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Abstract

The paper uses a "warm-glow" model of liquidity bene�ts from bank
deposits to discuss the role of equity funding for liquidity provision. Under
certainty, there is no such role, so funding by equity and funding by de-
posits are simply substitutes. Under uncertainty, equity funding supports
the liquidity of deposits by making a default of the bank and illiquid-
ity of deposits less likely. E¢ ciency mandates this use of equity funding
if producer�s surplus from deposit provision is relatively small. Banks
choose the requisite equity funding voluntarily, if they are able to commit
and communicate their funding choices to investors so that any deviation
from equilibrium funding choices would be properly priced. By contrast,
if investors cannot observe deviations from equilibrium funding choices,
laissez-faire competitive equilibrium allocations involve zero equity fund-
ing. Statutory equity requirements then serve to reduce the distortions
from the banks�inability to fully commit and communicate their funding
choices ex ante.

1 Introduction

Most theories of banking claim that banks should be funded primarily by debt, in
particular short-term debt.1 But the �nancial crisis has shown that high short-
term indebtedness of banks can cause substantial damage.2 This experience has

1The rationale for having banks funded by debt , is discussed by Diamond (1984), Krasa
and Villamil (1991), and Hellwig (1991). Reasons for having banks funded by short-term debt
are discussed by Bryant (1980), Diamond and Dybvig (1983), Calomiris and Kahn (1991),
Dewatripont and Tirole (1994), Diamond and Rajan (1998, 2000). As discussed in Hellwig
(1994, 1998), however, the entire literature is unable to explain why banks do not fund with
claims that are contingent on collective risk. Such claims would improve the allocation of risks
without inducing additional moral hazard.

2For a review of di¤erent estimates, see Admati and Hellwig (2013, p. 233, n. 19). Haldane
(2010) estimates the worldwide output loss from the �nancial crisis to amount to $ 60 trn.
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led to calls for more equity funding of banks. Regulatory reforms since 2008
have moved in this direction albeit so slowly that the policy debate is not yet
over.3

In this debate, many of those academics who had worked on banking before
the crisis have sided with the industry in �ghting restrictions on bank borrowing.
Without engaging on the damage that the crisis had done, they have argued
that tighter limits on banks� borrowing would destroy some of the economic
bene�ts from banks�funding mainly with short-term debt.4

There are basically two lines of argument. The �rst line of argument suggests
that debt is good for funding banks because debt imposes discipline on bank
managers.5 Because debt contracts provide �nanciers with well de�ned legal
claims, funding by debt is said to prevent managers from wasting "free cash
�ow" or from diverting it for their own private bene�ts.6 If the debt is callable
or if it is short-term and needs to be constantly rolled over, bank managers
must also be forever in fear of losing their funding; this is said to keep them
on the straight and narrow.7 The theoretical models that have been developed

3 In the United States, the Brown-Vitter Bill calls for banks with more than $50 billion to
have equity funding amounting to at least 15 percent of total assets. Using the discretionary
power it has, the Federal Reserve has raised equity requirements for large banks to 6 percent
of total assets. Also in Europe, regulators have been using discretionary powers to impose
various add-ons to the requirements codi�ed in the Basel Accord and the European Capital
Requirements Directive and Regulation.

4The claim is sometimes presented as a �ne point in theory and sometimes as a policy
recommendation. Examples of the former are Allen, Carletti and Marquez (2015), Gorton
et al. (2010), Gale and Özgür (2013), DeAngelo and Stulz (2015), examples of the latter
the Squan Lake Report by French et al. (2010) and Rajan (2013). When the argument is
presented as a �ne point in theory, usually, not much of an attempt is made to match the model
to the real world. Matching the model to the real world is of course unnecessary if one is only
interested in proving the existence of theoretical models in which exclusive funding of banks
by short-term debt is e¢ cient. However, the exercise loses its innocence if the models are then
used for policy recommendations, by the authors themselves or by industry lobbyists eager to
take them up, without any intervening reality check. An example is given by DeAngelo and
Stulz (2015) being eagerly taken up by Davis Polk (2013). For extended critical assessments of
the di¤erent models and their limitations, see Admati et al (2010/2013), as well as Admati and
Hellwig (2013 a, b). P�eiderer (2014) discusses the methodological issues involved in going
back and forth between theoretical models and policy recommendations, suggesting that it
is inappropriate to treat models as chameleons, using them for policy recommendations if
nobody is questioning the assumptions and withdrawing to the position that they are "only
models" when someone begins to question the empirical relevance of the assumptions.

5See, in particular, Jensen (1986), Calomiris and Kahn (1991), Dewatripont and Tirole
(1994, 2013), Diamond and Rajan (1998, 2000), French et al. (2010), Rajan (2013).

6This point is central to Jensen (1986), Hart and Moore (1994, 1997), and Rajan and
Zingales (2003). It should be noted, however, that the free-cash-�ow problem is di¤erent in
non�nancial companies and in �nancial institutions. In non�nancial companies, the free-cash-
�ow problem arises when the activities that incumbent management are specialized in earn
large cash �ows but do not o¤er good investment opportunities. In �nancial institutions, the
problem is not one of cash cows versus new activities but one of cash coming from all sources
of funding (including debt) and going into whatever lending or investments seem pro�table,
with much less specialization than in non�nancial �rms.

7See Calomiris and Kahn (1991), Dewatripont - Tirole (1994, 2012), Diamond and Rajan
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to formalize these arguments presume that �nanciers have perfect or close to
perfect information at zero, or close to zero, cost. If information is costly or
imperfect, the relevance of these models for thinking about the real world is
highly questionable.8

The second line of argument focuses on liquidity provision by banks. By
issuing short-term debt, banks are said to satisfy the desire of investors for
liquid assets, i.e. assets that are easy to dispose of at short notice with little
risk of a loss. Bank deposits that can be withdrawn at will are convenient for
investors who do not know when they will actually need the funds.9 Long-
term bonds and shares that are traded in liquid markets may serve the same
purpose but leave investors exposed to market risk. In normal circumstances
market risk is smaller for bonds than for shares because debt is less "information
sensitive"10 . As long as the prospect of default is remote, information about
the debtor does not much matter for debt holders, or for potential buyers of
debt securities, because, unlike the returns to shareholders, their claims do not
depend on how the debtor succeeds in his own ventures.11

(1998, 2000).
8For a critique of the literature on bank debt as a disciplining device, see Admati et al.

(2010/2013), as well as Admati and Hellwig (2013 b). If information is noisy, false positives
can generate runs and cause great harm. If information is costly, there is a free-rider problem
in information acquisition because any one investor�s paying for information and monitoring
the bank has positive externalities for all investors who bene�t if management is better-
behaved. If this free-rider problem prevents or reduces information acquisition, one cannot
expect discipline to be very e¤ective. This is similar to the free-rider problem in the theory
of corporate takeovers; see, e.g., Grossman and Hart (1980). The free-rider externality can be
neutralized by a redistribution externality, which might arise, e.g., because the �rst investor
who receives information that something is going wrong at the bank can withdraw his funds
before others, this withdrawal reduces the payo¤s to others in bankruptcy; see Hellwig (2005).
As argued by Admati et al. (2010/2013) and Admati and Hellwig (2013 b), the �nancial crisis
has shown that, in real life as opposed to the theoretical models, these concerns are highly
relevant: In the run-up to the �nancial crisis, short-term creditors did not exert much discipline
but seem to have provided whatever funding banks wanted quite readily. In fact, creditors
seem to have acted as free riders on the information collected by stock market analysts and
investors and re�ected in share prices. When they did run, in March 2008 on Bear Stearns
and in September 2008 on Lehman Brothers, the runs were accompanied by signi�cant value
destruction.

9The original papers by Bryant (1980) and Diamond and Dybvig (1983) focus on the scope
for having investors who need the money quickly participate in the extra returns from long-
term investments. Hellwig (1994) and von Thadden (1997) argue that liquidity provision may
also be based on banks�diversifying their investments across non�nancial borrowers and acting
as "market makers" for investors who want to get at their funds quickly. Von Thadden (1997,
2002) actually shows that, in a continuous-time model, the Bryant-Diamond-Dybvig version
of liquidity provision is not incentive compatible. In his analysis the issue of coordination
among depositors that is the main focus of Bryant (1980) and Diamond and Dybvig (1983) is
actually moot because withdrawing early always dominates withdrawing late. Hellwig (1994)
shows that insurance against uncertainty about when the investor will need the funds need not
be associated with insurance against interest rate risks (and other macro) risks, i.e. liquidity
provision and maturity transformation are not necessarily linked.
10Dang et al. (2012).
11This observation is central to the costly-state-veri�cation literature; see Townsend (1979),

Diamond (1984), Gale-Hellwig (1985), Hellwig (1991, 1994). Dang et al. (2012) and Gorton
(2010, 2012) stress the implications of information of insensitivity for the tradability of secu-
rities and for the liquidity of markets. It is worth noting that the "information insensitivity"
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In policy debate, the view of banks as "producers" of liquid debt is often
taken to imply that banks must be highly levered. Debt and equity are seen as
substitutes because whatever funding comes in the form of equity, is not coming
in the form of debt. In this line of argument, banks have to be highly levered in
order to provide the economy with the bene�ts that only banks can provide.12

The view that liquidity provision and equity funding of banks are substitutes
neglects the possibility that the liquidity of bank debt itself may depend on how
much equity the bank is using. A bank that is funding with less equity has a
greater probability of going bankrupt. Once the prospect of bankruptcy looms,
the bank�s debt is no longer information insensitive; at that point, any news
about the returns on the bank�s assets is likely to have a signi�cant impact on
the value of the bank�s debt. Markets for the bank�s bonds may then become
less liquid because fears of insider trading in advance of bankruptcy will cause
potential buyers to become more defensive.13

If the liquidity of bank debt is enhanced by additional equity, liquidity pro-
vision and equity funding will to some extent be complements rather than sub-
stitutes. Thus, Admati, Conti-Brown, and P�eiderer (2012) argue that, if banks
raise more equity and invest the proceeds in the market portfolio of stocks, then
the amount of liquid debt they have issued is unchanged, but the quality of this
debt is improved because, with the additional equity, the bank is better able to
absorb losses without becoming distressed let alone insolvent.14

Until now, there has been no comprehensive formal analysis of the relation
between liquidity provision and equity funding of banks. DeAngelo and Stulz
(2013) provide a mixture of verbal arguments and formal analysis, but their
paper is fundamentally �awed.15 Admati, Conti-Brown, and P�eiderer (2012),
as well as Admati et al. (2010/2013) and Admati and Hellwig (2013), give verbal
arguments without formal models. Their arguments presume the existence of
assets outside the banking system that banks can buy with the additional equity.

view of bank debt is at odds with the notion of the discipline literature that debt holders are
constantly on their toes, ready to run if they see bank managers doing things that they should
not do.
12The term "producers of liquid debt" appears in Gorton (2012). The argument that equity

funding of banks comes at the cost of liquidity provision through deposits is developed in
Gorton and Winton (2014). DeAngelo and Stulz (2015) develop a model in which banks�
pro�ts are maximal if they fund only with deposits, i.e. short-term debt.
13Gorton (2010), as well as Hellwig (2009) and Bolton, Santos, Scheinkman (2011) stress

the impact of lemons problems from asymmetric information in the breakdown of markets for
mortgage-backed securities in 2007.
14See also Admati et al. (2011), Admati-Hellwig (2013).
15The paper gives no account of who are the actors, what are their preferences, endowments

and technologies, and what precisely is traded in the di¤erent markets. The formal analysis
is limited to a consideration of bank optimization. There is no analysis of market equilibrium
and no welfare analysis. The paper is also �awed because it assumes that banks, i.e., the
"producers" of deposits, are able to appropriate the consumers�liquidity bene�ts from these
deposits. This assumption is in con�ict with elementary microeconomics. Any intermediate
textbook in microeconomics contains the message that, in the absence of price discrimination,
consumer surplus stays with consumers, and producer pro�ts result from quasi-rents in pro-
duction. The price constellations that DeAngelo and Stulz (2015) assume in their analysis of
bank optimization is in fact incompatible with market equilibrium.
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As a statement about the real world, this presumption is unproblematic. At the
level of theory, however, it is unsatisfactory because the allocation of assets itself
must be treated as endogenous.
The present paper develops an intertemporal general-equilibrium model to

provide a comprehensive analysis of the issues. Like DeAngelo and Stulz (2013),
I assume that banks can obtain funding by issuing shares, bonds, and deposits.
Investors value shares and bonds for their returns. They value deposits for
their returns and, in addition, for the liquidity bene�ts they provide. I do not
model these bene�ts explicitly but simply assume that people feel better if they
hold "liquid" deposits. With due apologies to the public economics literature on
voluntary giving, I refer to this as a "warm glow" model of liquidity bene�ts from
deposits.16 However, the "warm glow" utility from deposits is only obtained if
the bank does not default on its debt. If a bank goes into default, deposits with
this bank do not provide any liquidity bene�ts.
I also assume that deposit provision may involve a real cost. At small deposit

levels, the marginal cost of additional deposits is assumed to be smaller than
the (present value of) marginal liquidity from these deposits; however, beyond
some critical level, the marginal costs of additional deposits exceed the marginal
bene�ts and it would be ine¢ cient to expand deposit provision beyond this
critical level.
I will study two versions of the model. In the �rst version, there is no

uncertainty and therefore no risk of a bank�s defaulting on its debt. The market
system is complete, and competitive equilibrium allocations are e¢ cient. In
this world, two types of allocations can arise. First, if consumers do not want
to save very much, equilibrium is such that all bank funding takes the form of
deposits, i.e., banks issue no shares or bonds. Second, if consumers want to
save a lot, so that the equilibrium levels of their savings exceeds the critical
deposit level beyond which the marginal costs of additional deposits exceed
the marginal bene�ts, then equilibrium is such that banks obtain funding from
shares or bonds as well as deposits. In this case, deposits are provided at
the e¢ cient level, where the (present value of) marginal liquidity bene�ts of
additional deposits are equal to the marginal provisions costs; the excess of
savings over the e¢ cient deposit level is invested in shares or bonds, with a
Modigliani-Miller indeterminacy property concerning the split between the two.
The second version of the model allow for uncertainty about the returns

that banks earn on their investments. This uncertainty gives rise to a prospect
of default. Default happens whenever the returns that a bank earns on its
investments lie below the obligations of the bank to its depositors and its bond
holders. For a bank in default, the liquidity bene�ts from deposits are zero.
Again, the market system is assumed to be (sequentially) complete. Finan-

16See in particular Andreoni (1988). The common denominator is the notion that people
draw certain bene�ts from certain actions, that these bene�ts in�uence their behaviors, but
the details of how the bene�ts are generated are not the focus of the analysis, which instead
focuses on the implications of warm glow e¤ects on people�s behaviors and on the economy.
The warm-glow speci�cation of liquidity bene�ts from deposits is also used in van den Heuvel
(2008).
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cial securities are treated as bundles of state-contingent claims. Equilibrium
pricing of debt will therefore depend on how the bank�s funding mix a¤ects the
probability of default and therefore the debtholders� state-contingent returns.
Equilibrium pricing of deposits will also depend on how the funding mix af-
fects the probability that liquidity bene�ts might be zero because the bank is
in default.
For the analysis of banks�funding policies, it makes a big di¤erence whether

banks are assumed to behave as price takers or whether banks are assumed to
take account of the impact of their funding choices on market pricing. This is not
a question of competitive versus oligopolistic behaviour, but a question about
the ability of banks to commit to their funding policies and to communicate
these policies to investors. If banks are able to commit to their funding choices
ex ante and if they can credibly communicate these choices to investors, then
a bank that is thinking about alternative choices will appreciate the e¤ects of
its choices on market pricing. If banks are unable to commit to their funding
choices ex ante and to communicate these choices to investors, they will not
consider the e¤ects of their choices on market pricing. The interest rates they
must pay in equilibrium will re�ect the default risks that are implied by their
choices, but the banks will take these interest rates as given because they have
no way to credibly communicate a change in their funding mix to investors.17

I will study both cases. For the case where banks can fully commit to their
funding policies and that these policies are observed by investors, I will show that
competitive equilibrium allocations are constrained e¢ cient.18 I will also show
that, unless producer�s surplus from deposit provision is large, these allocations
necessarily involve some equity funding of banks. In particular, equilibrium al-
locations must involve some equity funding of banks if deposit provision involves
constant returns to scale so that the equilibrium level of producer�s surplus is
zero.19 Producer�s surplus is also relatively small if equilibrium deposit levels
themselves are very small or very large so that marginal and average costs of
deposit provision are approximately the same.
These results re�ect the fact that equity funding reduces the default prob-

ability of a bank and may therefore raise the expected liquidity bene�ts from
deposits. With constant returns to scale, it turns out that, without equity, the
conditions for equilibrium levels of deposit funding would imply a default prob-
ability equal to one. Expected liquidity bene�ts from deposits would then be
zero. From the bank�s perspective, this outcome is equivalent to what it would
get with pure equity funding and, like pure equity funding, is dominated by

17The fundamental di¤erence between these two speci�cations is not always appreciated.
Thus, Allen et al. (2015) have an implicit assumption of e¤ective prior commitment and
communication. In contrast, Brunnermeier and Oehmke (2012) are concerned with the impli-
cations of not having such commitments.
18The word "constrained" refers to the fact that changes in the implicit intertemporal

prices have an e¤ect on the interest rates that banks must pay and therefore on their default
probabilities. In the e¢ ciency claim, such changes are excluded. A speci�c tax on �rst-
period consumption, with revenue e¤ect neutralized by a lump-sum subsidy, would change
the implicit intertemporal prices and might therefore induce a Pareto-superior allocation.
19This includes the case where deposit provision involves no cost at all.

6



a mix of equity and deposit funding in which the equity provides a bu¤er to
protect the liquidity bene�ts from deposits.
If banks are not able to precommit their funding choices and to communicate

these choices credibly to investors, constrained e¢ ciency is not to be expected.
For this case, I �nd that, except for the case where savings are large and return
uncertainty is small, equilibrium allocations involve zero equity funding. From
the banks� perspective, new share issues are dominated by new bond issues,
which in turn may or may not be dominated by deposits. The preference for
debt over equity re�ects a standard debt overhang e¤ect.20

In the absence of commitment and communication of funding choices, banks�
decisions about additional equity �nance or debt �nance neglect the external
e¤ect of their decisions on the incumbent depositors�expected liquidity bene-
�ts. Instead, they take account of the fact that lowering the default probability
raises expected payments to debtholders. With commitment and communica-
tion of funding choices, these external e¤ects are taken into account through the
e¤ects of funding choices on the interest rates that banks must pay. Without
commitment and communication, however, banks take interest rates as given
because investors who cannot observe their funding choices cannot adapt their
behaviours to the changes in default risks that come from banks�adding to the
debts they take on. To be sure, the interest rates that banks must pay will
re�ect investors�anticipations of the banks�default probabilities and, in equi-
librium, these anticipations will correspond to the actual default probabilities.
However, the inability to commit and communicate their choices prevents banks
from taking this relation into account. As a result, they end up with too little
equity funding and too much borrowing.21

In the constant-returns-to-scale case, it follows that any form of capital
regulation will raise welfare. More generally, if producer�s surplus from deposit
provision is small relative to the banks�investment levels, equilibrium allocations
in the model without commitment and communication of banks�funding choices
involve ine¢ ciently low levels of equity funding and can be improved upon by
regulation imposing minimum equity requirements.
Somewhat ironically, such regulation will also raise banks�pro�ts and share-

holder value. A major e¤ect of the regulation is due to changes in competitive
conduct. Equity requirements for banks may reduce the intensity of competi-
tion and allow banks to earn higher margins. The phrase "Why high leverage is
optimal for banks" in the title of DeAngelo and Stulz (2015) is thereby turned
on its head. Equity requirements that reduce leverage may be better for banks
because they allow them to earn margins they would not otherwise earn.
Most of the literature on equity requirements for banks has focused on the

e¤ects of changes in a bank�s funding mix on the split of the bank�s asset returns
between creditors and shareholders and on the implications of such changes for

20See Admati et al. (2012/2014).
21This is similar to the debt overhang or leverage ratchet e¤ect discussed in Admati et al.

(2012/2013).
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incentives and bankruptcy prospects. By contrast, the analysis here shows that
some e¤ects may be due to changes in the market environment. When consider-
ing a regulation that a¤ects all members of the industry, the presumption that
market conditions are unchanged is inappropriate. The analysis of regulation
must shift its focus from the individual bank to the overall functioning of the
system.
In the following, Section 2 introduces the basic model and analyses the case

of certainty. Section 3 introduces the case of uncertainty, with basics discussed
in Section 3.1, the commitment case in Section 3.2, and the no-commitment
case in Section 3.3. All proofs are given in the Appendix.

2 A Warm-Glow Model of Liquidity Provision:
The Case of Certainty

I consider an economy with two periods and one good in each period. There
are also two types of agents, banks and consumers. To abstract from issues
of market power, I assume that the set of consumers and the set of banks are
both represented by the unit interval with Lebesgue measure. For simplicity, I
will also assume that all consumers have the same characteristics and so do all
banks.

Banks

In the simplest version of the model, a typical bank has a single investment
opportunity, "loans", which allow the bank to transform L units of the good
in period 0 into 'L units of the good in period 1. Non�nancial �rms, i.e., the
banks�borrowers, are not modelled. As in most of the literature on liquidity
provision by banks, e.g. Diamond-Dybvig (1983) or Calomiris-Kahn (1991), the
banks� investments in loans are treated as if they were physical investments.
For now I assume that there is no uncertainty, i.e. ' is given and commonly
known. Subsequently, in Section 3, I will assume that ' is the realization of a
random variable ~' and only becomes known in period 1.
The bank has no initial endowment. To fund its investments, it can issue

bonds or deposits. If the bank issues Bs bonds and Ds deposits, it receives Bs+
Ds units of the good in period 0 and must pay its creditors rBBs+ rDDs units
of the good in period 1, rBBs to bond holders and rDDs to depositors. Deposits
involve a cost K(Ds), where K(�) is a continuously di¤erentiable, nondecreasing
convex function satisfying K(0) = 0 and 0 � K 0(D) < 1 � � for some � > 0
and all D > 0:
The bank can also obtain funding by selling shares. For this purpose, it

chooses a fraction �s of the �rm�s equity that it wants to sell and a purchase
price E so that, if the o¤ering succeeds, the proceeds are equal to �sE: For the
o¤ering to succeed, the purchase price E must not exceed what the market is
willing to pay, which depends on the pro�t � that the bank is expected to make
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and on the discount factor � that the market applies to this pro�t. Thus E
must satisfy the inequality

E � ��: (2.1)

Given these data, a plan for the bank is a vector (�s; E;Bs; Ds; L; �) specify-
ing a funding policy (�s; E;Bs; Ds); an investment policy L; and a pro�t target
�: The plan (�s; E;Bs; Ds; L; �) is feasible if it is nonnegative and satis�es the
inequality (2.1) as well as the budget constraint

L � �sE +Bs +Ds �K(Ds) (2.2)

in period 0 and the equation

� = 'L� rBBs � rDDs (2.3)

for the bank�s pro�t in period 1.

Consumers

A typical consumer has initial endowments e0 > 0 and e1 = 0 of the good
in periods 0 and 1 and a share �0 = 1 in each bank. His preferences are given
by a utility function of the form

u(c0) + v(c1 + �(D
d)); (2.4)

where c0 and c1 are the levels of his consumption in periods 0 and 1; and
�(Dd) represents the liquidity bene�ts that he gets from holding deposits Dd =R 1
0
Dd(b)db: Liquidity bene�ts here are modeled as bene�ts that the consumer

obtains from the "warm glow" of feeling better by having "liquid" deposits as
opposed to shares or bonds.22 The function �(�) is assumed to be continuously
di¤erentiable, increasing and concave, with �(0) = 0 and �0(0) < 1: The func-
tions u(�) and v(�) are also assumed to be continuously di¤erentiable, strictly
increasing, and strictly concave, with u(0) = v(0) = 0: Moreover,

u0(0) = 1; and v0(0) =1; (2.5)

u0(1) = 0; and v0(1) = 0: (2.6)

Condition (2.5) ensures that the model is nontrivial in the sense that any equi-
librium must involve some transfer of resources from period 0 to period 1 and
therefore some real investment and some funding of banks.
To provide for his consumption in period 1, the consumer can rely on the

distribution of pro�ts from the bank in which he initially has shares. He can

22 I use the term "warm glow" with due apologies to the public economics literature, which
has used the same term for the good feelings people may have if they contribute to public
goods or to altruistic ventures, see, e.g. Andreoni (1988). The common denominator is the
notion that people draw certain bene�ts from certain actions, that these bene�ts in�uence
their behaviors, but the details of how the bene�ts are generated are not the focus of the
analysis, which instead considers a reduced form expression for the bene�t.
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also acquire additional shares, deposits or bonds. As he is doing so, he must
respect the period 0 budget constraint

e0 = c0 +

Z 1

0

�d(b)E(b)db+

Z 1

0

Bd(b)db+

Z 1

0

Dd(b)db; (2.7)

where, for each b; �d(b); Bd(b) and Dd(b) represent the additional shares, the
bonds and the deposits of bank b that the consumer acquires, the cost of these
acquisitions is �d(b)E(b) +Bd(b) +Dd(b): Consumption in period 1 is given by
the consumer�s returns on bank shares, bonds and deposits, as shown in the
equation

c1 =

Z 1

0

(1� �s(b) + �d(b))�(b)db+ rB
Z 1

0

Bd(b)db+ rD

Z 1

0

Dd(b)db; (2.8)

in the �rst term on the right-hand side of this equation, the factor (1��s(b) +
�d(b)) indicates the consumer�s share in the pro�ts of bank b; taking account of
the consumer�s new share acquisition �d(b) as well as the dilution of his initial
holding through the bank�s new share issue �s(b).
A plan for the consumer is a vector (c0; c1; �d(�); Bd(�); Dd(�)) that speci�es

his consumption levels in the two periods as well as the investments in the
securities issued by the di¤erent banks that he uses to transfer wealth from
period 0 to period 1. Given the price system (�; rB ; rD) and the banks�plans
(�s(b); Bs(b); Ds(b); L(b)); b 2 [0; 1]; a plan (c0; c1; �d(�); Bd(�); Dd(�)) for the
consumer is admissible if it satis�es the budget constraints (2.7) and (2.8), as
well as nonnegativity of c0; c1; and 1� �s(b) + �d(b); Bd(b); Dd(b) for all b:

Equilibrium

In this model, an equilibrium is given by a price system (�; rB ; rD), a mea-
surable mapping b! (�s(b); E(b); Bs(b); Ds(b); L(b); �(b)) indicating a plan for
each bank and a measurable mapping a! (c0(a); c1(a); �

d(�; a); Bd(�; a); Dd(�; a));
indicating a plan for each consumer a 2 [0; 1]; such that

(e.1) given the price system (�; rB ; rD), for (almost) every bank b; the plan
(�s(b); Bs(b); Ds(b); L(b)) maximizes the post-dilution value (1� �s)E of
the bank�s initial shareholders� equity subject to the constraints (2.2),
(2.1), (2.3) and nonnegativity;

(e.2) given the price system (�; rB ; rD) and the banks�plans, for (almost) every
consumer a; the plan (c0(a); c1(a); �d(�; a); Bd(�; a); Dd(�; a)) maximizes
the consumer�s utility (2.4), with Dd =

R 1
0
Dd(b)db; over the set of his

admissible plans;

(e.3) the banks�and consumers�plans satisfy the market clearing conditionsZ 1

0

L(b)db = e0 �
Z 1

0

c0(a)da (2.9)
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for the goods market in period 0 and

�s(b) =

Z 1

0

�d(a; b)da; Bs(b) =

Z 1

0

Bd(a; b)da, Ds(b) =

Z 1

0

Dd(a; b)da;

(2.10)
for the markets for securities issued by (almost) every bank b 2 [0; 1] in
period 0:

The equilibrium concept presumes that both, banks and consumers, are price
takers with respect to �; rB ; and rD; this is the standard Walrasian approach
to modelling lack of market power.23 Banks can a¤ect the market value of their
equity but only as changes in their plans a¤ect the pro�ts they can earn at the
prevailing price system. Consumers take prices, the banks�actions, and their
pro�ts, as given.

I will focus on symmetric equilibria. in which the plans of the di¤erent banks
are all the same and the plans of the di¤erent consumers are also all the same.
The market-clearing conditions (2.10) imply that, in a symmetric equilibrium,
any one consumer�s holdings of securities issued by the di¤erent banks must also
be the same, i.e., there exists a vector (�;B;D;L; c0; c1)) such that

� = �s(b) = �d(a; b); B = Bs(b) = Bd(a; b); D = Ds(b) = Dd(a; b) (2.11)

and
L = L(b); c0 = c0(a); c1 = c1(a) (2.12)

for (almost) all a and b: In this case, obviously one can also write E(b) = E and
�(b) = � for all b:

Analysis

In characterizing symmetric equilibria, it is useful to consider the net mar-
ginal social bene�t of having funding go through deposits rather than shares or
bonds. This is given by the di¤erence

m(D;') := �0(D)� 'K 0(D) (2.13)

between the marginal liquidity bene�t �0(D) from additional deposits and the
di¤erence 'K 0(D) between the marginal return ' that is obtained if additional
funding goes through shares or bonds and the marginal return '(1 � K 0(D))
that is obtained if the additional funding goes through deposits.

23An alternative to the Walrasian approach would be a Bertrand approach, with price-
setting banks. For the simple model considered here, equilibrium outcomes would be the
same as in the Walrasian approach. However, in the Bertrand approach, the treatment of the
bank�s assets as if they were physical assets involves a signi�cant loss of generality. As shown
by Yanelle (1997), the Bertrand approach to modeling perfect competition runs into di¢ culties
in dealing with �nancial intermediaries competing on both the assets and the liabilities sides
of their balance sheets.
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To make the analysis interesting, I assume that

m(D;') > 0 (2.14)

if D > 0 is very small. This assumption ensures that any equilibrium will
involve at least some funding through deposits.
Indeed, the assumption that m(D;') > 0 if D is small implies that it is

e¢ cient to have all savings go into deposits if the initial endowment e0 is small.
If e0 is small, the value e0 � c0 � e0 of consumers�savings must also be small
and so must be the value D � e0 � c0 of consumers�deposits. In this case,
e¢ ciency considerations would seem to suggest that, in equilibrium, all savings
should in fact go into deposits, rather than shares or bonds.
If, instead, the period 0 endowment is very large, the value e0 � c0 of con-

sumers�savings will also be very large. If m(D;') > 0 for all D; the argument
for having all savings in deposits rather than shares or bonds remains valid.
However, if m(D;') < 0 for large D; e¢ ciency considerations would seem to
suggest that the equilibrium value of deposits must be bounded by some critical
level D� and that any excess of savings over the critical level D� will go into
shares or bonds.
The following proposition con�rms this intuition and shows that there are

two distinct classes of equilibria, one where all savings go into deposits and one
where some savings go into shares or bonds. In the latter case, deposits are
equal to some critical level D�('); where

m(D�('); ') = 0; (2.15)

and the investment in shares and bonds is equal to the excess of savings over
D�('). For simplicity, I assume that equation (2.15) has at most one solution
D�('). In an abuse of language, I will say that D�(') = 1 if equation (2.15)
has no solution, i.e. if m(D;') > 0 for all D: For lack of a better term, I will
refer to D�(') as the satiation level of deposits.24

Proposition 2.1 A symmetric equilibrium exists and involves a Pareto-e¢ cient
allocation. Any symmetric equilibrium allocation is unique up to changes in
�s = �d and Bs = Bd that leave the amount of non-deposit funding unchanged.
Moreover, there exists ê0 2 (0;1] such that the following hold:
a: If e0 � ê0; the equilibrium deposit level is the unique solution to the

equation

u0(e0 �D) = ['+ n(D;')] v0('D � 'K(D) + �(D)) : (2.16)

Moreover,
L = D �K(D) (2.17)

24 If �0(D) > 0 for D > D�('); consumers are not really satiated, but if the opportunity cost
of funding by deposits rather than bonds are taken into account, then with �0(D) < 'K0(D)
consumers do not want to raise deposits above D�('):
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and
�sE = �dE = Bs = Bd = 0: (2.18)

b: If e0 > ê0; the equilibrium levels of deposits and loans satisfy

D = D�(') (2.19)

and
u0(e0 � L�K(D�('))) = ' v0('L+ �(D�('))): (2.20)

Moreover,

�sE +Bs = �dE +Bd = L�D�(') +K(D�(')) > 0: (2.21)

c: In both cases, if e0 � ê0 and if e0 > ê0; the equilibrium price system
satis�es

� =
1

'+m(D;')
; (2.22)

rB 2 [';'+m(D;')]; (2.23)

and
rD = (1�K 0(D)) ': (2.24)

d: In both cases, if e0 � ê0 and if e0 > ê0; the equilibrium value of pro�ts
satis�es

� =
1

1� �'[DK
0(D)�K(D)]: (2.25)

The proof of Proposition 2.1, which is given in the appendix, starts from
the observation that the conditions of the �rst welfare theorem are satis�ed,
so any equilibrium allocation must be Pareto e¢ cient. Given the additional
requirement that the allocation be symmetric, an equilibrium allocation must
therefore maximize the utility (2.4) of a representative consumer over the set of
nonnegative allocations satisfying the constraints

c0 = e0 � �E �B �D; (2.26)

and
c1 = 'L; (2.27)

L+K(D) � �E +B +D: (2.28)

Condition (2.26) follows from (2.7), condition (2.27) from (2.8), (2.10), and (2.3),
and condition (2.28) from (2.2) and (2.10), all in combination with symmetry.
In this maximization, the constraint (2.28) must obviously be binding.25 If one
uses the resulting equation to rewrite (2.26) and to substitute for c0; one sees
that the welfare maximization problem involves maximizing

u(e0 � L�K(D)) + v('L+ �(D)) (2.29)

25Otherwise, L and c1 could be increased to raise utility in period 1 without any cost.
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subject to
L = �E +B +D �K(D) (2.30)

and nonnegativity. The �rst-order conditions for this maximization yield con-
ditions (2.16) - (2.18) and (2.19) - (2.21) in Proposition 2.1. Given these condi-
tions characterizing the e¢ cient allocation, conditions (2.22) - (2.24) specify the
price systems that support the e¢ cient allocation; these conditions are derived
from the �rst-order conditions for the banks�and the consumers�maximization
problems.
The distinction between the case e0 � ê0 and the case e0 > 0 arises naturally

from the observation that, for the given speci�cation of consumer preferences,
savings are given by an increasing function of e0, close to zero if e0 is close to
zero and very large if e0 is very large. For small levels of the initial endowment,
therefore, deposits will lie below the satiation level D�(') even if all savings are
invested in deposits. At these small levels of initial endowments, investing all
savings in deposits is e¢ cient because, with m(D;') > 0; this maximizes the
net social bene�ts from deposits. Above ê0 however, deposits are kept at D�(')
and additional savings are put into shares or bonds because putting them into
deposits would diminish the net social bene�ts from deposits.

Discussion

Proposition 2.1 illustrates the importance of considering liquidity provision
by banks in a general equilibrium setting. The proposition provides a framework
for organizing the discussion and for correcting some misperceptions that have
been introduced by a failure to recognize that the issues must be discussed in
terms of general equilibrium rather than bank optimization. Thus, Proposition
2.1 shows that, in some circumstances, namely if e0 � ê0 in equilibrium, all
bank funding takes the form of deposits. Contrary to the suggestions of Admati,
Conti-Brown, and P�eiderer (2012), Admati et al. (2010/2013), or of Admati
and Hellwig (2013 a,b), in these circumstances, there is no way to increase equity
funding of banks without reducing their deposit funding.
Moreover, because the equilibrium allocation is e¢ cient, any regulation that

changes the equilibrium allocation would lower welfare. In particular, in the
case e0 � ê0, where all bank funding takes the form of deposits, any regulation
that imposes minimum equity requirements on banks would lower welfare. Such
regulation would lower the net social bene�ts from having bank funding come
through deposits rather than equity or bonds.
For the case e0 � ê0 Proposition 2.1 con�rms the view of DeAngelo and

Stulz (2015) that, because of liquidity bene�ts, all bank funding should come
from deposits. However, this result is obtained from equilibrium considerations
rather than the analysis of bank optimization.
The analysis of bank optimization in DeAngelo and Stulz (2015) is actually

irrelevant because it assumes a value of the deposit rate that is incompatible
with the conditions for a competitive equilibrium. DeAngelo and Stulz focus
on the "liquidity premium" in deposits rates, i.e. the di¤erence between the
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interest rate on bonds and the interest rate on deposits, without appreciating
that this "liquidity premium" is irrelevant for banks�pro�ts if bonds (or shares)
are not used for funding anyway.
The pro�tability of banks�funding by deposits depends on the margin be-

tween the rate of return ' on loans and the deposit rate rD. DeAngelo and
Stulz treat this margin as exogenously given. As indicated by equation (2.24),
however, the equilibrium value of the margin '�rD is equal to K 0(D))', which
depends on the equilibrium value of D: If e0 < ê0; the equilibrium value of this
margin is actually strictly less than the "liquidity premium" �0(D) on which De
Angelo and Stulz focus their attention.
Equilibrium pro�ts of banks are given by a measure of producer�s surplus

involving the di¤erence DK 0(D)�K(D) between the value DK 0(D) of deposits
at the "producer�s price" K 0(D); and the cost K(D): There is no direct e¤ect of
the "liquidity premium" �0(D) on bank pro�ts. There can only be an indirect
e¤ect as the functions �0(�) and K 0(�) jointly a¤ect the equilibrium deposit level
D and thereby the equilibrium level of the producers�surplus DK 0(D)�K(D):
However, if e0 < ê0; i.e., if 'K 0(D) < �0(D); any measure of banks�pro�ts that
involves the variable �0(D); i.e., the "liquidity premium" in the deposit rate, is
inappropriate. If the cost function K is linear, producer�s surplus is actually
zero. In this case, banks earn zero pro�ts even though consumers �nd bank
deposits attractive and are willing to accept a lower rate of return on deposits
than on shares or bonds.26

The case e0 > ê0 is very di¤erent. In this case, in equilibrium, some bank
funding must come from shares or bonds, and this is e¢ cient. Moreover, by a
version of the Modigliani-Miller theorem, it does not make a di¤erence whether
the nondeposit funding comes from shares or from bonds. As long as deposits are
not reduced below the critical D�('); statutory minimum equity requirements
for banks would be costless but also useless.
In DeAngelo and Stulz (2015), the case e0 > ê0 does not appear because

they have no cost of deposit provision. With K(D) � 0; the marginal social
cost of funding by deposits rather than shares or bonds would be zero, and the
net marginal social bene�t would be equal to �0(D); the critical D�(') is the
lowest deposit level at which �0(D) = 0 or, if no such level exists, D�(') = 1:
In the real world of course, banks do need resources for payments services and
ATMs, which are directly related to the liquidity bene�ts that banks provide
to depositors. Moreover, major banks in the real world use a lot of nondeposit
funding. To the extent that one wants to take this kind of theoretical analysis
seriously at all, therefore, the case e0 > ê0 seems more relevant than the case
e0 � ê0:

26All this should be standard for someone who has taken a course in intermediate micro-
economics. In competitive markets, a supplier�s pro�ts are derived from his inframarginal
rents, which depend on the behaviour of his cost function. Consumer preferences a¤ect pro-
ducer�s surplus only indirectly, by in�uencing the equilibrium price and quantity and thereby,
possibly, the inframarginal rents.
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DeAngelo and Stulz (2015) do allow for a cost of overall bank activity. In
the present framework with only one asset, this would correspond to a cost k(L)
of lending. If such a cost is introduced into the present model, the equilibrium
conditions would by and large be the same, except that the net marginal return
to lending would be '

1�k0(L) ; rather than ': Equilibrium pro�ts of banks would
then involve the di¤erence Lk0(L)� k(L); instead of DK 0(D)�K(D):
The model is easily extended to allow for multiple assets that banks (or

consumers) might invest in. In the absence of uncertainty, however, not much is
to be learnt from such an extension. If other assets have a rate of return  ; the
bank�s choice between loans and other assets depends on whether  is greater
or less than ': In either case, they will specialize in the investment with the
higher rate of return, and we are e¤ectively back in a one-asset setting, with a
critical deposit level equal to D�(max('; )):
The situation is slightly di¤erent if investments in the asset with the higher

rate of return are limited, say, if ' >  and there is a constraint L � �L on
bank lending. In this case, equilibrium allocations will depend on how the
deposit level that is required to fund bank lending at the level �L compares to
the critical levels D�(') and D�( ): For example, if D�( ) > �L (and, a fortiori,
D�(') > �L), there exists an intermediate range of values of e0, such that, for
initial endowments in this range, in equilibrium, all savings go into deposits, the
constraint on bank lending is binding, the di¤erence D�( ) � �L goes into the
alternative investments, and the relevant marginal rate of return on investments
is  rather than ': The equilibrium deposit rate is then given by

rD = (1�K 0(D)) ; (2.31)

rather than (2.24). Equilibrium pro�ts will comprise a term (' �  )�L which
represents the inframarginal pro�ts that banks earn because loans provide a
rate of return '; more than the rate  , which according to (2.31) is key for
determining the deposit rate:
However, this latter �nding is an artefact of the assumption that the loan

rate ' is exogenous. The notion that banks can earn an inframarginal rent
('� )�L on loans is not robust to changes in the model that would endogenize
'. If loans are more attractive than other investments, competition between
banks is likely to drive down loan rates, removing the inframarginal rents.
Similar results are to be expected if all funds from deposits are required to

go into one particular class of assets, for example loans and there is a constraint
L � �L on bank lending. In this case, if ' is exogenous and D�(')�K(D�(')) >
�L; competition will drive the deposit rate to the level (1�K 0(D))'; as in Propo-
sition 2.1, and the marginal rate of return  on alternative investments is irrele-
vant for the deposit rate. If e0 is high enough so that savings exceed the amount
needed to fund �L; the excess savings will be invested in shares and bonds, rather
than deposits, not because the critical level D�(') has been reached, but be-
cause additional deposit creation is ruled out by a lack of lending opportunities.
If the lending rate ' is endogenized, the equilibrium rates of return ' and rD on
loans and deposits will depend on the behaviours of borrowers and depositors
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jointly.27

3 Liquidity Provision and Equity Funding Un-
der Uncertainty

3.1 Basics

Absence of uncertainty is a bad assumption for an analysis of liquidity provision.
In the real world, people care about liquidity of their holdings precisely because
they do not know in advance when they will want to dispose of their assets and
they care about the ease of doing so when they want to.28 In the remainder
of the paper, I therefore extend the analysis to allow for uncertainty about the
returns that banks earn on their investments.
I still abstract from the details of how people bene�t from liquidity. However,

the uncertainty about the returns that banks will earn on their investments
implies that heavily indebted banks may end up being unable to ful�ll their
obligations to their creditors. If a bank defaults on its obligations, its deposits
are assumed to yield no liquidity bene�ts.29

Return Uncertainty

The model is the same as before except that now the rate of return on loans,
'; is the realization of a random variable ~': This random variable is de�ned on
some underlying probability space and takes value in some interval ['1; '2]. Its
realization is revealed at t = 1: Before t = 1; agents know only the probability
distribution F of the random variable ~': This distribution is assumed to have
a density f , which is continuous and strictly positive on the interval ['1; '2]:
The uncertainty about ~' a¤ects all banks alike. Shocks to the rate of return

on loans are macroeconomic shocks, the result of risks to the overall economy,
rather than individual risks that might be handled by appropriate subdivision
between banks or consumers and by appropriate diversi�cation across loans or

27DeAngelo and Stulz (2015, p. ???) write that, in their model with uncertainty, deposit
funding of banks is limited by the requirement that investments backing the deposits must be
riskless, so deposits cannot exceed the resources available in the least favorable state. This
constraint, however, appears nowhere in their mathematics. If it did, they would have realized
that, in equilibrium there must be a link between the deposit rate and the rate of return on
those assets that can be used to back the deposits. They would also have realized that the
scarcity of assets that can be used to back deposits imposes a bound on deposit funding
of banks and therefore may give rise to an equilibrium of the type that is characterized in
statement (b) of Proposition 2.1 even if D� =1:
28According to Hicks�s (1935) de�nition, which is still relevant today, an asset is the more

liquid, the more certain an investor can be to realize it at short notice without a loss. In this
de�nition, uncertainty plays a central role.
29The arguments of Dang, Gorton and Holmström (2012) suggest that, in a fully speci�ed

model of liquidity of di¤erent assets, default prospects would be a major source of illiquidity
in the very sense of Hicks�s original de�nition.
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across banks. Subdivision and diversi�cation of individual speci�c risks are im-
portant in banking, but are nevertheless neglected here.30 In practice, the most
serious banking problems tend to be tied to macroeconomic shocks. Therefore,
I want to focus on those and assume that loan customer-speci�c risks play no
role or are perfectly diversi�ed at the level of each bank.31

From the perspective of period 0; the bank�s pro�t is now a random variable.
With limited liability, this random variable is given as

~� = �(~') = max(0; ~'L� rBBs � rDDs); (3.1)

where, as before, L is the bank�s investment in loans, Bs and Ds are the bank�s
supplies of bonds and deposits, and rB and rD are the interest rates on bonds
and deposits. If ~'L � rBB

s + rDD
s; the returns on loans are large enough

for the bank to pay its debts; in this case, the bank�s pro�t is equal to the
di¤erence between the returns on loans and the payments to bond holders and
depositors, just as in the preceding section. If ~'L < rBB

s + rDD
s; the bank

cannot pay its debts in full. In this case, the pro�t distribution to shareholder
is zero; because of limited liability, the shareholders do not have to put up the
additional funds needed to pay the bank�s debts. Instead, the gross return ~'L
is shared among the bank�s debt holders in proportion to the claims they have
on the bank. Thus, if ~'L < rBB

s + rDD
s; bond holders and depositors receive

the amounts

rB
~'L

rBBs + rDDs
and rD

~'L

rBBs + rDDs
;

respectively, for each unit of the date 0 good they put up. The rates of return
to bond holders and depositors are given by the random variables

rB min(1;
~'LL

rBBs + rDDs
) and rDmin(1;

~'L

rBBs + rDDs
) (3.2)

or, in more compact notation,

rB min(1;
~'

'̂
) and rDmin(1;

~'

'̂
); (3.3)

where

'̂ :=
rBB

s + rDD
s

L
(3.4)

is the value of ~' at which the bank is just able to ful�ll its obligations to its
creditors, the boundary between the default and the non-default region.

Asset Valuation

In choosing its funding and investment policies the bank must take account of
how the market values the securities that it issues. The price E at which it issues

30On the role of diversi�cation and subdivision of individual risks in banking, see Diamond
(1984) and Hellwig (2000).
31On the role of macroeconomic shocks in banking, see Hellwig (1994, 1995, 1998).
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new equity must not exceed the value V (~�) that the market in period 0 assigns
to the bank�s random period 1 pro�t. Similarly, the value V (rB min(1;

~'
'̂ )) that

the market in period 0 assigns to the random return rB min(1;
~'
'̂ ) on a bond

must not be less than the one unit of the period 0 good for which the bond is
o¤ered.
How are these return random variables valued in period 0? To provide an

answer this question, I assume that, between the initial period t = 0 and the
�nal period t = 1; there is an intervening period t = 1

2 , in which the di¤erent
participants can trade contingent claims in a complete market system. Prices
in these markets are given by a function q : ['1; '2]! R+, such that a claim to
one unit of the consumption good in period 1 in the event f~' 2 ['0; '00]g costs
the amount Z

['0;'00]

q(')f(')d'; (3.5)

where, as mentioned above, f is the density function of the distribution of ~':
The function q is normalized so thatZ

['1;'2]

q(')f(')d' = 1: (3.6)

In the markets at t = 1
2 ; the returns on any security can be replicated by a

bundle of contingent claims. If a security has the random return h(~'); then at
t = 1

2 ; the bundle of contingent claims that yields the same returns costs

Eqh(~') :=
Z
['1;'2]

q(')h(')f(')d': (3.7)

The market value of this security at t = 1
2 is therefore Eqh(~'):

If the security is already traded in the markets at t = 0; its market value at
that date is given as

V (h(~')) = � Eqh(~'); (3.8)

where, as before, � is a discount factor. This discount factor is not actually
a market price but a common factor that underlies all asset pricing at t = 0.
Because there is no resolution of uncertainty between t = 0 and t = 1

2 ; simple
arbitrage considerations, imply that any securities that are actively traded in
t = 0 must be priced in such a way that they all provide the same rate of return
from t = 0 to t = 1

2 . The discount factor is simply the inverse of this common
rate of return.32

Because the bank�s equity is a claim to the pro�t random variable ~�, its
value at t = 0 is

V (~�) = � Eq�(~') = �

Z
['1;'2]

q(')�(')f(')d': (3.9)

32Heuristically, � is the value at t = 0 of a bundle of contingent claims that promises to
provide one unit of the consumption good at t = 1; regardless of the state. The model does
not actually contain a market for this bundle, but, because the market system is sequentially
complete, the value of this bundle at t = 0 is implicitly given by the equilibrium price system.
The details of the argument are spelled out in Lemmas 3.1 and 3.2 below.
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Thus, if the bank wants to issue new equity at a price E, it must respect the
inequality

E � � Eq�(~'): (3.10)

Similarly, a bond with the return random variable rB min(1;
~'
'̂ ) is worth

EqrB min(1;
~'

'̂
) = rB

Z
['1;'2]

q(')min(1;
'

'̂
)f(')d' (3.11)

in the markets at t = 1
2 and

V (rB min(1;
~'

'̂
)) = � EqrB min(1;

~'

'̂
)

in the markets at t = 0: For investors to pay one unit of the good in period 0
for this bond, the interest rate rB must be high enough so that

1 � V (rB min(1;
~'

'̂
)) = � EqrB min(1;

~'

'̂
); (3.12)

i.e. rB must satisfy the inequality

rB �
'̂

� Eqmin('̂; ~')
: (3.13)

Because deposits provide liquidity bene�ts as well as monetary returns, the
analogous condition for the deposit rate rD cannot be derived from asset pricing
considerations alone. This condition takes the form

rD �
'̂

� Eqmin('̂; ~')
� �('̂); (3.14)

where �('̂) is the liquidity premium in the deposit rate. This liquidity premium
depends on the bank�s default point '̂ because deposits provide liquidity bene�ts
only if ~' � '̂.

Banks

As before, a bank must choose a funding policy (�s; E;Bs; Ds); and an
investment policy L: In taking this choice, the bank takes the discount factor �;
the system q(�) of contingent-claims prices, and the liquidity premium function
�(�) as given.
What about the interest rates rB and rD that it must pay on bonds and

deposits? It is natural to assume that, in equilibrium, investors have rational
expectations about the default prospects implied by the banks� choices and,
therefore, that the equilibrium values of rB and rD are a¤ected by its funding
choices. Should banks be presumed to take this dependence into account, or
should they be assumed to behave as price-takers with respect to rB and rD as
well as �; q(�), and �(�)?
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This is not a question about market power. In the large economy considered
here, no bank has market power and no bank is able to a¤ect consumer welfare
by unilateral changes in its plans. The dependence of rB and rD on the bank�s
funding choices is only due to the fact that funding choices a¤ect the bank�s
risk of default.
Nor is the question whether the bank has rational expectations about the

e¤ects of its funding choices on the interest rates it must pay. The real issue is
whether the bank can commit to its funding choices ex ante and whether it can
communicate these choices to investors. If it can do so, then by changing the
announcement of its funding choice, the bank can a¤ect investors�expectations
of its default risk and thereby the interest rates that it has to pay. With rational
expectations it will appreciate the e¤ect and take account of the dependence of
interest rates on its choice. For example, it will appreciate that, if it funds more
with equity, borrowing costs will be lower because depositors and other lenders
appreciate that the bank�s default probability is lower.
In contrast, if investors do not know the bank�s funding mix, their expecta-

tions will be independent of the bank�s choice. In this case, the bank will take
rB and rD as given. It is still true that, the equilibrium values of rB and rD re-
�ect the default risk from the funding mix that the bank chooses in equilibrium.
However, the bank knows that investors do not observe its choice and therefore
cannot condition their expectations on the bank�s funding mix. In considering
an o¤-the-equilibrium-path deviation involving more equity funding, the bank
does not expect its borrowing costs to be reduced because it knows that investors
do not observe the deviation and therefore do not condition their expectations
on it.
The issue is not only a matter of communication but also of credibility. If

banks announce their funding policies ex ante, investors may not pay much
attention anyway because they do not believe these announcements. If we think
about period 0 as being divided into many subperiods and the bank is unable to
commit its behaviour ex ante, investors will ask themselves what funding mix
the bank will end up with. The answer to this question depends on strategic
considerations à la Coase (1973), rather than any initial announcement the bank
may make.
In the following, I will study both cases, the case where banks take account

of the e¤ects of their funding choices on the interest they must pay and the case
where they take the interest rates rB and rD as given. I begin with the case
where they take account of the e¤ects of their funding choices on rB and rD. In
this case, a plan for a bank is a vector (�s; Bs; Ds; L;E; rB ; rD), which speci�es
rB and rD as well as the price E at which shares are o¤ered, the funding mix
(�s; Bs; Ds) and the investment L:

Consumers

Consumers have the same characteristics as before. However, the "warm-
glow" feelings from the liquidity of deposits arise only if the bank in question
is not in default. The warm-glow term in the consumer�s utility function now
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takes the form �(
R 1
0
Dd(b)(1��('; '̂(b)))db); rather than �(

R 1
0
Dd(b)db); where,

for each bank b; '̂(b) is the default point of bank b; and

�('; '̂(b)) = 1 if ' < '̂(b); (3.15)

�('; '̂(b)) = 0 if ' � '̂(b): (3.16)

The variable �(~'; '̂(b)) is an indicator variable showing whether bank b is in
default or not. The default points '̂(b) of di¤erent banks may di¤er. In this
case (3.13) and (3.14) suggest that the interest rates, rB(b) and rD(b) will also
di¤er.
A plan for a consumer is a vector (c0; c1(�); �d(�); Bd(�); Dd(�)) that speci�es

a consumption level for period 0; a state-contingent consumption plan for period
1, and investment level for the various securities issued by the di¤erent banks m
period 0. A plan (c0; c1(�); �d(�); Bd(�); Dd(�)) provides the consumer with the
expected utility

u(c0) +

Z '2

'1

v(c1(') + �( �D
d(')))f(')d'; (3.17)

where, for any ';

�Dd(') :=

Z 1

0

Dd(�b)(1� �('; '̂(�b)))d�b (3.18)

is the aggregate value of those deposits that are not in default when ~' = ':
In choosing a plan (c0; c1(�); �d(�); Bd(�); Dd(�)); the consumer must satisfy the
budget constraints

e0 = c0 +

Z 1

0

�d(b)E(b)db+

Z 1

0

Bd(b)db+

Z 1

0

Dd(b)db (3.19)

in period t = 0 andZ
['1;'2]

q(')c(')f(')d' =

Z
['1;'2]

q(')R(')f(')d'; (3.20)

or
Eqc1(~') = EqR(~') (3.21)

in period t = 1
2 ; where, for any ';

R(~') : =

Z
(1� �s(b) + �d(b))max[0; ~'L(b)� (rB(b)Bs(b) + rD(b)Ds(b)]db

(3.22)

+Bd(b)

Z 1

0

rB(b)min[1;
~'

'̂(b)
] db+Dd(b)

Z 1

0

rD(b)min[1;
~'

'̂(b)
] db

is the random variable indicating the return on the consumer�s portfolio: The
constraint for t = 0 is the same as in the preceding section. The constraint
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for t = 1
2 replaces the previous condition equating c1 with the return on the

consumer�s portfolio by the condition that the value of the bundle of contingent
claims needed to provide for the consumption random variable c1(~') be equal
to the value at t = 1

2 of the bundle of contingent returns from the consumer�s
investments at t = 0:

Equilibrium

An equilibrium of the model with full commitment and communication of
banks� choices is given by a price system (�; �(�); q(�)); a measurable map-
ping b! (�s(b); Bs(b); Ds(b); L(b); E(b); rB(b); rD(b)) indicating a plan for each
bank and a measurable mapping a! (c0(a); c1(�; a); �d(�; a); Bd(�; a); Dd(�; a));
indicating a plan for each consumer a 2 [0; 1]; such that

(E.1) given the price system, the plan (�s(b); Bs(b); Ds(b); L(b); E(b); rB(b); rD(b))
of (almost) every bank b maximizes the value (1��s)E of the initial share-
holders� stock in bank b subject to nonnegativity, the period 0 budget
constraint

L � �sE +Bs +Ds �K(Ds); (3.23)

and the inequalities (3.10), (3.13), and (3.14), where '̂ is given by (3.4);

(E.2) given the price system and the banks� plans, for every a 2 [0; 1]; the
plan (c0(a); c1(�; a); �d(�; a); Bd(�; a); Dd(�; a)) maximizes the consumer�s
expected utility (3.17) subject to the constraints (3.18), (3.19), (3.20),
and to nonnegativity of c0; c1(�); 1��s(�)+�d(�); Bd(�); and Dd(�); where,
for any '; R(') is given by (3.22) and, for any b, '̂(b) = [rB(b)B

s(b) +
rD(b)D

s(b)]=L(b);

(E.3) the banks�and the consumers�plans satisfy the market clearing conditionsZ 1

0

L(b)db = e0 �
Z 1

0

c0(a)da (3.24)

and

�s(b) =

Z 1

0

�d(a; b)da; Bs(b) =

Z 1

0

Bd(a; b)da, Ds(b) =

Z 1

0

Dd(a; b)da;

(3.25)
for the goods market and the markets for the securities of bank b, for
(almost) every b 2 [0; 1] in t = 0; the banks�and consumers�plans also
satisfy the market-clearing conditionsZ 1

0

c1('; a)da =

Z 1

0

'L(b)db (3.26)

for the contingent-claims markets in t = 1
2 ; for (almost) all ';
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(E.4) for any '̂; the liquidity premium function �(�) satis�es

�('̂) =
Eq(1� �(~'; '̂))�0( �Ds(~'))

Eqmin(1; ~''̂ )
; (3.27)

where
�Ds(~') :=

Z 1

0

(1� �(~'; '̂(�b))Ds(�b)d�b; (3.28)

Conditions (E.1) - (E.3) are the analogues of conditions (e.1) - (e.3) in the
certainty case. There is a small di¤erence in that banks are free to choose the
interest rates rB and rD; subject to (3.13) and (3.14). However, this di¤erence
is unimportant. If the equilibrium condition (e.1) for the certainty case were
changed to allow banks to choose rB and rD; subject to the relevant version of
(3.13) and (3.14), equilibrium allocations and prices in the certainty case would
not be changed.

Consumer Behaviour and the Liquidity Premium Function

The equilibrium condition (E.4) relates the liquidity premium in the deposit
rate for a bank with default point '̂ to the liquidity bene�ts that consumers
draw from additional deposits with this bank. For the default points '̂(b); b 2
[0; 1]; that correspond to the banks�equilibrium plans, this condition is actually
implied by conditions (E.1) - (E.3). The point of introducing condition (E.4)
is to extend the liquidity premium function to all possible default points, even
those that are not chosen by any bank in the equilibrium under consideration.
This extension of the liquidity premium function can be understood as a

subgame-perfectness condition. If some bank b were to deviate from its equi-
librium plan, then, in the model with full commitment and communication,
consumers would observe the deviation and adapt their portfolio decisions. The
liquidity premium in the bank�s deposit rate would then be given by �('̂); where
'̂ is the default point under the newly chosen policy, rather than �('̂(b)): Con-
dition (E.4) ensures that this o¤-the-equilibrium-path response of consumers to
the bank�s deviation is governed by the same principles as, and is compatible
with, the other equilibrium conditions.
For a better understanding of equation (3.27), I show why, for default points

'̂(b); b 2 [0; 1]; this equation is implied by the other equilibrium conditions. I
begin by considering the consumers�maximization problem.

Lemma 3.1 Given a system q(�) of contingent-claims prices at t = 1
2 and given

the banks�plans (�s(b); Bs(b); Ds(b); L(b); E(b); rB(b); rD(b)); b 2 [0; 1]; suppose
that (c0; c1(�); �d(�); Bd(�); Dd(�)) is an optimal plan for a consumer. Then there
exists � > 0 such that, for almost all ';

� v0(c1(') + �( �D
d(')) = q(') u0(c0) (3.29)
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and, for (almost) every b 2 [0; 1];

� E(b) � Eq�(~'); (3.30)

with a strict inequality implying that 1� �s(b) + �d(b) = 0;

� � rB(b)Eqmin(1;
~'

'̂(b)
); (3.31)

with a strict inequality implying that Bd(b) = 0;

and

� � rD(b)Eqmin(1;
~'

'̂(b)
) + Eq(1� �(~'; '̂(b))�0( �Dd(~')) (3.32)

with a strict inequality implying that Dd(b) = 0:

With initial endowments e0 > 0 and e1 = 0; consumers want to shift re-
sources from period 0 to period 1: They can do this by investing in shares,
bonds, or deposits of banks in period 0. In addition, they can trade contingent
claims at t = 1

2 in order to shift consumption between states of nature, cali-
brating their state-contingent consumption plans to the prices of the di¤erent
contingent claims.
Given the scope for trading at t = 1

2 the investment decisions of consumers
at t = 0 are governed by the rates of return that investments provide from
t = 0 to t = 1

2 : Because information at t =
1
2 is the same as at t = 0; these

rates of return are certain. If di¤erent investments o¤er di¤erent rates of return,
consumers acquire only investments that yield the maximum rate of return. The
parameter � in the lemma represents this benchmark rate of return that an asset
must provide from t = 0 to t = 1

2 if a consumer is to invest in it. Thus, if the
inequality in (3.30) is strict, the price at which bank b is o¤ering new shares is
too high, the rate of return on these shares is too low, and no consumer will
buy these shares. Similarly, if the inequality in (3.31) is strict, the interest rate
on the bonds of bank b is too low for investors to be willing to acquire them.
For deposits, the matter is more complicated because the liquidity bene-

�ts from deposits are not priced in the markets at t = 1
2 . A rate-of-return

interpretation of the condition for deposits can still be given because the com-
sumption equivalent of the liquidity bene�ts from deposits can be priced. The
marginal liquidity bene�ts from additional deposits with bank b are given by
the random variable (1 � �(~'; '̂(b)))�0( �D(~')): If the additional investment in
deposits is not made, the same e¤ect on expected utility could still be achieved
by state-contingent additions to consumption equal to (1��(~'; '̂(b)))�0( �D(~')):
The market value at t = 1

2 of this consumption equivalent of the marginal liq-
uidity bene�ts from deposits is equal to Eq(1 � �(~'; '̂)b)))�0( �D(~')): Condition
(3.32) compares the benchmark rate � to the sum of this market value of the
equivalent of the marginal liquidity bene�ts from deposits and the market value
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at t = 1
2 of the marginal monetary return rD(b) Eqmin(1; ~'

'̂(b) ); on deposits
at bank b: The consumer invests in these deposits only if this sum meets the
benchmark �: If the it fails to do so, the interest rate rD(b) is too low for the
consumer to be willing to acquire deposits at bank b.
In conditions (3.29) - (3.32), the benchmark rate of return, the consumption

levels c0 and c1('); ' 2 ['1; '2]; and the e¤ective deposit holdings �Dd('); ' 2
['1; '2]; are consumer-speci�c. If di¤erent consumers face the same price sys-
tem, however, the associated marginal rates of substitution must be the same
same for all of them. This is the point of the following lemma. In the lemma,
�(a) denotes the parameter given by Lemma 3.1 for consumer a, and, for any
'; �Dd('; a) denotes the value of aggregate deposits that consumer a.holds with
banks that are not in default if ~' = ':

Lemma 3.2 Suppose that a price system and a pair of mappings indicating
the plans of banks and of consumers satisfy the equilibrium conditions (E.1) -
(E.3). Then almost all banks�plans satisfy the constraints (3.23), (3.10), (3.13),
and (3.14) with equality, and almost all consumers�plans satisfy the �rst-order
conditions (3.30), (3.31), and (3.32) with equality. Moreover,

�(a) =
1

�
(3.33)

and
�0( �Dd(~'; a)) = �0

�
�Ds(~')

�
(3.34)

for almost all a 2 [0; 1], almost surely.

The benchmark rate of return �(a) for the portfolio choice problem of con-
sumer a is the same for all a and is equal to the inverse of the discount factor
�: Equivalently, the discount factor indicates the relation between the expected
return at t = 1

2 and the price at t = 0 that will induce an asset to earn the
benchmark rate of return, which is needed if any one is to hold the asset.
The lemma also shows that, for any '; the term �0( �Dd('; a)) in condition

(3.32) is the same for all a: The optimality of the consumers� plans, implies
that, if di¤erent consumers choose di¤erent plans, the slopes of the liquidity
bene�t functions must still be the same. Moreover, because the function �(�) is
the same for all consumers and �(�) is concave, these slopes must also coincide
with the slope of �(�) at the cross-section "average"

Z
�Dd('; �a)d�a:With market

clearing, this "average" is equal to the supply side average �Ds('); which was
de�ned in (3.28).33

33The reader may wonder why I did not impose consumer symmetry here. With symmetry
in the speci�cation of consumer preferences and endowments, condition (3.34) is trivially
true if the consumers� plans are all the same. However, it is important to understand the
logic behind equation (3.34) and condition (E.4) without appealing to special features of the
exogenous data of the model. Without symmetry, it still must be the case that, in equilibrium,
the relevant slopes are the same and that their common value depends on the supply side of
the system.
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Upon combining (3.14), (3.32), and (3.34), one obtains:

Lemma 3.3 Suppose that a price system and a pair of mappings indicating the
plans of banks and of consumers satisfy the equilibrium conditions (E.1) - (E.3).
Then

�('̂(b)) =
Eq(1� �(~'; '̂(b)))�0( �Ds(~'))

Eqmin(1; ~'
'̂(b) )

(3.35)

for almost all b 2 [0; 1]:

Equation (3.35) relates the liquidity premium for deposits of bank b to the
default point '̂(b) that bank b chooses in equilibrium. As mentioned above, the
equilibrium condition (E.4) extends this condition to arbitrary default points,
regardless of whether or not they are chosen by any bank in the equilibrium
under consideration.

3.2 Equilibria with Commitment and Communication:
The Use of Equity Funding

Existence of Equilibrium

Turning to the analysis of liquity provision and equity funding in the model
with full commitment and communication of banks� choices, I begin with an
equilibrium existence result.

Proposition 3.4 Under the stated assumptions, an equilibrium of the model
with full commitment and communication of banks�choices exists.

This result looks like the corresponding result in Proposition 2.1, but there
are important di¤erences. As far as I know, the result is not subsumed by known
existence results, nor does it follow from standard arguments. The proof must
overcome several di¢ culties: First, because the consumers� liquidity bene�ts
depend on the banks�funding choices, there is an external e¤ect in the model.
Second, the possibility of default introduces a non-convexity into the banks�
optimization problems. If the liquidity bene�t function �(�) is strictly concave,
one can in fact show that the externality and the nonconvexity preclude the
existence of a symmetric equilibrium.34 This is why, in contrast to the preceding
section, I do not impose a symmetry condition.Third, the assignment of plans

34With symmetry, all banks would choose the same funding policy and the same default
point. If an individual bank considers a deviation from the presumed symmetric equilibrium
plan, it will observe that a change in the mix of equity and deposits that lowers its own
bankruptcy point relative to the common bankruptcy point of the other banks will reduce its
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to banks must be measurable. Fourth, there is no natural bound on any one
bank�s choices.
To overcome these di¢ culties, the proof of Proposition 3.4 exploits the spe-

cial structure of the model. First, I use Lemmas 3.1 - 3.3 to deal with the pricing
e¤ects of the externalities in liquidity provision. Second, I use the continuum of
banks to smooth over any discontinuities that might arise from the nonconvex-
ities of the banks�optimization problems Third, following Hart, Hildenbrand,
and Kohlberg (1974), I avoid the technical di¢ culties associated with measur-
ability by working with cross-section distributions of banks�plans, rather than
the functions assigning plans to banks. Finally, boundedness of banks�plans is
obtained from the interplay of aggregate feasibility and individual optimization.
The argument is more complicated than usual because, with a continuum of
banks, the boundedness of aggregates that is implied by feasibility requirements
does not have strong implications for the scale of individual banks�plans.

Equilibria With and Without Satiation in Deposits

As in the case of certainty, there is a clear distinction between equilibria
in which there is "satiation" and equilibria in which there is no "satiation"
in deposits. In the absence of default, placing a unit of additional savings in
deposits of bank b̂, rather than bonds, provides a liquidity bene�t equal to
�0(
R
Ds(b)db) at t = 1 while reducing investment returns by ~'K 0(Ds(b̂)): The

impact on expected utility is equal toZ
v0('L+ �)

�
�0(

Z
Ds(b)db)� 'K 0(Ds(b̂))

�
f(')d';

which is proportional to

�0(

Z
Ds(b)db)� Eq ~' K 0(Ds(b̂)); (3.36)

where, for any '; q(') := v0('L + �)=
R
v0('0L + �)f('0)d'0: If the deposit

supplies of di¤erent banks are all the same, this di¤erence is just m(Ds; Eq ~'),
where Ds is the common value of the banks�deposit supplies and m is again
the function that was de�ned in equation (2.13) in Section 2.
Let

�' :=

Z
'f(')d' (3.37)

cost of deposit �nance by a term that is proportional to �0(0); rather than �0( �Ds) because for
values of ~'L below the common bankruptcy point, the other banks do not provide consumers
with any liquidity bene�ts; if instead, the change in the mix raises its own bankruptcy point
relative to the common bankruptcy point of the other banks, the change will raise the bank�s
by a term that is proportional to �0( �Ds) < �0(0); where �Ds is the average e¤ective deposit
supply of the other banks. Either one or the other of these two changes would increase the
value of the bank�s objective function, which implies that the presumed symmetric equilibrium
is not an equilibrium at all.
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be the mean rate of return on loans. Along the same lines as before, I assume
that

m(D; �') > 0 (3.38)

if D is close to zero. This condition again ensures that any equilibrium must
involve some deposit funding of banks. Also along the same lines as before, I
assume that, for any '; there is at most one D�(') 2 R+ so that

m(D�('); ') = 0: (3.39)

Because m(D; �') > 0 for D close to zero, it follows that, for any ' � �'; the
solution D�(') to equation (3.39) is strictly positive. Because v(�) is concave,
Eq ~' � �'; so in particular,

m(D; Eq ~') > 0 (3.40)

if D is close to zero. Thus D�(Eq ~') is strictly positive.35 As before, I write
D�(Eq ~') = 1 if m(D; Eq ~') > 0 for all D; i.e., if the equation m(D; Eq ~') = 0
has no solution.

Proposition 3.5 Under the stated assumptions, there are two distinct classes
of equilibria, equilibria in which the equilibrium price system satis�es � Eq ~' < 1
and equilibria in which the equilibrium price system satis�es � Eq ~' = 1: The
following statements hold.
(a) If the initial endowment e0 is su¢ ciently small or if '1 = 0; any equi-

librium price system satis�es � Eq ~' < 1: If '1 > 0 and D�('1) < 1; and if
the initial endowment e0 is su¢ ciently large, there exists an equilibrium with a
price system satisfying � Eq ~' = 1:
(b) In any equilibrium with a price system satisfying � Eq ~' < 1;

R
Ds(b)db >

0: Moreover, for almost all b: Ds(b) > 0 implies

Eq ~' K 0(Ds(b)) < Eq(1� �(~'; '̂(b)))�0( �Ds(~')); (3.41)

and '̂(b) � '1 for (almost) all b : The latter inequality is strict, i.e., '̂(b) > '1;
if '1 = 0. Finally,B

s(b) = 0 for almost all b:
(c) In any equilibrium with a price system satisfying � Eq ~' = 1;

R
Ds(b)db =

D�(Eq ~') and '̂(b) � '1 for almost all b with D
s(b) > 0 In the range where

equity is su¢ ciently large so that the default probability is zero, the mix of equity
and bond �nance in such an equilibrium is indeterminate.
(d) Regardless of whether � Eq ~' < 1 or � Eq ~' = 1; Ds(b) > 0 implies

�s(b)E(b) > 0 if the producer�s surplus from deposit provision, Ds(b)K 0(Ds(b))�
K(Ds(b)), is small relative to the endowment e0: In particular, Ds(b) > 0 im-
plies �s(b)E(b) > 0 if the marginal cost of deposit provision is constant, i.e.,
if K"(D) = 0 for all D; �s(b)E(b) is also positive if e0 is su¢ ciently close to
zero, or if e0 is su¢ ciently large. If � Eq ~' = 1; then

R
�s(b)E(b)db > 0 if

'1
Eq ~'

<
D�(Eq ~')�K 0(D�(Eq ~'))D�(Eq ~')

D�(Eq ~')�K(D�(Eq ~'))
: (3.42)

35 In fact, the inequality Eq ~' � �' implies that D�(Eq ~') � D�(�'):
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Again, there is a clear di¤erence between equilibria in which there is sa-
tiation in deposits and equilibria in which there is no satiation. If initial en-
dowments and consumer savings are very high and if a �nite satiation level for
deposits exists at all,36 there exist equilibria in which the equilibrium value of
the aggregate deposit supply is equal to the satiation level D�(Eq ~'), and the
equilibrium default probability is zero. In these equilibria, the excess of savings
over D�(Eq ~') are put into shares and bonds, with some (local) indeterminacy
of the Modigliani-Miller type. By contrast, if initial endowments and consumer
savings are very low, the equilibrium value of the aggregate deposit supply is
below the satiation level. In this case, bonds play no role in bank funding but,
in contrast to the certainty case, equity may play a role. The equilibrium de-
fault probability of each bank is positive unless the value f('1) of the density
function at '1 is very large.
In contrast to the certainty case, the transition between the two kinds of

equilibria need not be monotonic in e0: The satiation level D�(Eq ~') itself de-
pends on the equilibrium price system q. As e0 goes up, it is quite possible for
D�(Eq ~') to go up as well and indeed to go up so quickly that equilibrium de-
posit levels shifts from satiation to non-satiation even though they are actually
increasing in e0:37

I also cannot rule out the possibility that, for large values of the initial
endowment, even if '1 > 0 and D�('1) < 1; there might be a non-satiation
equilibrium as well as the satiation equilibrium that is given by statement (a).
Whereas, for small values of e0; the inequality

R
Ds(b)db < D�(Eq ~') is trivially

satis�ed, for large values of e0; the matter is unclear. With default, �Ds(~') <R
Ds(b)db so (3.41) need not impose a restriction on

R
Ds(b)db:38

The Role of Equity

36As in the certainty case, a �nite satiation level for deposits will not exist if '2K
0(1) <

�0(1): A �nite satiation level also fails to exist if '1 = 0.
37Given the conditions for an equilibrium price system, the equation m(D; Eq ~') = 0 is

actually equivalent to the equationZ
v0('L+ �(D)) ['K0(D)� �0(D)] f(')d' = 0:

Using the implicit-function theorem, one easily �nds that, if the utility function v exhibits
non-increasing absolute risk aversion and non-decreasing relative risk aversion, the solutions
to this equation take the form L = L�(D); where L� is a nondecreasing function. Hence, if e0
goes up and the equilibrium level of savings goes up, the satiation level of deposits goes up as
well. If the increase absorbs a su¢ ciently large part of the increase in savings, it might well
be the case that, even though the endowment e0 is higher, there is again no equilibrium with
satiation in deposits.
38Exceptions are (i) the case where �0 is constant and (ii) the case where K0 is constant. If �0

is constant, �0( �Ds(~')) = �0(
R
Ds(b)db) almost surely, so (3.41) implies Eq ~' K0(maxbDs(b)) <

�0(
R
Ds(b)db) and hence Eq ~' K0(

R
Ds(b)db) < �0(

R
Ds(b)db): If K0 is constant, (3.41) implies

Eq ~' K0(

Z
Ds(b)db) < Eq(1� �(~'; '̂(b�)))�0( �Ds(~'));

where b� is the bank with the highest default point. By de�nition, �(~'; '̂(b�)) = 0 im-
plies �(~'; '̂(b)) = 0 for all b; and therefore �Ds(~') =

R
Ds(b)db; and one again obtains

Eq ~' K0(
R
Ds(b)db) < �0(

R
Ds(b)db):
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The role of equity in Proposition 3.4 is quite di¤erent from what it was
before. Because equity funding improves the safety of deposits, equilibrium
levels of equity funding can be positive even when e0 is too small for deposits
to reach the level D�(q) at which the net marginal bene�ts of having additional
funding go through deposits rather than bonds are zero. Indeed, if e0 is very
close to zero, the equilibrium level of bank equity funding is always positive.

In contrast to the case of certainty, the roles of shares and bonds are now
very di¤erent. In Proposition 2.1, both shares and bonds appeared merely as
substitutes for deposits, undesirable until deposits had reached the e¢ cient level,
and desirable once that level had been reached. Moreover, by a version of the
Modigliani-Miller Theorem, the mix of shares and bonds was irrelevant. Now
the mix of shares and bonds matters, and there is an important asymmetry
between them. Whereas shares are a means of improving the safety and the
liquidity of deposits, bonds not only substitute for deposits as a source of funds
but they may also be harmful to the safety and the liquidity of deposits.
In equilibrium, therefore, bonds are never used when there is a positive

probability of default. If they were used, replacing bond �nance by share �nance
would enhance deposit liquidity (and lower deposit rates) without any need to
change deposit levels. The assumption that liquidity bene�ts of deposits are tied
to non-default states introduces a breakdown of Modigliani-Miller arguments in
the treatment of shares and bonds but, contrary to what critics of Modigliani-
Miller analysis in banking often claim, the bias is one that favours equity rather
than bonds.39

To understand the underlying logic, it is useful to consider the typical bank�s
objective (1� �s)E; taking account of the bank�s constraints. By (3.10), (3.9),
and (3.1), in combination with Lemma 3.2, this can be rewritten in the form

� Eq ~' L� � Eqmin(1;
~'

'̂
) (rBB

s + rDD
s)�A;

where A := �sE: By (3.23), (3.13), and (3.14), in combination with Lemma 3.2
and (3.27), this expression in turn can be rewritten as

� Eq ~' (A+Bs +Ds �K(Ds))�Bs �Ds + � Eq(1� �(~'; '̂))�0( �Ds(~')) Ds �A:
(3.43)

Similarly, the equation '̂L = rBB
s + rDD

s can be rewritten as

� Eqmin(~'; '̂) (A+Bs+Ds�K(Ds)) = Bs+Ds�� Eq(1��(~'; '̂))�0( �Ds(~')) Ds:
(3.44)

The bank�s problem in the equilibrium condition (E.1) is equivalent to the prob-
lem of choosing nonnegative A;Bs; Ds; and '̂ so as to maximize (3.43) under
the constraint (3.44).

39The bias can be understood in terms of the traditional "tradeo¤" between bankruptcy
costs and tax e¤ects in Modigliani and Miller (1963). There are no taxes here, but the loss of
liquidity bene�ts of depositors is a bankruptcy cost. Whereas the immediate impact of this
cost a¤ects depositors rather than banks, the endogeneity of liquidity premia in deposit rates
implies that banks are also a¤ected.
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The value of the objective (3.43) is equal to the di¤erence between the sum
of the values at t = 0 of the returns on the bank�s loans and the liquidity bene�ts
from deposits and the total funds A+Bs+Ds that the bank raises. The amounts
raised by issuing shares and bonds appear only in the form A+ Bs; so, at this
level, the mix of shares and bonds is irrelevant. In the constraint (3.44), the
amounts raised by issuing shares and bonds enter asymmetrically. Whereas the
level of bank loans L = A + Bs + Ds �K(Ds) on the left-hand side of (3.44)
depends on the sum A+Bs; the debt service on the right-hand side depends on
the bond issue Bs but is independent of A: If Bs > 0; a one-for-one replacement
of bond �nance by share �nance introduces some slack into the constraint (3.44)
while leaving the objective (3.43) una¤ected. The slack can be used to reduce
the default point '̂; which raises the value of the objective (3.43) unless '̂ is
already so low that �(~'; '̂) = 0 with probability one. Thus, for Bs > 0 to be
part of an optimal plan of the bank, the bank�s default probability must be zero.
What about shares and deposits? A unit increase in A raises the objective

(3.43) by � Eq ~'� 1 while relaxing the constraint (3.44) and facilitating a reduc-
tion in the default point '̂: If � Eq ~' were greater than one; it would be desirable
to expand A without bounds, i.e. an optimal plan for the bank would fail to
exist. If � Eq ~' = 1; the objective (3.43) is independent of the amount of equity
funding but an increase in A introduces slack into the constraint and facilitates
a reduction in '̂. This will raise the bank�s expected payo¤ unless '̂ � '1 and
hence �(~'; '̂) = 0 with probability one. Finally, if � Eq ~' < 1; the bank�s choice
of A must balance the negative direct e¤ect of an increase in A on the objec-
tive against the positive indirect e¤ect from having a lower default point. This
tradeo¤ will sometimes result in positive equity funding and sometimes in zero
equity funding.

The Role of Technology

Whether for � Eq ~' < 1 the bank uses equity funding or not depends on the
deposit provision cost function. As an example, consider the case of constant
returns to scale, i.e. suppose that K 0(Ds) = k � 0; a constant, regardless of
Ds: In this case, maximization of (3.43) at Ds > 0 requires that

� Eq ~' (1� k)� 1 + � Eq(1� �(~'; '̂))�0( �Ds(~')) = 0: (3.45)

At the same time, (3.44) implies

� Eqmin(~'; '̂) A � �Ds[� Eqmin(~'; '̂) (1�k) +1�� Eq(1��(~'; '̂))�0( �Ds(~'))];
(3.46)

and hence

� Eqmin(~'; '̂) A � Ds(1� k) � (Eq ~'� Eqmin(~'; '̂))
= � Eqmax(0; ~'� '̂) Ds(1� k):

If A were equal to zero, Eqmax(0; ~' � '̂) would also be zero, and �(~'; '̂))
would be equal to one with probability one. Expected liquidity bene�ts from the
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bank�s deposits would then be zero. The bank�s deposits would be like shares
under pure equity funding, earning returns in proportion to the depositors�share
of the bank�s debt. However, pure equity funding itself is strictly dominated by
some mix of equity and deposit funding, with expected bene�ts from liquidity
that are positive. Because pure equity funding is strictly dominated by such a
mix, so must be pure deposit funding.40

In the constant-returns-to-scale case, deposit provision does not yield any
producer�s surplus. In equilibrium, the portion of the liquidity bene�ts from
deposits that the bank can appropriate are eaten up by the costs. Without
equity funding, therefore, the bank has no bu¤er against return shocks, and the
potential liquidity bene�ts from deposits are destroyed by default.
In the general case of arbitrary convex deposit cost functions, producer�s

surplus can provide a substitute for equity funding as a bu¤er against return
shocks. If the uncertainty about the bank�s returns is su¢ ciently small, this
bu¤er may even be large enough so that no equity funding is needed at all.
For example, if consumer savings are large enough so that � Eq ~' = 1, and if
Ds(b) = D�(Eq ~') for all b; the requirement that '̂(b) � '1 for all b translates
into the inequality

� '1 (A+B
s +D�(Eq ~')�K(D�(Eq ~'))) � Bs +D�(Eq ~')� ��0(D�(Eq ~')) D�(Eq ~')

= � Eq ~' [Bs +D�(Eq ~')�K 0(D�(Eq ~'))D�(Eq ~')];

which is satis�ed regardless of A, if

'1
Eq ~'

� Bs +D�(Eq ~')�K 0(D�(Eq ~'))D�(Eq ~')
Bs +D�(Eq ~')�K(D�(Eq ~'))

or, equivalently, if

K 0(D�(q))D�(q)�K(D�(q))

Bs +D�(q)�K(D�(q))
� 1� '1

Eq ~'
: (3.47)

The left-hand side of (3.47) is a measure of producer�s surplus relative to the
bank�s investments, the right-hand side a measure of the bank�s return uncer-
tainty. If the former exceeds the latter, the bank does not need equity to avoid
default with probability one. If K 0(D�(q)) > 0; this is necessarily the case if
Bs is small and, moreover, '1 is close to Eq ~' so that the uncertainty about the
bank�s returns is small.
In contrast, since K 0(D�(q)) < 1; the inequality (3.47) cannot be satis�ed if

Bs is large or if '1 is close to or equal to zero.
41 In this case, producer�s surplus

is too small to fully substitute for equity funding.
40 If k > 0; nonoptimality of pure deposit funding already follows because, in this case,

(3.45) and �(~'; '̂)) = 1 with probability one imply � Eq ~' > 1; which is incompatible with
the existence of an optimal level of A: If k = 0 and � Eq ~' = 1; any combination of A =
Bs = 0; Ds > 0; and '̂ = '2 satis�es the �rst-order conditions for maximizing (3.43) subject
to (3.44), but is dominated by one involving positive equity funding. Note the underlying
non-convexity in the bank�s optimization problem.
41 If '1 = 0; the bank cannot avoid having a positive probability of default. In this case, in

fact, ê0 =1; Bs = 0 regardless of e0; and �sE > 0 if e0 is large.
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E¢ ciency

To study the e¢ ciency properties of equilibrium allocations, I need a concept
of constrained e¢ ciency. Otherwise, there is no hope for an e¢ ciency results
because any allocation with a positive default probability is trivially dominated
by some feasible allocation which involves pure deposit funding with a deposit
rate equal to zero.

Proposition 3.6 Under the stated assumptions, any equilibrium of the model
with full commitment and communication of banks�choices involves an alloca-
tion that is Pareto e¢ cient in the set of all allocations that are feasible and that
are compatible with the banks�budget constraints at the equilibrium price system
(�; �(�); q(�)).

In contrast to the e¢ ciency result in Proposition 2.1, Proposition 3.6 does
not follow from the �rst welfare theorem. In fact, unlike the proof of the �rst
welfare theorem, the proof of Proposition 3.6 makes essential use of the concavity
of the functions u(�), v(�), and �(�):
By keeping the price system �xed, the constrained-e¢ ciency concept in

Proposition 3.6 controls for all externalities that might be induced by the ef-
fects of participants�decisions of the price system. External e¤ects that are due
to the e¤ects of agents� actions on prices are usually irrelevant for e¢ ciency.
Here, however, these "pecuniary" externalities are relevant for e¢ ciency be-
cause default probabilities and expected liquidity bene�ts from deposits depend
on interest rates and therefore on the equilibrium price system. This considera-
tion suggests that equilibrium allocations might actually be improved upon by
government interventions that change the equilibrium price system, for exam-
ple a speci�c tax on consumption in period 0, in combination with a lump sum
subsidy that neutralizes the revenue e¤ects of the tax. By increasing consumer
saving incentives, such a tax might raise the equilibrium value of � and thereby
reduce interest rates and the banks�default points.

3.3 Lack of Equity Funding under Interest Rate Taking

In this �nal part of the analysis, I abandon the assumption that banks are
able to commit their funding choices and to communicate them credibly to
consumers. If banks are unable to commit and credibly communicate their
choices to investors, banks will be unable to take account of the fact that, in
equilibrium, the interest rates they must pay will depend on the funding mix
they choose. In the following, I will therefore assume that banks take these
interest rates as given.

Equilibrium with Interest Rate Taking
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A price system now consists of a discount factor �; a system q of contingent-
claims prices at t = 1

2 ; and a list frB(b); rD(b)gb2[0;1] of interest rates that
the di¤erent banks must o¤er if they want to get funding through bonds and
deposits. An equilibrium in the model with price taking is given by a price system
(�; q; frB(b); rD(b)gb2[0;1]) and measurable mappings b! (�s(b); Bs(b); Ds(b); L(b))

and a ! (c0(a); c1(�; a); �d(�; a); Bd(�; a); Dd(�; a)); indicating the plans of the
di¤erent banks and consumers such that

(E.1*) given the price system, the plan (�s(b); Bs(b); Ds(b); L(b); E(b)) of (al-
most) every bank b maximizes the value (1 � �s)E of the initial share-
holders� stock in bank b subject to nonnegativity, the period 0 budget
constraint

L � �sE +Bs +Ds �K(Ds); (3.48)

and the condition

E � �Eqmax[0; 'L� (rB(b)Bs + rD(b)Ds] (3.49)

for the valuation of the bank�s equity;

(E.2*) given the price system and the banks�plans, for (almost) every a 2 [0; 1];
the plan (c0(a); c1(�; a); �d(�; a); Bd(�; a); Dd(�; a)) of (almost) every con-
sumer a maximizes the consumer�s; expected utility (3.17) subject to the
constraints (3.18), (3.19), (3.20), and nonnegativity of c0; c1(�); 1��s(�)+
�d(�); Bd(�); and Dd(�); where, for any '; R(') is given by (3.22) and, for
any b, '̂(b) = [rB(b)Bs(b) + rD(b)Ds(b)]=L(b);

(E.3*) the banks�and the consumers�plans satisfy the market clearing conditionsZ 1

0

L(b)db = e0 �
Z 1

0

c0(a)da (3.50)

and

�s(b) =

Z 1

0

�d(a; b)da; Bs(b) =

Z 1

0

Bd(a; b)da, Ds(b) =

Z 1

0

Dd(a; b)da;

(3.51)
for the goods market and the markets for the securities of bank b, for
(almost) every b 2 [0; 1] in t = 0; the banks�and consumers�plans also
satisfy the market-clearing conditionsZ 1

0

c1('; a)da =

Z 1

0

'L(b)db (3.52)

for the contingent-claims markets in t = 1
2 ; for (almost) all ';

In this de�nition of an equilibrium in the model with interest rate taking,
conditions (E.2*) and (E.3*) are identical with conditions (E.2) and (E.3) in
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the de�nition of an equilibrium in the model with full commitment and commu-
nication. Condition (E.1*) replaces the previous condition (E.1). The previous
condition (E.4) has become super�uous because now there is no need to specify
the liquidity premium in the deposit rate for funding mixes and default points
that do not correspond to the banks�equilibrium plans.

Proposition 3.7 a: Regardless of the value of e0; there always exists an equi-
librium of the model with interest rate taking in which there is no equity funding
at all, interest rates are equal to '2; and all banks default almost surely on their
debt.
b: If the marginal cost of deposit provision is constant and the initial endow-

ment e0 is too small to admit an equilibrium with satiation in deposits and zero
default risk, the equilibrium with zero equity funding and certainty of default is
the only equilibrium with interest rate taking. In this equilibrium, the liquidity
bene�ts from deposits are zero.
c:If the marginal cost of deposit provision is strictly increasing, equity fund-

ing is still zero in any equilibrium in which there is no satiation in deposits
and the default probability is positive. In any such equilibrium, the equilibrium
indebtedness and the default probability of any bank are ine¢ ciently high.
c: If '1 > 0 and D

�('1) <1 and if the initial endowment e0 is su¢ ciently
large for the model with full commitment and communication to have an equilib-
rium with satiation in deposits, then this equilibrium, which satis�es L(b) > 0;
Ds(b) = D�(q); �s(b)E(b) + Bs(b) > 0; and '̂(b) � '1 for almost all b; is also
an equilibrium of the model with interest rate taking.

Discussion

To understand the logic behind this result, observe that the reformulation

� Eq ~' L� � Eqmin(1;
~'

'̂
) (rBB

s + rDD
s)�A

= � Eq ~' (A+Bs +Ds �K(Ds)� � Eqmin(1;
~'

'̂
) (rBB

s + rDD
s)�A (3.53)

of the banks�objective function applies in the present setting as in the setting
with interest rate taking as well as the setting with commitment and communi-
cation. Now, however, the interest rates rB and rD are taken as given.
What is the e¤ect of an increase in A on the objective (3.53)? The direct

e¤ect is the same as before; it hinges on the di¤erence � Eq ~' � 1 between the
present value of the additional returns and the marginal cost of the additional
equity. In addition, there is an indirect e¤ect because, under the constraint

'̂L = rBB
s + rDD

s; (3.54)

the increase in L that is made possible by the additional equity lowers the
default point '̂: However, whereas previously, the increase in the default point
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was considered to lower the expected value of the bank�s debt service, now the
opposite is true. As the interest rates rB and rD are taken as given, the decrease
in the default point raises the expected value of the bank�s debt service. As
the additional equity raises the bank�s investment, it raises the amount that
debtholders receive in default, as well as reducing the default probability. This
e¤ect is akin to the debt overhang e¤ect identi�ed by Myers (1977), namely
equity funding is discouraged if some of the bene�ts accrue to debtholders.42

In the present setting, this debt overhang e¤ect implies that banks never issue
equity.
If the interest rates rB and rD are very high (above '2), then trivially,

one obtains an equilibrium in which the bank defaults for sure. With constant
returns to scale, there is no other equilibrium unless the value of the initial en-
dowment e0 is su¢ ciently high so that an equilibrium with satiation in deposits
and zero default exists. With decreasing returns to scale, producer�s surplus can
substitute for the missing equity in order to reduce default points. However,
even then, equilibrium allocations are not constrained e¢ cient. Bank borrowing
is ine¢ ciently high because they neglect the impact of their borrowing on the
interest rates they must pay.
Proposition 3.7 implies that, in a world with interest rate taking, even in the

absence of systemic considerations, it may be desirable to have some statutory
regulation of bank funding. Formally, one obtains:

Proposition 3.8 Except for the equilibria with satiation in deposits that can be
obtained if the consumers�initial endowment e0 is large enough, the allocations
that are generated by equilibria in the model with interest rate taking can be
improved upon by requiring banks to satisfy a minimum equity requirement. In
the case of constant returns to scale in deposit provision, any equity requirement
below 100% will make for a strict improvement.

As discussed above, the assumption of interest rate taking re�ects an in-
ability of banks to commit and communicate their funding choices ex ante.
Commitment to a funding mix may not be feasible, and a price-taking assump-
tion appropriate, if banks can repeatedly issue additional debt. For suppose
that period 0 is split into a large number of sub-periods so that in each sub-
period, banks can issue new claims. In this case, interest rates on deposits and
bonds issues in the �rst subperiod are afterwards �xed, i.e., in later periods,
banks deciding on additional issues of deposits and bonds do not have to worry
that their choices might raise the rates they have to pay on their previously
issued debt. The situation is similar to that of Coase�s durable-good monop-
olist, who is unable to realize the monopoly pro�t because everybody believes
that, after he has sold the monopoly quantity, he will return to the market and
make additional sales.43 In durable-good monopoly, lack of commitment implies
that, if the number of potential trading dates is unbounded and the discount

42See also, Admati et al. (2012/2014).
43Coase (1972), Gul, Sonnenschein and Wilson (1986).
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rates between trading dates is positive, the monopolist is reduced to behaving
approximately like a price taker at the competitive market clearing price.
In practice, equity and di¤erent classes of debt are issued at di¤erent fre-

quencies. Equity and bonds are issued infrequently, short-term borrowing may
be decided on a daily basis, and contracting for the latest overnight repo loan is
hardly committed by covenants in earlier contracts. Lack of commitment seems
like a realistic assumption. Under this assumption, there is a market failure be-
cause banks fail to internalize the e¤ects of restraining leverage on the interest
rates they must pay. They appreciate the e¤ects at the margin, but the average
interest cost is driven by bondholders and depositors expecting further increases
in the bank�s borrowing.

4 Concluding Remarks

The paper has several simple messages:

� To understand the relation of liquidity provision and equity funding of
banks, one must look at market equilibria and not just the optimizing be-
haviour of banks. Looking at what is optimal for banks is also insu¢ cient
for any serious welfare analysis.

� In a world of certainty, funding by deposits and funding by equity tend
to be substitutes. Any funding by equity detracts from deposits and vice
versa.

� In a world of uncertainty, in which liquidity bene�ts from deposits depend
on the bank�s not going into default, funding by deposits and funding by
equity tend to be complements because the equity reduces the bank�s de-
fault probability and raises the expected liquidity bene�ts from deposits.

� If banks can commit to their funding policies and communicate these poli-
cies to investors ex ante, they will take account of the complementarity
between liquidity provision and equity funding so that competitive equilib-
rium allocations are constrained e¢ cient. In this setting, banks appreciate
that an increase in equity funding will lower the interest they must pay
on deposits.

� If banks cannot commit to their funding policies and communicate these
policies to investors ex ante and if therefore they take interest rates as
given, they will not take account of the complementarity between liquid-
ity provision and equity funding. Because they do not expect an increase
in equity funding to a¤ect their deposit rates, competitive equilibrium allo-
cations in this setting involve zero equity issuance. The absence of equity
issuance may prevent any of the potential liquidity bene�ts of deposits
from being obtained.
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� Minimum equity requirements may serve to reduce or even to eliminate
the distortions that are caused by the inability of banks to commit to their
funding policies ex ante and to communicate these policies to investors.

A Appendix: Proofs

A.1 Proof of Proposition 2.1

Proof of Statements (a) and (b). The market system is complete, there
are no external e¤ects, and preferences satisfy local non-satiation. By the First
Welfare Theorem, therefore, any equilibrium allocation is Pareto e¢ cient. Any
symmetric equilibrium allocation thus maximizes

u(e0 � L�K(D)) + v('L+ �(D)) (A.1)

subject to
L = �E +B +D �K(D) (A.2)

and nonnegativity. Such an allocation must therefore satisfy the �rst-order
conditions

�u0(e0 � L�K(D)) + v0('L+ �(D)) '� � � 0; (A.3)

with a strict inequality implying that L = 0;

�u0(e0 � L�K(D)) K 0(D) + v0('L+ �(D)) �0(D) + �(1�K 0(D)) � 0;
(A.4)

with a strict inequality implying that D = 0;

and

� � 0; (A.5)

with a strict inequality implying that �E +B = 0;

where � is the Lagrange multiplier of the constraint (A.4).
The possibility of a corner solution for L can be neglected, i.e., (A.3) must

hold as an equation.. By (A.2) and nonnegativity, L = 0 would imply D = 0;
and therefore, v0('L+ �(D)) =1; which is incompatible with (A.3).
Next consider the Lagrange multiplier �. If � < 0; L = D � K(D) > 0;

so D > 0; and (A.4) holds with equality. In this case, (A.3) and (A.4) jointly
imply

u0(e0 �D) = v0('(D �K(D) + �(D) + �(D)) ['+m(D;')]; (A.6)

as well as
v0('(D �K(D)) + �(D) m(D;') = �� > 0; (A.7)

39



where, as in the text,

m(D;') := [�0(D)� 'K 0(D)]; (A.8)

By contrast, if � = 0; (A.3) and (A.4) yield:

u0(e0 � L�K(D)) = v0('L+ �(D)) ' (A.9)

and

v0('L+ �(D)) m(D;') � 0; (A.10)

with a strict inequality implying D = 0

Under the given assumptions about the functions u; v;K; and �; the left-hand
side of (A.6) is increasing and the right-hand side is decreasing in D: Moreover,
the left-hand side goes out of bounds as D converges to e0; and the right-hand
side goes out of bounds as D goes to zero. For any e0; therefore, there exists a
unique D(e0) such that D = D(e0) satis�es (A.6). Under the given assumptions
about the functions u; v;K; and �; it is easy to see that the mapping D(e0) is
increasing in e0, with lime0!0D(e0) = 0 and lime0!1D(e0) = 1: By (2.15),
it follows that there exists a critical ê0 such that D(ê0) = D� and, moreover;
m(D(e0); ') T 0 as e0 S ê0:

Thus, (A.10) cannot hold for e0 2 (0; ê0). In this case, � < 0, and therefore
�E + B = 0 and L = D �K(D); which proves (2.17) and (2.18); (2.16) is just
(A.6). For e0 > ê0; m(D(e0); ') < 0; so that (A.7) cannot hold. It follows that,
in this case, � = 0; and therefore, by (A.10) and (2.15), that D = D�, which
proves (2.19); (2.20) follows from (A.9) and (2.21) from the constraint (A.2).
Statements (a) and (b) of the proposition are thereby proved.

Proof of Statement (c). To prove statement (c), I write down the �rst-order
conditions of the typical bank and the typical consumer. The bank chooses
(�s; Bs; Ds; L) to maximize

(1� �s)�� (A.11)

subject to
L � �s� � +Bs +Ds �K(Ds); (A.12)

and
� = 'L� rBBs � rDDs: (A.13)

and nonnegativity. Using (A.13), one can rewrite (A.11). and (A.12) as

�('L� rBBs � rDDs)�A (A.14)

and
L � A+Bs +Ds �K(Ds); (A.15)

where
A := �s�('L� rBBs � rDDs) (A.16)
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First-order conditions for maximizing (A.14) subject to (A.15) are given as

�1 + � � 0; (A.17)

��rB + � � 0; (A.18)

��rD + �(1�K 0(Ds) � 0; (A.19)

and
�'� � � 0; (A.20)

where � is the multiplier of the constraint (A.15), and, in each case, a strict
inequality means that the corresponding maximization variable takes the value
zero. Because the objective function is concave and the constraint set is convex,
these �rst-order conditions are su¢ cient as well as necessary for the vector
(A;Bs; Ds; L) to maximize (A.14) subject to (A.15) and nonnegativity. Given
that, by parts (a) and (b) of the proposition, any equilibrium satis�es Ds = D >
0 and L > 0; any price system (�; rB ; rD) supporting a plan (�s; Bs; Ds; L) for a
bank that is part of an equilibrium must satisfy (A.19) and (A.20) with equality,
implying

rD = '(1�K 0(Ds); (A.21)

as claimed in (2.24). From (A.17) and (A.18), in combination with (A.20), one
also obtains

� � 1

'
and rB � ': (A.22)

Turning to the consumer, maximization of

u(e0 � �dE �Bd �Dd) + v((1� �s + �d)� + rBBd + rDDd + �(Dd)) (A.23)

requires that the following �rst-order conditions be satis�ed:

�u0(e0��dE�Bd�Dd) E+v0((1��s+�d)�+ rBBd+ rDDd+�(Dd)) � � 0;
(A.24)

�u0(e0��dE�Bd�Dd)+ v0((1��s+�d)�+ rBBd+ rDDd+ �(Dd)) rB � 0;
(A.25)

and

�u0(e0��dE�Bd�Dd)+v0((1��s+�d)�+rBBd+rDDd+�(Dd)) [rD+�
0(Dd)] � 0;
(A.26)

where in each case a strict inequality means that the corresponding nonnega-
tivity condition is binding. As before, these �rst-order conditions are su¢ cient
as well as necessary for a vector (�d; Bd; Dd) to maximize (A.22).
By the equilibrium condition �s = �d; 1��s+�d > 0: By statements (a) and

(b) of the proposition, a symmetric equilibrium also satis�es Dd = D > 0: For
any price system (�; rB ; rD) that supports a symmetric equilibrium allocation,
therefore, conditions (A.24) and (A.26) must hold with equality. Thus,

E =
v0('L+ �(D))

u0(e0 � �E �B �D)
� (A.27)
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and

rD + �
0(D) =

u0(e0 � �E �B �D)
v0('L+ �(D))

; (A.28)

where the right-hand sides have been simpli�ed by use of the market-clearing
conditions and the de�nition of �:
Upon combining (A.27) and (A.28) with the equation E = ��; one obtains

� [rD + �
0(D)] = 1: :

By (A.21), it follows that

� =
1

'+m(D;')
; (A.29)

as claimed in (2.22). From (A.25) and (A.28), one also obtains

rB � rD + �
0(D);

so (A.21) implies
rB � '+m(D;'):: (A.30)

Now (2.23) follow from (A.22) and (A.30).

Proof of Statement (d). By (A.12) and (A.13), bank pro�ts are given as

� = '(�s�� +B +D �K(D))� rBB � rDD: (A.31)

Using (A.21) and rearranging terms, one can rewrite this equation as

� � '�s�� = ('� rB)B + '(K 0(D)D �K(D): (A.32)

If e0 � ê0; �
s = Bs = 0; so (A.32) becomes

� = '(K 0(D)D �K(D); (A.33)

and (2.25) follows because �s = 0 : If e0 > ê0; statement (b) of the proposition
implies D = D� andm(D;') = 0; so (2.22) and (2.23) yield �' = 1 and rB = ';
in this case, (A.32) becomes

(1� �s)� = '(K 0(D)D �K(D); ; (A.34)

and (2.25) again follows. This completes the proof of Proposition 2.1.

A.2 Proofs for Section 3.1

Proof of Lemma 3.1. If (c0; c1(�); �d(�); Bd(�); Dd(�)) is an optimal plan for a

consumer, there exist Lagrange multipliers � > 0 and � > 0 for the constraints
(3.19) and (3.20), such that the following �rst-order conditions hold:

u0(c0) = �; (A.35)
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for almost all ';

v0(c1(') + �( �D('))) = � q('); (A.36)

for almost all b;

��E(b) + �Eq�(~'; b) � 0; (A.37)

with a strict inequality implying that 1� �s(b) + �d(b) = 0;

for almost all b;

�� + �rB(b)Eqmin(1;
~'

'̂(b)
) � 0; (A.38)

with a strict inequality implying that Bd(b) = 0;

and

�� + �rD(b) Eqmin(1;
~'

'̂(b)
)

+

Z '2

'1

v0(c1(') + �(( �D(')))(1� �('; '̂(b)))�0( �D('))f(')d' � 0; (A.39)

with a strict inequality implying that Dd(b) = 0:

Let � := �
� : Then (3.29) follows from (A.35) and (A.36), (3.30) follows from

(A.37), (3.31) follows from (A.38), and (3.32) follows from (A.39) and (A.36).

Proof of Lemma 3.2. I �rst prove (3.34). If the consumers�plans are all the
same, there is nothing to prove. Suppose therefore that the consumers�plans are
not all the same. Let (c0; c1(�); �d(�); Bd(�); Dd(�)) and (ĉ0; ĉ1(�); �̂d(�); B̂d(�); D̂d(�))
be two distinct plans chosen by consumers a and â: Because the two consumers
have the same budget set and the same utility functional, it must be the case
that consumers a and â are actually indi¤erent between the two plans. Because
their budget set is convex and the utility functions u and v are concave, they
are also indi¤erent between these two plans and any convex combination of the
form

�(c0; c1(�); �d(�); Bd(�); Dd(�)) + (1� �)(ĉ0; ĉ1(�); �̂d(�); B̂d(�); D̂d(�))

where � 2 [0; 1]: Because u and v are strictly concave, it follows that

c0 = ĉ0 (A.40)

and that, for all � 2 [0; 1]

�c1(~')+ (1��)c2(~')+ �(� �Dd(~')+ (1��)D̂d(~')) = c1(~')+ �( �D
d(~')); (A.41)
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almost surely.The latter is possible only if �0(� �D(~') + (1 � �)D̂(~')) is almost
surely independent of �, i.e., if �0(�) is almost surely constant on the interval
between �D(~') and D̂(~'):
Now let d1('); d2(') be the in�mum and the supremum over a 2 [0; 1] of

�0( �Dd('; a)): The argument just given implies that �0(�) is almost surely constant
on the interval between d1(') and d2('): Moreover, by de�nition

�Dd('; a) 2 [d1('); d2(')] for all a (A.42)

and, therefore, Z 1

0

�Dd('; �a)d�a 2 [d1('); d2(')]: (A.43)

Hence,

�0
�Z 1

0

�Dd('; �a)d�a

�
= �0( �Dd('; a)) (A.44)

almost surely, for all a:
I next prove that, for almost all banks, in equilibrium, the constraints (3.23)

and (3.10), (3.13), or (3.14) are satis�ed with equality. For the date 0 budget
constraint (3.23), this is trivial because a strict inequality would imply that ei-
ther the investment L(b) can be increased or one of the funding terms �s(b)E(b);
Bs(b); Ds(b) can be decreased, which is incompatible with the optimality of the
bank�s plan.
For the pricing constraints, (3.10), (3.13), and (3.14), the argument is more

complicated. A strict inequality in one of these constraints implies that E(b) can
be increased or rB(b) or rD(b) can be decreased, which would raise the value of
the bank�s objective function unless the corresponding funding variable, �s(b);
Bs(b);or Ds(b); is zero.
So suppose that, for a nonnull set of banks, one of the pricing constraints,

(3.10), (3.13), or (3.14), is strict. For example, suppose that the set B of banks
for which

rD(b) >
'̂(b)

� Eqmin('̂(b); ~')
� �('̂(b)) (A.45)

has positive measure. By the equilibrium conditions (E.4) and (E.3), it follows
that

rD(b)Eqmin(1;
~'

'̂(b)
) >

1

�
� Eq(1� �(~'; '̂(b)))�0( �Ds(~'))

=
1

�
� Eq(1� �(~'; '̂(b)))�0( �Dd(~'))

for every b 2 B:
For every consumer a 2 [0; 1]; therefore, condition (3.32) in Lemma 3.1

therefore implies that

�(a) >
1

�
� Eq(1� �(~'; '̂(b)))�0( �Dd(~')) (A.46)

+Eq(1� �(~'; '̂(b))�0( �Dd(~'; a))
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for almost every b 2 B. By (A.44), the last two terms cancel on the right-hand
side of (A.46) cancel out. For every a 2 [0; 1]; therefore, the parameter �(a) in
Lemma 3.1 satis�es

�(a) >
1

�
: (A.47)

By Lemma 3.1 then,

1� �s(b; a) + �d(b; a) = 0 (A.48)

for almost every bank b such that E(b) = � Eq�(~');

Bd(b; a) = 0 (A.49)

for almost every bank b such that

rB(b) = Eqmin(1;
~'

'̂(b)
) =

1

�
;

and

Dd(b; a) = 0 (A.50)

for almost every bank b such that

rD(b)Eqmin(1;
~'

'̂(b)
) =

1

�
� Eq(1� �(~'; '̂(b))�0( �Dd(~'; a))

=
1

�
� Eq(1� �(~'; '̂(b))�0( �Ds(~')):

By market clearing and the banks�budget constraints for t = 0; it follows that
L(b) = Bs(b) = Ds(b) = 0 for almost every bank b: By market clearing at
t = 1

2 , L(b) = 0 for almost all b implies c1(~'; a) = 0 almost surely for all a:
Also by market clearing, Ds(b) = 0 for almost all bank b implies �( �Dd(~')) = 0
almost surely and therefore �( �Dd(~'; a) = 0 almost surely for all a: But then,
v0(c1(~'; a)+ �( �D(~'; a))) =1 almost surely for all a. But then the equation for
�(a), together with the optimization condition (A.36) in the proof of Lemma
3.1, implies that �(a) = 0 for almost all a; which is incompatible with (A.47).
The assumption that the set of banks for whom the constraint (3.14) holds with
a strict inequality has positive measure thus led to a contradiction and must
be false. The proofs that the constraints (3.6) and (3.13) must also hold with
equality for almost all banks are similar and are left to the reader.
Given that almost all banks�plans satisfy the constraints (3.10), (3.13), and

(3.14) with equality, the parameter �(a) in Lemma 3.1 satis�es �(a) � 1
� for all

a: If the inequality were strict, then, along the lines of the argument just given,
consumer a�s plan would have 1 � �s(b; a) + �d(b; a) = Bd(b; a) = Dd(b; a) for
almost all b and hence c1(~'; a)+ �( �D(~'; a)) = 0 and v0(c1(~'; a)+ �( �D(~'; a))) =
1 almost surely. But then, he equation for �(a), together with the optimization
condition (A.36) in the proof of Lemma 3.1, implies that �(a) = 0 for almost
all a; contrary to the assumption that �(a) > 1

� : Hence �(a) =
1
� : This in turn

implies that the consumers��rst-order conditions hold as equations. Equation

45



(??) follows upon combining (3.32) holding as an equation, (3.34), and (3.14)
holding as an equation.

A.3 Proof of Proposition 3.4

As far as I know, Proposition 3.4 is not subsumed by known existence results,
nor does it follow from standard arguments. The proof must overcome several
di¢ culties: First, the dependence of consumers�liquidity bene�ts on the banks�
funding choices implies that there is an external e¤ect in the model. Second, the
banks�optimization problems are not convex. Third, the assignment of plans
to banks must be measurable. Fourth, there is no natural bound on the banks�
plans.
To overcome these di¢ culties, I will exploit the special structure of the

model. First, along the lines of Lemma 3.2, the special structure of the consumer
speci�cation will be used to deal with the pricing e¤ects of the externalities in
liquidity provision. Second, the continuum of banks will be used to smooth
over any discontinuities that might arise from the nonconvexity of the banks�
optimization problem. Third, along the lines of Hart, Hildenbrand and Kohlberg
(1974), the technical di¢ culties associated with measurability will be avoided
by working with cross-section distributions of banks�plans rather than functions
assigning plans to banks. Finally, boundedness of banks�plans will be obtained
from an interplay of aggregate feasibility and individual optimization. The
argument here is more involved than usual because, with a continuum of banks,
the boundedness of aggregates that follows from feasibility considerations does
not automatically yield boundedness of individual banks�plans.
I �rst use Lemmas 3.1 and 3.2 to simplify the conditions for an equilibrium,

in particular, the conditions for consumer behaviour.

Lemma A.1 Let � > 0 and q(�) be a discount factor and a price system for
t = 1

2 : Consider two mappings b! (L(b); A(b); Bs(b); Ds(b); '̂(b)) from [0; 1] to
R5+ and '! �D(') from ['1; '2] to R+ such that the following conditions hold:
(a) for any ' 2 ['1; '2];

�D(') =

Z 1

0

(1� �('; '̂(b))Ds(b)db; (A.51)

(b)

� =

R '2
'1

v0
�
'
R 1
0
L(b)db+ �

�
�D(')

��
f(')d'

u0
�
e0 �

R 1
0
(A(b) +Bs(b) +Ds(b))db

� ; (A.52)

(c) for any ' 2 ['1; '2];

q(') =
v0
�
'
R 1
0
L(b)db+ �

�
�D(')

��
R '2
'1

v0
�
�'
R 1
0
L(b)db+ �

�
�D(�')

��
f(�')d�'

; (A.53)
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(d) for (almost) all b 2 [0; 1]; the vector (L(b); A(b); Bs(b); Ds(b); '̂(b)) is a
solution to the problem of maximizing the objective

� Eq ~'L� (A+B +D) + �D Eq(1� �(~'; '̂))�0
�
�D(~')

�
(A.54)

under the constraints
L � A+B +D �K(D); (A.55)

� Eqmin(~'; '̂)L = B +D � �D Eq(1� �(~'; '̂))�0
�
�D(~')

�
; (A.56)

and nonnegativity.
Then an equilibrium of the model with full commitment and communication

of banks�choices is obtained by setting

c0(a) = e0 �
Z 1

0

(A(b) +B(b) +D(b))db; (A.57)

c1('; a) = '

Z 1

0

L(b)db (A.58)

�d(b; a) = �s(b) =
A(b)

E(b)
; (A.59)

Bd(b; a) = Bs(b) = B(b); (A.60)

Dd(b; a) = Ds(b) = D(b); (A.61)

E(b) = � Eqmax[0; ~'L(b)� rB(b)B(b)� rD(b)D(b)] (A.62)

rB(b) =
1

� Eqmin(1; ~'
'̂(b) )

; (A.63)

rD(b) =
1

� Eqmin(1; ~'
'̂(b) )

� �('̂(b); (A.64)

for all a and b; and, for any '̂;

�('̂) =
Eq(1� �(~'; '̂))�0

�R
f�bj'̂(�b)<�'D(

�b)d�b
�

Eqmin(1; ~'
'̂(b) )

: (A.65)

Proof. The equilibrium conditions (E.3) and (E.4) hold by construction. By
construction, the consumer�s plan (c0(a); c1(�; a); �d(�; a); Bd(�; a); Dd(�; a)) also
satis�es the �rst-order conditions (A.35) - (A.39), with � = u0(c0(a)) and
� = ��; as well as the constraints for a solution to the consumer�s problem
in condition (E.2). Because the objective function is concave and the constraint
set convex, it follows that condition (E.2) is also satis�ed. To show that con-
dition (E.1) also holds, I note that, for any plan (�s; Bs; Ds; L;E; rB ; rD) that
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satis�es the constraints for the bank�s optimization problem in (E.2), the value
of the bank�s objective function is given as

(1� �s)E � � Eqmax[~'L� rBBs � rDDs; 0]� �sE
= � Eq ~'L� � Eqmin[~'L; rBBs + rDDs]� �sE

= � Eq ~'L� � Eqmin(
~'

'̂
; 1) (rBB

s + rDD
s)� �sE

� � Eq ~'L�Bs �Ds + � Eqmin(
~'

'̂
; 1) �('̂)Ds � �sE

= � Eq ~'L�Bs �Ds + � Eq(1� �(~'; '̂))�0
 Z

f�bj'̂(�b)<~'g
D(�b)d�b

!
Ds � �sE;

(A.66)

where the last equation follows from (A.65). Moreover, the inequalities hold as
equations if the constraints for E; rB ; rD are satis�ed with equality.
By construction, for any b; the plan (�s(b); Bs(b); Ds(b); L(b); E(b); rB(b); rD(b))

satis�es the constraints for E; rB ; rD with equality. Therefore,

(1� �s(b))E(b) (A.67)

= � Eq ~'L(b)�Bs(b)�Ds(b) + � Eq(1� �(~'; '̂(b)))�0
 Z

f�bj'̂(�b)<~'g
D(�b)d�b

!
Ds(b)�A(b);

whereA(b) := �s(b)E(b); by (A.59). For any b for which the vector (L(b); A(b); B(b); D(b); '̂(b))
solves the problem of maximizing (A.54) under the constraints (A.55), (A.56),
and nonnegativity, it follows that

(1��s(b))E(b) � � Eq ~'L�B�D+� Eq(1��(~'; '̂))�0
 Z

f�bj'̂(�b)<~'g
D(�b)d�b

!
D�A

for any vector (L;A;B;D; '̂ that also satis�es (A.55), (A.56), and nonnegativity,
and hence, by (A.66) that

(1� �s(b))E(b) � (1� �s)E

for any plan (�s; Bs; Ds; L;E; rB ; rD) that satis�es the constraints for the bank�s
optimization problem in (E.2). Validity of (E.2) follows immediately. This
completes the proof of Lemma A.1

I next reformulate the conditions in Lemma A.1 in terms of the cross-section
distribution H of the vectors (L(b); A(b); Bs(b); Ds(b); '̂(b)) that induced by
the mapping b! (L(b); A(b); Bs(b); Ds(b); '̂(b)). For this purpose, I note that,
with an abuse of notation, equations (A.51), (A.52), (A.53) can be rewritten in
the form

�D(') = �D('jH); � = �(H); q(') = q('jH); (A.68)
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where

�D('jH) :=
Z
fL;A;B;D;'̂)2R5+j'̂<'g

D dH(L;A;B;D; '̂); (A.69)

�(H) :==

R
v0
�
�'
R
R5+
L dH(L;A;B;D; '̂) + �

�
�D(�')

��
f(�')d�'

u0
�
e0 �

R
R5+
(A+B +D) dH(L;A;B;D; '̂)

� ; (A.70)

and

q('jH) =
v0
�
'
R
R5+
L dH(L;A;B;D; '̂) + �

�
�D(')

��
R
v0
�
�'
R
R5+
L dH(L;A;B;D; '̂) + �

�
�D(�')

��
f(�')d�'

: (A.71)

Lemma A.2 Let H 2 M(R5+) be a measure that assigns all probability mass
to set of vectors (L;A;Bs; Ds; '̂) that maximize the objective

�(H) Eq(H)~'L�(A+Bs+Ds)+�(H) Ds Eq(H)(1��(~'; '̂))�0
�
�D(~'jH)

�
(A.72)

under the constraints

L � A+Bs +Ds �K(Ds); (A.73)

�(H) Eq(H)min(~'; '̂)L = Bs +Ds � �(H) Ds Eq(H)(1� �(~'; '̂))�0
�
�D(~'jH)

�
:

(A.74)
and nonnegativity. Further let b! (L(b); A(b); Bs(b); Ds(b); '̂(b)) be a mapping
from [0; 1] to R5+ such that the distribution of the vector (L(b); A(b); Bs(b); Ds(b); '̂(b))
that is induced by the uniform distribution on [0; 1] is equal to H: Then the
discount factor �(H) and price system q(�jH) for t = 1

2 and the mappings
b ! (L(b); A(b); Bs(b); Ds(b); '̂(b)) and ' ! �D('jH) satisfy conditions (a) -
(d) of Lemma A.1.

Proof. Statements (a) - (c) follow because (A.69) - (A.71) imply (A.51) -
(A.53) if H is the distribution of (L(b); A(b); Bs(b); Ds(b); '̂(b)) that is induced
by Lebesgue measure. Statement (d) follows from the fact that H assigns full
measure to the set of solutions to the problem of maximizing (A.72) subject to
(A.73), (A.74), and nonnegativity.

For anyH 2M(R5+); the existence of a mapping b! (L(b); A(b); Bs(b); Ds(b); '̂(b))
from [0; 1] to R5+ such that the distribution of the vector (L(b); A(b); Bs(b); Ds(b); '̂(b))
that is induced by the uniform distribution on [0; 1] is equal to H follows by
standard arguments; see, e.g., Hart, Hildenbrand, and Kohlberg (1974), pp. 164
¤. The problem of proving the existence of an equilibrium with full commit-
ment and communication of banks�choices has thus been reduced to proving
the existence of a measure H on R5+ that satis�es the conditions of Lemma A.2.
To deal with this latter problem, I will use a standard �xed-point argument.

LetM(R5+) be endowed with the topology of weak convergence, i.e., the weak*
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topology. For any y 2 (e0;1); let Hy be the subspace ofM(R5+) such that, for
any H 2 Hy,

H([0; y]j4 � [0; '2]g = 1; (A.75)

and

0 <

Z
(L+K(Ds))dH �

Z
(A+Bs +Ds)dH < e0: (A.76)

Lemma A.3 For any y 2 (e0;1); let fHng be any sequence of measures in
Hy that converges to a measure H 2 Hy: Then, as n goes out of bounds, the
following are true:
(a) The integrals

R
LdHn;

R
AdHn;

R
BsdHn;

R
DsdHn converge to

R
LdH;R

AdH;
R
BdH; and

R
DsdH; respectively.

(b) For almost every ' 2 ['1; '2]; �D('jHn) converges to �D('jH).
(c) For almost every ' 2 ['1; '2]; v0('

R
LdHn + �( �D('jHn))) converges to

v0('
R
LdH + �( �D('jH))):

(d) For any uniformly bounded sequence fgng of measurable function gn :
['1; '2]! R; if gn(') converges to g(') for almost all '; then

R
gn(')v0('

R
LdHn+

�( �D('jHn)))f(')d' converges to
R
g(')v0('

R
LdH + �( �D('jH)))f(')d'.

(e) �(Hn) converges to �(H):
(f) For any uniformly bounded sequence fgng of measurable function gn :

['1; '2] ! R; if gn(') converges to g(') for almost all '; then Eq(Hn)g
n(~')

converges to Eq(H)g(~'):

Proof. (a) This is immediate from the de�nition of weak convergence and the
fact that, for Hn 2 Hy; L;A;Bs; and Ds are bounded by y; Hn-almost surely.
(b) Fix ' and assume that H(R4+ � f'g) = 0; i.e., under the marginal dis-

tribution on [0; '2] that is induced by H; ' is not an atom. Observe that the
map (Ds; '̂) ! (1 � �('; '̂))Ds is continuous except at points (Ds; '̂) with
'̂ = '. By Theorem 5.1, p. 30, in Billingsley (1968), it follows that the dis-
tributions of (1 � �('; '̂))Ds that are induced by Hn; n = 1; 2; :::; converge to
the distribution that is induced by H: Because, for Hn 2 Hy; (1 � �('; '̂))Ds

is bounded by y; it follows that �D('jHn) =
R
(1� �('; '̂))DsdHn converges to

�D('jH) =
R
(1� �('; '̂))DsdH: The statement now follows from the observa-

tion that the marginal distribution on [0; '2] that is induced by H has at most
countably many atoms, and therefore, that H(R4+ � f'g) = 0 for almost every
' 2 [0; '2].
(c) Because the function v0(�) is continuous, this statement follows immedi-

ately from statements (a) and (b).
(d) Since Hn 2 H and H 2 H imply

R
LdHn > 0 and

R
LdH > 0; state-

ment (a) implies that there exists L̂ > 0 such that
R
LdHn � L̂ for all n:

Because the function v0(�) is decreasing, it follows that, for any ' 2 ['1; '2];
v0('

R
LdHn + �( �D('jHn))) � v0('

R
LdHn) � v0('L̂) for all n: For any uni-

formly bounded sequence fgng of measurable function gn : ['1; '2]! R; there-
fore, jgn(')j v0('

R
LdHn + �( �D('jHn))) � �gv0('L̂) for all n; where �g is the
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uniform bound for jgn(')j ; ' 2 ['1; '2]: Moreover,Z '2

'1

�gv0('L̂)f(')d') �
�f�g

L̂

h
v('2L̂)� v('1L̂)

i
where f is the maximum of f(') on the interval ['1; '2]. Statement (d) now fol-
lows from Lebesgue�s Dominated-Convergence Theorem (see, e.g., Hildenbrand
1974, p. 46).
(e) By statement (d), the integrals

R '2
'1

v0('
R
LdHn + �( �D('jHn)))f(')d'

converge to
R '2
'1

v0('
R
LdH + �( �D('jH)))f(')d'. By the continuity of u0(�)

and statement (a), the expressions u0(e0 �
R
(A + Bs + Ds)dHn) converge to

u0(e0�
R
(A+Bs+Ds)dH): Convergence of �(Hn) to �(H) follows immediately.

(f) For any bounded measurable function gn : ['1; '2]! R and any n;

Eq(Hn)g(~') =

R '2
'1

g(')v0('
R
LdHn + �( �D('jHn)))f(')d'R '2

'1
v0('

R
LdHn + �( �D('jHn)))f(')d'

; (A.77)

similarly, for any g : ['1; '2]! R;

Eq(H)g(~') =
R '2
'1

g(')v0('
R
LdH + �( �D('jH)))f(')d'R '2

'1
v0('

R
LdH + �( �D('jH)))f(')d'

: (A.78)

If the sequence fgng is uniformly bounded and, moreover, gn(') converges
to g(') for almost all '; statement (d) implies that the numerators in (A.77)
converge to the numerator in (A.78) and the denominators in (A.77) converge
to the denominator in (A.78). Convergence of Eq(Hn)g(~') to Eq(H)g(~') follows
immediately.

Lemma A.4 Let y 2 (e0;1) be given. For any H 2 Hy and any X 2
R+ [ f1g; let 	(H;X) be the set of vectors (L;A;Bs; Ds; '̂) 2 R5+ that solve
the problem of maximizing the objective (A.72) under the constraints (A.73),
(A.74), and

A+Bs +Ds � X: (A.79)

Then the graph of the relation 	 from Hy � (R+ [ f1g) is closed. Moreover,
the restriction of 	 to Hy � R+ is upper hemi-continuous and compact-valued.

Proof. The proof proceeds in three steps.
Step 1: The objective (A.72) is jointly continuous in (H;X) 2 Hy � (R+ [

f1g) and (L;A;Bs; Ds; '̂) 2 R5+:
To prove this statement, let f(Hn; Xn)g and f(Ln; An; (Bs)n; (Ds)n; '̂n)g be

any two sequences in Hy � (R+ [ f1g) and R5+; respectively, and suppose that
(Hn; Xn) converges to (H;X) 2 Hy�(R+[f1g) and (Ln; An; (Bs)n; (Ds)n; '̂n)
converges to (L;A;Bs; Ds; '̂) 2 R5+ as n goes out of bounds. By statements (e)
and (f) of Lemma A.3, �(Hn) Eq(Hn)~'L

n converges to �(H) Eq(H)~'L: Trivially
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also, �(An + (Bs)n + (Ds)n) converges to �(A + Bs + Ds): To deal with the
terms �(Hn) (Ds)n Eq(Hn)(1��(~'; '̂n))�0

�
�D(~'jHn)

�
; introduce functions gn :

['1; '2]! R+, n = 1; 2; :::; and g : ['1; '2]! R+ such that, for any ';

gn(') = (1� �('; '̂n))�0( �D('jHn))

and
g(') = (1� �('; '̂))�0( �D('jH)):

The functions gn; n = 1; 2; :::; and g are obviously uniformly bounded. Moreover,
as n becomes large, gn(') converges to g(') unless �D('jHn) fails to converge to
�D('jH) or unless ' = '̂; so ' is a discontinuity point of �(�; '̂). By statement
(b) of Lemma A.3,it follows that gn(') converges to g(') for almost all ':
By statements (e) and (f) of Lemma A.3, therefore, �(Hn) (Ds)n Eq(Hn)(1 �
�(~'; '̂n))�0

�
�D(~'jHn)

�
converges to �(H) Ds Eq(H)(1� �(~'; '̂))�0

�
�D(~'jH)

�
as

n becomes large. Continuity of the objective (A.72) in (H;X) 2 Hy�(R+[f1g)
and (L;A;Bs; Ds; '̂) 2 R5+ follows immediately.
Step 2: For any (H;X) 2 Hy�(R+[f1g); let �(H;X) be the set of vectors

(L;A;Bs; Ds; '̂) 2 R5+ that satisfy the constraints (A.73), (A.74), and (A.79).
Then � is a continuous and closed-valued correspondence from Hy�(R+[f1g)
to R5+:If X 2 R+; �(H;X) is compact.
Trivially, (0; 0; 0; 0; 0) 2 �(H;X) for all (H;X) so �(H;X) is nonempty. To

prove that � is upper hemi-continuous and closed-valued, let f(Hn; Xn)g and
f(Ln; An; (Bs)n; (Ds)n; '̂n)g be any two sequences in Hy�(R+[f1g) and R5+;
respectively, and suppose that (Hn; Xn) converges to (H;X) 2 Hy � (R+ [
f1g) and (Ln; An; (Bs)n; (Ds)n; '̂n) converges to (L;A;Bs; Ds; '̂) as n goes
out of bounds. Suppose that (Ln; An; (Bs)n; (Ds)n; '̂n) 2 �(Hn; Xn) for all n:
Then, trivially, (L;A;Bs; Ds; '̂) 2 R5+ and, moreover, (L;A;Bs; Ds; '̂) satis�es
(A.73) and (A.79). Moreover, the same continuity arguments as in Step 1 show
that �(Hn) Eq(Hn)min(~'; '̂

n)Ln converges to �(H) Eq(H)min(~'; '̂)L and that
�(Hn) (Ds)n Eq(Hn)(1��(~'; '̂n))�0

�
�D(~'jHn)

�
converges to �(H) Ds Eq(H)(1�

�(~'; '̂))�0
�
�D(~'jH)

�
: The vector (L;A;Bs; Ds; '̂) thus also satis�es (A.74) and

must be an element of �(H;X):
To prove lower hemi-continuity, I �rst show that, for any X 2 R+[f1g;the

section �(�; X) of the correspondence � that is determined by X is lower hemi-
continuous. For this purpose, I �x (H;X) 2 Hy � (R+ [ f1g) and consider
the behaviour of �(Ĥ;X) for Ĥ close to H: Observe that �(Ĥ;X) depends on
Ĥ only through the constraint (A.74). If (L;A;Bs; Ds; '̂) 2 �(H;X) satis�es
Bs + Ds = 0; then, trivially, (A.74) implies '̂ � L = 0 and (L;A;Bs; Ds; '̂) 2
�(Ĥ;X) for all Ĥ: Alternatively, if (L;A;Bs; Ds; '̂) 2 �(H;X) satis�es Bs > 0;
the e¤ects of a small deviation of Ĥ from H on (A.74) can be neutralized by a
small change in Bs, combined with an equal change of opposite sign in A while
keeping L;Ds; and '̂ constant. If (L;A;Bs; Ds; '̂) 2 �(H;X) satis�es Ds > 0
and '̂ > 0; the e¤ects of a small deviation of Ĥ from H on (A.74) can be
neutralized by small changes in L;A; and Ds; while keeping Bs and '̂ constant.
If (L;A;Bs; Ds; '̂) 2 �(H;X) satis�es Ds > 0 and '̂ = 0; the e¤ects of a small
deviation of Ĥ from H on (A.74) can be neutralized by a small change in Ds
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and '̂; possibly in combination with small increases in L and A: In all cases,
�(Ĥ;X) contains a vector that is close to (L;A;Bs; Ds; '̂) 2 �(Ĥ;X) if Ĥ is
close to H:
I next show that, for any H 2 Hy; the section �(H; �) of � that is determined

by H is also lower hemi-continuous. If X = 0; then, trivially (L;A;Bs; Ds; '̂) 2
�(H;X) implies (L;A;Bs; Ds; '̂) = (0; 0; 0; 0; 0) and hence (L;A;Bs; Ds; '̂) 2
�(H; X̂) for all X̂ 2 R+: If X > 0; then, by inspection of (A.73), (A.74), and
(A.79), (L;A;Bs; Ds; '̂) 2 �(H;X) implies that, for any X̂ 2 R+; ( X̂XL;

X̂
XA;

X̂
XB

s; X̂XD
s; '̂) 2

�(H; X̂): In either case, it follows that, if X̂ is close to X; then �(H; X̂) contains
a vector that is close to (L;A;Bs; Ds; '̂) 2 �(H;X):
From these two �ndings, I conclude that, if (Ĥ; X̂) is close to (H;X); then,

for any (L;A;Bs; Ds; '̂) 2 �(H;X), �(Ĥ;X) contains a vector that is close
to (L;A;Bs; Ds; '̂) and �(Ĥ; X̂) contains a vector that is close to the latter
element of �(Ĥ;X). Hence, � is lower hemi-continuous.
Step 3: Given Steps 1 and 2, the lemma follows from the maximum theorem

(see, e.g., Hildenbrand, 1974, pp. 29 f.)

The following lemma contains the basic �xed-point argument. The argument
is more intricate than usual because it involves two di¤erent spaces HX �
M([0; X]4 � [0; '2]) and Hy �M([0; y]4 � [0; '2]); where X > y > e0: Of these
two spaces, HX is the one to which the actual �xed-point argument will be
applied (with a suitable compacti�cation). Heuristically, HX should be thought
of as a space of measures that can result from the banks�optimizing against the
price system they expect to prevail. The parameter X corresponds to the bound
in Lemma A.4. In the equilibrium condition (E.1) of course, there is no such
bound. Subsequently, I will therefore eliminate this bound by letting X become
large and showing that whatever limits I obtain will be among the solutions to
the banks�optimization problem in the limit.
As X becomes large, however, there may be a discontinuity in the banks�

optimization problem. This problem itself depends on the distribution H as
this distribution a¤ects expectations and the price system. As indicated by
equations (A.68) - (A.71), the e¤ects of H on the price system depend on the
expected values

R
LdH;

R
AdH; etc. Unless the vectors (L;A;Bs; Ds; '̂) in the

supports of the distributions under consideration are uniformly bounded, these
expected values may exhibit a discontinuity in the limit asX goes out of bounds.
To avoid this discontinuity, I introduce a second bound, y and a second space
Hy of measures so that, for any vector (L;A;Bs; Ds; '̂) in the support of a
measure in Hy; L 2 [0; y]; A 2 [0; y]; etc. Heuristically, Hy should be thought
of as a space of measures that induce the price systems against which banks
optimize. As X goes out of bounds, y is kept �xed, so that the continuity and
closed-graph properties in Lemmas A.3 and A.4 can be used.
As I introduce the distinction between the space Hy of measures that induce

the price systems against which banks optimize and the space HX of measures
that can result from the banks�optimization, I must make sure that the elements
of Hy that I focus on are compatible with the banks�optimization. This is the
point of the following lemma.
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Lemma A.5 Fix y 2 (e0;1) and X 2 (y;1): There exists a measure H�
X 2

Hy such that H�
X(	(H

�
X ; X)) = 1, where, as in Lemma A.4, for any (H;X) 2

Hy � (R+ [ f1g); 	(H;X) is the set of vectors (L;A;Bs; Ds; '̂) 2 R5+ that
maximize the objective (A.72) under the constraints (A.73), (A.74), and (A.79).

Proof. Fix X 2 R+; and let �HX be the closure of the set HX � M([0; X]4 �
[0; '2]): The de�nition of 	 implies that; for any H 2 Hy; the set 	(H;X)
is a subset of [0; X]4 � [0; '2] and, therefore, M(	(H;X)) � �HX : By Lemma
A.4, it follows that, for any continuous function � : �HX ! Hy, the map-
ping H !M(	(�(H); X)) is an upper-hemi-continuous, compact- and convex-
valued correspondence from �HX into itself. Since, obviously, �HX is a com-
pact convex subset ofM[0; X]4� [0; '2]); the �xed-point theorem of Glicksberg
(1952) and Ky Fan (1952) implies the existence of a measure HX

� 2 HX such
that HX

� 2M(	(�(H); X)):

The function mapping �HX into Hy will be the composition of three dis-
tinct functions, r(�j�); s(�); and t(�j�); where � 2 (0; 1) and � 2 (0; e0) are two
parameters that I introduce in order to deal with di¢ culties arising from the
non-compactness of Hy and from the fact that Hy is larger than the domain of
the functions de�ned by (A.68) - (A.71). :
For any � 2 [0; 1) and any H 2 �HX ; I de�ne

r(Hj�) = ��(e0�K(e0);0;0;e0;'1) + (1� �)H: (A.80)

For � 2 (0; 1); the map r(�j�) so de�ned takes �HX into the set of measures that
assign positive mass to the interior of the set [0; y]4 � [0; '2]:
Next, using the fact that y > e0 let g be a continuous function from R5+

into [0; 1] that takes the value one if (L;A;Bs; Ds; '̂) 2 [0; e0]4� [0; '1] and the
value zero if (L;A;Bs; Ds; '̂) =2 [0; y]4 � [0; '2]: For any measure H 2 M(R5+)
that assigns positive mass to the interior of the set [0; y]4� [0; '2]; de�ne a new
measure s(H) by setting

s(BjH) =
R
B
gdHR

R5+
gdH

: (A.81)

Notice that, for any H; the support of s(H) is a subset of the support of H: The
mapping s takes values in the set of measures satisfying (A.75) as well as

0 <

Z
(L+K(Ds))dH �

Z
(A+Bs +Ds)dH < y: (A.82)

Finally, for � 2 (0; e0), I de�ne a function t(�j�) from the set of measures
satisfying (A.75) and (A.82) to Hy by setting

(Hj�) := min
�
1;

e0 � �R
(A+Bs +Ds)dH

�
; (A.83)

ĝ(L;A;Bs; Ds; '̂jH; �) = ((Hj�)(L;A;Bs; Ds); '̂); (A.84)

and
t(Hj�) = H � ĝ�1(�jH; �): (A.85)
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I claim that, for any H and � ; t(Hj�) 2 Hy: To prove this claim, I note that,
for any H and � ; Z

Ldt(Hj�) = (Hj�)
Z
LdH; (A.86)Z

K(Ds)dt(Hj�) =
Z
K((Hj�)Ds)dHj; (A.87)

and Z
(A+Bs +Ds)dt(Hj�) = (Hj�)

Z
(A+Bs +Ds)dH: (A.88)

Moreover, since (Hj�) � 1 and the function K is convex,Z
K((Hj�)Ds)dH � (Hj�)

Z
K(Ds)dH; (A.89)

Finally,
R
LdH > 0 implies

R
Ldt(Hj�) > 0; and

R
K(Ds)dH > 0 impliesR

DsdH > 0 and
R
(Hj�) DsdH > 0; hence

R
K((Hj�)Ds)dH > 0. Upon

collecting these results and using (A.83), one �nds that, if the measure H satis-
�es (A.82), then the measure t(Hj�) also satis�es (A.82). The conclusion that
t(Hj�) belongs to Hy follows immediately.
The functions (H; �) ! r(Hj�), H ! s(H); and (H; �) ! t(Hj�) are obvi-

ously continuous. For any � 2 (0; 1) and � 2 (0; e0) therefore, the composition

��� := t(�j�) � s � r(�j�) (A.90)

is a continuous function from �HX to Hy: As discussed above, it follows that, for
any � 2 (0; 1); � 2 (0; e0) andX > e0; the correspondenceH !M(	(t(s(r(Hj�))j�); X))
has a �xed point, i.e., there exists a measure HX

�� 2 �HX such that

HX
�� (	(t(s(r(H

X
�� j�))j�); X)) = 1: (A.91)

Equivalently,
HX
�� (	(H

�X
�� ; X)) = 1; (A.92)

where H�X
�� 2 Hy is given as

H�X
�� := t(s(r(HX

�� j�))j�): (A.93)

I will show that, as � and � converge to zero, the pairs (HX
�� ;H

�X
�� ) have a

limit (HX
�� ;H

�X
�� ) 2 �HX �Hy; and that this limit satis�es

HX(	(H�X ; X)) = 1 and H�X := s(HX): (A.94)

In the process, I have to deal with the di¢ culty that, because of the strict
inequalities in (A.76), the set Hy is not compact. To deal with this di¢ culty,
for any " > 0; I introduce the set Hy

"of measures H 2 Hy such that

" �
Z
(L+K(Ds))dH �

Z
(A+Bs +Ds)dH � e0 � ": (A.95)
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Claim: There exists �" > 0 such that, for any � 2 (0; 1); � 2 (0;�"); the
measure H�X

�� that is de�ned by (A.93) and the measure HX
�� is an element of

the subset Hy
�" of Hy.

To proves this claim, I proceed in several steps.
Step 1: For any � 2 (0; 1); � 2 (0; e0) and X > y; the measure H�X

�� that is
de�ned by HX

�� and (A.93) satis�esZ
LdH�X

�� � �
Z
(A+Bs +Ds)dH�X

�� ; (A.96)

where � > 0 is the parameter given by the assumption that K 0(Ds) � 1 � �
for all Ds:
To prove this claim, I note, that, for any vector (L;A;Bs; Ds; '̂) 2 	(H�X

�� ; X);

L+K(Ds) = A+Bs +Ds: (A.97)

By (A.91), therefore, (A.97) holds HX
�� -almost surely. By (A.80) and (A.81), it

follows that, for any �; (A.97) also holds r(HX
�� j�)-almost surely and s(r(HX

�� j�))-
almost surely. Thus,Z

(L+K(Ds))ds(r(HX
�� j�)) =

Z
(A+Bs +Ds)ds(r(HX

�� j�)):

Because K(�) is convex and K(0) = 0, it follows thatZ
Lds(r(HX

�� j�)) �
Z
(A+Bs +Ds)ds(r(HX

�� j�))�
Z
DsK 0(Ds)ds(r(HX

�� j�)):

By (A.81) - (A.83) and (A.93) therefore,Z
LdH�X

�� �
Z
(A+Bs +Ds)dH�X

�� �
Z
DsK 0(Ds)dH�X

�� :

Now (A.96) follows because 0 � K 0(Ds) � 1�� for all Ds:
Step 2: Let "1 > 0 be such that

u0("1) >
v('2�(e0 � "1))
�(e0 � "1)

�f

"Z '2

'1

'f(')d'+ �0(0)

#
; (A.98)

where �f is again the maximum of f(') on the interval ['1; '2]: Then, for any
� 2 (0; 1� "1=e0) and any � 2 (0; e0),Z

(A+Bs +Ds)dH � e0 � "1: (A.99)

If this claim is false, there exist � 2 (0; 1� "1=e0) and � 2 (0; e0) such thatZ
(A+Bs +Ds)dH�X

�� > e0 � "1: (A.100)
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By (A.83) - (A.85), (A.81), and (A.80), it follows thatZ
(A+Bs +Ds)dH�X

�� �
Z
(A+Bs +Ds)ds(r(HX

�� j�))

�
Z
(A+Bs +Ds)dr(HX

�� j�)

= �e0 + (1� �)
Z
(A+Bs +Ds)dHX

�� ;

so (A.100) and � 2 (0; 1� "1=e0) implyZ
(A+Bs +Ds)dHX

�� > 0: (A.101)

I will show that (A.101) is incompatible with the requirement thatHX
�� (	(H

�X
�� ; X)) =

1: The idea is that, if (A.100) holds, date 0 consumption is so small that the
returns banks must o¤er to consumers are so high that pro�t maximization
requires banks to be inactive.
Consider the problem of maximizing the objective (A.72) under the con-

straints (A.73), (A.74), and (A.79). For H = H�X
�� ; the objective (A.72) takes

the form

�(H�X
�� ) Eq(H�X

�� )
~'L�(A+Bs+Ds)+�(H�X

�� ) D
s Eq(H�X

�� )
(1��(~'; '̂))�0

�
�D(~'jH�X

�� )
�
:

(A.102)
The de�nition of �(H�X

�� ) and Eq(H�X
�� )

~' yields

�(H�X
�� ) =

R '2
'1

v0('
R
LdH�X

�� + �( �D('jH�X
�� )) f(')d'

u0(e0 �
R
(A+Bs +Ds)dH�X

�� )

and

�(H�X
�� )Eq(H�X

�� )
~' =

R '2
'1

' v0('
R
LdH�X

�� + �( �D('jH�X
�� )) f(')d'

u0(e0 �
R
(A+Bs +Ds)dH�X

�� )
:

By (A.96), (A.100) and the concavity of v(�) and u(�); it follows that

�(H�X
�� ) �

R '2
'1

v0('�(e0 � "1)) f(')d'
u0(21)

� v('2�(e0 � "1))
�(e0 � "1)u0(21)

�f

and

�(H�X
�� )Eq(H�X

�� )
~' �

R '2
'1

' v0('�(e0 � "1)) f(')d'
u0("1)

�
R '2
'1

v0('�(e0 � "1)) f(')d'
u0("1)

Z '2

'1

'f(')d'

� v('2�(e0 � "1))
�(e0 � "1)u0(21)

�f

Z '2

'1

'f(')d':
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The objective (A.102) is thus bounded above by

(�(H�X
�� ) [Eq(H�X

�� )
~'+ �0(0)]� 1)(A+Bs +Ds)

� :

 
v('2�(e0 � "1))
�(e0 � "1)u0(21)

"Z '2

'1

'f(')d'+ �0(0)

#
� 1
!
(A+Bs +Ds):

(A.103)

By the de�nition of "1; the �rst factor in the product on the right-hand side
of (A.103) is strictly negative. The right-hand side of (A.103), as well as the
objective (A.102) is therefore maximized by setting A + Bs + Ds = 0: More
precisely, for H�X

�� satisfying (A.98), 	(H�X
�� ; X) consists of the set of vectors

(L;A;Bs; Ds; '̂) that satisfy L = A = Bs = Ds = 0: Since HX
�� (	(H

�X
�� ; X)) =

1; it follows that
R
(A+ Bs +Ds)dHX

�� = 0; which contradicts (A.101). Step 2
is thereby completed.
Step 3: Let "2 > 0 be such that

u0(e0 � "2=�) < v0('2("2 + �("2=�)) �
Z '2

'1

'f(')d': (A.104)

Then, for any � 2 (0; 1); � 2 (0; e0 � "2=�),

"2 �
Z
LdH�X

�� : (A.105)

If this claim is false, there exist � 2 (0; 1) and � 2 (0; e0 � "2=�) such thatZ
LdH�X

�� < "2: (A.106)

By (A.96), it follows thatZ
(A+Bs +Ds)dH�X

�� <
"2
�

(A.107)

and therefore,
�D('jH�X

�� ) �
Z
DsdH�X

�� � "2
�
�: (A.108)

Using a similar logic as in Step 2, I will show that (A.106), (A.107), and (A.108)
are incompatible with the requirement that HX

�� (	(H
�X
�� ; X)) = 1: The idea is

that, if (A.106), (A.107), and (A.108) hold, then the returns that banks must
o¤er to consumer are so low that pro�t maximization requires banks to raise
lots of funds, so that the bound X is binding.
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By (A.96), (A.106), (A.107) and the concavity of v(�) and u(�);

�(H�X
�� )Eq(H�X

�� )
~' =

R '2
'1

'v0('
R
LdH�X

�� + �( �D('jH�X
�� )) f(')d'

u0(e0 �
R
(A+Bs +Ds)dH�X

�� )

>

R '2
'1

'v0('"2 + �("2=�)) f(')d'

u0(e0 � "2=�)

>
v0('2"2 + �("2=�)) �

R '2
'1

' f(')d'

u0(e0 � "2=�)
:

By (A.104) therefore, �(H�X
�� )Eq(H�X

�� )
~' > 1: By inspection of the objective

(A.72) and the constraints (A.73) and (A.74), it follows that any element of
	(H�X

�� ; X) must satisfy L = X or A = X: Since X > y; therefore, 	(H�X
�� ; X)\

[0; y]4 � [0; '̂] = ;: By (A.92), (A.80) and (A.81), it follows that

s(r(HX
�� j�)) = �(e0�K(e0);0;0;e0)

and, hence, that Z
(A+Bs +Ds)ds(r(HX

�� j�)) = e0:

By (A.83) - (A.85), therefore,Z
(A+Bs +Ds)dH�X

�� = e0 � � ;

which is incompatible with (A.107) if e0 � � > "2=�: The assumption thatR
LdH�X

�� < "2 for some � 2 (0; 1) and � 2 (0; e0 � "2=�) has thus led to a
contradiction and must be false. This completes step 3.
Upon setting �" = min("1; "2); one �nds that, for any � 2 (0;�"); � 2 (0; e0��");

the measure H�X
�� that is de�ned by (A.93) and HX

�� satisfying (A.91) is an
element of the subset Hy

�" of Hy:
To complete the proof of Lemma A.5, let f�kg1k=1 and f�kg1k=1 be two null

sequences and consider the associated sequence f(HX
�k�k

;H�X
�k�k

)g in �HX �Hy:

By the preceding claim, the sequence f(HX
�k�k

;H�X
�k�k

)g may be taken to lie in
the set �HX �Hy

�" ; which is compact. Therefore this sequence has a limit point
(HX ;H

�
X) 2 �HX �Hy

�" : By Lemma A.4 and (A.91),

HX(	(H
�
X ; X)) = 1;

i.e. the support of HX is a subset of 	(H�
X ; X):

Moreover, by the continuity of the functions (H; �) ! r(Hj�), H ! s(H);
and (H; �)! t(Hj�), the measures HX and H�

X satisfy the equation

H�
X = s(HX):

By (A.81),therefore, every point in the support of H�
X is also contained in the

support of HX and is thus contained in the set 	(H�
X ; X): Thus,

H�
X(	(H

�
X ; X)) = 1: (A.109)
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The proof of Lemma A.5 is complete.

Proof of Proposition 3.4. Fix some y > e0 and let fXkg1k=1 be any sequence
in R+ that goes out of bounds. Consider the associated sequence fH�

Xk
g1k=1 of

measures in Hy that is given by Lemma A.5. By the argument given in the proof
of Lemma A.5, the measures H�

Xk
all belong to the compact subset Hy

�" of Hy

that satisfy (A.95) for " = �" : with �" = min("1; "2) given by (A.98) and (A.104),
which is independent of X: Therefore the sequence fH�

Xk
g1k=1 has a convergent

subsequence. By Lemmas A.5 and A.4, any limit H� of the sequence fH�
Xk
g1k=1

satis�es
H�(	(H�;1)) = 1:

The measure H� thus satis�es the premises of Lemma A.2.
As mentioned above, standard arguments, as for example in Hart, Hilden-

brand, and Kohlberg (1974), pp. 164 ¤., also imply the existence of a mapping
b ! (L(b); A(b); Bs(b); Ds(b); '̂(b)) from [0; 1] to R5+ such that the distribu-
tion of the vector (L(b); A(b); Bs(b); Ds(b); '̂(b)) that is induced by the uniform
distribution on [0; 1] is equal to H�. The proposition therefore follows from
Lemmas A.1 and A.2.

A.4 Proof of Propositions 3.5 and 3.6

As discussed in the text, the banks�maximization problem in condition (E.1) is
equivalent to the problem of A = �sE;Bs; Ds; '̂ so as to maximize the objective

� Eq ~' (A+Bs +Ds �K(Ds))�Bs �Ds + � Eq(1� �(~'; '̂))�0( �Ds(~')) Ds �A
(A.110)

under the constraint

� Eqmin(~'; '̂) (A+Bs+Ds�K(Ds)) = Bs+Ds�� Eq(1��(~'; '̂))�0( �Ds(~')) Ds:
(A.111)

Proof of Proposition 3.5. The proof proceeds through a sequence of claims.
The ordering of these claims is not the same as the ordering of the correspond-
ing statements in the proposition but instead follows the internal logic of the
argument.
Claim 1: � Eq ~' � 1:
To see this, it su¢ ces to note that, if � Eq ~' > 1; then, by setting Bs = Ds =

'̂ = 0 and making A arbitrarily large, one can make the value of the objective
function arbitrarily large. In this case, the bank�s maximization problem has
no solution.
Claim 2: If � Eq ~' = 1; then '̂(b) � '1 for almost all b with D

s(b) > 0;
moreover, �D(') =

R 1
0
Ds(b)db = D�(Eq ~'); regardless of ':

If � Eq ~' = 1: the objective (A.110) takes the form

�� Eq ~' K(Ds) + � Eq(1� �(~'; '̂))�0( �Ds(~')) Ds; (A.112)
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which depends only on Ds and '̂: Suppose that the bank chooses a plan with
Ds > 0. If '̂ > '1, the value of the term

� Eq(1� �(~'; '̂))�0( �Ds(~')) Ds = �

Z '2

'̂

�0( �Ds('))q(')f(')d' �Ds

in the objective function (A.112) can be increased by lowering '̂. Such a decrease
is compatible with the constraint (A.111) if at the same time A is increased by
the requisite amount.
Thus if � Eq ~' = 1; then for any bank b, Ds(b) > 0 implies '̂(b) � '1.hence

�(~'; '̂(b)) = 0 and
(1:�(~'; '̂(b)))Ds(b) = Ds(b) (A.113)

almost surely. Trivially, equation (A.113) also holds if Ds(b) = 0: Therefore
� Eq ~' = 1 implies that

�Ds(~') = �Ds :=

Z 1

0

Ds(b)db (A.114)

almost surely. (A.112) thus takes the form

�� Eq ~' K(Ds) + � �0( �Ds) Ds: (A.115)

Maximization of (A.115) with respect to Ds, using suitable adjustments in A
to keep the default point below '1; requires that

Eq ~' K 0(Ds) = �0( �Ds): (A.116)

This �rst-order condition must be satis�ed for Ds = Ds(b), for almost all banks
b: Because the cost function K is convex, it follows that (A.116) must also hold
for �Ds =

R 1
0
Ds(b)db: Thus, �Ds = D�(Eq ~'):

If K 0( �Ds) > K 0(0); the maximum value of the objective (A.112) is strictly
positive. In this case, Ds(b) > 0 and hence, by the argument given before,
'̂(b) � '1 for almost all b: If K

0( �Ds) = K 0(0); the maximum value of (A.112) is
zero, and I cannot rule out the possibility that a bank with zero deposit supply
chooses a mix of equity and bonds that induces a positive probability of default.
Claim 3: If � Eq ~' = 1, any plan with a deposit level Ds that satis�es

(A.116) and a default point '̂ � '1 is optimal for the bank. In particular, as
long as the default probability is zero, the bank is indi¤erent about the mix of
shares and bonds that it issues.
This claim follows immediately from the observation that, if � Eq ~' = 1; the

value of the bank�s objective function is independent of the amounts of shares
and bonds that it issues.
Claim 4: If e0 is su¢ ciently small or if '1 = 0; then � Eq ~' < 1:
If e0 < D�(�'); the aggregate demand for deposits is less than D�(�'): In

equilibrium, therefore, the aggregate supply of deposits is also less than D�(�'):
As discussed in the text, the concavity of v(�) implies that Eq ~' � �': By the
de�nition of the function D�(�), therefore D�(�') � D�(Eq ~'): For e0 < D�(�');
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therefore, the aggregate supply of deposits is less than D�(Eq ~'): Because, by
Step 2, � Eq ~' = 1 implies

R 1
0
Ds(b)db = D�(Eq ~'); it follows that e0 < D�(�')

implies � Eq ~' < 1:
Alternatively, if '1 = 0; then, by Claim 2, � Eq ~' = 1 implies '̂(b) = 0 and,

by (A:111), Ds(b) = 0 for almost all b: However, by Claim 2, � Eq ~' = 1 also
implies

R 1
0
Ds(b)db = D�(Eq ~'): The assumption that there is an equilibrium

with � Eq ~' = 1 when '1 = 0 thus leads to a contradiction and must be false.
Claim 5: Let '1 > 0 and D�('1) < 1: If e0 is su¢ ciently large, there

exists an equilibrium with � Eq ~' = 1:
Using the fact that '1 > 0 and D

�('1) <1; let e0 be large enough so thatZ '2

'1

v0('(D
1

'1
+D �K(D)) + �(D))'f(')d' < u0(e0 �D

1

'1
�D) (A.117)

for all D 2 [0; D�('1)]: Using the strict concavity of v and u and the boundary
conditions on v0 and u0; one can de�ne a continuous function D ! A(D) such
that, for any D 2 [0; D�('1)];Z '2

'1

v0('(A(D) +D�K(D)) + �(D))'f(')d' = u0(e0 �A(D)�D): (A.118)

I next de�ne a mapping �! �̂(�) on ['1; '2]; by setting

�̂(�) :=

R '2
'1

v0('(A(D�(�)) +D�(�)�K(D�(�))) + �(D�(�)))'f(')d'R '2
'1

v0('(A(D�(�)) +D�(�)�K(D�(�))) + �(D�(�)))f(')d'
:

(A.119)
The function � ! �̂(�) maps the compact interval ['1; '2] continuously into
itself and has a �xed point ��:
Given this �xed point, set

� =

R '2
'1

v0('(A(D�(��)) +D�(��)�K(D�(��))) + �(D�(��)))f(')d'

u0(e0 �A(D�(��))�D�(��))
(A.120)

and

q('0) =
v0('0(A(D�(��)) +D�(��)�K(D�(��))) + �(D�(��)))R '2

'1
v0('(A(D�(��)) +D�(��)�K(D�(��))) + �(D�(��)))f(')d'

:

(A.121)
For any b let A(b) = A(D�(��)); Bs(b) = 0; Ds(b) = D�(��): Then for L(b) =
A(D�(��)) + D�(��) �K(D�(��)); the bank�s constraint for t = 0 is satis�ed.
Moreover, by (A.117) and (A.118),

A(D�(��)) > D�(��)
1

'1
(A.122)

and therefore

'1(A(D
�(��)) +D�(��)�K(D�(��))) > D�(��) (A.123)

> D�(��)� �D�(��)Eq�0( �D(~'));
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implying that the bank�s constraint for t = 1 is satis�ed with '̂(b) < '1: Upon
setting

�D(') = D�(��) (A.124)

for all '; one �nds that, for the given � and q, the speci�ed maps b! (L(b); A(b); Bs(b); Ds(b); '̂(b))
and '! �D(') satisfy all the conditions of Lemma A.1 so an equilibrium is ob-
tained by the construction given in that lemma.
Claim 6: If � Eq ~' < 1; then Bs(b) = 0 for almost all b:
If � Eq ~' < 1 and Bs(b) > 0; a reduction in the bank�s bond issue would raise

the value of the objective both directly, through the impact of Bs on (A.110),
and indirectly, through the impact of Bs on the constraint (A.111) and the
implies value of the default point '̂; a lowering of which raises (A.110).
Claim 7: If � Eq ~' < 1; then

R
Ds(b)db > 0.

For any bank b; � Eq ~' < 1 and Ds(b) = 0 implies that the objective (A.110)
is maximized by setting A(b) = Bs(b) = 0: Hence

R
Ds(b)db = 0 would implyR

A(b)db =
R
Bs(b)db = 0: Upon using market clearing conditions as in the

proof of Proposition 2.1, one then obtains c1(') = 0 and �( �Dd(')) for all ': By
Lemmas 3.1 and 3.2, it follows that � =1; which is impossible.
Claim 8: If � Eq ~' < 1 and Ds(b) > 0; then

Eq ~' K 0(Ds(b)) < Eq(1� �(~'; '̂(b)))�0( �Ds(~')) (A.125)

and
'2 > '̂(b) � '1 (A.126)

for almost all b; moreover, the latter inequality is strict if '1 = 0.
The necessary �rst-order conditions for the bank�s maximization with respect

to Ds and '̂ are given as:

� Eq ~'(1�K 0(Ds))� 1 + � Eq(1� �(~'; '̂))�0( �Ds(~'))

+�� Eqmin(~'; '̂)(1�K 0(Ds))� � (A.127)

+�� Eq(1� �(~'; '̂))�0( �Ds(~')) � 0;
with a strict inequality implying that Ds = 0;

and

��q('̂)f('̂)�0( �Ds('̂)) Ds(1 + �)

+�� Eq(1� �(~'; '̂)) (A+Bs +Ds �K(Ds)) � 0; (A.128)

with a strict inequality implying that '̂ = 0:44

In these conditions, � is the Lagrange multiplier for the constraint (A.111).
I �rst claim that Ds > 0 implies '̂ < '2: For suppose that '̂ � '2: Then
the term � Eq(1 � �(~'; '̂))�0( �Ds(~'))Ds in the objective function (A.110) and
the constraint (A.111) is equal to zero. Since � Eqmin(~'; '̂)(Ds � K(Ds)) <
� Eq ~'Ds < Ds; the constraint (A.111) can only be satis�ed if A > 0: But then
the value of (A.110) is strictly negative and can be increased by reducing both
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A and Ds to zero. The assumption that '̂ � '2 when D
s > 0 thus leads to a

contradiction and must be false.
I next claim that Ds > 0 implies 1 + � > 0: For this purpose, I rewrite

condition (A.127) in the form

� Eqmax(0; ~'� '̂)(1�K 0(Ds))

+(1 + �)(� Eqmin(~'; '̂)(1�K 0(Ds)� 1 + � Eq(1� �(~'; '̂))�0( �Ds(~')))) � 0:

Because '̂ < '2; the �rst term in (A.129) is positive. Therefore the second term
must be negative. To show that 1 + � > 0; it su¢ ces to show that

� Eqmin(~'; '̂)(1�K 0(Ds)� 1 + � Eq(1� �(~'; '̂))�0( �Ds(~'))) � 0: (A.129)

For this purpose, I note that, by the concavity of K and the fact that A(b) � 0
and Bs(b) = 0;

(� Eqmin(~'; '̂)(1�K 0(Ds))� 1 + � Eq(1� �(~'; '̂))�0( �Ds(~'))))Ds

� � Eqmin(~'; '̂)(Ds �K(Ds)�Ds + � Eq(1� �(~'; '̂))�0( �Ds(~'))))Ds

� � Eqmin(~'; '̂)(A+Bs +Ds �K(Ds)�Bs �Ds + � Eq(1� �(~'; '̂))�0( �Ds(~'))))Ds;

so that, with Ds > 0; the inequality (A.129) follows from the constraint (A.111).
I next show that Ds > 0 implies '̂ > 0: For suppose that '̂ = 0: Then

min(~'; '̂) = �(~'; '̂) = 0 almost surely, so the constraint (A.111) yields,

� Eq(1� �(~'; '̂))�0( �Ds(~'))Ds �Ds = 0;

and the left-hand side of (A.127) is equal to � Eq ~'(1�K 0(Ds)) > 0.
Given that '̂ > 0; condition (A.128) must hold as an equation. Because

1 + � > 0; the �rst term on the left-hand side is as negative. Therefore the
second term must be positive. Therefore, the Lagrange multiplier � must be
positive.
To complete the proof of Claim 8, I note that, with � > 0 and '̂ < '2; the

left-hand side of (A.127) is strictly less than

(1 + �)(� Eq ~'(1�K 0(Ds))� 1 + � Eq(1� �(~'; '̂))�0( �Ds(~'))):

Since (1 + �) > 0 and � Eq ~' < 1; the inequality (A.125) follows.
Claim 9: If the deposit provision cost function exhibits constant returns to

scale, i.e., if K 0(D) is a constant, Ds(b) > 0 implies A(b) > 0 for almost all b:
Suppose �rst that � Eq ~' < 1: If the claim is false, the banks�maximization

problem has a solution with Ds(b) > 0 and A(b) = 0: If � Eq ~' < 1, then, by
Claim 6, Bs(b) is also zero. The constraint (A.111) then takes the form

� Eqmin(~'; '̂) Ds(1� k) = Ds(1� � Eq(1� �(~'; '̂))�0( �Ds(~'))); (A.130)

where k is the constant value of the marginal cost function K 0: Notice that
the validity of (A.130) is independent of Ds: This conditions determines '̂;
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regardless of Ds: For the given '̂; maximization of (A.110) with respect to Ds

then yields the �rst-order condition

� Eq ~'(1� k)� 1 + � Eq(1� �(~'; '̂))�0( �Ds(~'))) = 0: (A.131)

By (A.130), this equation can be rewritten as

� Eqmax(0; ~'� '̂)(1� k) = 0: (A.132)

Since k < 1; it follows that Eqmax(0; ~'� '̂) = 0; or '̂ � '2; contrary to Claim
8. The assumption that Ds(b) > 0 and A(b) = 0 has thus led to a contradiction
and must be false.
Suppose next that � Eq ~' = 1: If the claim is false, the banks�maximization

problem has a solution with Ds(b) > 0 and A(b) = 0: By Claim 2, the constraint
(A.111) then takes the form

� '̂ [Bs +Ds(1� k)] = Bs +Ds(1� � �0(D�(Eq ~'))): (A.133)

Since �'̂ <� Eq ~' = 1; the same argument as was used to establish Claim 6
implies that Bs(b) must be zero. The validity of the constraint (A.133) is
thus independent of Ds: Maximization of (A.110) with respect to Ds again
yields (A.131). By substitution from (A.133), one again obtains (A.132), hence
'̂ � '2; contrary to Claim 2.
Claim 10: If � Eq ~' = 1 and

'1
Eq ~'

<
D�(Eq ~')�K 0(D�(Eq ~'))D�(Eq ~')

D�(Eq ~')�K(D�(Eq ~'))
; (A.134)

then
R
�s(b)E(b)db > 0:

By Claim 2, � Eq ~' = 1 implies
R
Ds(b)db = D�(Eq ~') > 0: Moreover, in

this case, Ds(b) > 0 imply '̂(b) � '1 and
R
Ds(b0)db0 = D�(Eq ~') > 0: IfR

A(b)db = 0; then A(b) = 0 for almost all b: For any b such that Ds(b) > 0 and
A(b) = 0; the constraint (A.111) implies

�'1(D
s(b)�K(Ds(b))) � Ds(b)(1� ��0(D�(Eq ~')): (A.135)

Upon integrating over all banks, one obtains

�'1(D
�(Eq ~')�

Z
K(Ds(b))db � D�(Eq ~')(1� ��0(D�(Eq ~')): (A.136)

The �rst-order condition for Ds(b) implies

�Eq ~'K 0(Ds(b)) = ��0(D�(Eq ~')); (A.137)

i.e. K 0 is constant over the set fDs(b)jb 2 [0; 1]g: In particular, K 0(Ds(b)) =
K 0(D�(Eq ~')) for all b: Therefore,Z

K(Ds(b))db = K(D�(Eq ~')) +K 0(D�(Eq ~'))
Z
(Ds(b)�D�(Eq ~'))db

= K(D�(Eq ~')): (A.138)
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Using (A.137) and (A.138), one can rewrite (A.136) as

�'1(D
�(Eq ~')�K(D�(Eq ~')) � D�(Eq ~')(1�K 0(D�(Eq ~'))):

Since � Eq ~' = 1; one �nds that this inequality is incompatible with (A.134).
The assumption that � Eq ~' = 1 and A(b) = 0 when (A.134) holds has thus led
to a contradiciton and must be false.
Claim 11: If the deposit provision cost function does not exhibit constant

returns to scale and e0 is close to zero; then, for almost all b; Ds(b) > 0 implies
A(b) > 0:
If e0 is close to zero, then for Ds < e0; the di¤erence �(Ds) := K 0(Ds) �

K(Ds)
Ds between the marginal and the average cost of deposit provision at Ds is

close to zero.

Proof of Proposition 3.6. Consider an equilibrium of the model with full
commitment and communication of banks�choices, with price system (�; �(�); q(�));
and plans (�s(b); Bs(b); Ds(b); L(b); E(b); rB(b); rD(b)), b 2 [0; 1], and (c0(a); c1(�; a); �d(�; a); Bd(�; a); Dd(�; a)),
a 2 [0; 1], of banks and consumers. Suppose that the equilibrium alloca-
tion is Pareto-dominated by some other feasible allocation with banks�plans
(��s(b); �Bs(b); �Ds(b); �L(b); �E(b); �rB(b); �rD(b)); b 2 [0; 1]; and consumers� plans
(�c0(a); �c1(�; a); ��d(�; a); �Bd(�; a); �Dd(�; a)); a 2 [0; 1] satisfying the respective bud-
get constraints as implied by the price system (�; �(�); q(�)): Without loss of
generality, one may assume that, for any bank b;

�L(b) � ��s(b) �E(b) + �Bs(b) + �Ds(b)�K(Ds(b): (A.139)

Moreover, one may de�ne

�'(b) :=
1
�L(b)

(�rB(b) �B
s(b) + �rD(b) �D

s(b)) (A.140)

as the associated bankruptcy point of bank b: Pareto dominance implies that

u(c0(a)) +

Z '2

'1

v(c1('; a) + �

�Z 1

0

(1� �('; '̂(b))Dd(b; a)db

�
)f(')d'

� u(�c0(a)) +

Z '2

'1

v(�c1('; a) + �

�Z 1

0

(1� �('; �'(b)) �Dd(b; a)db

�
)f(')d'(A.141)

for almost all a 2 [0; 1]; and the inequality is strict for a non-null set of con-
sumers. By the concavity of u(�); v(�); and �(�) and by Lemmas 3.1 and 3.2, it
follows that, for almost all a 2 [0; 1];

0 � u0(c0(a))(�c0(a)� c0(a)) + u0(c0(a)�Eq(�c1('; a)� c1('; a)) (A.142)

u0(c0(a)�Eq�0
�Z 1

0

(1� �('; �'(b)) �Dd(b; a)db�
Z 1

0

(1� �('; '̂(b))Dd(b; a)db

�
;
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where �0 is evaluated at
R R
(1 � �('; '̂(b))Dd(b; a0)dbda0: Upon dividing by

u0(c0(a)) and integrating over the set of consumers, taking account of the fact
that, for a nun-null set of consumers, the inequality is strict, one obtains

0 <

Z 1

0

[�c0(a)� c0(a) + �Eq(�c1('; a)� c1('; a))]da (A.143)

+

Z 1

0

�Eq�0
�Z 1

0

(1� �('; �'(b)) �Dd(b; a)db�
Z 1

0

(1� �('; '̂(b))Dd(b; a)db

�
da

and hence

0 <

Z 1

0

[�c0(a)� c0(a) + �Eq(�c1('; a)� c1('; a))]da

By feasibility and (A.139)�Z 1

0

�c0(a)da � e0 �
Z 1

0

�L(b)db�
Z 1

0

K( �Ds(b))db

=

Z 1

0

(��s(b) �E(b) + �Bs(b) + �Ds(b))db:

Z 1

0

�c1('; a)da � '

Z 1

0

�L(b)db;

almost surely, and Z 1

0

�Dd(b; a)da = �Ds(b);

Similarly, by the consumers�budget constraints, and market clearing, and Lemma
3.2, Z 1

0

c0(a)da = e0 �
Z 1

0

Z 1

0

[�d(b; a)E(b) +Bd(b; a) +Dd(b; a)]dbda

= e0 �
Z 1

0

Z 1

0

[�d(b; a)E(b) +Bd(b; a) +Dd(b; a)]daddb

= e0 �
Z 1

0

[�s(b)E(b) +Bs(b) +Ds(b)]db
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Z 1

0

c1('; a)da =

Z 1

0

Z 1

0

[(1� �s(b) + �d(b; a))max(0; 'L(b)� rBBs(b)� rDDs(b))

+(rBB
d(b; a) + rDD

s(b; a))min(1;
'L(b)

rBBs(b) + rDDs(b
)]dbda

=

Z 1

0

[(1� �s(b) +
Z 1

0

�d(b; a)da)max(0; 'L(b)� rBBs(b)� rDDs(b))

+(rB

Z 1

0

Bd(b; a)da+ rD

Z 1

0

Ds(b; a)da)min(1;
'L(b)

rBBs(b) + rDDs(b)
)]db

=

Z 1

0

[max(0; 'L(b)� rBBs(b)� rDDs(b))

+min(rBB
s(b) + rDD

s(b); 'L(b))]db

=

Z 1

0

'L(b)db;

almost surely, and Z 1

0

Dd(b; a)da = Ds(b);

Thus (A.143) implies

0 < �
Z 1

0

�L(b)db�
Z 1

0

K( �Ds(b))db+

Z 1

0

L(b)db+

Z 1

0

K(Ds(b))db

+�Eq'
Z 1

0

�L(b)db� �Eq'
Z 1

0

L(b)db

+�Eq�0
�Z 1

0

(1� �('; �'(b)) �Ds(b)db�
Z 1

0

(1� �('; '̂(b))Ds(b)db

�
:

or, equivalently,Z 1

0

�
�Eq'L(b)� (�s(b)E(b) +Bs(b) +Ds(b)) + �Eq�0(1� �('; '̂(b))Ds(b)

�
db

<

Z 1

0

�
�Eq'�L(b)� (��s(b) �E(b) + �Bs(b) + �Ds(b)) + �Eq�0(1� �('; '̂(b))Ds(b)

�
db;(A.144)

where, throughout, the derivative �0 in the last term is evaluated at the pointR R
(1� �('; '̂(b))Dd(b; a0)dbda0.
From (A.144), one infers that

�Eq'L(b)� (�s(b)E(b) +Bs(b) +Ds(b) + �Eq�0(1� �('; '̂(b))Ds(b)(A.145)

< �Eq'�L(b)� (��s(b) �E(b) + �Bs(b) + �Ds(b)) + �Eq�0(1� �('; '̂(b))Ds(b)
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for a non-null set of banks b 2 [0; 1]: The left-hand side of (A.145) can be
rewritten as

�Eqmax['L(b)� rBBs(b)� rDDs(b); 0] + �Eqmin['L(b); rBBs(b) + rDDs(b)]

�(�s(b)E(b) +Bs(b) +Ds(b)) + ��('̂(b))�Eqmin(1;
'

'̂(b)
)Ds(b)

= �Eq~�(b) + [(rBBs(b) + rDDs(b) + �('̂(b))Ds(b)]Eqmin(1;
'

'̂(b)
)

�(�s(b)E(b) +Bs(b) +Ds(b)

= (1� �s(b))E(b):

Similarly, the right-hand side of (A.145) can be rewritten as (1� ��s(b)) �E(b); so
(A.145) implies (1 � �s(b))E(b) < (1 � ��s(b)) �E(b); which is incompatible with
the equilibrium condition (E.1).
The assumption that the equilibrium allocation is Pareto dominated has thus

led to a contradiction and must be false.

69


