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Abstract

Case studies of self-enforcing cooperation in repeated interactions usually find that
the punishments inflicted on deviators are mild to start with, and increase only if there
is evidence of persistent deviation. We model this using a combination of imperfect
monitoring and asymmetric information in a one-sided prisoner’s dilemma. Call the
player with the temptation to cheat player B, and the other player A. Player B can
be one of several types, distinguished by the size of this temptation; B’s type is his
private information. A’s payoff may be high or low, and the probability of a low
payoff is higher if B has cheated. If player A receives the low payoff, he can inflict an
immediate punishment on B, at a cost to himself. We find that A’s optimal choice of
punishment is generally a non-concave problem, and the comparative statics can be
discontinuous and asymmetric. If the temptation of each type of B is non-stochastic,
A’s optimal choice of punishment is not lowered after a high payoff, and may be raised
or lowered after a bad payoff depending on the prior distribution of B’s types. With
stochastic temptations, as the prior probability of B being a bad type increases, the
optimal level of punishment chosen by A is initially low and decreasing, but then
jumps to a higher level and increases further thereafter, and for very high levels of this
probability the relationship may be terminated. Non-extreme levels of punishment are
most informative about B’s type, and the value of this information to A is highest
when the prior probabilities are also non-extreme.

∗This is an extremely preliminary statement of work still in progress. It was prepared by Dixit for an
informal seminar presentation to elicit feedback, and has not yet been read or approved by the coauthors.
Comments very welcome, addressed to dixitak@princeton.edu .
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1 Motivation

Over the past several decades, a large literature has emerged concerning cooperation and
enforcement of implicit agreements in ongoing relationships. This includes theoretical mod-
eling as well as case studies and empirical research. The theory and the practice of sustaining
cooperation in repeated interaction agree on most points, for example the effects of patience,
the number of players, the importance of information, and so on. However, a large gap
remains when it comes to the harshness of punishments.

The case study literature (for example Ostrom 1990, pp. 97–99; Ellickson 1991, pp. 53–64)
emphasizes that many successful cooperative arrangements involve graduated punishments.
The immediate response to a deviation is usually a mild step such as a quiet complaint and
a request to make restitution. Only if this fails are successively more serious steps, such as
retaliation, employed. Recourse to courts, or breaking off of the relationship, are usually the
last steps. Casual observation suggests that, to some extent, this process operates in both
directions, in the sense that lighter punishments are sometimes applied after good behavior,
but there appears to be less sensitivity in this direction. Instances where bad behavior
ratchets up punishments quickly are numerous, while examples where good behavior ratchets
punishments down are hard to find.

In dynamic models with perfect monitoring the harshest punishment may be invoked
to deal with all deviations, repeated and otherwise. Moreover, deterrence is perfect and
players do not cheat in equilibrium. The theory of such games is exposited in Fudenberg
and Tirole (1991, chapter 5). In models with imperfect monitoring, e.g. Green and Porter
(1984), Abreu, Pearce, and Stacchetti (1990), one can get moderate rather than extreme
punishments because there is a positive probability that costly punishments will have to
be carried out on the equilibrium path even though no one is cheating. However, in these
models there is no natural tendency for punishments to increase in response to repeated
“bad” signals. For instance in the symmetric environment investigated in Abreu, Pearce,
and Stachetti (1986) the optimal equilibrium entails only two states, a collusive state and a
punishment state, with transitions between these two states following a stationary Markovian
rule.

In searching for theoretical explanations of graduated punishments one is led naturally
to consider models with asymmetric information. However, with perfect monitoring it is still
possible to achieve perfect deterrence with sufficiently harsh punishments that are costless
in that they do not arise in equilibrium.1 Thus we are led to models with both asymmetric
information and imperfect monitoring. To our knowledge, the literature contains only a
few examples of models with this combination of elements, and that only at the abstract
level of folk theorems for highly patient players; e.g. Fudenberg, Levine and Maskin (1994,
section 8). Here we seek to improve our understanding of more concrete applications in more

1In models with asymmetric information and perfect monitoring, for example Athey and Bagwell (2001,
2004), Athey, Bagwell and Sanchirico (2002), there are equilibria in which actions interpretable as bad
behavior (increased market share) are followed by punishment (equilibrium price war), but these appear to
be less efficient than equilibria with rigid equilibrium behavior, and in any case analysis of these models has,
as yet, shed no light on the treatment of repeat offenders.
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realistic situations with significant or even extreme impatience.
Our analysis thus far has covered only a few simple examples and models, but it has

already improved the fit between theoretical and empirical work, and has yielded some
surprising and seemingly counterintuitive results. As an example of improved fit, our results
support the observed asymmetry between ratcheting up and ratcheting down. Another such
result is our finding that termination of relationship is indeed best used as a last resort, not
as the immediate threat of the trigger strategy kind. More surprisingly, we find a robust set
of circumstances where bad experiences lead to milder, not harsher, punishments. We are
currently building on and generalizing these preliminary findings.

2 The basic idea

Consider an ongoing relationship where: (1) players have private information concerning their
incentives to act selfishly, and these incentives are reasonably stable over time, (2) selfish
behavior is never jointly efficient, (3) choices are not directly observable even with a time
lag, (4) choices probabilistically affect observable outcomes, and (5) the scope for (credible)
punishment is large. By setting a sufficiently large punishment, it is possible to discourage
a player from cheating on an agreement, irrespective of his private information. However,
since it is necessary to condition punishments on bad outcomes rather than on opportunistic
choices, there is some likelihood (as in the Green-Porter model) that the punishment will
nevertheless be triggered; if inflicting the punishment is sufficiently costly, this may make
the equilibrium unattractive.

Consider using a milder punishment. This change has four effects on payoffs. (1) Less
cooperation. A player deviates when he has a high incentive to act opportunistically. (2)
More frequent punishment. With less cooperative behavior, bad outcomes are more likely, so
punishments are triggered more often. (3) Milder punishments. When punishment occurs,
the players don’t sacrifice as much utility. (4) Learning. If punishment is insufficient to
deter cheating in all cases, then learning occurs, allowing players to use more appropriate
punishments in subsequent periods.

Equilibrium payoffs decline as a result of the first two effects and rise as a consequence
of the last two. When the likelihood of having a high incentive to act opportunistically
is sufficiently small, the first two effects become relatively unimportant, while the third
remains significant (recall that the punishment is sometimes triggered regardless of private
information and behavior). In that case, it is advantageous to set the punishment at a level
insufficient to deter all opportunistic behavior. Players with the greatest incentives to act
opportunistically do so in equilibrium, raising the probability of a bad outcome that triggers
punishment. Thus punishments sometimes occurs because people act badly, and not merely
because the state of the world is unfavorable. When players enter a punishment phase, they
know they are punishing opportunistic behavior, rather than nature, with some probability.

In this setting, experience also reveals information about one’s fellow player. If the
outcome is good, it is more likely that the other player has a relatively small incentive to act
opportunistically; if the outcome is bad, this is less likely. As the probability distribution
of the other player’s type changes, so does the balance between the effects discussed in the
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last two paragraphs, and this means the optimal punishment also changes. If the optimal
punishment becomes more severe as probability shifts to types with greater incentives to act
opportunistically, then a bad outcome leads to the use of a more severe punishment in the
next round, and a good outcome has the opposite effect; cheaters are punished in equilibrium,
repeat offenders are punished more severely, and those with good records are treated with
leniency. However, the optimization problem for the punishment is generally non-concave
and has complex and discontinuous comparative statics. Therefore we find that there are
robust circumstances in which optimal punishments either do not change, or become less
severe as probability shifts to more opportunistic types, and this leads to some interesting
insights (e.g. concerning the relative insensitivity of punishments to good experience, as
discussed below).

Note that both asymmetric information and imperfect monitoring are critical for this
argument. Without asymmetric information concerning incentives to act opportunistically,
we would be in the Green-Porter world; the optimal punishment would assure the absence
of cheating, and would remain unchanged over time, regardless of bad or good experience.
Without imperfect monitoring, it would be optimal to use a punishment level that would
deter cheating irrespective of private information. It would never be used in equilibrium,
and there would be no reason to change it with experience.2

3 The model

We consider a one-sided prisoner’s dilemma game in which player A decides whether to
initiate each stage game. If he does so, then player B chooses one of two actions, which
we call “generous” and “selfish”. These result in different probabilities of A getting one of
two payoffs, “high” and “low”. The low payoff to A is more likely if B takes the selfish
action than if he takes the generous action, but both probabilities are strictly positive and
strictly less than 1 so B’s action cannot be inferred for sure from A’s payoffs. We define B’s
“temptation” as his expected excess payoff in a stage game if he takes the selfish as opposed
to the generous action. Player B can be one of several “types”. The type is invariant across
periods. The temptation depends on the type; in one variant of our model the temptation is
a random variable whose distribution depends on the type but is IID across periods. B’s type
as well as the actual temptation in any period are B’s private information; A can only ever
observe his own payoffs. If A gets the low payoff, he can inflict an immediate punishment in
the stage game on B, with an attendant cost to himself. Such punishment within the stage
game is a realistic feature in many case studies, so we assume it.

In fact, for most of this paper, we consider just a one-shot game where A can commit
to inflicting this punishment in the stage game if he received the low payoff. As usual,

2The matter becomes a bit more complicated if, contrary to our fifth assumption, arbitrarily severe
credible punishments are not available, since then it may not be possible to keep players in line irrespective
of private information. It is also more complicated when, contrary to our second assumption, selfish actions
are sometimes jointly efficient, as in Athey and Bagwell (2001, 2004) and Athey, Bagwell, and Sanchirco
(2002).
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with infinite repetition and sufficient patience, this commitment can become endogenously
credible in the sense of subgame perfection. Since we have nothing new to add to the usual
theory in this respect, we suppress the explicit analysis of subgame perfection with repetition.
This enables us to focus attention on the new aspect of what changes from one period to the
next, namely A’s beliefs about the type of the B player.

Now we describe the stage game and set up the notation.
1. Player B comes in types characterized by a parameter θ. A’s prior beliefs about the

probabilities of B being of these different types are common knowledge.
2. Player A decides whether to initiate the interaction with B. If he does not, then he

gets an outside payoff a. If he chooses to initiate the interaction, he does it by committing
himself to a punishment rule and chooses its level p. The punishment will go into effect if
A gets zero payoff in the game that follows. If the punishment is invoked, it will reduce B’s
payoff by p and A’s by m p, where m > 0.

3. If A has initiated the game, B gets the choice between two actions, “generous” and
“selfish”. B’s expected payoff from the selfish action exceeds that from the generous action
by the amount y; call this B’s temptation level. We consider two cases, labeled fixed and
stochastic temptation.

3 f. In the case of fixed temptation, we take y ≡ θ and let F (θ) denote A’s prior
cumulative distribution function of B’s types.

3 s. In the case of stochastic temptation, we assume that the cumulative distribution
function of y is contingent on B’s type θ, and denoted by F (y, θ) over a type-invariant
support [0, y]. The density is Fy > 0. Also, Fθ < 0 for all y ∈ (0, y), so the larger is θ, the
further to the right is the distribution of y in the sense of first-order stochastic dominance.
So larger θ means worse types. (Of course F (0, θ) = 0 and F (y, θ) = 1 for all θ.)

4. A does not observe the actions, but only the resulting payoff, which can be either
“high” c or “low” 0, where c > a > 0. The probabilities of the two outcomes are as follows:

µ = Prob[A gets low payoff | B takes selfish action],
λ = Prob[A gets low payoff | B takes generous action],

(1)

with 1 > µ > λ > 0.
5. We simplify the analysis still further by assuming throughout that player B is infinitely

impatient, so in each stage game he is concerned with his payoff solely in that stage game.
Then there is a very simple relationship between A’s choice of punishment p and the highest
level of B’s temptation which it would deter. B will take the generous action if the expected
payoff gain from taking the selfish action, namely the temptation level y, is less than the
expected payoff loss due to the higher probability of invoking the punishment, namely (µ −
λ) p. So the highest temptation deterred and the punishment are linked by y = (µ − λ) p.
We can then regard A’s choice of the punishment p as equivalent to the choice of the highest
level of temptation y he chooses to deter, and the cost to A of choosing y is m y/(µ − λ),
which we abbreviate as γ y. An increase in the precision with which A’s payoff reveals B’s
action corresponds to an increase in µ and/or a decrease in λ. Both of these decrease γ
for given m. Therefore we can interpret the new parameter γ as A’s effective unit cost of
deterrence.
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6. Moreover, in the next two sections, we assume that player A is also infinitely impatient,
concerned only with the current period’s payoff in each period. Then the only link across
periods is that of the revision of A’s beliefs about B’s type, which is our main new concern.
In Section 6 we consider the additional features introduced when A is finitely impatient.

4 Fixed Temptation Case

If A has set the punishment at a level to deter temptations up to y, then

Prob[B chooses generous] = Prob[θ ≤ y] = F (y) .

Define
L(y) = Prob[A gets low payoff] = λ F (y) + µ [1 − F (y)] .

A chooses y to maximize his expected payoff,

V (y) = c [1 − L(y)] + (−γ y) L(y)

= c − (c + γ y) { λ F (y) + µ [1 − F (y)] } (2)

In the light of his payoff realization this period, A will revise his prior and set the optimal
y next period. The intuition based on the case studies would be that y is revised upward
after a bad experience, and may be revised downward after a good experience. The formal
result is different in both respects. A good experience does not change the optimal y at all;
after a bad experience the optimal y may be revised upward or downward.

Here is the intuition for this apparently counterintuitive result; the formal proof is in
Appendix A.

Suppose the punishment for the current period is set at y∗. If A’s outcome is good, his
posterior distribution changes as follows: the likelihood of all types with temptation y < y∗

shifts up by the same proportion, and the likelihood of all types with temptation y > y∗

shifts down by another constant proportion.
Consider changing the punishment from some y′ < y∗ to y∗. There are three effects:

(1) higher cost of punishments imposed on those with y < y′ in the event of “accidental”
bad outcomes; (2) deterrence of those with y′ < y < y∗, along with higher cost of punishment
in the event of “accidental” bad outcomes; (3) higher cost of certain punishment imposed on
those with y > y∗. (1) and (3) are costs, but (2) can be beneficial. If y∗ is optimal initially
then, for the prior distribution, (2) is a net benefit and is weakly greater (in absolute value)
than the sum of (1) and (3). Now switch to the posterior distribution. Effects (1) and (2)
increase proportionately, and (3) decreases, so the change is strictly beneficial.

Consider changing the punishment from y∗ to some y′′ > y∗. There are again three effects:
(1) higher cost of punishments imposed on those with y < y∗ in the event of “accidental” bad
outcomes, (2) deterrence of those with y∗ < y < y′′, along with higher cost of punishment in
the “accidental” bad outcomes, and (3) higher cost of certain punishment imposed on those
with y > y′′. (1) and (3) are again costs, but (2) can be beneficial. If y∗ is optimal initially
then, for the prior distribution, (2) does not outweigh the sum of (1) and (3). Now switch
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to the posterior distribution. Effects (2) and (3) decrease proportionately, and (1) increases,
so the change is strictly detrimental.

Reversing this argument, one can see that bad news increases the desirability of both
increasing and decreasing the punishment, which is why it can cause punishment to rise or
fall. We now present a numerical example showing how the seemingly perverse pattern is
possible for non-exceptional values of the parameters.

Example where punishment goes down after a bad experience:

The parameters are c = 12, γ = 1, µ = 1, and λ = 0.5 . The types (equal to temptations)
of the B player are θ = 1, 6, 12, and A’s prior probabilities on these types are respectively
0.25, 0.50, 0.25. Now A need consider only three discrete deterrence levels corresponding to
B’s temptation levels. Table 1 shows the consequences. The optimum is y = 6, which deters
the two lower types of B but lets the worst type behave selfishly.

Table 1: A’s First-Period Decision

A’s choices of y 1 6 12

1 − L = Prob[high payoff to A] 0.125 0.375 0.500
L = Prob[low payoff to A] 0.875 0.625 0.500
V = c − (c + γ y)L 0.625 0.750 0.000

Suppose A makes this choice and experiences the low payoff. Ex ante, this would happen
with probabilities 0.5×0.25 = 0.125, 0.5×0.50 = 0.25, and 1×0.25 = 0.25 respectively from
the three types of B. The total probability of A getting the low payoff is then 0.125 +0.25 +
0.25 = 0.625. Therefore A’s posterior probabilities on B’s type are respectively 0.125/0.625
= 0.2, 0.250/0.625 = 0.4, 0.250/0.625 = 0.4

Table 2 shows A’s decision for the second period. The optimum is y = 1, which deters
only the lowest type of B. In fact y = 6, which was the first-period optumum, has become
the worst choice.

Table 2: A’s Second-Period Decision

A’s choices of y 1 6 12

1 − L = Prob[high payoff to A] 0.100 0.300 0.500
L = Prob[low payoff to A] 0.900 0.700 0.500
V = c − (c + γ y)L 0.300 −0.600 0.000

What has happened is that the experience of low payoff has made A think that the worst
type of B is now more likely than was the case before, and deterring that type is too costly.
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Therefore A finds it better to ease up on the deterrence. If A’s outside payoff a is less than
0.300, he finds it optimal to continue the relationship with this milder punishment; but if
a > 0.300 he will terminate the relationship and take the outside opportunity.

5 Stochastic Temptation Case

First we set up some notation and obtain some useful properties of the underlying functions
for a given type θ of the player B. The CDF of the temptation is F (y, θ). The probability
that A gets the low payoff when he has chosen the deterrence level y and B’s type is θ is
denoted by B(y, θ); thus

B(y, θ) = λF (y, θ) + µ [1 − F (y, θ)] . (3)

Then

By = −(µ − λ) Fy < 0 (4)

Bθ = −(µ − λ) Fθ > 0 . (5)

Also
B(0, θ) = µ > B(y, θ) = λ for all θ . (6)

Figure 1 shows the typical shape of B as a function of y for two different values of θ, with
θ1 < θ2. Since Bθ > 0, the B(y, θ2) function lies entirely above the B(y, θ1) function, except
that the two coincide at the end-points.3

Figure 1: Probability of A receiving low payoff

Now suppose the θ1 and θ2 introduced above are actually the two possible types of the
player B, with π being the probability of the “bad” type θ2. Denote by L(y, π) is the
probability that A gets a bad payoff when he has chosen the deterrence level y, so

L(y, π) = (1 − π) B(y, θ1) + π B(y, θ2) (7)

3The curvature shown is for the case where the density Fy is decreasing in y which is broadly what is
needed for the local second-order conditions below.
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Then

Ly = (1 − π) By(y, θ1) + π By(y, θ2) < 0 (8)

Lπ = B(y, θ2) − B(y, θ1) > 0. (9)

Remember that we are assuming both players to be infinitely impatient. However, we
are also assuming that both players have perfect memories. Therefore the only link across
periods is the updating of A’s probabilities of the various types for B. In this section we
consider the case of two types.

A’s objective function in the current period is his expected payoff

V (y, θ) = c [1 − L(y, π)]− γ y L(y, π)

= c − L(y, π) (c + γ y) . (10)

The first-order condition for a local interior maximum is

Vy = −Ly (c + γ y)− Lγ = 0 . (11)

The issues of the local second-order condition and end-point optima are discussed in the
Appendix. The major issue that arises is the possibility of multiple local optima. But first
we set up some local comparative statics.

Let y(π) denote a local maximizer y regarded as a function of the probability π of the
bad type. We want to know when this is an increasing function. To do this comparative
statics, differentiate the first-order condition totally:

Vyy
dy

dπ
+ Vyπ = 0 ,

where the partial derivaties of V are evaluated at the optimum. Using the second-order
condition, then

Sign

(
dy

dπ

)
= Sign(Vyπ) .

The details of the algebra that yields an interpretation of this sign are in Appendix C.
The key concept is the local sensitivity of the different types of B to the deterrence level.
Recall that B(y, θ) is the probability that player A gets the bad outcome when he chooses
to deter temptations up to y, and player B is of type θ. As y increases, B decreases, and
the proportional rate of decrease is −By/B (remember that By is negative). Call this the
“marginal sensitivity to deterrence” of a type-θ player B. Define

S(y, θ) = −By(y, θ) /B(y, θ) . (12)

Then the algebra yields

Sign

[
dy

dπ

]
= Sign[ S(y, θ2) − S(y, θ1) ] (13)
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To help fix when the right hand sign is positive and when it is negative, look at Figure 1.
The B(y, θ2) function lies entirely above the B(y, θ1) function, except that the two coincide
at the end-points. Therefore the slopes at the end-points must satisfy

−By(0, θ1) > −By(0, θ2), −By(y, θ1) < −By(y, θ2) .

Dividing each inequality by the common value of the functions at that point,

S(0, θ1) > S(0, θ2), S(y, θ1) < S(y, θ2) .

By continuity, S will be increasing in θ for y sufficiently close to y and S will be a decreasing
function of θ for y sufficiently close to zero. Thus the criterion in (13) simply cannot give a
globally unambiguous sign to dy/dπ.

Consider the simplest possibility compatible with this, namely a “single crossing” when
there is be a ŷ(θ1, θ2) such that

S(y, θ2) − S(y, θ1)

{
< 0 for 0 < y < ŷ(θ1, θ2)
> 0 for ŷ(θ1, θ2) < y < y

Therefore the comparative static result is

dy

dπ

{
< 0 for 0 < y < ŷ(θ1, θ2)
> 0 for ŷ(θ1, θ2) < y < y

Of course ŷ(θ1, θ2) is itself endogenous and depends on all the parameters of the problem,
but both cases can arise in non-exceptional circumstances. To see this, first observe that
the behavior of S depends only on the form of the distribution function F and the two
parameters µ and λ, so these things and the two θ′s fix the ŷ. In particular, ŷ is independent
of π. Next, the optimum depends on two other parameters, c and m (with γ = m/(µ − λ)
which can be varied from 0 to ∞ by varying m). For small c and/or large m, the optimum
y is small (and may even be at a corner solution y = 0), whereas for large c and/or small m,
the optimum y is large (and may even be at a corner solution y = y.) This depending on
these two parameters, the optimum can be less than or greater than the critical ŷ(θ) above
which our condition is satisfied.

Figure 2 illustrates the possibilities. If the optimal punishment is less than ŷ(θ1, θ2), an
increase in π will make the optimal punishment even smaller, keeping it in the range below
ŷ(θ1, θ2) and therefore decreasing further as π increases. The optimal y may even hit zero
for some π < 1 and then will stay at zero for any higher values of π. If the consequences
of B’s cheating are not too large or punishing B is too costly to A, then A gradually gives
up when things get even worse.4 Conversely, if the optimal punishment is above ŷ(θ1, θ2),
then an increase in π makes the optimal punishment size even higher. It may hit y for some
π < 1 and then stay there. There seems to be an interesting bifurcation in the choice of
punishments.

4This is similar to the apparently counterintuitive finding in the fixed temptation case.
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Figure 2: Bifurcation of Optimal Punishments and Local Optima

The bifurcation goes naturally with the possibility of multiple local optima. Consider
the special situation where the distribution of temptation for player B of type i is highly
concentrated around yi, with y1 < y2. Start with a low probability π of the bad type 2.
If A wanted to deter the bad type, he would have to set y above y2. But with low π,
the punishment would be invoked most of the time when B was of type 1 and behaved
generously but the outcome turned out to be low. This would be very costly. Therefore it is
not optimal for A to try to deter the few bad types; y∗ is close to y1. If π increases a little
while staying in this range, the punishment still does not deter type 2’s, but its cost must
be borne more often. This is not optimal; therefore the optimal punishment goes down. But
if π rises sufficiently, it becomes desirable to deter type 2’s by ratcheting up the punishment
discontinuously, and thereafter keep on raising it. In Figure 2, this is shown by the two
thicker portions of the bifurcating curves.

If the distribution of B’s temptation is not so concentrated, for example for the negative
exponential case, V (y) can have a unique regular interior maximum global maximum. It
will be located along just one of the two branches shown in Figure 2, and move continuously
along this branch as π changes; which branch depends on the other parameters.

The possible irregularities of the optima notwithstanding, A’s expected payoff mono-
tonically decreases as the probability of the bad type increases, regardless of whether the
punishment increases or decreases. To see this, use the envelope theorem. The optimized
value V ∗ changes with θ according to

dV ∗

dπ
=

∂V

∂π
= −Lπ(y, θ) (c + γ y)

evaluated at the optimum y(θ). We know from (9) that Lπ > 0. Therefore dV ∗/dπ is nega-
tive, so V ∗ decreases as π increases. It is possible that V ∗ drops to A’s outside opportunity
level a for some π. Then for any larger π, A will not initiate the interaction at all.

All of this was done as comparative statics in a stage game, but it can immediately be
interpreted in the context of A’s Bayesian updating of the probability of B’s types from one
period to the next. If in any period A receives the low (zero) payoff, he revises the probability
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of B being the bad type to

Π(0) =
π B(y, θ2)

π B(y, θ2) + (1 − π) B(y, θ1)
> π . (14)

If instead A receives the high payoff c, he revises the probability of B being the bad type to

Π(c) =
π [1 − B(y, θ2)]

π [1 − B(y, θ2)] + (1 − π) [1 − B(y, θ1)]
< π . (15)

Therefore, if in the first period the parameter values are such that the optimal y is above the
threshold ŷ, then bad experiences lead A to revise π upward and use higher punishments,
perhaps culminating in a breakdown of the relationship, whereas good experiences lead A to
revise π downward and use smaller punishments. However, if in the first period the parameter
values are such that the optimal y is less than the threshold ŷ, then bad experiences lead A
to revise π upward and use smaller punishments, whereas good experiences lead A to revise
π downward and use larger punishments. It is still true that bad experiences reduce A’s
expected payoff, perhaps leading to an eventual termination of the relationship.

Example of Multiple Local Optima

In conformity with the intuition explained above, this example assumes that the distribution
of temptation y conditional on θ is normal with a somewhat small standard deviation.
Specifically, the two types have normally distributed temptations, with means 4 for type 1
and 6 for type 2, and the same standard deviations 0.14 for each. The other parameters are
c = 10, m = 0.5, µ = 1, λ = 0.5, so γ = 1.

Table 3: Local Maxima and Discontinuous Jumps

π Lower y∗ V (y∗) Upper y∗ V (y∗)
0.050 4.380 2.426
0.100 4.374 2.068
0.130 4.371 1.853 (6.267) (1.836)
0.135 (4.370) (1.818) 6.270 1.834
0.150 6.278 1.831
0.200 6.298 1.822

Table 3 shows the global maximizers y∗ and maximized values V (y∗), and also shows
one further local maximizer that is not global on each side of the switchover to clarify the
comparisons. Figure 3 shows the graph of V (y) for the π value when the two local optima
are almost equal.

From the table we see in the numerical solutions the features that arose as possibilities
in the previous discussion of comparative statics and the schematic Figure 2, namely discon-
tinuity and bifurcation. The “Lower y∗” column corresponds to the lower curve in Figure 2;
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Figure 3: Multiple Local Maxima

it is decreasing as π increases. Between π = 0.130 and 0.135, the global optimum switches
to “Upper y∗” column, and thereafter it increases as π increases.

Some other noteworthy features are: [1] Both optima are nearly two to 2.5 standard
deviations above the corresponding mean: for each type, deterrence is almost complete
when it is attempted at all. [2] A’s optimized payoff V (y∗) is a decreasing convex function of
π. This can be proved rigorously and with much greater generality; see Propositions 1 and 2
in Appendix F. [3] Therefore the outside opportunity is taken when π goes above a critical
value: breakdown of relationship is last resort, not the first threat as in a trigger strategy.

Appendixes D and E develop the theory for the case with many types of B; we omit it
in the text.

6 Repeated Game with Finitely Impatient A

Now suppose A has finite impatience with discount factor δ, but B is infinitely impatient.
Let B be of two possible types as before. The Bellman function for A’s recursive dynamic
programming problem can be written as

W (π) = max
y

{
V (y, π) + δ {L(y, π) W (Π(0)) + [1 − L(y, π)] W (Π(c)) }

}
, (16)

where Π(0) and Π(c) denote the vectors of the posterior probabilities of types after getting
payoffs zero and c respectively, with the components defined in (14) and (15) respectively.
Note that both Π(0) and Π(c) depend on the vector of prior probabilities π and the choice
of the maximum temptation to deter y.

The contraction mapping procedure that establishes the basic properties of the solution
are standard but tedious, and are in Appendix F. Here we consider only the comparative
statics of a local optimum, and the new considerations that arise because of A’s concern for
the future.

When the Bellman value function W is the appropriate fixed point W ∗, write the function
that is maximized by choice of y as

SW ∗(y, π) = V (y, π) + δ { L(y, π) W ∗(Π(0)) + [1 − L(y, π)] W ∗(Π(c)) } . (17)
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Recognize that
L(y, π) W ∗(Π(0)) + [1 − L(y, π)] W ∗(Π(c))

is just A’s expected continuation payoff; write it as EW ∗(y, π). Using this abbreviation, but
expanding out the V function in SW ∗, we have

SW ∗(y, π) = c − L(y, π) (c + γ y) + δ EW ∗(y, π) .

The first-order condition for maximization is

SW ∗
y = −γ L − (c + γ y) Ly + δ EW ∗

y = 0 .

As usual, the sign of dy/dπ is the same as the sign of SW ∗
yπ > 0 at the optimal point.

SW ∗
yπ = −γ Lπ − (c + γ y) Lyπ + δ EW ∗

yπ .

Multiplying the equation for SW ∗
yπ by L, that for SW ∗

y by −Lπ, and adding the two, we get

L SW ∗
yπ − Lπ SW ∗

y = (c + γ y) (Ly Lπ − L Lyπ) + δ (L EW ∗
yπ − Lπ EW ∗

y ) .

So evaluated at the optimal y where SW ∗
y = 0, we have

L SW ∗
yπ = (c + γ y) (Ly Lπ − L Lyπ) + δ (L EW ∗

yπ − Lπ EW ∗
y ) . (18)

Thus the overall effect we are looking for is a combination of two terms. The first,
(Ly Lπ − L Lyπ), appeared in the static problem with infinite impatience. The second,
(L EW ∗

yπ − Lπ EW ∗
y ), is essentially dynamic, and arises when A is finitely patient and

concerned with the continuation payoff. The relative weights on the two depend on δ. When
δ goes to zero we get the static case; when δ goes to 1, only the dynamic term matters
because EW ∗ and its derivatives contain a factor 1/(1 − δ). To consider all cases of δ, the
signs of the two must be examined separately. The static term was extensively discussed in
the previous sections, so let us consider the dynamic term here.

Appendix F contains the argument showing that the dynamic aspect contributes a posi-
tive term to dy/dπ in two situations, (1) when π is low and y is also low, and (2) when π is
high and y is also high. In the other two situations, (3) low π, high y, and (4) high π, low y,
the dynamic aspect contributes a negative term to dy/dπ. Recall that parameters c and m
affect y separately from π and can trace the whole range [0, y], so all four cases are logical
possibilities. And note that the “high” and “low” in the above statements are rough and
not expressed in terms of precise cutoffs; that would not be possible because for example the
value of π for which the EW ∗y/G curve attains its maximum or minimum depends on the
exact value of y.

The taxonomy may look complicated, but it can be expressed more simply and inter-
preted. The general idea is: if π moves away from its extreme values toward an intermediate
range, so does y. In cases (1) and (3), when π increases starting from near zero, y increases
starting from a low level in case (1) and decreases from a high level in case (3). In cases (2)
and (4), if π decreases starting from near 1, then y decreases starting from a high level in
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Figure 4: Behavior of Dynamic Effect on Punishments

case (2) and increases starting from a low level in case (4). The idea that moving π toward
an intermediate value also moves y toward an intermediate value can be interpreted in terms
of the information value of punishments.

Write the Bayes’ Rule formula (14) for the posterior probability of B being the bad type
after A experiences a low payoff as

Π(0) =
π

(1 − π) B(y, θ1)/B(y, θ2) + π

This regarded as a function of y for fixed π equals π when y = 0 (where both the B functions
equal µ) and also when y = y (when both the B functions equal λ). For all intermediate y,
we have B(y, θ1)/B(y, θ2) < 1 so Π(0) > π. Then Π(0) will be maximum at an intermediate
y, call it y0. Intuitively, both the extreme punishments – zero (which deters neither type
for any temptation) and y (which deters both types for all temptations) are uninformative.
Information is maximized for an intermediate punishment.

The value of information also depends on π. When π = 0, both Π(0) and Π(c) are also
zero; when π = 1, both posteriors are also 1. Therefore no new information accrues when the
prior is at an extreme, no matter what punishment is being used. It is only for intermediate
priors that significant information can be obtained by using punishments.

The dynamic effect is essentially that A will be able to start the next period with updated
probabilities, and his current calculation takes into account the discounted continuation
value. Therefore when information is more likely to accrue (intermediate π), the dynamic
consideration argues in favor of using a more informative punishment (intermediate y). We
should again emphasize that the statements are deliberately vague in their use of “high” and
“low”; there is no clear cutoff and there may be some ambiguities in an intermediate range,
for example because of the two different values of y that maximize information upon A’s
receiving high versus low payoffs.

Further details of this are discussed in Appendix F. The general ideas concerning the
value of information and informativeness of actions conform to the classic analysis of Howard
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(1966, 1967).

7 Concluding Remarks

Our analysis this far consists of some simple and special cases, with a mixture of theory and
numerical calculations. But it has already produced some surprising results and a rich set
of questions for further research. We are currently working on several of these. The most
important is the case of multiple periods when both players have finite impatience. Then
the simple one-to-one correspondence between choice of punishment p and the maximum
temptation deterred y is lost, and the problem gets even more complicated. We are also
examining a more general mechanism design approach.
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Appendix: Proofs

A. Fixed Temptation Case

Proposition: y is not revised after A experiences a high payoff; after A experiences a low
payoff, y may be revised either upward or downward.

Proof:
Suppose that in the first period the prior CDF of the temptation θ (now same thing as

the type) is F (θ). The optimal y∗ maximizes

V (y) = c − (c + γy) {λF (y) + µ [1 − F (y)] } ,

or minimizes
M(y) = (c + γy) {λF (y) + µ [1 − F (y)] } .

Therefore
M(y) −M(y∗) > 0 both when y < y∗ and when y > y∗.

Now suppose player A experiences a good outcome. The posterior CDF is

F P (θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − λ) F (θ)

(1 − λ) F (y∗) + (1 − µ) [1 − F (y∗)] if θ < y∗

(1 − λ) F (y∗) + (1 − µ) [F (θ)− F (y∗)]
(1 − λ) F (y∗) + (1 − µ) [1 − F (y∗)] if θ > y∗

Observe that in the above expressions, the denominator (abbreviated as ∆), can be
written as

∆ =

{
(1 − λ) − (µ − λ) [1 − F (y∗)] this form is used below when y < y∗

(1 − µ) + (µ − λ) F (y∗) this form is used below when y > y∗

The next period, the function to be minimized must be written using two separate for-
mulas. If y < y∗, we have

MP (y) = (c + γy) {λF P (y) + µ [1 − F P (y)] }
= ∆−1 (c + γy) { λ (1 − λ)F (y) + µ [∆ − (1 − λ)F (y)] }
= ∆−1 (c + γy) { λ (1 − λ)F (y) + µ [(1 − λ)[1 − F (y)] − (µ − λ)[1 − F (y∗)] ] }
= ∆−1 (c + γy) { (1 − λ) [λF (y) + µ [1 − F (y)] ]− µ (µ − λ) [1 − F (y∗)] }
= ∆−1 { (1 − λ) M(y) − µ (µ − λ) [1 − F (y∗)] (c + γy) }

Then

MP (y)− MP (y∗) = ∆−1 { (1 − λ) [M(y)− M(y∗)] + µ (µ − λ) [1 − F (y∗)] γ (y∗ − y) > 0

And if y > y∗, note that

1 − F P(y) =
(1 − µ) [1 − F (y)]

∆
.
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Therefore

MP (y) = (c + γy) {λF P (y) + µ [1 − F P (y)] }
= ∆−1 (c + γy) { λ [∆ − (1 − µ)[1 − F (y)] ] + µ (1 − µ)[1 − F (y)] }
= ∆−1 (c + γy) { λ [∆ − (1 − µ)] + (1 − µ) [λF (y) + µ [1 − F (y)] ] }
= ∆−1 (c + γy) { λ (µ − λ)F (y∗) + (1 − µ) [λF (y) + µ [1 − F (y)] ] }
= ∆−1 { λ (µ − λ)F (y∗) (c + γ y) + (1 − µ)M(y) }

Then

MP (y) − MP (y∗) = ∆−1 { λ (µ − λ)F (y∗) γ (y − y∗) + (1 − µ) [M(y) − M(y∗)] } > 0

Thus for any y �= y∗, we have MP (y) > MP (y∗), so y∗ is again optimal.
In particular, if the prior F (y) is differentiable so the previous period had a regular

(smooth) minimum at y = y∗ with M ′(y) = 0, we now have

dMP (y)

dy

∣∣∣∣∣
y↑y∗

= ∆−1 { (1 − λ) M ′(y∗) − µ (µ − λ) [1 − F (y∗)] γ }

= − µ (µ − λ) [1 − F (y∗)] γ
∆

< 0 .

and similarly

dMP (y)

dy

∣∣∣∣∣
y↓y∗

= ∆−1 { λ(µ − λ) F (y∗) γ + (1 − µ)M ′(y∗)} > 0

Thus y∗ becomes an optimum with a kink.
The analysis of what happens after A experiences a low payoff follows the same steps

and is left to the reader. The result in the case of a differentiable prior F (y) is as follows.
If the previous period had a regular (smooth) minimum at y = y∗ with M ′(y) = 0, we now
have

dMP (y)

dy

∣∣∣∣∣
y↑y∗

> 0 ,
dMP (y)

dy

∣∣∣∣∣
y↓y∗

< 0

Thus y∗ becomes a local maximum instead of a minimum of MP (y), and depending on the
global conditions, the new optimal deterrence level y, namely the minimizer of MP (y), shifts
discontinuously either down or up.

B. Stochastic Temptation Case: Preliminaries

B-1. Rules of the Stage Game

For convenience we repeat the description of the stage game and set up the notation.
1. Player B comes in types characterized by a parameter θ.

19



2. Player A decides whether to initiate the interaction with B. If he does not, then he
gets an outside payoff a. If he chooses to initiate the interaction, he does it by committing
himself to a punishment rule and chooses its level p. The punishment will go into effect if
A gets zero payoff in the game that follows. If the punishment is invoked, it will reduce B’s
payoff by p and A’s by m p, where m > 0.

3. If A has initiated the game, B gets the choice between two actions, “generous” and
“selfish”. B’s expected payoff from the selfish action exceeds that from the generous action
by a random y; call this B’s temptation level. The support of y is [0, y]. The cumulative
distribution function of y is contingent on B’s type θ, and denoted by F (y, θ). The density
is Fy > 0. Also, Fθ < 0 for all y ∈ (0, y), so the larger is θ, the further to the right is the
distribution of y in the sense of first-order stochastic dominance. So larger θ means worse
types. (Of course F (0, θ) = 0 and F (y, θ) = 1 for all θ.)

4. A does not observe the actions, but only the resulting payoff, which can be either
“high” c or “low” 0, where c > a > 0. The probabilities of the two outcomes are as follows:

µ = Prob[A gets low payoff | B takes selfish action],
λ = Prob[A gets low payoff | B takes generous action],

(19)

with 1 > µ > λ > 0.

B-2. One-Shot Game with Just One Type of Player B

As a preliminary exercise, suppose B’s type is known, so the distribution of B’s types is
concentrated on just one θ. We ask as a comparative static question whether the punishment
level p chosen by A is an increasing function of θ. This should remain an essential property
in all the subsequent dynamic modeling that we do.

Equivalently, we can think of the highest temptation level y that A chooses to deter. B
will take the generous action if the expected payoff gain from taking the selfish action, namely
the temptation level y, is less than the expected payoff loss due to the higher probability
of invoking the punishment, namely (µ − λ) p. So the highest temptation deterred and the
punishment are linked by y = (µ − λ) p.

A chooses y to maximize

V (y, θ) = F (y, θ) [(1 − λ) c + λ (−m p)] + [1 − F (y, θ)] [(1 − µ) c + µ (−m p)]

= c − {λF (y, θ) + µ [1 − F (y, θ)] } (c + mp)

Now define
B(y, θ) = λF (y, θ) + µ [1 − F (y, θ)] . (20)

This is just the probability that A gets the low payoff when he has chosen y and B’s type is
θ. Then

By = −(µ − λ) Fy < 0 (21)

Bθ = −(µ − λ) Fθ > 0 . (22)
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Also define γ = m/(µ − λ) to simplify the notation. Then

V (y, θ) = c − B(y, θ) (c + γ y) . (23)

The first-order condition is

Vy = −By (c + γ y) − B γ = 0 , (24)

and the second-order condition is

Vyy = −Byy (c + γ y)− 2By γ < 0 .

The second-order condition need only hold at all stationary points defined by the first-order
condition. Write that condition as

−By (c + γ y) = B γ

and each of these is positive. Therefore dividing the terms in the expression for Vyy by the
appropriate one of these, the second-order condition can be written as

−Byy

−By
− 2By

B
< 0 ,

or
−B Byy + 2 (By)

2

(−By) B
< 0 .

But
∂

∂y

(−By

B2

)
=

−B2 Byy − (−By) 2B By

B4
=

−B Byy + 2 (By)
2

B3

so the SOC holds if and only if −By/B
2 decreases as y increases for fixed θ, evaluated at

the optimum.
There will be a local optimum at y = 0 if Vy(0, θ) < 0. Using B(0, θ) = µ and −By(0, θ) =

(µ − λ) Fy(0, θ), the condition becomes

(µ − λ) c Fy(0, θ) − µγ < 0.

Similarly, there is a local optimum at y = y if

(µ − λ) (c + γ y)Fy(y, θ) − λγ > 0 .

Only interior optima exist if

Fy(0, θ) >
µγ

(µ − λ) c
>

λγ

(µ − λ) (c + γ y)
> Fy(y, θ) . (25)

Roughly speaking, this requires that the density of y at the low end (small temptations)
should be sufficiently higher than that at the high end (large temptations). So we should
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not expect the kind of result we are looking for to hold if large temptations to cheat are more
likely. However, more rigorously speaking, we do not need the density Fy to be monotonically
decreasing throughout (0, y).

For comparative statics of the maximizer y(θ), differentiate the first-order condition to-
tally:

Vyy
dy

dθ
+ Vyθ = 0 ,

where the partial derivaties of V are evaluated at the optimum. Using the second-order
condition, then

Sign

(
dy

dθ

)
= Sign(Vyθ) .

Now
Vyθ = −Byθ (c + γ y) − Bθ γ .

And the first-order condition gives

−By (c + γ y) = B γ > 0 .

Dividing the two terms on the right-hand side of the expression for Vyθ by the appropriate
one of these two expressions, we have

Sign(Vyθ) = Sign

[
−Byθ

−By
− Bθ

B

]

= Sign

[
By Bθ − B Byθ

(−By) B

]
.

The denominator is positive, so the sign of the numerator is the same as the sign of dy/dθ.
We want this to be positive.

To interpret this condition, recall that B(y, θ) is the probability that player A gets the
bad outcome when he chooses to deter temptations up to y, and player B is of type θ. As y
increases, B decreases, and the proportional rate of decrease is −By/B (remember that By

is negative). Call this player B’s “marginal sensitivity to deterrence”. Now

∂

∂θ

−By

B
=

B (−Byθ) − (−By) Bθ

B2

=
By Bθ − B Byθ

B2

Therefore our condition amounts to

∂

∂θ

−By

B
> 0 . (26)

This says that the worse types have higher marginal sensitivity to deterrence. This condition
will appear repeatedly, so we will abbreviate

S(y, θ) = −By(y, θ) /B(y, θ) . (27)
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Therefore dy/dθ > 0 if and only if S is an increasing function of θ for any given y. So the
property we want – higher punishment for worse types – is not universally valid, and does
not follow from pure first-order stochastic dominance (Fθ < 0), but needs this additional
condition.

In fact the condition can never be fulfilled globally, as was seen in the text with the
argument accompanying Figure 1.

Finally, by the envelope theorem, the optimized value V ∗ changes with θ according to

dV ∗

dθ
= Vθ = −Bθ(y, θ) (c + γ y)

evaluated at the optimum y(θ). This is negative, so V ∗ decreases as θ increases, and it is
possible that it drops to A’s outside opportunity level a for some θ. Then for any larger θ,
A will not initiate the interaction at all.

C. Stochastic Temptation Case: Two Types of Player B

Next suppose the distribution of θ is concentrated on two points, θ1 and θ2, with θ1 < θ2,
and the prior probability of the worse type θ2 is equal to π. Then we want the punishment
level p or the deterrence level y should be an increasing function of π.

Continuing the same notation as above with obvious slight modifications,

V (y, π) = c − L(y, π) (c + γy) (28)

where L(y, π) is the ex ante probability that A gets the bad payoff when he deters temptations
up to y:

L(y, π) = (1 − π) B(y, θ1) + π B(y, θ2) . (29)

Exactly the same steps as in Section B-2 will then yield

Sign

(
dy

dπ

)
= Sign(Vyπ) = Sign(Ly Lπ − L Lyπ) .

Differentiating the expression (29) for G, we get

Ly Lπ − L Lyπ = [ (1 − π) By(y, θ1) + π By(y, θ2) ] [ B(y, θ2) − B(y, θ1) ]

−[ (1 − π) B(y, θ1) + π B(y, θ2) ] [ By(y, θ2) −By(y, θ1) ] .

Using the definition (27) of the function S, this simplifies to

Ly Lπ − L Lyπ = B(y, θ1) B(y, θ2) [ S(y, θ2) − S(y, θ1) ] .

As was discussed in the transparencies handout, near y = 0, S(y, θ) is a decreasing function
of θ, and therefore the optimal y decreases when π increases, but near y = y, S(y, θ) is
increasing in θ, and therefore the optimal y increases when π increases.

Once again, the optimized value V ∗ decreases as π increases, so if the probability of the
bad type is sufficiently high, A may do better to take his outside opportunity a than to
initiate the stage game with B.
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D. Stochastic Temptation: Several Types of Player B

In this section we focus on local comparative statics of an interior optimum, leaving aside
the multiplicity issues that were discussed in the context of two types.

Suppose that θ can take on any of n values

θ1 < θ2 < . . . < θn .

A’s prior probabilities for these are π1, π2, . . . πn respectively. Here we will do comparative
statics by letting all these probabilities be functions of a parameter ζ, written πi(ζ). An
increase in ζ shifts the distribution of θ to the right, and we want such a shift to increase A’s
optimal choice of y, that is, dy/dζ > 0. The precise condition that is needed in this context
will emerge during the calculation.

Steps similar to those for the two-type case give

V (y, ζ) = c − L(y, ζ) (c + γy) ,

where L is the ex ante probability of A getting a bad payoff, obtained by averaging the B
function over the distribution of θ:

L(y, ζ) = Eθ[B] =
∑

i

B(y, θi) πi(ζ) , (30)

and

Sign

(
dy

dζ

)
= Sign(Vyζ) = Sign(Ly Lζ − L Lyζ) .

Now
Ly(y, ζ) =

∑
i

By(y, θ) πi(ζ) = Eθ[By] = −Eθ[S B]

recalling the definition S = −By/B. Therefore

Ly Lζ − L Lyζ = −Eθ[S B]
∂Eθ[B]

∂ζ
+ Eθ[B]

∂Eθ[S B]

∂ζ
.

This is positive if
∂Eθ[S B] / ∂ζ

Eθ[S B]
>

∂Eθ[B] / ∂ζ

Eθ[B]
.

Note that all this is being done for fixed y. Now B is an increasing function of θ, so a first-
order stochastic dominant shift to the right of the distribution of θ increase the expectation of
B. If S is also an increasing function of θ, then we may expect the expectation of the product
SB to increase proportionately faster than does S. That will fulfill the above inequality;
then the optimal y will increase as the shift parameter ζ increases.

While this is easier to lay out in terms of comparative static derivatives, the analysis is
easier to comprehend, and to use later in the Bayesian updating calculations, when expressed
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in terms of a discrete parameter shift. Let the probabilities change from π1, π2, . . . πn, to
Π1, Π2, . . . Πn. Write Bi = B(y, θi) and Si = S(y, θi). We want∑

i Si Bi Πi∑
i Si Bi πi

>

∑
i Bi Πi∑
i Bi πi

Write this as ∑
i

Si Bi πi∑
j Sj Bj πj

Πi

πi
>
∑

i

Bi πi∑
j Bj πj

Πi

πi
.

Or, defining the weights

ωi =
Si Bi πi∑
j Sj Bj πj

, νi =
Bi πi∑
j Bj πj

.

Now the inequality we seek corresponds to the following inequality between two weighted
averages of the new to old probabilities Πi/πi:

∑
i

ωi
Πi

πi
>
∑

i

νi
Πi

πi
.

If the function S is increasing in θ, the ratio of the weights ωi/νi = Si is increasing in i.
Then we will have the desired inequality if the ratio Πi/πi is itself increasing in i.

A first-order stochastic dominant shift to the right in the distribution of θ is not enough for
this. We need something stronger, namely that the ratio of probability densities is increasing;
this is called a shift to the right in the “likelihood ratio order”. For this, it is necessary and
sufficient that if we look at the distribution of θ restricted to an arbitrarily given interval
of its support, it shifts to the right over that interval; see Shaked and Shanthikumar (1994,
Theorem 1.C.2 on p.29). Thus the requirement that two distributions are comparable in the
likelihood ratio order is quite demanding. However, we will see that a prior distribution of
types, and its Bayesian posterior calculated after A experiences a high or a low payoff, are
fortuitously comparable in this strong sense.

Two further remarks: [1] With just two types, π1 + π2 = Π1 + Π2 = 1, so a first-
order stochastic dominant shift to the right simply means Π1 < π1 and therefore Π2 > π2.
Then Π2/π2 > Π1/π1, so a shift in the likelihood ratio order is equivalent to the first-order
stochastic dominant shift. That is why we did not need this additional condition with just
two types. [2] The stronger condition of a shift to the right in the likelihood ratio order is
only sufficient for the proof, but it is almost necessary in the sense that if it is violated, we
can construct an example with appropriate S and H functions etc. that will contradict the
result we want.

E. Repeated Game with Infinitely Impatient Players

So far we were considering a one-shot game. Even with infinitely impatient players who do
not take into account future payoffs, however, successive plays of the game are linked by
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the evolution of information about types. Therefore next suppose that the game is repeated
over a sequence of periods. Both players are infinitely impatient, that is, in each stage game
they are concerned only with their payoffs in that period. But they have perfect memories,
so A does the correct Bayesian revision of the πi each period in the light of his payoff the
previous period. Continue the set-up of the last section, where B comes in n discrete types θi

arranged in increasing order, and the prior probability of B’s type being i is πi. If A chooses
to deter temptations up to y, and gets the bad payoff 0, his posterior distribution over types
will be given by

Πi(0) =
πi B(y, θi)∑
j πj B(y, θj)

. (31)

Then
Πi(0)

πi

=
B(y, θi)∑

j πj B(y, θj)
.

Because B is increasing in θ, this ratio is increasing in i. Next period A will use the Πi(0)
as the prior probabilities. Compared to the original prior, this satisfies the condition of a
shift to the right in the likelihood ratio order. Therefore, if the other condition (S increasing
in θ) is met, a bad experience will lead A to use a higher punishment. It is very fortuitous
and interesting that the seemingly demanding comparative static condition of a shift to the
right in the likelihood ratio order is automatically satisfied for A’s Bayesian updating upon
getting a bad payoff.

In the opposite case, if in the first period A gets the good payoff c, his posterior proba-
bilities will be

Πi(c) =
πi [1 −B(y, θi)]∑
j πj [1 − B(y, θj)

. (32)

Then
Πi(c)

πi

=
1 −B(y, θi)∑

j πj [1 − B(y, θj)]
.

This ratio is a decreasing function of i. Therefore the Π(c) distribution is a shift of the
π distribution to the left in the likelihood ratio order; therefore, if the other condition (S
increasing in θ) is met, a good experience will lead A to use a smaller punishment.

F. Repeated Game with Finitely Impatient A

Now suppose A has finite patience with discount factor δ, but B remains infinitely impatient.
Let B have n types θi as before, and let A’s prior be denoted by the vector

π = (π1, π2, . . . πn) .

Recall that A’s ex ante probability of getting the bad payoff with this prior and the choice
of deterring temptations up to y is

L(y, π) =
∑

i

πi B(y, θi) ,
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and the one-period payoff is

V (y, π) = c − L(y, π) (c + γy) .

Player A’s Dynamic Programming Problem

A’s recursive dynamic programming problem can be written as

W (π) = max
y

{
V (y, π) + δ {L(y, π) W (Π(0)) + [1 − L(y, π)] W (Π(c)) }

}
, (33)

where Π(0) and Π(c) denote the vectors of the posterior probabilities of types after getting
payoffs zero and c respectively, with the components defined in (31) and (32) respectively.
Note that both Π(0) and Π(c) depend on the vector of prior probabilities π and the choice
of the maximum temptation to deter y.

Now we establish some basic properties of the function W . For this we need some new
notation

Sn = Unit simplex in Rn = { π = (π1, π2 . . . πn) | πi ≥ 0, Σi πi = 1 }
C = Class of continuous functions Sn �→ [−γ y/(1 − δ), c/(1 − δ)]

For a function W ∈ C, define another function SW : [0, y]×Sn �→ [−γ y/(1−δ), c/(1−δ)]
by

SW (y, π) = V (y, π) + δ { L(y, π) W (Π(0)) + [1 − L(y, π)] W (Π(c)) } . (34)

Using the fact that V is continuous and satisfies −γ y ≤ V (y, π) ≤ c for all (y, π), it is easy
to check that SW is indeed continuous and that its values are in the stated range when W
has these properties. Also define another function T W by:

T W (π) = max
0≤y≤y

SW (y, π) . (35)

It is similarly easy to check that T W is in the class C when W is; thus T is an operator
that maps C into itself. It is a contraction mapping and therefore has a unique fixed point
W ∗, which is the Bellman value function of player A’s dynamic optimization problem. The
proofs of these are standard as in Stokey, Lucas and Prescott (1989).

Definition: A function W ∈ C has the property DEC if, whenever the probability
distribution given by π shifts to the right in the sense of the likelihood ratio order (LR),
W (π) (weakly) decreases.

Lemma 1: If W has the property DEC, so does T W .
Proof: Consider two vectors πa, πb ∈ Sn such that the probability distribution given by

πb is a shift to the right of that given by πa in the LR sense. Using the Bayesian updating
formulas, the ratios of the corresponding posterior probabilities are: if A gets zero payoff,

Π(0)b
i

Π(0)a
i

=
πb

i

πa
i

∑
j πa

j Bj∑
j πb

j Bj

,
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and if A gets positive payoff,

Π(c)b
i

Π(c)a
i

=
πb

i

πa
i

∑
j πa

j (1 − Bj)∑
j πb

j (1 −Bj)
,

where we have used the abbreviation Bj = B(y, θj). Since πb
i /π

a
i increases as i increases, so

does each of the posterior probability ratios. Therefore each of the 0 and c posteriors for
the πb distribution is a rightward shift in the LR sense of the corresponding one for the πa

distribution. Using the assumed DEC property of W , we have

W (Π(0)b) ≤ W (Π(0)a), W (Π(c)b) ≤ W (Π(c)a) .

Next, for k = a or b,
Π(0)k

i

Π(c)k
i

=
Bi

1 − Bi

∑
j πk

j (1 − Bj)∑
j πk

j Bj

is increasing in i; therefore Π(0)k is a shift to the right of Π(c)k in the LR sense. Therefore
by the assumption that W has the property DEC, W (Π(0)k) ≤ W (Π(c)k).

Finally, a shift to the right in the LR sense implies a first-order stochastic dominant shift
to the right, and the Hi are increasing in i, therefore

L(y, πb) =
∑

i

πb Bi >
∑

i

πa Bi = L(y, πa) .

Then V (y, πb) < V (y, πa).
Using all this information, for any fixed y, we have

SW (y, πa) = V (y, πa) + δ { L(y, πa) W (Π(0)a) + [1 − L(y, πa)] W (Π(c)a) }
> V (y, πb) + δ { L(y, πa) W (Π(0)b) + [1 − L(y, πa)] W (Π(c)b) }
≥ V (y, πb) + δ { L(y, πb) W (Π(0)b) + [1 − L(y, πb)] W (Π(c)b) } = SW (y, πb)

In going from the first line to the second line, we have used the above inequalities on the
values at πa versus πb for the V and the two W s, leaving the L and (1−L) weights unchanged;
in going from the second line to the third line we have shifted the weights toward the smaller
of the two W -values.

For k = a, b, let
yk = arg max S(y, πk) .

Then evaluating the above inequality at yb, we have

SW (yb, πa) ≥ SW (yb, πb) = T W (πb) ,

and of course
T W (πa) ≥ SW (yb, πa) .

This completes the proof.

Proposition 1: The fixed point W ∗ defined by W = T W has the property DEC.
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Proof: Lemma 1 has shown that the operator T maps the closed subspace of C consisting
of functions that have the property DEC into itself; therefore the unique fixed point of T
belongs to this subspace.

Corollary 1: For any π ∈ Sn and its posteriors Π(0) and Π(c) in the events of A
receiving zero and positive payoffs, we have W ∗(Π(0)) < W ∗(π) < W ∗(Π(c)).

Proof: Π(0) is a shift to the right, and Π(c) a shift to the left, both in the LR sense, of
π. Then the property DEC of W ∗ yields the result.

Lemma 2: If W ∈ C is convex, so is T W .
Proof: Take any two πa, πb ∈ Sn, and define

πm = α πa + (1 − α) πb for α ∈ (0, 1).

Begin by considering the relationships between the corresponding posteriors after a good or
a bad payoff. For k = a, b and m, define

Lk =
∑
j

πk
j Bj .

Then

Lm =
∑
j

πm
j Bj =

∑
j

[α πa
j + (1 − α) πb

j ] Bj

= α
∑
j

πa
j Bj + (1 − α)

∑
j

πb
j Bj

= α La + (1 − α) Lb .

Note that for k = a, b and m,

Π(0)k
i =

πk
i Bi∑

j πk
j Bj

=
πk

i Bi

Lk

Using this notation and relationships, we have

Π(0)m
i =

πm
i Bi

Lm

=
[απa

i + (1 − α)πb
i ] Bi

Lm

=
α La

Lm

πa Bi

La
+

(1 − α)Lb

Lm

πb
i Bi

Lb

= α0 Π(0)a
i + (1 − α0) Π(0)b

i ,

where we have defined

α0 =
αLa

Lm
, and then 1 − α0 =

(1 − α)Lb

Lm
.
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Combining these component-by-component relations into the whole vector of posterior prob-
abilities,

Π(0)m = α0 Π(0)a + (1 − α0) Π(0)b .

Similarly, for the posterior upon getting positive payoff, we have

Π(c)m
i = αc Π(c)a

i + (1 − αc) Π(c)b
i ,

where

αc =
α (1 − La)

(1 − Lm)
, 1 − αc =

(1 − α) (1 − Lb)

(1 − Lm)
.

Then
Π(c)m = αc Π(c)a + (1 − αc) Π(c)b .

Using these results, we have for any fixed y

SW (y, πm) = V (y, πm) + δ { L(y, πm) W (Π(0)m) + [1 − L(y, πm)] W (Π(c)m) }
= c − Lm (c + γ y) + δ { Lm W (Π(0)m) + [1 − L(y,m ] W (Π(c)m) }
= α [c− La (c + γ y)] + (1 − α) [c− Lb (c + γ y)]

+δ { Lm W (Π(0)m) + [1 − L(y, πm)] W (Π(c)m) }
≤ α [c− La (c + γ y)] + (1 − α) [c− Lb (c + γ y)]

+δ { Lm [α0 W (Π(0)a) + (1 − α0)W (Π(0)b)]

+[1 − Lm] [αc W (Π(c)a) + (1 − αc)W (Π(c)b)] }
= α [c− La (c + γ y)] + (1 − α) [c− Lb (c + γ y)]

+δ { α La W (Π(0)a) + (1 − α)Lb W (Π(0)b)

+α (1 − La)W (Π(c)a) + (1 − α) (1 − Lb)W (Π(c)b)] }
= α { [c− La (c + γ y)] + δ [ La W (Π(0)a) + (1 − La)W (Π(c)a) ] }

+(1 − α) { [c − Lb (c + γ y)] + δ [ Lb W (Π(0)b) + (1 − Lb)W (Π(c)b ] }
= α { V (y, πa) + δ [ L(y, πa)W (Π(0)a) + [1 − L(y, πa)] W (Π(c)a) ] }

+(1 − α) { V (y, πb) + δ [ L(y, πb)W (Π(0)b) + [1 − L(y, πb)] W (Π(c)b ] }
= α SW (y, πa) + (1 − α) SW (y, πb)

Here the crucial ≤ step uses the assumption that W is convex. The other steps use the
previous results relating the values of the L function and of the posteriors Π(0) and Π(c),
corresponding to the three values of π being considered.

Evaluate this for ym, the maximizer of SW (y, πm). Then

T W (πm) = SW (ym, πm)

≤ α SW (ym, πa) + (1 − α) SW (ym, πb)

≤ α SW (ya, πa) + (1 − α) SW (yb, πb)

= α T W (πa) + (1 − α) T W (πb)

This completes the proof.
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Proposition 2: The fixed point W ∗ defined by W = T W is convex.
Proof: Lemma 2 has shown that the operator T maps the closed subspace of C consisting

of convex functions into itself; therefore the unique fixed point of T belongs to this subspace.

For any given π, A’s (regular, interior) optimal choice of y is defined by the conditions5

(SW ∗)y(y, π) = 0, (SW ∗)yy(y, π) < 0 .

Question of Monotonicity of Punishments with Two Types

Now we examine whether A’s optimal punishment increases when the distribution of B’s
types shifts for the worse, considering the case of just two types. It turns out that this is not
automatic, therefore we should not expect any less ambiguous results for the general case of
several types.

With just two types, let the scalar π denotes the prior probability of B being the bad
type 2. The corresponding posterior probabilities upon A receiving the bad and the good
payoff are denoted by Π(0) and Π(c) respectively, and using the general formulas (31) and
(32), can be written as

Π(0) =
π B(y, θ2)

L
> π (36)

Π(c) =
π [1 − B(y, θ2)]

1 − L
< π , (37)

where L(y, π) is as defined in (29),

L(y, π) = (1 − π) B(y, θ1) + π B(y, θ2)

and is A’s prior probability of getting the low payoff when his prior probability of B being
the bad type is π and he is deterring temptations up to y.

When the Bellman value function is the appropriate fixed point W ∗, write the function
that is maximized by choice of y as

SW ∗(y, π) = V (y, π) + δ { L(y, π) W ∗(Π(0)) + [1 − L(y, π)] W ∗(Π(c)) } . (38)

Recognize that
L(y, π) W ∗(Π(0)) + [1 − L(y, π)] W ∗(Π(c))

is just A’s expected continuation payoff; write it as EW ∗(y, π). Using this abbreviation, but
expanding out the V function in SW ∗, we have

SW ∗(y, π) = c − L(y, π) (c + γ y) + δ EW ∗(y, π) .

The first-order condition for maximization is

SW ∗
y = −γ L − (c + γ y) Ly + δ EW ∗

y = 0 .

5The parentheses in (SW ∗) indicate that the whole function (SW ∗) is being differentiated. If we had
said SW ∗

y , it might appear as if the operator S is applied to the function W ∗
y .
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As usual, to get dy/dπ > 0 we want SW ∗
yπ > 0 at the optimal point. Now

SW ∗
yπ = −γ Lπ − (c + γ y) Lyπ + δ EW ∗

yπ .

Multiplying the equation for SW ∗
yπ by L, that for SW ∗

y by −Lπ, and adding the two, we get

L SW ∗
yπ − Lπ SW ∗

y = (c + γ y) (Ly Lπ − L Lyπ) + δ (L EW ∗
yπ − Lπ EW ∗

y ) .

So evaluated at the optimal y where SW ∗
y = 0, we have

L SW ∗
yπ = (c + γ y) (Ly Lπ − L Lyπ) + δ (L EW ∗

yπ − Lπ EW ∗
y ) . (39)

We know from previous work that if S(y, θ) = −By(y, θ) /B(y, θ) is increasing in θ
for fixed y, then the first term on the right hand side is positive. So let us examine the
conditions under which the second term on the right hand side is positive. This is only
a sufficient condition, but it is “almost necessary” if we want the result to hold for all δ,
because W implicitly contains a factor 1/(1 − δ) so for δ close to 1 the sign of the second
term is going to determine the sign of the whole expression.

Note that
∂

∂π

EW ∗
y

L
=

L EW ∗
yπ − EW ∗

y Lπ

L2
.

Therefore we want EW ∗
y /L to be an increasing function of π for fixed y.

The following two lemmas establish some useful properties of EW ∗.

Lemma 3: When π = 0 or π = 1, EW ∗
y = 0.

Proof: Differentiating the expression for EW ∗,

EW ∗
y = [W ∗(Π(0)) − W ∗(Π(c))] Ly + L W ∗′(Π(0))

∂Π(0)

∂y
+ (1 − L) W ∗′(Π(c))

∂Π(c)

∂y
.

When π = 0, both posteriors Π(0) = Π(c) = 0, so W (Π(0)) − W (Π(c)) = 0. Also, from the
expressions obtained in Lemma 1,

∂Π(0)

∂y
= 0 =

∂Π(c)

∂y
when π = 0 .

Therefore EW ∗
y = 0 at π = 0. A similar argument applies at π = 1.

We saw earlier that Sθ > 0 when y is close to y and Sθ < 0 when y is close to 0. Therefore
there exist yH and yL such that

Sθ

{
< 0 for 0 < y < yL

> 0 for yH < y < y

When y lies in these ranges, we can say more about dy/dπ.

Lemma 4: When 0 < π < 1, we have

EW ∗
y

{
> 0 if 0 < y < yL

< 0 if yH < y < y
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Proof: When y changes,

∂ Π(0)

∂y
=

1

L2
{ [(1 − π) B(y, θ1) + π B(y, θ2)] π By(y, θ2)

−π B(y, θ2) [(1 − π) By(y, θ1) + π By(y, θ2)] }

=
π(1 − π) [B(y, θ1) By(y, θ2) −By(y, θ1) B(y, θ2)]

L2

=
−π(1 − π) B(y, θ1) B(y, θ2) [S(y, θ2) − S(y, θ1)]

L2
.

Similarly we find

∂ Π(c)

∂y
=

π(1 − π) [1 − B(y, θ1)] [1 − B(y, θ2)] [S(y, θ2) − S(y, θ1)]

(1 − L)2
.

From the definition of yL and yH , we have

S(y, θ2) − S(y, θ1)

{
< 0 for 0 < y < yL

> 0 for yH < y < y

Therefore

When y < yL,
∂ Π(0)

∂y
> 0 and

∂ Π(c)

∂y
< 0 ,

When y > yH,
∂ Π(0)

∂y
< 0 and

∂ Π(c)

∂y
> 0 .

Also note that Π(c) < π < Π(0), and

L(y, π) Π(0) + [1 − L(y, π)] Π(c) = π .

Therefore, when y < yL, an increase in y causes a mean-preserving spread of A’s posterior
probabilities. Since W ∗(π) was proved to be a convex function (in Proposition 2 above), the
expected value EW ∗ increases. Thus, when y < yL, EW ∗

y > 0.
Conversely, when y > yH, an increase in y causes a mean-preserving contraction of the

spread of A’s posterior probabilities. By convexity of W ∗(π), the expected value EW ∗

decreases, that is, EW ∗
y < 0.

The sign of EW ∗
y /L is the same as that of EW ∗

y , therefore Lemmas 3 and 4 immediately
translate into implications for the ratio. Figure 4 shows the shape of EW ∗

y /L regarded as a
function of π for the two cases of high and low y. We know from the calculation just before
Lemma 3 that the dynamic effect of π on the optimal punishment y, namely the second term
in the expression (39), has the same sign as the slope of EW ∗

y /L regarded as a function of
π. Therefore the dynamic aspect contributes a positive term to dy/dπ in two situations,
(1) when π is low and y is also low, and (2) when π is high and y is also high. In the other
two situations, (3) low π, high y, and (4) high π, low y, the dynamic aspect contributes a
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negative term to dy/dπ. Recall that parameters c and m affect y separately from π and
can trace the whole range [0, y], so all four cases are logical possibilities. And note that the
“high” and “low” in the above statements are rough and not expressed in terms of precise
cutoffs; that would not be possible because for example the value of π for which the EW ∗

y /L
curve attains its maximum or minimum depends on the exact value of y. Figure 4 in the
text illustrates this.

The taxonomy may look complicated, but it can be expressed more simply and inter-
preted. The general idea is: if π moves away from its extreme values toward an intermediate
range, so does y. In cases (1) and (3), when π increases starting from near zero, y increases
starting from a low level in case (1) and decreases from a high level in case (3). In cases (2)
and (4), if π decreases starting from near 1, then y decreases starting from a high level in
case (2) and increases starting from a low level in case (4). The idea that moving π toward
an intermediate value also moves y toward an intermediate value can be interpreted in terms
of the information value of punishments.

Recall the formula (36) for the posterior probability of B being the bad type after A
experiences a low payoff:

Π(0) =
π B(y, θ2)

(1 − π) B(y, θ1) + π B(y, θ2)
.

This can be written as

Π(0) =
π

(1 − π) B(y, θ1)/B(y, θ2) + π

This regarded as a function of y for fixed π equals π when y = 0 (where both the B functions
equal µ) and also when y = y (when both the B functions equal λ). For all intermediate y,
we have B(y, θ1)/B(y, θ2) < 1 so Π(0) > π. Then Π(0) will be maximum at an intermediate
y, call it y0. Intuitively, both the extreme punishments – zero (which deters neither type
for any temptation) and y (which deters both types for all temptations) are uninformative.
Information is maximized for an intermediate punishment.

Maximizing Π(0) is equivalent to minimizing B(y, θ1)/B(y, θ2), or equivalently, ln[B(y, θ1)]−
ln[B(y, θ2)] . The first-order condition for that is

By(y, θ1)

B(y, θ1)
− By(y, θ2)

B(y, θ2)
= 0

or
S(y, θ1) = S(y, θ2) .

So coincidentally, the y that is the dividing line between the two cases Sθ > 0 and Sθ < 0 is
just the y0 that maximizes the informativeness of the “bad signal”.

There will similarly be another critical value of y that maximizes the informativeness of
the good signal. Equation (37) can be written as

Π(c) =
π [1 − B(y, θ2)]

(1 − π) [1 − B(y, θ1)] + π [1 −B(y, θ2)]

=
π

(1 − π) [1 − B(y, θ1)]/[1 − B(y, θ2)] + π
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So Π(c) regarded as a function of y equals π at the extremes y = 0 and y, and is smaller
than π in the interior. Its minimum occurs where [1−B(y, θ1)]/[1−B(y, θ2)] is maximized,
and the first-order condition for that is

By(y, θ1)

1 − B(y, θ1)
− By(y, θ2)

1 − B(y, θ2)
= 0 .

The resulting yc say depends on θ1 and θ2 and also on the parameters µ and λ that are in
the function B, but not on π.

If we regard B somewhat like a cumulative distribution function, By/B is like a haz-
ard rate and By/(1 − B) the reverse hazard rate. So the conditions that maximize the
informativeness of the two types of signals are intuitive counterparts of each other.

The value of information also depends on π. When π = 0, both Π(0) and Π(c) are also
zero; when π = 1, both posteriors are also 1. Therefore no new information accrues when the
prior is at an extreme, no matter what punishment is being used. It is only for intermediate
priors that significant information can be obtained by using punishments.

The dynamic effect is essentially that A will be able to start the next period with updated
probabilities, and his current calculation takes into account the discounted continuation
value. Therefore when information is more likely to accrue (intermediate π), the dynamic
consideration argues in favor of using a more informative punishment (intermediate y). We
should again emphasize that the statements are deliberately vague in their use of “high” and
“low”; there is no clear cutoff and there may be some ambiguities in an intermediate range,
for example because of the two different values of y that maximize information upon A’s
receiving high versus low payoffs.

Now we can put the dynamic effect together with the static effect that led to the bifur-
cation property. This contributes a positive term to dy/dπ when y is high and a negative
term when y is low. We can combine these results into a table that shows the signs of the
two terms that determine the sign of dy/dπ:

Probability of the bad type π

Low High

Level of Low (1): Static −, Dynamic + (4): Static −, Dynamic −
punishment

y High (3): Static +, Dynamic − (2): Static +, Dynamic +

Table 4: Static and Dynamic Effects on the Sign of dy/dπ

When the two effects work in the same direction, the overall effect is clear. Where the two
go in opposite directions, the balance depends on δ: the static aspect will be determinative
when δ is low, and the dynamic effect when δ is high (close to 1). Therefore we find that
there are two cases when the overall result is clear: (2) when π is high and y is high, an
increase in π further increases y, and and (4) when π is high and y is low, a further increase
in π further lowers y.
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In the other two cases, the findings of case studies are borne out only if A’s patience is
of the appropriate kind. In case (1), when π is low and y is also low, the dynamic effect
indicates that an increase in π should lead to higher y, and the dynamic effect will outweigh
the static effect which operates in the opposite direction if δ is high. So if the probability
that B is bad is low, A is very patient, and the harm to A from B’s cheating is sufficiently low
and/or the cost to A of actually inflicting punishment is sufficiently high, then a succession
of bad experiences will lead A to raise the level of punishment. In case (3), where π is low
and y is high, only a very impatient A will behave in conformity with the findings of the
case studies.

We emphasize again that the uses of “low” and “high” in reference to values of π and
y are deliberately vague, and that in intermediate ranges of these variables there may be
reversals of direction. We hope that future research will pin down some of these possibilities
more precisely.
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