How Does Political Accountability Affect Public Spending

(based on work with J. Tirole)

E. Maskin
Institute for Advanced Study

Zvi Griliches Memorial Lectures
May, 2010
• In yesterday’s lecture, assumed (for most part) electorate *homogeneous*
 – except for single minority group

• in reality, officials elected by *coalition of interest groups*
 – e.g., in U.S., Republicans elected by union of
 - anti-abortion advocates
 - anti-government advocates
 - pro-business advocates
 – some overlap, but not much
• today, will assume official must assemble such a coalition to get \textit{re-elected} \\
 – i.e., must \textit{pander} to these interest groups \\
 – pandering takes form of (“pork barrel”) \textit{public spending} \\

• interested in \\
 – how re-election motive affects spending \\
 – how awareness of official’s inherent spending propensity matters \\
 – how “transparency” or “opaqueness” of spending itself matters
Model

• two dates
 – official chooses spending policy at date 1
 – stands for reelection at date 2
• electorate = continuum of interest groups [0,1]
• for each group i, politician chooses spending level
 $y_i \in \{0,1\}$
 – group i enjoys benefit B
 – social cost = L
 – assume, for now, $L > B > L/2$ (spending wasteful - - i.e., it is pork)
• interest group i’s payoff

\[y_iB - yL, \text{ where } y = \int_0^1 y_j dj \]

- if i observes y - - - transparency
- if i doesn’t observe y - - - opaqueness

• politician puts weight $\alpha_i > 0$ on minority i
 - α_i increasing in i
 - α_i known only to politician
 - $\int_0^1 \alpha_i di = 1$
 - $F(\alpha_i)$ c.d.f. of α_i

• official's payoff from spending policy $y_i = \{y_i\}$

\[
U(y_i) = \int_0^1 \alpha_i [y_iB - yL] di = \left(\int_0^1 \alpha_i y_i di\right) B - yL
\]

• can write

\[U(y) \text{ because } y_i \geq 1 \text{ for all } i \text{ above some cut-off } i^* \]
• Let \(\alpha^* B = L \)
 – if official were \textit{unaccountable}, would spend on interest group \(y_i \) provided that
 – \(\alpha_i > \alpha^* \)
 – so spending would equal
 \[
 x \equiv 1 - F(\alpha^*) = \text{spending propensity}
 \]
 – payoff \(U(x) \)

• Assume \(x < \frac{1}{2} \)
 – if unaccountable, official won’t assemble majority
Official chooses y to maximize

$$U(y) + p(y) \cdot R$$

where

$$p(y) = \text{probability of being re-elected with policy } y$$

and

$$R = \text{payoff from re-election}$$
Assume first that everyone *knows* officials spending propensity \(x \)

- whether or not \(y \) observed (transparency or opaqueness) *doesn’t matter*
 - everyone can predict \(y \), and so \(y \) provides no information
- indeed, to be re-elected, official will choose \(y = \frac{1}{2}(+\varepsilon) \)
 - if \(y_i = 1 \), then prob official will spend on \(i \) if re-elected is
 \[
 \frac{x}{\frac{1}{2}} = 2x
 \]
 - so by voting for official, \(i \) gets
 \[
 2xB - xL
 \]
 rather than
 \[
 xB - xL \quad \text{(payoff from new official)}
 \]
 - so if \(y_i = 1 \), \(i \) votes for official, and so official re-elected because \(y = \frac{1}{2} \)
Proposition 1: If $U\left(\frac{1}{2}\right) + R > U(x)$, then accountability increases public spending over nonaccountable government (nonaccountable official spends only x)
• So far, assumed that minority i votes “pocketbook”
 – wants to maximize expectation of second-period y_i

• Now assume
 fraction v_i of group i vote *pocketbook*
 fraction $1 - v_i$ of i vote *ideologically*
 – random fraction ϕ of ideologues vote for incumbent
 – fraction $1 - \phi$ vote for challenger
 – H is c.d.f. for ϕ
• Then, incumbent re-elected if
 \[E[v_i y_i] + (1 - v) \phi \geq E[v_i (1 - y_i)] + (1 - v)(1 - \phi), \text{ where } v = E v_i \]

• That is
 \[p(y) = 1 - H \left(\frac{1}{2} + \frac{E[v_i (1 - 2y_i)]}{2(1 - v)} \right) \]

• optimal policy solves
 \[\max_{y_i} E \left[\alpha_i (y_i B - y L) \right] + p(y) R \]

• Thus interest group \(i \) gets pork if
 \[\alpha_i B + \frac{H' v_i}{1 - v_i} R \geq L \]
Proposition 2:

- spending increases with rent from office \((R)\) and intensity of political competition \((H')\)
- as ideology falls \((v_i)\) rises, spending on \(i(y_i)\) rises

\[\alpha_i B + \frac{H'v_i}{1-v_i} R \geq L \]
• Next consider *limits on public spending*
 – constitutional
 – statutory
• in practice, strict limits difficult to enforce
 – government can “hide” spending off balance sheet
 – sanctioning mechanisms not perfectly enforceable
So, assume that if yL is cost of pork

- only $y\hat{L}$ actually "counts", where
 - $\hat{L} \leq L$
 - actual cost = $\hat{L} + D_1(L - \hat{L})$,
 with $D_1(0) = 0, D_1'(0) = 1, D_1' > 0, D'' > 0$

- Idea: hiding spending *inefficient*
• So far, public spending completely wasteful (pork)
 – so optimal spending limit zero

• Thus, introduce beneficial public spending g (public good)
 – generates surplus

$$W - D_2 (g_0 - g), \text{ where}$$

$$g_0 = \text{optimal level}$$

$$D_2 = \text{deadweight loss of deviating from } g_0$$

$$D_2 (0) = 0, D'_2 (0) = 1, D''_2 > 0, D'''_2 > 0$$
• So, official maximizes

\[
E\left[\alpha_i y_i B - y \left(\hat{L} + D_1 \left(L - \hat{L} \right) \right) \right] + g - D_2 \left(g_0 - g \right)
\]

\[
+ \left(1 - H \left(\frac{1 - 2vy}{2(1 - v)} \right) \right) R
\]

subject to \(g + y\hat{L} \leq G \)

• First-order conditions

(1) \(D'_1 \left(L - \hat{L} \right) = D'_2 \left(g_0 - g \right) = 1 + \mu \),

where \(\mu \) Lagrange multiplier

(2) \(y_i = 1 \iff \alpha_i B + \frac{hv}{1 - v} R \geq L + D_1 + \mu \hat{L} \)
Proposition 3: stricter deficit cap

- reduces pork
 - stricter cap raises μ
 - raises RHS of (2)
 - makes $y_i = 0$ more likely
- reduces public good spending g
 - RHS of (1) rises
 - g decreases
- increases off-balance-sheet spending $L - \hat{L}$
 - RHS of (1) rises
 - \hat{L} falls

(1) $D_1'(L - \hat{L}) = D_2'(g_0 - g) = 1 + \mu,$

(2) $y_i = 1 \iff \alpha_i B + \frac{hv}{1-v} R \geq L + D_1 + \mu \hat{L}$
Proposition 4: As accountability increases \((R \text{ rises})\), pork increases \((y \text{ rises})\) and optimal spending cap \(G\) increases

\[- \text{ as } R \text{ rises, LHS of (2) rises} \]
\[- \text{ more likely that } y_i = 1 \]
\[- \text{ } G \text{ must rise to accommodate greater proportion of pork} \]

\[- \text{ empirically, accountable officials have bigger budgets} \]
\[- \text{ here, it is because they spend higher proportion on pork} \]
• So far, assumed official’s spending propensity x known
• Now, assume 2 types
 – x_L with prob ρ
 – x_H with prob $1 - \rho$
 – $x_L < x_H$
• $F_L(\alpha), F_H(\alpha)$ c.d.f. of α
• $E_L(\alpha) = E_H(\alpha) = 1$
• $F_H(\alpha) < F_L(\alpha)$ if $\frac{1}{2} \leq F_L(\alpha) < 1$
• $x_L = 1 - F_L(\alpha^*) < x_H = 1 - F_H(\alpha^*) < \frac{1}{2}$
If y not observable -- spending opaque

Proposition 5: Two possible equilibria

- generalization of equilibrium with x known:
 - $y_L = y_H = \frac{1}{2}$
 - group i votes for incumbent provided receives pork
 - equilibrium always exists

- if $\frac{B}{L}$ small enough, also have equilibrium
 - $y_H = x_H, y_L = x_L$
 - group i votes for incumbent only if *not* beneficiary
 - idea: being beneficiary is *bad* news
 - increases probability $x = x_H$
 - if L big enough, i votes against incumbent even though beneficiary
If \textit{y observable} - - spending transparent

\textit{Proposition 6:}

\begin{itemize}
 \item if \(\frac{B}{L}\) small,
 \begin{itemize}
 \item \(y_H = x_H\)
 \item \(y_L < x_L\)
 \end{itemize}
 \item group \(i\) doesn’t vote for type \(H\) incumbent
 \item so, \textit{less} spending than if official nonaccountable
\end{itemize}
• if $\frac{B}{L}$ medium

 - $y_H = \frac{1}{2}$

 - $y_L = x_L$ or $y_L < x_L$ (if H's incentive constraint binding)

 - group i votes for incumbent if beneficiary

• if $\frac{B}{L}$ big

 - $y_H = y_L = \frac{1}{2}$

 - group i votes for incumbent if beneficiary
• Desire to appear fiscally conservative limits pork
• Transparency reduces pork