j )

= Ul. So, det(Ul+1) is linear in the entries of p(.; θk
i , θl+1

j ), with coefficients

-the determinants of the complementary minors- which are not all equal to zero for almost all
p(.) ∈ [0, 1]L. Since a finite intersection of sets of full measure has full measure, we conclude
that det(Ul+1) 6= 0 for almost all p ∈ [0, 1]L also. Proceeding by induction, we conclude that
det(Ul) 6= 0 for all l ∈ {1, ...,mj} for almost all p(.).

(ii) Applying the same inductive method as in (i), let
(
Y1, ..., Ym2

j+mi−1

)
be a collection of

all principal minors of the matrix Y j
i(k). Part (i) implies that the first m2

j minors (Y1, ..., Ym2
j
)

are non-singular for almost all p(.) ∈ [0, 1]L.
Now suppose that Ym2

j+s, s ∈ {0,mi − 2}, is non-singular for almost all p(.) ∈ [0, 1]L. Let

us show that det(Ym2
j+s+1) 6= 0 for almost all p(.) ∈ [0, 1]L. The expansion on the last row of

Ym2
j+s+1 yields:

det(Ym2
j+s+1) =

m2
j+s+1∑

t=1

(−1)m2
j+s+1+tg(t) det(Y (t)

m2
j+s+1

). (25)

where g(t) is the t-th element of the last row of Ym2
j+s+1 {p(θ−i−j , θ

r
i , θ

1
j ), ...,p(θ−i−j , θ

r
i , θ

mj

j )},
where r = s + 1 if s < k− 1 and r = s + 2 if s ≥ k− 1, while Y

(t)

m2
j+s+1

is the minor of Um2
j+s+1

complementary to g(t). Importantly, for any t ∈ {1, ..., m2
j + s + 1}, Y

(t)

m2
j+s+1

does not contain

any elements of the row {p(θ−i−j , θ
r
i , θ

1
j ), ...,p(θ−i−j , θ

r
i , θ

mj

j )} . So, det(Ym2
j+s+1) is linear in
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the elements of this row, with coefficients -the determinants of the complementary minors-

which are not all equal to zero for almost all p(.) ∈ [0, 1]L. Particularly, det(Y
(m2

j+s+1)

m2
j+s+1

) =

det(Ym2
j+s) 6= 0 for almost all p(.). Since a finite intersection of sets of full measure has full

measure, det(Ym2
j+s+1) 6= 0 for almost all p ∈ [0, 1]L. Proceeding by induction, we conclude

that det(Ym2
j+s′) 6= 0 for all s′ ≤ mi − 1 for almost all p(.). Q.E.D.

Step 3. Consider the matrix Xj
i ≡

∥∥∥∥∥∥∥∥

Wj

Pj

Wi

Pi

∥∥∥∥∥∥∥∥
formed by stacking the matrices Wi, Pi,Wj , Pj

on top of each other. Let us modify Xj
i using a series of the following rank-preserving elemen-

tary transformations: (i) interchanging some pair of its rows or columns; (ii) multiplying all
entries in some row (or column) by a non-zero constant.

First, a row of Xj
i is equal to either a strategy component π(.|h, h′, s∗−j) of player j, for

h, h′ ∈ {1, ..., mj} (the top m2
j rows), or a strategy component π(.|k, k′, s∗−i) of player i, with

k, k′ ∈ {1, ...,mi} (the bottom m2
i rows). So, multiply the row equal to the strategy component

π(.|h, h′, s∗−j) by pj(θh
j ) and the row equal to the strategy component π(.|k, k′, s∗−i) by pi(θk

i ).
Second, reorder the top m2

j rows of Xj
i corresponding to π(.|h, h′, s∗−j), first by h, and then

by h′. Also, reorder the bottom m2
i rows corresponding to π(.|k, k′, s∗−j), first by k, and then

by k′. Third, reorder the columns of Xj
i by agent types in the following sequence: i, j, 1,...,n,

so that the first L−i−j columns correspond to types (θ−i−j , θ
1
j , θ

1
i ) for all θ−i−j ∈ Θ−i−j , and

so on. It is easy to see that the second and third steps can be done via a sequence of pairwise
interchanges of rows and columns respectively. As a result, we get the following matrix Ȳ j

i :

Ȳ j
i =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

M j
i1 0 0 M j

i2 0 0 .......... M j
imi

0 0
... ... ... ... ... ... .......... ... ... ...

0 0 M j
i1 0 0 M j

i2 .......... 0 0 M j
imi

M j1
i ... M

jmj

i 0 0 0 .......... 0 0 0
0 0 0 M j1

i ... M
jmj

i .......... 0 0 0
... ... ... ... ... ... .......... ... ... ...

0 0 0 0 0 0 .......... M j1
i ... M

jmj

i

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Note that the matrices Xj
i and Ȳ j

i have the same ranks because the employed elementary
transformations are rank-preserving. Also, there is a one-to-one relationship between the set
of solutions (ψj , ζj , ψi, ζi) to the system (23) and the set of solutions to the following system:

(
δ1, ..., δmj ,−η1, ...,−ηmi

)
Ȳ j

i = 0 (26)

where δh and ηk are row vectors of size mj and mi respectively.
In particular, since the top m2

j rows of the matrix Xj
i correspond to the top m2

j rows
of the matrix Ȳ j

i , the subvector (ψj , ζj) ((ψi, ζi)) in a solution to (23) corresponds to the
subvector (δ1, ..., δmj ) (−η1, ...,−ηmi) in a solution to (26). So, if there is a solution to (23) s.t.
(ψj , ζj) 6= 0, then (δ1, ..., δmj ) 6= 0 in the corresponding solution to (23), and vice versa.

Recall that (23) has the following solution: ψi = ψj ≡ 0, ζk
i = pi(θk

i ) and ζj = −pj(θh
j ),

which corresponds to the solution of (26) in which only the k-th (h-th) entry of δk (ηh) is
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non-zero and is equal to 1, and which we refer to as ‘basic solution.’ Therefore, Condition G
holds if the only solution to (26) such that (δ1, ..., δmj ) 6= 0 is the ‘basic solution.’

So, to complete the proof let us show that for almost all p(.) ∈ [0, 1]L the only solution to
(26) such that (δ1, ..., δmj ) 6= 0 is the ‘basic solution.’ The proof is given separately for two
cases. In Step 5, we deal with the case of n = 3 and m1 = m2 = m3 = m ≥ 3, while in Step 4
we deal with all other cases.

Step 4. Suppose that either n ≥ 4, or n = 3 and it is not true that m1 = m2 = m3.
Fix some type k ∈ {1, ...,mi}, and consider L−i × (m2

j + mi) submatrix Ŷ j
ik of Ȳij which

consists of the columns from (k − 1)L−i-th to kL−i of Ȳij , i.e. the set of columns which
have submatrices M j

ik in their ‘upper’ part, and all rows which have non-zero entries in these
columns (which are the rows from 1-st to m2

j -th and from (k− 1)mi-th to kmi-th). Obviously,
if (δ1, ..., δmj ,−η1, ...,−ηmi) solves (26), then (δ1, ..., δmj ,−ηk)Ŷ

j
ik = 0.

So, it is sufficient to show that the row rank of Ŷ j
ik is equal to m2

j + mi − 1 for almost
all p(.) ∈ [0, 1]L. Eliminating the m2

j + k-th row of Ŷ j
ik we get the matrix Y j

i(−k). Recall
that j ∈ arg minh∈{1,...,n}mh and i ∈ arg minh∈{1,...,n},h6=j mj . Therefore, mj < L−i−j and
m2

j +mi−1 ≤ L−i. So, Y j
i(−k) has full row rank equal to m2

j +mi−1 for almost all p(.) ∈ [0, 1]L.

Step 5. n = 3 and m1 = m2 = m3 = m ≥ 3.
To show that the system (26) has a unique non-zero solution, first, notice that (26) is

equivalent to: δhM j
ik = ηkM

jh
i for all k ∈ {1, ..., m} and h ∈ {1, ..., m}. By Fact 2 and

m1 = m2 = m3 = m, M j
ik and M jh

i are m×m non-singular matrices for almost all p(.). Hence,
we can assume their non-singularity in the rest of the proof. Then, (26) is equivalent to the
following system: ηk = δhM j

ik(M
jh
i )−1 for all k and h, which implies that:

(δ1,−δh)

(
M j

i1(M
j1
i )−1 M j

i2(M
j1
i )−1 ... M j

im(M j1
i )−1

M j
i1(M

jh
i )−1 M j

i2(M
jh
i )−1 ... M j

im(M jh
i )−1

)
= 0 for all h ∈ {2, ..., m}

(27)

So, (26) has a unique solution iff (27) has a unique solution. In turn, (27) has a unique solution
if the following square submatrix of it has rank 2m− 1 for almost all p(.):

(
M j

i1(M
j1
i )−1 M j

im(M j1
i )−1

M j
i1(M

jm
i )−1 M j

im(M jm
i )−1

)
(28)

To complete the proof, let us show that the principal minors {Zm, Zm+1, ..., Z2m−1} of (28) (Zl

is an l× l matrix consisting of the elements of the first l rows and l columns of (28)) have non-
zero determinants for almost all p(.). We will proceed by induction. First, Zm = M j

i1(M
j1
i )−1

is non-singular by Fact 2. Next, suppose that det(Zm+s−1) 6= 0 for some s ∈ {1, ..., m − 1}.
Let us show that det(Zm+s) 6= 0 for almost all p(.). We have:

det(Zm+s) =
m+s∑

t=1

(−1)m+s+tbt
m+s det(Z−t

m+s). (29)

where bt
m+s is the t-th entry in the m + s-th row of Zm+s and Z−t

m+s is a minor of Zm+s

complementary to bt
m+s. Note that Z

−(m+s)
m+s = Zm+s−1.
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Let dht be the entry at the intersection of h-th row and t-th column of (M jm
i )−1. Then

bt
m+s =

∑m
h=1 p(θh

a , θ1
i , θ

s
j )dht (where a ∈ {1, 2, 3} \ {i, j}) for all t ∈ {1, ..., m}, and bm+t′

m+s =
∑m

h=1 p(θh
a , θm

i , θs
j )dht′ for t′ ∈ {1, ..., s}. These are non-zero for almost all p(.). Since det

(
Z
−(m+s)
m+s

)
=

det(Zm+s−1) 6= 0, the last entry bm+s
m+s det(Z−(m+s)

m+s ) of (29) is non-zero. If all other entries are
zero, then det(Zm+1) 6= 0 for almost all p(). If there are other non-zero entries in the summa-
tion in (29), then with the new notation we can rewrite it as follows:

det(Zm+s) =
m∑

h=1

p(θh
a , θ1

i , θs
j )

(
m∑

t=1

dht det(Z−t
m+s)(−1)m+s+t

)
+

m∑

h=1

p(θh
a , θm

i , θs
j )

(
s∑

t=1

dht det(Z−(m+t)
m+s )(−1)s+t

)

(30)

Note that for almost all p(.),
p(θh

a ,θ1
i ,θs

j )

p(θh′
a ,θm

i ,θs
j )
6= p(θh

a ,θ1
i ,θs

j )

p(θh′
a ,θm

i ,θs
j )

for all h, h′ ∈ {1, ..., m}, s 6= m, and

importantly, the entries of the matrix (M jm
i )−1 do not depend on any entries of the vector

p(.) contained in the first m − 1 rows of the matrix M j
im. Therefore, for s 6= m, (30) is a

nondegenerate polynomial in the entries (dht) of the matrix (M jm
i )−1, with coefficients which

are not all equal to zero. So, by Fact 1 det(Zm+s) 6= 0 for almost all p(.) ∈ [0, 1]L. Note that
this argument does not apply for s = m, since the m-th rows of M j

im and M jm
i coincide, and

so det(Z2m) is a degenerate polynomial. Thus, the rank of the matrix (28) is 2m−1 for almost
all p(.) ∈ [0, 1]L.

Proof of Lemma 4: First, let us consider the problem of existence of a system of transfers
satisfying Condition C. Using the notation introduced in Step 1 of Theorem 1, this problem
can be rewritten as follows. For all R(θ) ∈ RL, we need to establish the existence of a system
of transfers (t1, ..., tn), ti ∈ RL, such that:

(IC)

∥∥∥∥∥∥∥∥

B1 0 0 0
0 B2 0 0
0 0 ... 0
0 0 0 Bn

∥∥∥∥∥∥∥∥
×




t1
t2
...
tn


 ≥




0
0
...
0




(BB)
∥∥ I I ... I

∥∥×




t1
t2
...
tn


 =

[
R(θ)

]

(31)

By the Theorem of Alternative (see Step 2 in the proof of Theorem 1), this system has a
solution if and only if for any collection of vectors µ and {γ1, ..., γn}, with γi ≥ 0 for all i, the
following is true:

If γiBi + µ = 0 for all i, Then
∑

θ∈Θ

µ(θ)R(θ) ≥ 0

Since this condition has to hold for any R(θ), we must have µ(θ) ≡ 0. Hence, the system (31)
has a solution for any R(θ) if and only if

γ1B1 = γ2B2 = ... = γnBn =⇒ γiBi = 0 for all i (32)
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Next, let V s
i = {βπ(.|si, s∗−i)|β ≥ 0, si ∈ Si}. It is easy to see that the Weak Identifiability

Condition is equivalent to the following: ∩iV
s
i = {αp(.)|α ≥ 0}.

So, to complete the proof we will establish the following claim: (32) holds if and only if
∩iV

s
i = {αp(.)|α ≥ 0}. Recall that γiBi =

∑
k,k′:k′ 6=k γkk′

i (π(.|k, k, s∗−i)− π(.|k, k′, s∗−i)). Also,
observe that

V s
i =





∑

k,k′∈{1,...,mi}
ckk′
i π(.|k, k′, s∗−i)

∣∣∣∣∣c
kk′
i ≥ 0; there exist ci ≥ 0 s.t. for all k,

∑

k′
ckk′
i = cipi(θk

i )





(33)

This follows from the fact that vi ∈ V s
i iff vi = απ(.|si, s

∗
−i) ≡ α

∑
k,k′ s

kk′
i π(.|k, k′, s∗−i)pi(θk

i )
where

∑
k′∈{1,...,mi} skk′

i = 1 for all k and α ≥ 0. Now, to the proof of the claim.
“Only If:” Suppose that there exists a vector ṽ ∈ ∩iV

s
i s.t. ṽ 6= αp(.). Then, by (33), for

all i there exists a collection of coefficients {ckk′
i ≥ 0}k,k′∈{1,...,mi} satisfying

∑
k′∈{1,...,mi} ckk′

i =
cipi(θk

i ) > 0 for some ci s.t. ṽ =
∑

k,k′∈{1,...,mi} ckk′
i π(.|k, k′, s∗−i). Observe that ci = c̃ for all i.

This is so because
∑

θ∈Θ

∑
k,k′∈{1,...,mi} ckk′

i p(θ|k, k′, s∗−i) = ci. So, if ci 6= cj for some i, j, then∑
k,k′∈{1,...,mi} ckk′

i π(.|k, k′, s∗−i) 6=
∑

h,h′∈{1,...,mj} chh′
j π(.|h, h′, s∗−j).

Now, consider the vector v̂ = p(.)c̃ − ṽ 6= 0. Since p(.) =
∑

k∈{1,...,mi} π(.|k, k, s∗−i)pi(θk
i ),

we conclude that v̂ =
∑

k,k′∈{1,...,mi},k 6=k′ c
kk′
i (π(.|k, k, s∗−i) − π(.|k, k′, s∗−i)). Hence, setting

γkk′
i = ckk′

i for k, k′ ∈ {1, ...,mi}, k′ 6= k′, we obtain that γiBi = v̂ 6= 0 for all i, which
contradicts (32).

“If:” Suppose that (32) fails, i.e. there exists w ∈ RL s.t. γ1B1 = ... = γnBn = w, w 6= 0.
Let eL be an L vector of units. Then BieL = 0, so w × eL = 0. Hence, w has positive and

negative entries and so w 6= βp(.) for any β. Let η = maxi maxk

∑
k′:k′ 6=k γkk′

i

pi(θk
i )

> 0. Then for all
i,

−w+ηp(.) = −γiBi+ηp(.) =
∑

k,k′:k′ 6=k

γkk′
i π(.|k, k′, s∗−i)+

∑

k


ηpi(θk

i )−
∑

k′:k′ 6=k

γkk′
i


π(.|k, k, s∗−i)

So, by (33), −w+ηp(θ) ∈ V s
i for all i. Since −w+ηp(.) 6= αp(.), we have ∩iV

s
i 6= {αp(.)|α ≥ 0}.

Q.E.D.

Proof of Theorem 3: By the Inscrutability Principle we can restrict our analysis to direct,
IR and BB mechanisms incentive compatible with respect to prior beliefs. By Theorems 1
and 2, this class contains mechanism M∗ = (x∗(θ), t∗(θ)) such that x∗(θ) is ex-post efficient
and each type of agent 1 gets all social surplus conditional on her type, i.e. U(θ1|M∗) =∑

i,θ−1∈Θ−1
ui(x∗(θ−1, θ1), (θ−1, θ1))p(θ−1|θ1), while all types of all other agents earn zero.

Let us show that M∗ is a neutral optimum, and no mechanism where agent 1’s expected
payoff vector is different from {U(θ1|M∗)}θ1∈Θ1 is a neutral optimum. The proof is by exclu-
sion15. First, by Theorem 6 in Myerson (1983) a neutral optimum exists.

Also, by Theorem 8 of Myerson (1983), if (x(.), t(.)) is a neutral optimum, then there exists
15It is possible to prove directly that M∗ is a direct optimum. We provide such proof in Appendix B available

at http://faculty.fuqua.duke.edu/%7Esseverin/mechsupp.pdf
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a collection of strictly positive multipliers λ(.) s.t. (x(.), t(.)) maximizes

∑

θ1∈Θ1


λ(θ1)

∑

θ−1∈Θ−1

(u1(x(θ), θ) + t1(θ)) p(θ−1|θ1)


 (34)

subject to IC, IR and BB constraints (1)-(3).
By Theorem 2 any allocation of ex-ante expected social surplus can be supported by an

IC, IR and BB mechanism. Therefore, in a neutral optimum player 1 must obtain all ex-
pected social surplus, i.e.

∑
θ∈Θ (u1(x(θ), θ) + t1(θ)) p(θ) =

∑
i,θ∈Θ u1(x(θ), θ)p(θ). For if∑

θ∈Θ (u1(x(θ), θ) + t1(θ)) p(θ) <
∑

i,θ∈Θ u1(x(θ), θ)p(θ), then (x(.), t(.)) cannot be maximizing
(34), because there exists another IR, BB mechanism (x(.), t′(.)) s.t.

∑
θ−1∈Θ−1

t′1(θ)p(θ−1|θ1) >∑
θ−1∈Θ−1

t1(θ)p(θ−1|θ1) for all θ1 ∈ Θ1. Note that, because of IR and BB, it is infeasible
that

∑
θ∈Θ (u1(x(θ), θ) + t1(θ)) p(θ) >

∑
i,θ∈Θ u1(x(θ), θ)p(θ).

Also, x(θ) must be ex-post efficient. Otherwise, the value of (34) can be increased by using
a mechanism implementing an ex-post efficient decision rule.

It remains to show that in a neutral optimum each type of agent 1 gets all expected social
surplus conditional on her type, i.e. U(θ1|(x(.), t(.)) =

∑
i,θ−1∈Θ−1

ui(x(θ−1, θ1), (θ−1, θ1))p(θ−1|θ1)
for all θ1 ∈ Θ1. For this, a different line of argument is required. Define a set of blocked payoff
vectors of agent 1 B̂k as follows:

B̂k ≡
{
z(.) ∈ Rm1

+ |
∑

θ1∈Θ1

z(θ1)p1(θ1) ≤
∑

i;θ∈Θ

ui(x∗(θ), θ)p(θ); z(θk
1 ) <

∑

i;θ−1∈Θ−1

ui(x∗(θ), θ)p(θ−1|θk
1 )





Clearly, any IC, IR, BB mechanism which is not blocked by ∪kB̂k satisfies the conditions of
Theorem 3 because there is no IC, IR, BB mechanism M̃ such that

∑
θ1∈Θ1

U1(θ1|M̃)p1(θ1) >∑
i;θ∈Θ ui(x∗(θ), θ)p(θ). So, to complete the proof, it is sufficient to show that B̂k satisfies

Axioms 1-4 for all k ∈ {1, ..., m1}.
It is immediate that the Domination Axiom is satisfied. The Openness Axiom is also

satisfied because the ‘upper’ boundary of the set of feasible payoff vectors of agent 1 is given
by {y(.) ∈ Rm1

+ |∑θ1∈Θ1
y(θ1)p1(θ1) =

∑
i;θ∈Θ ui(x∗(θ), θ)p(θ)}.

The Extension Axiom holds because adding more actions to X may change the set of ex-
post efficient decision rules and cause an increase of

∑
i=1,...,n;θ∈Θ ui(x∗(θ), θ)p(θ) and, thus, of∑

i=1,...,n;θ−1∈Θ−1
ui(x∗(θ), θ)p(θ−1|θ1) for some θ1 ∈ Θ1.

Finally, let us show that B̂k satisfies Strong Solutions Axiom, i.e. a strong solution, if
exists, does not belong to B̂k for all k. Suppose that mechanism M s is a strong solution. Then
for all θ1 ∈ Θ1, U1(θ1|M s) ≤ ∑

i=1,...,n;θ−1∈Θ−1
ui(x∗(θ), θ)p(θ−1|θ1). For suppose there is a

type θ′1 ∈ Θ1 such that U1(θ′1|M s) >
∑

i=1,...,n;θ−1∈Θ−1
ui(x∗(θ), θ)p(θ−1|θ′1). Then in M s some

type θ̂i of some agent i ∈ {2, ..., n} earns a negative expected payoff conditional on (θ̂i, θ
′
1).

But this contradicts the fact that M s is a strong solution, i.e. is incentive compatible and
individually rational for all agent types given any type of agent 1.

But then it could not be that U1(θ1|M s) <
∑

i=1,...,n;θ−1∈Θ−1
ui(x∗(θ), θ)p(θ−1|θ1) for some

θ1 ∈ Θ1, because in this case M s would be dominated by the mechanism M∗ = (x∗(θ), t∗(θ)).

Construction of a sequential equilibrium in the informed principal problem.
Consider a neutral optimum mechanism M∗ ≡ (x∗(θ), t∗(θ)) specified in Theorem 3. Recall

that x∗(θ) is ex-post efficient and the vector of the expected payoffs of different types of agent i
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in this mechanism {Ui(θi|M∗)}θi∈Θi
is such that U∗

i (θi|M∗) = 0 for all θi ∈ Θi and i ∈ {2, ..., n},
and U∗

1 (θ1|M∗) =
∑

i,θ−1∈Θ−1
ui(x∗(θ−1, θ1), (θ−1, θ1))p(θ−1|θ1).

Let us demonstrate the existence of a sequential equilibrium (i.e. a collection of sequentially
rational strategies and a consistent belief system) on the equilibrium path of which all types of
agent 1 offer M∗, in stage 2 the agents 2 to n do not change their prior beliefs about the type
of agent 1 and agree to participate in the mechanism, while in stage 3 all agents, including
agent 1, report their types truthfully.

Since M∗ is incentive compatible given prior beliefs, we only need to rule out deviations by
any type of agent 1 to an alternative mechanism ν ∈ Z. For this, let us start by considering a
modified game Γν which differs from Γ in one aspect: agent 1’s only choice at stage 2 is either
to exit and earn the modified reservation payoff U∗

1 (θ1|M∗) or to offer the mechanism ν.
Consider any sequential equilibrium of Γν (which exists because ν ∈ Z). Let q(θ1) denote

the probability that type θ1 of agent 1 chooses mechanism ν in this equilibrium, σν denote the
agents’ strategy profile in the continuation game after ν is offered, and {P ν

i (θ−i|θi), Oν
i (θ−i|r, θi)}

denote the agents’ belief system in this continuation game. P ν
i (θ−i|θi) stands for the poste-

rior beliefs of agent i in stage 3 after the mechanism ν is offered, while Oν
i (θ−i|r, θi) stands

for the posterior beliefs of agent i in stage 4 after the agents have taken participation de-
cisions described by the vector r. Note that for agent 1 P ν

1 (θ−1|θ1) = p(θ−1|θ1). Also, let
Wi(θi|ν, σν , P ν

i (.|θi)) denote the expected payoff of type θi of agent i in this equilibrium.
Sequential rationality requires that:

q(θ1) =





1 if W1(θ1|ν, σν , p(.|θ1)) > U∗
1 (θ1|M∗)

any x ∈ [0, 1] if W1(θ1|ν, σν , p(.|θ1)) = U∗
1 (θ1|M∗)

0 if W1(θ1|ν, σν , p(.|θ1)) < U∗
1 (θ1|M∗)

(35)

Consistency of beliefs requires that for i = 2, ..., n:

P ν
i (θ1, θ−1−i|θi) =

p(θ1, θ−1−i|θi)Q(θ1)∑
θ′−1−i∈Θ−1−i,θ′1∈Θ1

p(θ′1, θ
′
−i|θi)Q(θ′1)

(36)

for some Q(.) satisfying: Q(θ1)
(∑

θ′1∈Θ1
q(θ′1)

)
= q(θ1) for all θ1 ∈ Θ1.

If W1(θ1|ν, σν , p(.|θ1)) ≤ U∗
1 (θ1|M∗) for all θ1 ∈ Θ1, then the strategies σν and the belief

system {P ν
i (θ−i|θi), Oν

i (θ−i|r, θi)} support a sequential equilibrium of Γν in which all types of
agent 1 choose the reservation payoff U∗

1 (.|M∗) with probability 1, i.e. q(θ1) = 0 for all θ1 ∈ Θ1.
So, to complete the construction we need to rule out that W1(θ̂1|ν, σν , p(.|θ̂1)) > U∗

1 (θ̂1|M∗)
for some θ̂1 ∈ Θ1. The proof is by contradiction, so suppose that such θ̂1 exists. Then q(θ̂1) = 1.

The optimality of agent 1’s strategy implies that W1(θ1|ν, σν , p(.|θ1)) ≥ U∗
1 (θ1|M∗) for all

θ1 ∈ Θ1 such that q(θ1) > 0. Also, by (36) and the definition of Q(.), P ν
i (θ1, θ−1−i|θi) > 0

only if q(θ1) > 0. Therefore, since U∗
1 (θ1|M∗) =

∑
i,θ−1∈Θ−1

ui(x∗(θ−1, θ1), (θ−1, θ1))p(θ−1|θ1),
there must exist an agent i 6= 1 and her type θi ∈ Θi s.t. Wi(θi|ν, σν , P ν

i (.|θi)) < 0. However,
this is impossible because this agent type can always ensure herself a reservation payoff of zero
by dropping out in stage 3. Hence, W1(θ1|ν, σν , p(.|θ1)) ≤ U∗

1 (θ1|M∗) for all θ1 ∈ Θ1.
Therefore, the strategies q(θ1) = 0 for all θ1 ∈ Θ1 and σν , together with the belief system

{P ν
i (θ−i|θi), Oν

i (θ−i|r, θi)} constitute a sequential equilibrium of the game Γν in which all types
of agent 1 choose the reservation payoff U∗

1 (θ1|M∗) with probability 1 in stage 2. Recall than
ν is an arbitrary mechanism in Z.

It follows that the ‘informed principal’ game Γ∗ possesses the following sequential equilib-
rium. All types of agent 1 offer M∗ = (x∗(θ), t∗(θ)) with probability 1. All agents accept it
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and report truthfully in stage 3. Off the equilibrium path, if agent 1 offers a mechanism ν ∈ Z,
then the strategies and the beliefs in the continuation game are the same as in the sequential
equilibrium of the game Γν , i.e. σν and {P ν

i (.), Oν
i (.)} for i = 1, ..., n. Q.E.D.
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