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On the Network Effects in the Hold-up Problem

Evgeniy Safonov

Abstract

I study the Hold-up problem in the case of a buyer-seller network, where sell-
ers may simultaneously make specific investments, increasing expected qualities of
joint projects with each buyer with whom there are connected. After the resolution
of uncertainty, agents bargain over surpluses sharing and form buyer-seller pairs in
order to undertake projects. I find that there always exists an ex-post bargaining
rule, which provides sellers with the efficient ex-ante incentives to invest. According
to this rule each seller gets the difference between the maximal social welfare from
the trade in network with his presence and maximal social welfare from the trade in
network without him. Then I focus on the case when each pair divides surplus ac-
cording to the Nash Bargaining solution with endogenous outside options, consisting
of opportunities to attract another partners over the network.

I find that in case of large uncertainty network structure may provide additional
incentives to invest in comparison with the one-seller-one-buyer benchmark; however,
this may also lead to overinvestment in comparison with the first-best solution. In
the case of small uncertainty the graph of equilibrium investments turns out to
be peculiar: each seller invests in no more than two links. The efficiency suffers
since sellers make inefficient investments in order to increase their outside options.
The natural attribute of small uncertainty case is the multiplicity of equilibria and,
therefore, the coordination problem. I study this issue based on the simple examples
and make the hypothesis that if agents may construct or break relationships (or
credibly commit to not invest) prior to the investment game, this may help to solve
the coordination problem.

2



Contents
1 Introduction 4

2 Literature review 8

3 Model 10
3.1 General setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Simple examples: 1S-1B, 1S-2B and 2S-1B . . . . . . . . . . . . . . . . . . 12
3.3 Bargaining rule axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 General results 21
4.1 First Best calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Bargaining rule, providing efficient incentives to invest . . . . . . . . . . . 24
4.3 The role of network symmetries . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Large noise limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Nash Bargaining solution with endogenous outside options 31
5.1 Multiplicity of Balanced Nash Bargaining solutions . . . . . . . . . . . . . 32
5.2 Refinement of multiplicity of Balance Nash Bargaining solutions: BNB-

delta solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Small noise limit for the Balanced Nash Bargaining solution 40
6.1 Simple example: "𝑁" network with 2 sellers and 2 buyers . . . . . . . . . . 42
6.2 General result for small noise in case of BNB solution . . . . . . . . . . . 43
6.3 Problem of multiplicity of NE and endogenous network formation as a

possible way of its solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 45

A Appendix 48
A.1 Contraction mapping lemma for the FB investments, large noise limit . . . 48
A.2 Contraction mapping lemma for the equilibrium investments, large noise

limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.3 Properties of the BNB-delta solution . . . . . . . . . . . . . . . . . . . . . 52

A.3.1 Existence and Uniqueness: contraction mapping lemma. . . . . . . 52
A.3.2 Continuity, conditional on matching . . . . . . . . . . . . . . . . . . 53
A.3.3 Piecewise linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3.4 Monotonicity properties of the BNB-delta solution . . . . . . . . . . 55
A.3.5 Other properties of the BNB-delta solution . . . . . . . . . . . . . . 58

A.4 Theorem about the investments’ graph in case of small noise limit for the
BNB-delta solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.5 Calculations for the "N" network . . . . . . . . . . . . . . . . . . . . . . . 61

3



1 Introduction
Assume that two agents, a seller and a buyer, consider an opportunity to trade some

good or make joint project. The Hold-up problem appears when agents may make sunk
specific investments in their mutual relationships, increasing value or decreasing costs of
joint projects (traded good), but these investments have non-observable nature, and in
addition parties are uncertain about the conditions of these projects. Thus, parties may
fail to write the complete contract in order to protect their ex-ante contributions, since
they bargain ex-post. As a result, the optimal for agents levels of investments are lower
than efficient ones.

I consider a Hold-up problem, appearing in case of multiple sellers and buyers, con-
nected by some bipartite network. The key assumption is that before making the specific
investment, a seller and a buyer have to know each other sufficiently good, otherwise they
may fail to increase the value of their joint project. Thus, it is reasonable to restrict
opportunities to invest and trade only on the existing network of economic relationships
between agents. In the presence of multiple alternatives, outside options of an agent dur-
ing the ex-post trade become endogenous: they depend on the investment decisions of
this agent, on the investment decisions of other agents and on how the trade over network
happens.

Let’s imagine one example where Hold-up problem may appear in the network con-
text. Consider some market of production equipment, where factories are buyers, and
engineering firms, that design and make necessary equipment, are sellers. Relationship
matters: if a given engineering firm has already worked with a particular company, spe-
cialists of both companies are familiar with each other and with peculiarities of existing
equipment and production conditions. This forms a unique environment for the creation
of additional value by designing new equipment. Thus, investments opportunities corre-
spond to the network of relationships between factories and engineering firms. Ex-ante it
is hard to understand what particular improvements can be made, and Research and De-
velopment outcomes may be not contractible, and thus engineering firms face a Hold-up
problem, making their R&D decisions.

This paper is aimed to investigate how the network structure of buyer-seller rela-
tionships influence the resolution of the Hold-up problem. This is a multilateral issue, and
a lot of questions could be asked. Firstly, since the resolution of the Hold-up problem in
the classical one-buyer-one-seller case depends on how agents trade over ex-post surplus,
the resolution of the Hold-up problem over network also depends on the ex-post bargain-
ing rule. The question is, to what extend can bargaining rule with reasonable properties
provide agents with incentives to invest efficiently? Secondly, natural bargaining rules
generally lead to the inefficient levels of investment, but what is the role of network struc-
ture in these distortions in comparison with the one-seller-one-buyer benchmark? Could
network help to provide additional incentives to invest, or could it damage social effec-
tiveness in comparison with the situation when agents simply interact in pairs? Thirdly,
mostly the existing studies of the Hold-up problem in the presence of competition assume
a large number of agents who take the market environment exogenously when making
investment decisions. But what if there are a few agents and there is a strategic inter-
action of their actions, how does it influence the resolution of the Hold-up problem? A
few agents and simple networks is a good framework to study this question. Finally, if
agents understand the nature of their future Hold-up problem, they may try to establish
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Figure 1: Illustration of the Hold-up problem in the case of 1 seller and 1 buyer (on
the left), 1 seller and 1 buyers (in the center) and 2 seller, 2 buyers (on the right). The
clouds stand for the exogenous outside options, and endogenous outside options are the
opportunities two match with another agent in the network.

an optimal structure of economic relationships in order to increase their expected payoffs
in the future investments’ game. The question is, what kind of networks could emerge,
if agents strategically build the network of their relationships, and how good are these
networks in providing incentives to invest efficiently?

I start with the benchmark one-seller-one-buyer case, assuming that seller can make
sunk investment 𝑖 in order to increase the quality of a joint project (good), and ex-post
parties bargain over the surplus 𝑘 = 𝑖 + 𝜀, consisting of an investment level and a noise
term. Then I consider a network where sellers simultaneously make decisions about there
buyer-specific investments. I study equilibriums of the corresponding game, assuming
that sellers know ex-ante the way of future surplus division for different possible values of
surpluses. Importantly, I do not allow buyers to make any investments and they do not
make decisions in the considered game.

Since the game over network is computationally very complicated, I try to make
the model as simple as I can (but still, non-trivial), saving the most important features
which are needed in order to address the questions of the study. One important choice
is characteristics of a traded good. I assume, that ex-post buyers and sellers bargain
over single indivisible good; seller has a unit capacity for production, and buyer has a
unit capacity for consumption. This choice has three reasons. Firstly, it simplifies the
analysis of the ex-post bargaining, otherwise it may be too complicated issue for making
any general conclusions. Secondly, this kind of trade over network is widely studied in the
literature, hence I can compare the existing results with findings of this paper. Thirdly,
this choice still represents some real situation: a marriage market or any market where
agents may engage in joint projects by pairs. Other simplifications of the model are
risk-neutrality of agents and quadratic costs of investments instead of some general cost
function.

One of the questions of this study is the role of the ex-post bargaining rule in
the resolution of the Hold-up problem. It is reasonable to think about possible natural
properties of trade rules without modeling the process of the ex-post trade explicitly, since
in at the end of the day the outcome of the trade depends on some way on the structure
of a network and possible surpluses of trade. Thus, I design several axioms for the ex-post
bargaining rules, and one set of results uses only the classification of rules through axioms,
without appealing to the particular concept.

For the rest of results I use the concept, which seems to be a natural generalization
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of the Nash Bargaining solution on the case of trade over network with "endogenous"
outside options, consisting of opportunities to attract alternative agents for the trade.
Let’s call in "Balanced Nash Bargaining (BNB) solution". I found this concept in the
paper Kleinberg & Tardos (2008). Several works investigated properties of the BNB rule
for the bipartite graph Kleinberg & Tardos (2008), Chakraborty & Kearns (2008), Azar,
Birnbaum, Celis, Devanur & Peres (2009). However, a simple calculation with the full 2×2
bipartite graph, presented in this paper, shows that BNB could have multiple solutions.
In order to refine this multiplicity, I design a similar bargaining concept ("the BNB-delta
solution"), where agents discount outside options by a factor 𝛿 < 1 while trading over
surplus . This bargaining concept gives a unique equilibrium outcome, and thus we may
use it as an equilibrium refinement of the BNB rule, considering 𝛿 close to 1.

The relative scales of uncertainty and investments plays an important role in the
determination of equilibrium investment levels. I focus on the two limit cases: the limit
of the large noise and the limit of the small noise. This is reasonable because for both
cases there are (distinct) promising approaches to the solution, and they both reveal some
specific features, which are mixed up when the scale of uncertainty is comparable with
the scale of investments. In particular, in the large noise limit players do not consider
strategic interaction, and in contrary in the limit of small noise actions of other sellers are
very important for the decision making process of each seller.

I consider the small noise limit, using the BNB-delta solution as a bargaining rule
for the ex-post surplus division. I make the hypothesis (mostly proven at this moment,
look at the Proposition (7)) that BNB-delta solution has some natural monotonicity
properties. I assume that the BNB-delta solution is such that a slight increase of surplus
of the link, corresponding to the seller’s matching, is beneficial for him; and similar for the
link, corresponding to the seller’s outside option. However, it is not beneficial to increase
the surplus of any link that corresponds only to the outside option of some other buyer,
since it only may increase payoffs of buyers and decrease payoffs of sellers.

The existence and uniqueness of Nash equilibria in pure strategies of the invest-
ments game is one of the crucial questions. I do not consider mixed strategies equilibria,
since they look a bit unnatural: they require a continuous mixture of actions. The sit-
uation seems to be different for different scales of noise. If uncertainty is large, then
both questions of existence and uniqueness have positive answers. In case of the small
noise, in contrary, no one of these results is guaranteed. The difference between existence
and uniqueness of solutions for the considered two limit cases is based on the different
convexities of the sellers’ expected utilities as functions of investments. In case of large
noise they are concave, but in case of small noise they may exhibit local convexities as
well, giving birth to multiple equilibria or no equilibria. Importantly, at this moment I
have no any general result about the existence of NE in case of small noise even for the
BNB-delta trade rule, and I have no counterexample of its (non-existence) for this trade
rule as well. Thus, all results for the small noise are subject to the existence of equilibria,
i.e. if it exists, it has certain properties.
Results.

The core result of the paper is that there always exists an ex-post bargaining rule,
which provides sellers with the efficient incentives to invest ex-ante. This rule satisfies
all bargaining axioms (A1-7) and it is robust to change of various assumptions of the
model. The idea behind this bargaining rule is to give each seller his contribution to the
maximum social gain of trade over network in comparison with the maximum social gain
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of the trade over the rest of network without him. This allows to align sellers’ incentives
with social ones, since it turns out to be that ex-post alignment of payoffs from the trade
leads to the ex-ante alignment of the total expected profits of society and each seller. One
reservation should be made: this bargaining rule insures only that each first best profile
of investments should be an equilibrium profile, but it could be that there exist also other
Nash equilibria with non-efficient profiles of investments.

The other results are as follows. Firstly, I show, under mild assumptions on the
bargaining rule in case of large uncertainty there always exists a unique Nash equilibrium
of the investments game. I prove it, constructing the contraction mapping for which
any NE should be fixed point. Secondly, it can be shown on the examples that network
structure with some "natural" bargaining rule may help to make investment levels closer
to the efficient levels, but it may also distort incentives in a bad way, decreasing the
efficiency in comparison with one-seller-one-buyer benchmark case.

The rest of conclusions should be investigated more rigorously during further work,
but the majority of proves are already made at this moment. I found that if ex-post
bargaining concept is BNB-delta solution, then in case of the small noise at equilibrium
each seller would invest in no more than two links. Hence, the graph of equilibrium
investments in case of BNB solution and small noise limit has a peculiar structure, and
if the initial network 𝐺 is dense, then a lot of links may have zero investments in this
equilibrium, i.e. be useless. This allows to suggest the way of solving the problem of
equilibria multiplicity. In particular, this problem mostly comes from the fact that there
are several possible graphs of equilibrium investments. Let’s fix one such graph. If agents
may transform their network by removing all links which has zero investments, than they
may drop out all other possible equilibria. Thus if agents may commit not to use some
links (for example, by publicly breaking relationships or by some other way), they may
solve the coordination problem; this may also include transfers to those agents who break
their links, as a compensation for the decreasing of their bargaining power.
Structure of the paper.

In the next section I discuss the relevant literature and compare some of the existing
models and findings with mine. In section 3 the general model is presented, then I solve
several examples for the simple star networks and finish with the rigorous formulation of
bargaining axioms. In section 4 I firstly investigate the first-best levels of investments
for the sake of benchmark. Next, I present the key result about the existence of ex-
ante efficient ex-post bargaining rule (Proposition 4). Finally, I prove the existence and
uniqueness of the NE in case of large noise (Proposition 6). After that, I proceed to
the small noise limit. Section 5 is a supporting section, where I describe the Balanced
Nash Bargaining rule of trade as a natural generalization of the Nash Bargaining solution
for the one-seller-one-buyer case. I discuss possible properties of BNB rule and suggest
a way of refinement of the multiplicity of its solutions, the BNB-delta solution. I show
that it satisfies bargaining axioms (A1-7) and additionally exhibits several important
monotonicity properties (Proposition 7). Armed by the BNB-delta rule formalism and its
properties, I study the small noise limit in Section 6, starting with the example of "𝑁"
network and example of the full 2×2 network. Then I formulate the theorem (Proposition
8) about properties of the graph of investments for the small noise limit (with ax-post
trade happening according to the BNB-delta solution) and discuss further issues, such as
multiplicity of equilibria of the investments game. Section 7 concludes, and bulky proves
and calculations are given in Appendix.
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2 Literature review
Paper, which are the most close to the investigated question papers, are Felli &

Roberts (2002), Cole, Mailath & Postlewaite (2001) Georg Noldeke (2014) and Harold
L. Cole (2001). Also Joseph Farrell and Paul Klemperer devoted the whole book Farrell
& Klemperer (2007) to the problems of firms investments in the supplier chains and
competition over the emerging networks.

In the Felli & Roberts (2002) the question "Does Competition Solve the Hold-up
Problem?" is investigated. Authors consider the setup where "workers" and "firms" could
make investments in their qualities prior to trade for the "wages". Authors investigate two
possible types of inefficiency. The first one is the hold-up problem, arising from the fact
that investment of parties in some cases may not fully realize in the appropriate increasing
of their payoffs. The second investigated inefficiency is a possible coordination failure
when the resulting matching may not be the best one. Considering different environments,
authors come to the conclusion that the competition between players does help to solve the
hold-up problem: the ex ante levels of investments are equal or tend to the efficient ones
with the increasing of number of agents. However, two reservations about the results could
be made. At first, in the considered models of the Bertrand competition all additional
surpluses due to investments goes to sellers, thus it is not surprisingly that they have the
correct incentives. The second reservation is that Leonardo Felli and Kevin W.S. Roberts
consider a setup in which the investments are not specific, but general. Firms and workers
invest in the increasing of their qualities, which may be used for the surplus generation
with any other agents.

In the Cole et al. (2001)1 authors study the hold-up problem with multiple sellers
and buyers, where sellers and buyers may make ex-ante sunk investments in increasing
of their scalar attributes 𝑠 and 𝑏 correspondingly. Then sellers and buyers matched and
each pair perform a project, which gives the deterministic outcome 𝑣(𝑠, 𝑏). Authors find
that under some reasonable assumptions, there always exists a bargaining rule, which
gives ex-ante incentives to invest in attributes efficiently; however for the "natural" bar-
gaining rule incentives are distorted and this may lead to underinvestment as well as to
overinvestment. In comparison with my work, Harold Cole, George J. Mailath, Andrew
Postlewaite considers more general cost functions, heterogeneous among agents; and the
most important element of their study which is absent in my work is that they allow both
sellers and buyers to make investments. However, my study is sufficiently different from
their work in several other ways, which helps to study the efficiency of investments under
other assumptions. In details, at first, Cole et al. (2001) consider the full bipartite graph:
each seller may match with each buyer. I assume that this matching is constrained by the
existing network of economic relationships. Secondly, Harold Cole, George J. Mailath,
Andrew Postlewaite assume that each agent has only one-dimensional set of investment
choices, and I assume that the dimension of this set for each seller is equal to the number
of his adjacent links. Thus, in Cole et al. (2001) there is no room for the purely specific
investments: each choice of attributes assumes both general and specific investments.
Thirdly, Harold Cole, George J. Mailath, Andrew Postlewaite do not study the role of un-
certainty: they assume that given the attributes (investment decisions) of matched buyer
and seller, the surplus is deterministic. This corresponds to the "small noise limit" in my
work. However, my investigations show that the picture of investments does depend on

1I found this paper recently, thus I can mistake about some of paper’s results
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the scale of the uncertainty, and it is meaningful to study non-zero noise as well. In sum,
I study questions similar to those studied by Harold Cole, George J. Mailath, Andrew
Postlewaite in Cole et al. (2001), but in a different framework. To my mind, together
their study and my work give more complete picture of the Hold-up resolution in case of
multiple sellers and buyers, bargaining ex-post and undertaking joint project in pairs.

The Generalization of Nash Bargaining over network (Balanced Nash Bargaining)
were studied mostly by social and computer sciences, as there is some experimental ev-
idence that people may trade over network according to this concept, and there is a
computational question of finding these solutions. The studies include Kleinberg & Tar-
dos (2008), Chakraborty & Kearns (2008) and Azar et al. (2009). One of the results of
Kleinberg & Tardos (2008) paper is that for the bipartite graphs there always exists a
balanced outcome (BNB solution in my notations); moreover, each balanced outcome is a
stable outcome with respect to single and pairwise deviations. This result is in line with
my result about the existence of BNB-delta solution. Also, I have to prove the point with
the stability of the BNB-delta solution similar to those in Kleinberg & Tardos (2008).

In Chakraborty & Kearns (2008) authors consider the concept similar to the BNB
solution, but for the general (non-linear) utility functions. They focus on the influence
of network topology on the outcomes of the trade, and thus they do not consider in
details weighted graphs, considering a situation, when all possible surpluses are equal to
1. Notwithstanding the fact, that authors get some results for this case (assuming general
utility functions, i.e. considering risk averse agents), it is hard to use these results in order
to guess what is going on in case of risk-averse agents when they play the investments’
game over network, since various weighted graphs appear ex-post.

In Chakraborty & Kearns (2008) authors studied different dynamics which converge
to the Balanced Nash Bargaining solution. In particular, they consider the dynamics,
which I use in order to prove the existence and uniqueness of the BNB-delta solution
(iteratively using the contraction mapping operator on the set of payoffs). However, for
𝛿 = 1, when BNB-delta solutions becomes BNB-solution, this dynamics does not converge
in case of certain cycles of outside options (the corresponding operator is no more the
contraction mapping). Azar et al. single this out, but instead of more deep investigation
of the consequences of this fact, they find out different dynamics, which indeed converge
to the balanced outcomes (BNB solution). However these dynamics do not correspond
to the iteratively using of some contraction mapping operator, and thus they may give
multiple solutions, depending on the starting point of the process.

Interestingly, that in all papers Kleinberg & Tardos (2008), Chakraborty & Kearns
(2008) and Azar et al. (2009) the question of uniqueness of the BNB solution is not in-
vestigated. In this work I show, that a multiplicity of solutions may be indeed a problem,
and it is not easy to overcome this problem; however, the BNB-delta solution with 𝛿 → 1
seemed to be a nice candidate for the multiplicity refinement.

In this paper I do not study the nature of the Hold-up problem and ways of its
contractual resolution. Instead, I focus on the role of network and bargaining concept.
However, the properties of the traded good (joint project) determine the nature of the
Hold-up problem as well as a way of how the ex-post trading happens and, to some extent,
what buyer-seller networks emerge. What outside options are exogenous, and what are
endogenous, when agents participate in the ex-post trade? If we assume, that buyers and
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sellers cannot write down a complete contract on the ex-post trade conditions, can we
assume that they are able to contract on the structure of the buyer-seller network? There
could be a lot of other interesting questions, involving the nature of the Hold-up problem
in the network context. The following papers make a good overview of the potential
issues, connected with the Hold-up problem: Hart & Moore (1999),Hart & Moore (1988),
Tirole (1999) Maskin & Tirole (1999), Rogerson (1992), Che & Sákovics (2004), Siegel
(2010).

3 Model
In this section I provide the formal model of the study. Firstly, I formulate the

seller’s game of investments over network, describing players, actions, payoffs, timing of
the game, structure and scale of uncertainty. Secondly, I explore three examples of simple
networks with a few agents and figure out what problems and peculiarities we can see
based on these simple cases, trying to motivate further research direction. Thirdly, I
present rigorous formulation of the bargaining rule (the concept of ex-post matching and
surplus division), and suggest an axiomatic approach to the systematization of bargaining
rules, which plays the role of fundament for main propositions of the paper.

3.1 General setup

There are 𝑆 ≥ 1 risk-neutral sellers and 𝐵 ≥ 1 risk-neutral buyers which have
economic relationships, denoted by bipartite graph 𝐺 (𝑔𝑠𝑏 = 1 if Seller 𝑠 and Buyer 𝑏
have a relationship, and 𝑔𝑠𝑏 = 0 otherwise). Each seller produces a single indivisible
good, which may be sold to any connected with him buyer or to the outside agent in the
market (let’s call this "an exogenous outside option"). In his turn, each buyer requires
one unit of a good, which he may buy from any connected seller or from the outside agent
in the market (which is an exogenous outside option for the buyer). However, the cost
of production of a good is exactly equal to the price in the outside market, and also it is
equal to the valuation of a good for the buyer in case if he buys it from the market (let’s
call this a "general good"). That is, the exogenous outside option for each agent is zero.
In what follows I normalize the cost of production of the general good as well as its price
and valuation to zero.

If seller 𝑠 sells a good to the buyer 𝑏, then buyer gets some additional value 𝑘𝑠𝑏,
since the good is specific for him:

𝑘𝑠𝑏 = 𝑖𝑠𝑏 + 𝜀𝑠𝑏 (1)

where 𝑖𝑠𝑏 is the level of relationship-specific investment and 𝜀𝑠𝑏 is i.i.d. noise term, dis-
tributed according to some p.d.f. with the finite support, zero mean and median (the
latter simplifies calculations for the examples):

𝐸[𝜀𝑠𝑏] = 0 median[𝜀𝑠𝑏] = 0 𝜀𝑠𝑏 are i.i.d. (2)

For further calculations it is important to understand the scale of the noise term.
One natural candidate for the measure of the noise scale is its standard deviation, however
I introduce a different concept for the sake of computational simplicity. Namely, let’s take
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some distribution with p.d.f. 𝑓0(𝜀), distributed on the [−1
2
; 1
2
]:

support(𝑓0(𝜀)) = [−1

2
;
1

2
] (3)

and introduce the scale parameter 𝑎. Then distribution of noise with scale 𝑎 is given by
the p.d.f.:

𝑓(𝜀) =
1

𝑎
𝑓0(

𝜀

𝑎
). (4)

I assume that 𝑓0(𝜀) is twice continuously differentiable function, and so does 𝑓(𝜀).
The cost of production of a good for the seller is normalized to zero (since he always

may sell it in the outside market for its cost of production). Each specific investment is
costly with the convex cost:

𝐶(𝑖𝑠𝑏) =
𝑖2𝑠𝑏
2

(5)

𝐶(𝑖𝑠𝑏) are additive for sellers, i.e. the total specific investments expenditure of a seller 𝑠
is:

𝐶𝑠 =
∑︁

𝑏:𝑠𝑏∈𝐺

𝐶(𝑖𝑠𝑏) =
∑︁

𝑏:𝑠𝑏∈𝐺

𝑖2𝑠𝑏
2

(6)

This choice of investment costs is reasonable. We may think, that 𝑖2𝑠𝑏
2

are spent money,
then the specific investments technology exhibits diminishing return to scale and the Inada
conditions hold.

The timing is as follows:

1. Sellers simultaneously choose levels of relationship-specific investments in each of
their adjacent links, i.e. seller 𝑠 chooses 𝑖𝑠𝑏 : 𝑠𝑏 ∈ 𝐺.

2. Uncertainty resolves.

3. Parties observes payoffs, bargain over the delivery’s structure (matching) and pay-
offs. The discussion of the bargaining concept is given in the following subsections.

4. Payoffs realize.

Players are only sellers. It is a one-period game. The set of actions for each player
is [0;∞)𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟′𝑠 𝑙𝑖𝑛𝑘𝑠; an action is a point from this set. The equilibrium concept
is Bayes-Nash equilibrium. I assume the common knowledge of the game and rationality
of players. The total expected payoff of a seller 𝑖, given levels of investments of other
sellers, is:

𝐸𝑈𝑖 = 𝐸[𝑝𝑖(ii + 𝜀i, i−i + 𝜀−i)] −
∑︁

𝑗: 𝑖𝑗∈𝐺

𝑖2𝑖𝑗
2

(7)

where 𝑝𝑖(ii + 𝜀i, i−i + 𝜀−i) is a payoff of the 𝑖-th seller according to the bargaining rule;
it depends on the levels of investment of all sellers and noise terms (here ii is a vector of
seller i’s investments, i−i is a vector of investments of all other sellers except of seller 𝑖;
𝜀i and 𝜀−i are the corresponding vectors of noise terms for the links, adjacent to seller 𝑖,
and others).

Discussion
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Figure 2: Timing of the game (An example of network with 3 sellers and 2 buyers).

An important specification of this model is that noise term is idiosyncratic and
identically distributed for each link. Thus, I assume that shock 𝜀𝑠𝑏 is buyer-seller specific.
Moreover, I assume that it is independent of any other shocks, including that for other
links, adjacent to the seller 𝑠 and buyer 𝑏. This may seem a bit unnatural, since, for
example, a seller may face some shock which influence possible surpluses of all projects in
which he is involved in, and thus 𝜀𝑠𝑏 and 𝜀𝑠𝑏′ may be correlated. However, the assumption
of independent shocks is in line with the assumption that sellers may make only specific
investments, but not general ones, meaning that projects, corresponding to the different
adjacent links, represent very different activities. A natural generalization of the study is
consideration of general investments and correlated shocks for the adjacent links. However
in this work I focus on the case where there are only specific investments and not general
ones. There is also one more argument in favor of presence of at least some link-specific
shocks (in comparison with the models like 𝑘𝑠𝑏 = 𝑖𝑠𝑏 + 𝜀𝑠 + 𝜇𝑏): in case of their absence,
in certain situations there is no equilibria of the seller’s game, since some combinations of
surpluses become deterministic in this case (i.e. 𝑘𝑖𝑗−𝑘𝑖𝑗′−𝑘𝑖′𝑗 +𝑘𝑖′𝑗′ = 𝑖𝑖𝑗−𝑖𝑖𝑗′−𝑖𝑖′𝑗 +𝑖𝑖′𝑗′),
but even tiny uncertainty plays a crucial role in the existence of the equilibrium.

3.2 Simple examples: 1S-1B, 1S-2B and 2S-1B

One seller, one buyer. Here I consider 3 examples of simple networks. Since in this
paper I consider mostly (but not always) limits of the large noise 𝑎 → ∞ and small noise
𝑎 → 0, I consider here these limits too for the sake of simplicity of calculations (even
finding equilibria while operating with integrals over 𝑅2 require bulky calculations). Thus
in this section we consider two cases: noise is arbitrary small and noise is arbitrary large.
Note, that I assume that the noise distribution is such that median[𝜀] = 0.

Let’s consider firstly the classical benchmark case with one seller and one buyer.
Assume that ex-post trade happens according to the Nash Bargaining solution: parties

12



just divide the surplus equally, since their outside options are zero. Assume also that
noise level is small (𝑎 → 0). Then the seller’s problem looks as:

𝐸𝑈1 = 𝐸[
1

2
(𝑖11 + 𝜀11)1(𝑖11 + 𝜀11 ≥ 0)] − 𝑖211

2
→ 𝑢𝑛𝑑𝑒𝑟𝑠𝑒𝑡𝑖11𝑚𝑎𝑥 ⇒ 𝑖𝑒𝑞11 =

1

2
(8)

Where I used the fact that in case of small noise, 𝑃𝑟(𝑖11 + 𝜀11 ≥ 0) = 1 for 𝑖11 > 0 as
𝑎 → 0, and thus the indicator function always gives one for sufficiently large values of 𝑖11.
For the first best we have:

𝐸𝑊 = 𝐸[(𝑖11 + 𝜀11)1(𝑖11 + 𝜀11 ≥ 0)] − 𝑖211
2

→ 𝑚𝑎𝑥
𝑖11

⇒ 𝑖𝐹𝐵
11 = 1 (9)

Social welfare at the equilibrium:

𝐸𝑊 = 𝐸
∑︁

(𝑝𝑎𝑦𝑜𝑓𝑓𝑠) − 𝐸
∑︁

(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠) =
1

2
− 1

2

(︂
1

2

)︂2

=
3

8
(10)

Social welfare for the first best level of investments:

𝐸𝑊 𝐹𝐵 = 1 − 1

2
· 12 =

1

2
(11)

And we can roughly say that the "efficiency coefficient" is

𝑥 =
𝐸𝑊

𝐸𝑊 𝐹𝐵
= 0.75 (12)

If the noise is very large, then

𝜕𝑝1
𝜕𝑖11

=
𝜕

𝜕𝑖11

∫︁
1

2
(𝑖11 + 𝜀11)𝜃((𝑖11 + 𝜀11))𝑑𝐹 (𝜀11) = (13)

=
1

2
𝑃𝑟(𝜀11 ≥ 0) + 𝑂(𝑎−1) +

1

2

∫︁
1

2
(𝑖11 + 𝜀11)𝛿((𝑖11 + 𝜀11))𝑑𝐹 (𝜀11) ≈

1

4

Similarly, the First Best is 𝑖𝐹𝐵
11 = 𝑃𝑟(𝑖11 + 𝜀11 > 0) ≈ 1

2
. It is meaningful to compare here

only investment levels, since both for competitive and for the first best case the expected
social welfare is of order of 𝑎 (large noise creates large expected value by itself, since
agents trade when positive shock occurs and do not trade in case of the negative shock)
As we can see, again equilibrium investment level is half of the optimal one, as in case of
the small noise. We will remind these results as a benchmark case.

One seller, two buyers. Now assume that there is one seller and two buyers. As-
sume that payoff is distributed according to the generalize Nash Bargaining solution. Let
WLOG 𝑘11 > 𝑘21. Then while trading with the first buyer, the seller considers oppor-
tunity to attract the second buyer buy giving him a small amount of money and taking
𝑘21. By these reasonings, seller’s outside option is 𝑘12, and if both 𝑘11, 𝑘12 > 0, then the
seller’s payoff is:

𝑝(𝑠)1 = 𝑂𝑂(𝑠)1 −
1

2
(𝑘11 −𝑂𝑂(𝑠)1) =

1

2
𝑘11 + 𝑂𝑂(𝑠)1 =

1

2
𝑘11 +

1

2
𝑘12 (14)
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If 𝑎 is small, then seller can be sure to get 𝑘11, 𝑘12 > 0 if he invests something in both
links. Clearly, his investment levels in this case would be:

𝑖11 = 𝑖12 =
1

2
(15)

We get two possible profiles for the First Best investments, using proposition (3):

𝑖11 = 1, 𝑖21 = 0 and 𝑖11 = 0, 𝑖21 = 1 (16)

and the First Best social welfare is again 0.5 for each of them. But the social welfare at
equilibrium in this case is:

𝐸𝑊 =
1

2
+ 𝑂(𝑎) − 1

2

(︂
1

2

)︂2

− 1

2

(︂
1

2

)︂2

=
1

4
+ 𝑂(𝑎) (17)

and our "index of efficiency" becomes lower that in the benchmark scenario: 𝑥 = 0.5.
Thus we have learned that in this simple specific example the presence of network effects
lowers the efficiency, since seller invests in his outside option in order to get total surplus
from the trade with his counterpartner.
Now consider the large noise limit. Remind that if matching is 𝑀 = {11} and 𝑘12 < 0,
then seller’s outside option is zero. The payoff of the seller looks as:

𝑝1 =

⎧⎪⎪⎨⎪⎪⎩
1
2
(𝑖11 + 𝜀11 + 𝑖12 + 𝜀12) if 𝑖11 + 𝜀11 > 0 & 𝑖12 + 𝜀12 > 0 (𝐴)

1
2
(𝑖11 + 𝜀11) if 𝑖11 + 𝜀11 > 0 & 𝑖12 + 𝜀12 < 0 (𝐵)

1
2
(𝑖12 + 𝜀12) if 𝑖11 + 𝜀11 < 0 & 𝑖12 + 𝜀12 > 0 (𝐶)

0 if 𝑖11 + 𝜀11 < 0 & 𝑖12 + 𝜀12 < 0 (𝐷)

(18)

FOCs give us:

𝜕𝐸𝑝(𝑠)1
𝜕𝑖11

=
𝜕

𝜕𝑖11

1

2

∫︁ ∫︁
(𝑖11 + 𝜀11 + 𝑖12 + 𝜀12)𝜃(𝑖11 + 𝜀11)𝜃(𝑖12 + 𝜀12)𝑑𝐹 (𝜀)+ (19)

+
𝜕

𝜕𝑖11

1

2

∫︁ ∫︁
(𝑖11 + 𝜀11)𝜃(𝑖11 + 𝜀11)(1 − 𝜃(𝑖12 + 𝜀12))𝑑𝐹 (𝜀)+

+
𝜕

𝜕𝑖11

1

2

∫︁ ∫︁
(𝑖12 + 𝜀12)(1 − 𝜃(𝑖11 + 𝜀11))𝜃(𝑖12 + 𝜀12)𝑑𝐹 (𝜀) =

=
1

2
(𝑃𝑟(𝐴) + 𝑃𝑟(𝐵)) +

1

2

∫︁ ∫︁
(𝑖11 + 𝜀11 + 𝑖12 + 𝜀12)𝛿(𝑖11 + 𝜀11)𝜃(𝑖12 + 𝜀12)𝑑𝐹 (𝜀)+

+
1

2

∫︁ ∫︁
(𝑖11 + 𝜀11)𝛿(𝑖11 + 𝜀11)(1 − 𝜃(𝑖12 + 𝜀12))𝑑𝐹 (𝜀)+

1

2

∫︁ ∫︁
(𝑖12 + 𝜀12)(1 − 𝛿(𝑖11 + 𝜀11))𝜃(𝑖12 + 𝜀12)𝑑𝐹 (𝜀) =

=
1

2
(𝑃𝑟(𝐴) + 𝑃𝑟(𝐵)) = 𝑖11

Similarly,

𝑖12 =
1

2
(𝑃𝑟(𝐴) + 𝑃𝑟(𝐶)) (20)

14



Figure 3: The game over star network with two sellers and one buyer. Graph 𝐺 and
possible matchings 𝑀1,𝑀2,∅ on the left plot. Best responses of sellers for different
bargaining rules middle figure for the 𝑅1 rule and right figure for the 𝑅2. Dark blue line
- best response of first seller on the investment of the second seller; light green line - best
response of the second seller on the investment of the first one.

Then we have:
𝑖12 − 𝑖11 =

1

2
(𝑃𝑟(𝐶) − 𝑃𝑟(𝐵)) (21)

And since the difference between probabilities of events 𝐵 and 𝐶 should be next order of
𝑎−1 in comparison with 𝑖 (because noise terms dominate over 𝑖 in the integrals), the only
one opportunity is 𝑃𝑟(𝐶) = 𝑃𝑟(𝐵) and 𝑖11 = 𝑖12 = 𝑃𝑟(𝐴) + 𝑃𝑟(𝐵) = 𝑃𝑟(𝐴) + 𝑃𝑟(𝐵).
Note, that up to the next order of 𝑎−1, 𝑃𝑟(𝐴) = 𝑃𝑟(𝜀11 > 0 & 𝜀12 > 0) = 1

4
. Similarly,

𝑃𝑟(𝐵) = 𝑃𝑟(𝐶) = 1
4
. Hence,

𝑖11 = 𝑖12 =
1

2
(
1

4
+

1

4
) =

1

4
(22)

What about first best levels of investments? Clearly, when 𝑎 → ∞, the probability
that there will be no ex-post matchings, is 𝑃𝑟(𝐷) = 1

4
. Then, if the there is ex-post

matching, it is with equal probabilities 3
8

either 11 or 12. Using proposition (1), we get:
𝑖𝐹𝐵
11 = 𝑃𝑟(11 ∈ 𝑀) = 3

8
and similarly for the 𝑖12. As we can see, the relative difference

between investment levels is lower than that in the benchmark case (equilibrium invest-
ments 1

4
is a two thirds of the first best level 3

8
). Thus, on this simple example we can see

that in case of large noise network structure may give sellers additional incentives to invest.

Two sellers, one buyer. Now consider the situation when there are two sellers
who compete for one buyer. Let’s start with the same ex-post bargaining concept (𝑅1):
the matching is effective, and for matched seller his payoff is equal to the half of the
link’s surplus minus half of the buyer’s outside option (meaning that buyer considers an
opportunity to trade with another seller as his outside option) That is:

𝑝1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
𝑘11 − 1

2
𝑘21 if 𝑘11 > 𝑘21 > 0 (𝑋1)

1
2
𝑘11 if 𝑘11 > 0 > 𝑘21 (𝑋2)

0 if 0 < 𝑘11 < 𝑘21 (𝑋3)
0 if 𝑘11 < 0 < 𝑘21 (𝑋4)
0 if 𝑘11 < 0 & 𝑘21 < 0 (𝑋5)

(23)

And similar for the 𝑝(𝑠)2. Here 𝑋1, ..., 𝑋5 are events that the corresponding conditions
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of 𝑘 holds. Consider the limit of the small noise. We want to find the NE of sellers’
investments game. The best responses of players are represented in the middle of figures
(3). For the first seller we get:

𝑖11 = 𝐵𝑅1(𝑖21) =

⎧⎨⎩
1
2

if 𝑖21 < 1
4

1
2

or 0 if 𝑖21 = 1
4

0 if 𝑖21 > 1
4

(24)

And similar for the second seller. Thus, we have two Nash equilibria:

𝑖11 =
1

2
, 𝑖21 = 0 and 𝑖11 = 0, 𝑖21 =

1

2
(25)

Again, there is two possible profiles for the first best investments: 𝑖11 = 1, 𝑖21 = 0 and
𝑖11 = 0, 𝑖21 = 1 (for for social welfare there is no difference between sellers’ and buyers’
investments, and thus we may use here the result for the one-seller-two-buyer case). As
we can see, there are two equilibriums (and two first best levels of investments as well),
with investments in each link equal to the half of the first best levels.

Now consider the large noise limit. We have:

𝐸𝑝1 =
1

2

∫︁ ∫︁
[𝑖11 + 𝜀11 − 𝑖21 − 𝜀21]𝜃(𝑖11 + 𝜀11 − 𝑖21 − 𝜀21)𝜃(𝑖21 + 𝜀21)𝑑𝐹 (𝜀)+ (26)

+
1

2

∫︁ ∫︁
[𝑖11 + 𝜀11]𝜃(−𝑖21 − 𝜀21)𝜃(𝑖11 + 𝜀11)𝑑𝐹 (𝜀)

Then,
𝜕𝑝1
𝜕𝑖11

=
1

2
𝑃𝑟(𝑋1) +

1

2
𝑃𝑟(𝑋2)+ (27)

+
1

2

∫︁ ∫︁
(𝑖11 + 𝜀11 − 𝑖21 − 𝜀21)𝛿(𝑖11 + 𝜀11 − 𝑖21 − 𝜀21)𝜃(𝑖21 + 𝜀21)𝑑𝐹 (𝜀)+

+
1

2

∫︁ ∫︁
(𝑖11 + 𝜀11)𝛿(𝑖11 + 𝜀11)𝜃(−𝑖21 − 𝜀21)𝑑𝐹 (𝜀) =

1

2
𝑃𝑟(𝑋1) +

1

2
𝑃𝑟(𝑋2)

And we have:
𝑖11 =

1

2
𝑃𝑟(𝑋1) +

1

2
𝑃𝑟(𝑋2) (28)

analogously,

𝑖12 =
1

2
𝑃𝑟(𝑋3) +

1

2
𝑃𝑟(𝑋4) (29)

The fact that terms with delta-functions dropped out is not a general issue for the arbitrary
network. Under large noise condition, the probabilities of events 𝑋1, .., 𝑋5 does not depend
on the investment levels in the leading order of power expansion over 𝑎−1. We have:

𝑃𝑟(𝑋2) = 𝑃𝑟(𝑋4) = 𝑃𝑟(𝑋5) =
1

2
𝑃𝑟(𝑋1) = 𝑃𝑟(𝑋3) =

1

4
(30)
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Thus, when 𝑎 → ∞, at NE we have:

𝑖11 = 𝑖21 =
3

16
=

1

2
𝑖𝐹𝐵
11 =

1

2
𝑖𝐹𝐵
21 (31)

Now suppose parties trade according to some "weird" bargaining rule (𝑅2):

𝑝1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
𝑘11 if 𝑘11 > 𝑘21 > 0 (𝑋1)

1
2
𝑘11 if 𝑘11 > 0 > 𝑘21 (𝑋2)

0 if 0 < 𝑘11 < 𝑘21 (𝑋3)
0 if 𝑘11 < 0 < 𝑘21 (𝑋4)
0 if 𝑘11 < 0 & 𝑘21 < 0 (𝑋5)

(32)

Assume, that we are under the conditions of the small noise limit. The first-best responses
of sellers are represented in right figure (3). In this case there are no interceptions of best
responses, since up to a certain moment each seller is better off by investing a bit larger,
than another seller up to the moment when it is no profitable to invest at all. Hence, we
have no NE in pure strategies for the small noise limit here.

Now consider the large noise limit with the same "weird" bargaining rule. We have:

𝐸𝑝1 =
1

2

∫︁ ∫︁
(𝑖11 + 𝜀11)𝜃(𝑖11 + 𝜀11 − 𝑖21 + 𝜀21)𝜃(𝑖11 + 𝜀11)𝑑𝐹 (𝜀) (33)

FOC gives us (neglecting terms ∼ 𝑂(𝑎−1)):

𝑖11 ≈
1

2
[𝑃𝑟(𝑋1) +𝑃𝑟(𝑋2)] +

1

2

∫︁
(𝑖21 + 𝜀21)

1

𝑎
𝑓0(

𝑖21 − 𝑖11 + 𝜀21
𝑎

)𝜃(𝑖21 + 𝜀21)
1

𝑎
𝑓0(

𝜀21
𝑎

)𝑑𝜀21 ≈
(34)

≈ 1

2
[𝑃𝑟(𝑋1) + 𝑃𝑟(𝑋2)] +

1

2

∫︁
𝜀21
𝑎
𝑓0(

𝜀21
𝑎

)𝜃(
𝜀21
𝑎

)𝑓0(
𝜀21
𝑎

)
𝑑𝜀21
𝑎

and for the second seller we have the same FOC. Note, that the last term ∈ (0; 1) and
it is of order of 𝑂(1). As we can see, NE exists for the large noise even for this "weird"
bargaining rule. We will see in the following that the existence of NE at the large noise
limit is a general result for the wide class of bargaining rules.

Discussion.
We have studied a few simple examples, so what are the lessons that we learned from
them? We have seen that even very simple networks may cause distortions of incentives
(compared with the first-best incentives), different from that of one-seller-one-buyer case.
Next thing to mention is that subject to the bargaining rule there could be or there could
be no equilibrium in pure strategies; and when noise is small, then there could be multiple
equilibria. These observations reveal an important role of bargaining concept and the scale
of noise. Thus it is important to understand, what properties of the rules of trade lead
to existence∖non-existence of equilibria, multiplicity, etc. And it is useful to study large
noise and small noise limits separately. I start the next section with the systematization
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of bargaining rules, providing the set of possible properties (axioms). Then I continue
with the discussion of conclusions which we can be made in case of the large noise limit.
After that, I study the small noise limit under the assumption, that bargaining rule is
Balanced Nash Bargaining (see the formal definition in the section (5).

3.3 Bargaining rule axioms

In this paper I do not model the ex-post trade explicitly as some game, instead I
assume that sellers and buyers bargain over matching and surplus division according to
some trade rule. This allows me to study the simple Bayes-Nash equilibria of the invest-
ments game. However, since the role of bargaining rule in the Hold-up resolution seems
to be crucial, I do investigate this question. In order to address the issue, I think about
natural properties of trade concepts and formalize them as axioms. The study benefits
from it by at least three aspects. Firstly, I investigate the question of the existence of the
bargaining rule, which provides sellers with incentives to invest efficiently ex-ante, and
it is important to understand, in what class of rules it could exist (if it exists), i.e. how
nice it could be. Secondly, it is important to know the sufficient conditions for equilibria
existence and understand the connection between certain properties of bargaining rules
and properties of equilibriums of the investments game. Thirdly, consideration of general
bargaining rule allows me to avoid concerns with the structure of the ex-post information
of sellers and buyers, since in at the end of the day the outcome of the trade depends on
some way on the structure of a network and vector of possible surpluses. Of cause, further
considerations of information asymmetry may shed light on what kind of bargaining rules
could be reasonable.

Let 𝐺 be a bipartite graph of economic relationships between sellers and buyers.
Denote | 𝐺 | to be a number of links of graph 𝐺.

Definition 1. A surplus 𝑘𝑖𝑗 : 𝑖𝑗 ∈ 𝐺 is a value of a good delivery from seller 𝑖 toward
buyer 𝑗.

Definition 2. A matching 𝑀 ⊆ 𝐺 is a subgraph of a relationships network, where each
agent has no more than one link.

Let ℳ(𝐺) = {𝑀 | 𝑀 is matching in 𝐺} to be the set of all possible matchings
(including empty matching). Denote | ℳ | to be a number of all possible matchings.
If seller 𝑖 is matched with buyer 𝑗, that is, 𝑖𝑗 ∈ 𝑀 , let’s say that 𝑗 = 𝑀(𝑠)(𝑖), and
𝑖 = 𝑀(𝑏)(𝑗).

Definition 3. A Bargaining rule over a buyer-sellers network is a correspondence2 which
for each graph of relationships and a vector of possible surpluses gives graph of matching

2 The reason why I allow bargaining rule to have multiple values is as follows. Firstly, there are
concepts of trading where agents play some game (for example, take-it-or-leave-it offers), and there could
be multiple equilibriums; in addition, there are concepts of trading which include random matching or
order of turns of players, etc. Secondly, and more important, it could be that several matchings are
efficient, and there could be multiple efficient solutions (we have a "coordination problem"). In this work
I consider bargaining rules which lead to the efficient matching (axiom 4), and in addition I assume that
if the matching is unique, the payoff vector is unique either (axiom 1). If the distribution of noise are
such that no one value of noise appears with the positive probability, then the considered bargaining rules
give unique outcomes with the probability one, and there are no equilibria selection problems.
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and vector of payoffs:
𝑅 : (𝐺,𝐾)⇒ (𝑀,𝑃 ) (35)

where 𝐺 is a bipartite graph of relationships, 𝐾 = (𝑘11, ..., 𝑘𝑠𝑏, ...) is a vector of possi-
ble surpluses, 𝑀 ⊆ 𝐺 is the bipartite graph of matching between sellers and buyers and
𝑃 = (𝑝, 𝑞) = (𝑝1, ..., 𝑝𝑆, 𝑞1, ..., 𝑝𝐵) is the vector of payoffs of sellers (𝑝) and buyers (𝑞)
correspondingly.

Let’s now think about the natural properties of bargaining rules over networks
(keeping in mind examples). Firstly, if the bargaining rule defines matching, then for this
matching the payoffs of players should be determined without ambiguity, otherwise we
should think about the solution selection in each case.

Axiom 1. Payoff Uniqueness. With fixed graph of relationships 𝐺, vector of surpluses
𝐾 and matching 𝑀 , the vector of payoffs is unique.

Next, if parties trade, then they should get non-negative payoffs, because they are
rational and they may refuse to participate in trade (agents always have a zero outside
options).

Axiom 2. Participation Rationality. Each agent gets non-negative profit:

𝑃 ≥ 0 (36)

Now, the bargaining rule is a rule of total surplus dividing. Thus the sum of payoffs
should not exceed the overall surplus. It could be the case that parties may burn money,
but this is out of scope of our work by now. Thus we consider rules for which the budget
is balanced.

Axiom 3. Balanced Budget. The total sum of gains is equal to the sum of surpluses
over the matching:

𝑆∑︁
𝑗=1

𝑝𝑗 +
𝐵∑︁
𝑗=1

𝑞𝑗 =
∑︁
𝑖𝑗∈𝑀

𝑘𝑖𝑗 (37)

It is not always the case that bargaining rule leads to the ex-post efficient allocation
of goods. However the aim of this paper is not to study ex-post efficiency, and we restrict
our attention only to the efficient bargaining rules, although in might be interesting to
study the Hold-up problem with some natural bargaining rules which do not necessarily
lead to the efficient matching.

Axiom 4. Efficiency. The matching is efficient:

𝑀 ∈ 𝐴𝑟𝑔𝑚𝑎𝑥
𝑀∈ℳ

[︃∑︁
𝑖𝑗∈𝑀

𝑘𝑖𝑗

]︃
(38)

It is natural to assume that sellers (buyers) are initially homogenous and they may
get different surpluses only because they are not in equal conditions in terms of economic
relationships or because surpluses in different links are different. However, if all else is
equal, sellers (buyers) should get equal payoffs. Many bargaining rules have this property,
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but some do not. However, it is an important property, since it may lead to the symmetry
of the set of Nash equilibriums in the investment’s game.

Axiom 5. Symmetry I.3 The matching and payoffs depend only on the structure of
network and surpluses, but not on the index number of agents. Let 𝜋 = 𝜋𝑠 · 𝜋𝑏 be the
permutation among sellers and among buyers (𝜋𝑠 acts on the set of index number of
sellers, and 𝜋𝑏 - the same for buyers). Then:

𝑅(𝜋𝐺, 𝜋𝐾) = 𝜋𝑅(𝐺,𝐾) (39)

As we can see from simple examples, mentioned above, for common bargaining rules
the payoffs of players for certain domains of surpluses’ values tend to be linear in terms
of surpluses; however, the payoff may jump up or down when vector of surpluses goes
from one domain to another. We may think that subject to some global conditions (for
example, 𝑘𝑠𝑏 ≥ 0 for particular 𝑠𝑏), agents have this or that "bargaining conditions" when
they trade with each other, and they share surpluses differently subject to the global
situation (for example, this or that link may be considered as a credible alternative in
bargaining process or may not). I try to capture this property by the following axiom:

Axiom 6. Piecewise Linearity. Let the space of surpluses 𝑅|𝐺| be divided on the subsets
𝑋1, ..., 𝑋𝑁 by the finite number of hyperplanes:

∑︀
𝑖𝑗∈𝐺

𝛽𝑙
𝑖𝑗𝑘𝑖𝑗 + 𝛽0 = 0 for 𝑙 = 1, ..., 𝐿. Then

vector of players’ payoff is linear inside each subset 𝑘 ∈ 𝑖𝑛𝑡(𝑋𝑛):

𝑘 ∈ 𝑖𝑛𝑡(𝑋𝑛) ⇒ 𝑃 (𝑘) =
∑︁
𝑖𝑗∈𝐺

𝛼𝑛
𝑖𝑗𝑘𝑖𝑗 + 𝛼𝑛

0 (40)

(here each of 𝑎𝑛𝑖𝑗 and 𝑎𝑛0 is a (𝐵 + 𝑆)-dimensional vector)

Consider some matching 𝑀 and a link in this matching, 𝑖𝑗 ∈ 𝑀 . Generally, we
allow payoffs that of seller 𝑖 and buyer 𝑗 are not equal to 𝑘𝑖𝑗. This means, that there is
some monetary transfers (positive or negative) from this pair to other agents. However,
it is more naturally to assume, that it is only buyer 𝑗 who makes monetary payment
to seller 𝑗, that is: 𝑞𝑗 = 𝑘𝑖𝑗 − 𝑡, 𝑝𝑖 = 𝑡, and there is no any cross transfers between
different buyer-seller pairs (but still monetary transfer 𝑡 inside each pair may depend on
all surpluses over network G).

Axiom 7. No Cross-Transfers. There is no cross transfers between different matched
pairs of buyers and sellers:

𝑖𝑗 ∈ 𝑀 ⇒ 𝑝𝑖 + 𝑞𝑗 = 𝑘𝑖𝑗 (41)

Note, that it is a local variant of Budget Balanced axiom (A3), and it implies
Budget Balance (proof - sum eq. (41) over all inks in matching). Note also, that some
coalition bargaining rules, such as Shapley Value, do not satisfy this axiom, since they
give payoffs even to the players who do not engage in the matching.

Discussion.
3There is also possible symmetry of bargaining concept with respect to the switching to dual graph

with all buyers changed by all sellers and vice versa. Thus I use letter I to distinguish the symmetry of
bargaining rule in the narrow sense (without considering transformation to the dual graph)
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I design the following possible axioms for the bargaining rules: Payoff Uniqueness
(after agents agreed about matching, payoffs are determined uniquely), Participation Ra-
tionality (agents get non-negative payoffs), Balanced Budget (agents redistribute the total
gain of trade over network among themselves), No Cross Transfers (each pair of matched
seller and buyer divides the surplus of their joint project without receiving any money
from the outside), Efficiency, Symmetry (meaning that bargaining rule respects network
symmetries), and Piecewise Linearity (payoff of each agent is a piecewise linear function
of all surpluses). The two most questionable axioms are Efficiency and Piecewise Linear-
ity. Indeed, we may easily imagine that agents trade ex-post inefficiently; however there
are a lot of questions which may be studied under the assumption of efficient bargaining
rules, and we may postpone the considerations of the ex-post inefficiency for further stud-
ies. Piecewise linearity of bargaining rule looks like a common issue: it is not so easy to
imagine the local non-linearity in surpluses. Additionally, linearity greatly simplifies the
analysis, allowing us to make otherwise intractable calculations.

One important property of a network bargaining rule (in case of when agents match
in pairs) could be a pairwise stability: there is no an agent of a matched pair, who wants
to break a relationship; and there is no a pair of agents who may break their matchings
and trade with each other, getting better payoffs. I do not investigate pairwise stability
here, but it necessarily should be studied during further work on this theme.

4 General results
In this section I discuss general conclusions which can be made for the wide class

of bargaining rules. At the beginning, I study the first best levels of investments for
arbitrary network, which are independent of the bargaining rule. Three statements are
proven. Firstly, with the cost function 𝐶 =

∑︀ 𝑖2𝑖𝑗
2

the FB investment in each link is equal
to its probability to participate it the efficient matching ex-post. Secondly, in case of large
noise limit the first best profile of investments levels is unique, and this profile respects
the network symmetry. Thirdly, in case of small noise the efficient profile of investments
consists of units investments for all links, including in some maximal matching and zeros
for the other links.

Next, I go to the core result of the study: the existence of the ex-post bargaining
rule, providing ex-ante efficient incentives to invest. I show, that if sellers are paid for the
positive externality which they bring when they are added to the network of other agents
(similar to the Expected Externality mechanism), this provides the efficient incentives
to invest ex-ante. Moreover, this bargaining rule is nice in the sense that it satisfies all
axioms (A1-A7). Then I discuss the benefits and reservations of the result.

After brief consideration of the role of network’s symmetry in characterization of the
set of Nash equilibriums, I proceed to the study of the large noise limit case. Similarly
to the first best calculations, I show that under mild assumptions on the bargaining
rule (it should satisfy axioms Payoff Uniqueness (A1), Participation Rationality (A2),
Balanced Budget (A3) and Piecewise Linearity (A6)), there always exists an unique Nash
equilibrium in pure strategies, and if bargaining rule satisfies Symmetry axiom (A5), then
equilibrium levels of investments respects the symmetry of the network.
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4.1 First Best calculations

Let’s describe the first best levels of investments. One interesting note is that for
the society there is no difference between buyers and sellers: we may always say that it is
buyers who invest in links, not sellers. Obviously, the first-best levels of investments do
not depend on the bargaining rule.
Efficient Matching
The efficient matching is determined as follows:

𝑀 ∈ 𝐴𝑟𝑔𝑚𝑎𝑥
𝑀∈ℳ(𝐺)

[︃∑︁
𝑖𝑗∈𝑀

𝑘𝑖𝑗

]︃
(42)

Efficient Levels of Investments
Central Planner solves:

𝐸𝑊 = 𝐸[𝑚𝑎𝑥𝑀{
∑︁
𝑠𝑏∈𝑀

𝑘𝑠𝑏}] −
∑︁
𝑠𝑏∈𝐺

𝑖2𝑠𝑏
2

→ 𝑚𝑎𝑥
𝑖𝑠𝑏≥0

(43)

where 𝑀 ⊆ 𝐺 is an ex-post matching. For further needs let’s divide the social welfare on
the benefits from trade 𝑊 𝑇 and investment costs:

𝑊 = 𝑊 𝑇 − Costs =
∑︁
𝑠𝑏∈𝑀

𝑘𝑠𝑏 −
∑︁
𝑠𝑏∈𝐺

𝑖2𝑠𝑏
2

(44)

Gradient of welfare function with respect to investments in each link 𝑖𝑗 look as:

𝜕𝑊

𝜕𝑖𝑖𝑗
=

∫︁ ∞

−∞
...

∫︁ ∞

−∞

𝜕

𝜕𝑖𝑖𝑗
𝑚𝑎𝑥𝑀{

∑︁
𝑠𝑏∈𝑀

(𝑖𝑠𝑏 + 𝜀𝑠𝑏)}𝑑𝐹 (𝜀) − 𝑖𝑖𝑗 = (45)

=

∫︁ ∞

−∞
...

∫︁ ∞

−∞
1(𝑖𝑗 ∈ 𝑀 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)𝑑𝐹 (𝜀) − 𝑖𝑖𝑗

where I use the Envelope Theorem to get

𝜕

𝜕𝑖𝑖𝑗
𝑚𝑎𝑥𝑀{

∑︁
𝑠𝑏∈𝑀

(𝑖𝑠𝑏 + 𝜀𝑠𝑏)} = 𝑚𝑎𝑥{ 𝜕

𝜕𝑖𝑖𝑗

∑︁
𝑠𝑏∈𝑀

(𝑖𝑠𝑏 + 𝜀𝑠𝑏)} = 1(𝑖𝑗 ∈ 𝑀 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

Let’s show, that at 𝑖𝐹𝐵 FOC always holds as O𝐸𝑊 = 0. The only one opportunity when
FOC holds as inequality could be when we have a corner solution 𝑖𝑗𝑘 = 0 for some 𝑗𝑘 ∈ 𝐺.
However, gradient of the expected social welfare could not have a negative projection on
the 𝑖𝑗𝑘 Axes, since the marginal cost of zero investment is zero, and investment does not
decrease the expected surpluses. Since FOCs are necessary conditions for the maximum
of welfare functional, we have proved the following proposition:

Proposition 1. The first-best level of investment in link is equal to the probability of this
link to be in the efficient matching:

𝑖𝑖𝑗 = 𝑃𝑟[𝑖𝑗 ∈ 𝑀 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡] (46)

Note, that event 𝑖𝑗 ∈ 𝑀 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 means that 𝑖𝑗 is included in at least one of the
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efficient matchings (in case when there are several of them); however the probability
measure of this event is zero. Efficiency of matchings, in its turn, depends on the level of
investments, thus | 𝐺 | equations (46) determine candidates for the FB levels of investment
in the implicit way.

Obviously, 𝑖𝐹𝐵
𝑠𝑏 ∈ [0; 1] and in vector form: 𝑖𝐹𝐵 ∈ [0; 1]|𝐺|. Consequently, the First

Best levels of investments always exist, since social welfare is a continuous function of 𝑖,
and 𝑖 lies in the compact set [0; 1]|𝐺|. Now consider the mapping:

𝐻 : [0; 1]|𝐺| → [0; 1]|𝐺| 𝐻𝑖𝑗(𝑖) = 𝑃𝑟[𝑖𝑗 ∈ 𝑀 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑖)] (47)

We may alternatively say that each first best level of investments is a fixed point of the
mapping 𝐻. In general, there could be a number of fixed points and we should study
which of them give us the largest expected social welfare in order to find the first best level
of investments (SOC at point with largest social welfare will be satisfied automatically for
this points, since global maximum always exists and it is one of the fixed points of 𝐻).
However, in some cases we may provide more clear answer. Intuitively, when the noise is
large in comparison with investments, the latter do not affect probabilities of matching
to be efficient significantly, and when the scale of noise goes to the infinity, we have the
only one candidate for the efficient level of investments. Let’s formalize this intuition:

Proposition 2. ∀ graph of economic relationships 𝐺 ∃ the scale of noise 𝑎 such that
∀𝑎 > 𝑎 there exists a unique vector of first best investments 𝑖𝐹𝐵.

Proof.

Lemma 1. Under the conditions of proposition (2) ∃𝑎 such that ∀𝑎 > 𝑎 H(i) is a con-
traction mapping with respect to the Euclidian metrics in 𝑅|𝐺|.

Proof. See Appendix.

Since lemma 1 holds, and [0; 1]|𝐺| a compact set, then by the Contraction Map-
ping Theorem 𝐻(𝑖) has a unique fixed point, which is the desired vector of first best
investments.

Now suppose that noise is small (that is, 𝑎 → 0). Then social planner could ex-
ante determine future efficient matching, and marginal expected social benefits from the
investment in a links of this matching would be one, while in other links it would be zero.
We formalize this by the following proposition.

Proposition 3. First best investments in case of small noise.
∃𝑎 > 0 such that ∀𝑎 < 𝑎 the first-best levels of investments is given by:

𝑖𝐹𝐵
𝑖𝑗 =

{︂
1 if 𝑖𝑗 ∈ 𝑀𝑚𝑎𝑥

0 otherwise (48)

where 𝑀𝑚𝑎𝑥 ⊆ 𝐺 is one of the maximal matchings, i.e. matching with maximal possible
number of links.

Proof. In what follows, I use Proposition (1): 𝑖𝑖𝑗 = 𝑃𝑟[𝑖𝑗 ∈ 𝑀 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡].
Firstly, as 𝑎 → 0, we always can choose some matching, which has ex-ante ∼ 𝑂(1)
probability to be the efficient matching ex-post (the total number of matchings is finite
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number independent of 𝑎 and the sum of all probabilities is 1 ∼ 𝑂(1)). Let’s denote
this matching as 𝑀1, and the corresponding probability as 𝑟1. Assume that 𝑀1 is not
maximal. Then there is a link 𝑠𝑏 ∈ 𝐺, 𝑠𝑏 ̸∈ 𝑀 with investment 𝑖𝑠𝑏 < 𝑎

2
, otherwise

it always has positive surplus and hence ex-post efficient matching should be 𝑀1 + 𝑠𝑏.
However, by investing 𝑖𝑠𝑏 = 𝑟1 society may increase its expected profit by at least 1

2
𝑟21.

Hence, our assumption is false and 𝑀1 should be maximal, as well as any other matching
which has ∼ 𝑂(1) probability to appear as ex-post efficient one. Assume there are at
least two matchings, 𝑀1 and 𝑀2, which appear with probabilities 𝑟1, 𝑟2 ∼ 𝑂(1). The
difference between payoffs of these two matchings in any state of the world could not
exceed 𝑛 · 𝑎 ∼ 𝑂(𝑎), where n is the maximal number of links in matching, otherwise
one of them would be for sure strictly worse than another. Next, since these matchings
are different and maximal, there exists a pair of distinct links 𝑠𝑏 ∈ 𝑀1 and 𝑠′𝑏′ ∈ 𝑀2,
𝑠′𝑏′ ̸= 𝑠𝑏. Denote

𝑐(𝑀1) =
1

2

∑︁
𝑖𝑗∈𝑀1

𝑖2𝑖𝑗
2

(49)

and similar for 𝑐(𝑀2). WLOG, 𝑐(𝑀1) ≤ 𝑐(𝑀2). Then, it is a profitable for the society
not to invest in the link 𝑠′𝑏′ at all. Indeed, the maximum loss in terms of ex-post trade
would be 𝑛𝑎 ∼ 𝑂(𝑎), but costs of the society decrease by 𝑟22

2
∼ 𝑂(1). Hence, there is only

one matching (WLOG, 𝑀1), which appears with probability ∼ 𝑂(1). Then ∀𝑖𝑗 ∈ 𝑀1 we
have 𝑖𝑖𝑗 − 1 ∼ 𝑂(𝑎), and if 𝑖𝑗 ̸∈ 𝑀1, then 𝑖𝑖𝑗 ∼ 𝑂(𝑎). Assume 𝑃𝑟(𝑀 = 𝑀1) < 1. Then
∃𝑀2 ̸= 𝑀1 : 𝑃𝑟(𝑀 = 𝑀2) > 0. Since 𝑀2 ̸= 𝑀1, there is some link 𝑠′𝑏′ ∈ 𝑀2 : 𝑠′𝑏′ ̸∈ 𝑀 .
Hence 𝑊 (𝑀1)−𝑊 (𝑀2) ≥ 1−𝑂(𝑎), and 𝑀1 gives strictly better social gains in any state
of the world. Thus, 𝑃𝑟(𝑀 = 𝑀1) = 1, and 𝑀1 is a maximal matching, which proves the
proposition.

4.2 Bargaining rule, providing efficient incentives to invest

Here I investigate the existence of bargaining rule, which provides sellers with
incentives to invest efficiently4. Let’s call it "The ex-ante efficient bargaining rule". One
idea how to design this kind of rule is to align individuals’ (sellers’) incentives with social
ones. Let’s try to find the bargaining rule, which gives each seller the expected utility,
equal to

𝐸𝑈𝑖 = 𝐸𝑝𝑖 −
∑︁

𝑗: 𝑖𝑗∈𝐺

𝑖2𝑖𝑗
2

= 𝐸𝑊 − 𝑔(i−i) (50)

Where 𝑔(i−i) is some function of investments of other players. Remind that total social
welfare 𝑊 is a difference between total gains of trade and costs of investments: 𝑊 =
𝑊 𝑇 − 𝐶𝑜𝑠𝑡𝑠. Then one natural candidate for this rule is to give each seller

𝑝𝑖(𝑘) = 𝑊 𝑇 (𝑘) − ℎ(k−i) (51)
4Recently I found that my results are similar to that of Cole et al. (2001) for the hold-up problems

in the finite economics. However, Harold and George Mailathy study the case of full graph, they allow
only one-dimensional vector of investments for each player, and work under the assumption of zero noise.
Thus my findings are generalize their results for the case of trade over network, more flexible investment
choices and structure of uncertainty
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where ℎ(k−i) is a function of surpluses over links, not adjacent to seller 𝑖. The best
response of seller 𝑖 is derived from the maximization of his expected utility:

𝐸𝑈𝑖 = 𝐸[𝑊 𝑇 (𝑘)] −
∑︁

𝑗: 𝑖𝑗∈𝐺

𝑖2𝑖𝑗
2

− 𝐸[ℎ(k−i)] = 𝐸𝑊 +
∑︁

𝑖′ ̸=𝑖,𝑖′𝑗∈𝐺

𝑖2𝑖′𝑗
2

− 𝐸[ℎ(k−i)] = (52)

= 𝐸𝑊 − 𝑔(i−i) where 𝑔(i−i) = 𝐸[ℎ(k−i)] +
∑︁

𝑖′ ̸=𝑖,𝑖′𝑗∈𝐺

𝑖2𝑖′𝑗
2

What kind of function could be ℎ(k−i) in order to get nice properties of the bar-
gaining rule? In the spirit of Expected Externality mechanism, we can think about social
gain from the trade, which other agents can gain together without the considered seller.
More formally, the maximum social gain of trade is

𝑊 𝑇 = max
𝑀∈ℳ(𝐺)

∑︁
𝑖𝑗∈𝑀

𝑘𝑖𝑗 (53)

Next, let 𝐿(𝑠)(𝑖) be the set of links, adjacent in network 𝐺 to the seller 𝑖, and analogously
𝐿(𝑏)(𝑗) be the set of links, adjacent in network 𝐺 to the buyer 𝑗:

𝐿(𝑠)(𝑖) = {𝑖𝑗 : 𝑖𝑗 ∈ 𝐺} (54)

Denote 𝑊−𝑖 to be a maximum social welfare for the graph 𝐺 without seller 𝑖, that is:

𝑊−𝑖 = max
�̂�∈ℳ(𝐺∖𝐿(𝑠)(𝑖))

∑︁
𝑙𝑚∈�̂�

𝑘𝑙𝑚 (55)

Then we simply set
ℎ(k−i) = 𝑊−𝑖 (56)

We should also define buyers’ payoffs. Let’s set them such that No Cross Transfer axiom
is satisfied automatically:

𝑞𝑗 = 𝑘𝑀(𝑠)(𝑗)𝑗 − 𝑝𝑀(𝑠)(𝑗) (57)

The good think is that if we require matching to be efficient, then this bargaining rule
satisfies all bargaining axioms.

Proposition 4. FB investment implementation through bargaining rule.
Let the bargaining rule 𝑅 be described as follows:

𝑅(𝐺,𝐾) =
(︁
𝑀 is efficient ; 𝑝𝑖 = 𝑊 𝑇 −𝑊 𝑇

−𝑖 , 𝑞𝑗 = 𝑘𝑀(𝑏)(𝑗)𝑗 −𝑊 𝑇 + 𝑊 𝑇
−𝑀(𝑏)(𝑗)

, (58)

𝑞𝑗 = 0 if buyer j is unmatched)

where 𝑊 𝑇 is the maximum social gain from the trade over the whole network G and 𝑊 𝑇
−𝑖

is the maximum social gain from the trade over the network G without seller 𝑖. Then:

1. Bargaining rule 𝑅 satisfies axioms Payoff Uniqueness (A1), Participation Ratio-
nality (A2), Balanced Budget (A3), Efficiency (A4), Symmetry I (A5), Piecewise
Linearity (A6) and No Cross-Transfers (A7).
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Figure 4: Examples of payoff distributions for the ex-ante effective bargaining rule. Green
variables and numbers are values of links (surpluses), while blue variables and numbers
are payoffs of the agents. Solid lines represent matching, while dashed lines represent
non-realized opportunities to trade.

2. Each efficient profile of investments 𝑖𝐹𝐵 is a Nash equilibrium profile of sellers’
investments in the game where payoffs are distributed according to the rule 𝑅.

Proof. Let’s show that any 𝑖𝐹𝐵 is an equilibrium profile of investments. By construction,
𝑊 𝑇

−𝑖 does not depend on values of surpluses of links, adjacent to the seller 𝑖. Hence, seller
𝑖 solves the following problem (given that other sellers play 𝑖𝐹𝐵

−𝑖. ):

𝐸𝑈𝑖 = 𝐸𝑝𝑖 −
∑︁

𝑗: 𝑖𝑗∈𝐺

𝑖2𝑖𝑗
2

= 𝐸𝑊 𝑇 − 𝐸𝑊 𝑇
−𝑖 −

∑︁
𝑗: 𝑖𝑗∈𝐺

𝑖2𝑖𝑗
2

= (59)

= 𝐸𝑊 𝑇 −
∑︁
𝑖′𝑗∈𝐺

𝑖2𝑖′𝑗
2

+
∑︁

𝑖′ ̸=𝑖, 𝑖′𝑗∈𝐺

𝑖2𝑖′𝑗
2

− 𝐸𝑊 𝑇
−𝑖 = 𝐸𝑊 +

∑︁
𝑖′ ̸=𝑖, 𝑖′𝑗∈𝐺

𝑖2𝑖′𝑗
2

− 𝐸𝑊 𝑇
−𝑖 → max

ii
⇔

⇔ 𝐸[𝑊 (ii + 𝜀i, i
𝐹𝐵
−i + 𝜀−i)] → max

ii

where ii stands for the vector of investments of seller 𝑖, i−i stands for the vector of
investments for all other sellers, and similar for 𝜀i and 𝜀−i. Clearly,

𝑖𝐹𝐵 ∈ Argmax
𝑖

𝐸[𝑊 (𝑖 + 𝜀)] ⇒ i𝐹𝐵
i ∈ Argmax

𝑖𝑖.

𝐸[𝑊 (ii + 𝜀i, i
𝐹𝐵
−i + 𝜀−i)] (60)

Hence, there is an interception of players’ best responses, i.e. NE, where sellers invest
𝑖𝐹𝐵. Now let’s check, that 𝑅 indeed satisfies Axioms (1-7):

1. (Payoff uniqueness). Sellers’ payoffs are unique, since 𝑊 𝑇 and 𝑊 𝑇
−𝑖 each have exactly

one value for the given vector 𝐾 (it is a maximum over finite number of alternatives).
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Buyers’ payoffs are also unique by the same argument.

2. (Participation rationality). Clearly, 𝑊 𝑇 ≥ 𝑊 𝑇
−𝑖, since we may always choose in 𝐺

the same matching as in 𝐺∖𝐿(𝑠)(𝑖), and get at least 𝑊 𝑇
−𝑖. Hence,

𝑝𝑖 = 𝑊 𝑇 −𝑊 𝑇
−𝑖 ≥ 0 (61)

Next, consider 𝑞𝑗. We have:

𝑝𝑖 = 𝑘𝑖𝑀(𝑠)(𝑖) +
∑︁

𝑙𝑚∈𝑀∖𝐿(𝑠)(𝑖)

(𝑘𝑙𝑚) − 𝑊 𝑇
−𝑖 ≤ (62)

≤ 𝑘𝑖𝑀(𝑠)(𝑖) + max
�̂�∈ℳ(𝐺∖𝐿(𝑠)(𝑖))

∑︁
𝑙𝑚∈�̂�

(𝑘𝑙𝑚) − 𝑊 𝑇
−𝑖 = 𝑘𝑖𝑀(𝑠)(𝑖)

Hence,

𝑞𝑗 =

{︂
0 if buyer 𝑗 is unmatched
𝑘𝑀(𝑏)(𝑗)𝑗 − 𝑝𝑀(𝑏)(𝑗) ≥ 𝑘𝑀(𝑏)(𝑗)𝑗 − 𝑘𝑀𝑏(𝑗)𝑀(𝑠)(𝑀(𝑏)(𝑗)) = 0 otherwise

(63)
where we have used 𝑀(𝑠)(𝑀(𝑏)(𝑗)) = 𝑗.

3. (Balanced budget). It follows from No Cross Transfers Axiom.

4. (Efficiency). Efficiency holds by the construction.

5. (Symmetry I). Firstly, the efficient matching does not depend on the index numbers
of agents. Secondly, 𝜋𝑝𝑖 = 𝑊 𝑇 −𝑊 𝑇

𝜋(𝑖) = 𝑝𝜋(𝑖), and finally if buyer 𝑗 participates in
matching M, then 𝜋𝑞𝑗 = 𝜋𝑘𝑖𝑗 −𝑊 𝑇

𝜋(𝑖) = 𝑞𝜋𝑗, and if not, then also 𝜋𝑞𝑗 = 0 = 𝑞𝜋(𝑗).

6. (Piecewise Linearity). Denote 𝑀−𝑖 to be the efficient matching for 𝐺∖𝐿(𝑠)(𝑖). Each
matching 𝑀 and 𝑀−𝑖 remains the same inside the region, where sum of surpluses
over its links is maximal over all feasible matches. These regions are determined by
the set of linear inequalities:

∀�̂� ∈ ℳ(𝐺), �̂� ̸= 𝑀 :
∑︁
𝑖𝑗∈𝑀

𝑘𝑖𝑗 −
∑︁
𝑖𝑗∈�̂�

𝑘𝑖𝑗 ≥ 0 (64)

for 𝑀 , and similar for each 𝑀−𝑖. Clearly, it means that these regions are bounded by
the corresponding hyperplanes (the inequalities become equations on the boundaries
of regions). Consider now the set of regions 𝑋1, ..., 𝑋𝐿, which appears when we con-
sider all possible secant hyperplanes for all matchings in all graphs 𝐺,𝐺∖𝐿(𝑠)1, ..., 𝐺∖𝐿(𝑠)𝑆.
Inside each region 𝑋𝑙 all efficient matchings for these graphs remains the same, and
since 𝑊 𝑇 and 𝑊 𝑇

−𝑖 are sums of surpluses over these matchings, there linear combi-
nations are linear functions of 𝑘. Hence, 𝑝𝑖 and 𝑞𝑗 are linear functions of 𝑘, QED.

7. (No Cross-Transfers). Holds by construction:

𝑖𝑗 ∈ 𝑀 ⇒ 𝑝𝑖 + 𝑞𝑗 = 𝑊 𝑇 −𝑊 𝑇
𝑖 + 𝑘𝑖𝑗 −𝑊 𝑇 + 𝑊 𝑇

𝑖 = 𝑘𝑖𝑗 (65)
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Discussion
One important reservation of this result is that the set of NE profiles of investments

includes the set of first best profiles, but not vice versa. Thus, even with this bargaining
rule there could be other Nash equilibria with inefficient levels of investments, and sellers
may fail to coordinate on the FB equilibrium. This finding is in line with that of Cole
et al. (2001).

Great advantage of this result is that it is robust to the changes of the model in
several senses. Firstly, it does not matter, whether sellers make only specific investments,
or they may make general investments as well: the core idea is that their incentives are in
line with social ones. Secondly, the result is independent of our assumption on the noise
terms: its joint distribution could have arbitrary structure. Indeed, all expectations are
taken without any assumptions on the distribution of noise, except of existence of first
moments. Finally, the result does not depend on the particular form of the cost function
(which is otherwise limited by our quadratic in investments choice), since cost function
of investments of the society is additive with respect to cost functions of investments of
each seller.

There is also another important question, which needs further investigation: whether
this bargaining rule is pairwise stable or not. I have a hypothesis that it is indeed pairwise
stable; moreover, it seemed to be a coalitional stable concept (there is no one coalition of
agents who may separate themselves from others and get from their trade larger payoff,
than they get in sum according to our rule.

4.3 The role of network symmetries

Symmetry plays an important role in the structure of Nash equilibria of the game,
and it is useful to clarify what conclusions can be made based on the symmetry consid-
erations. I claim that if a bargaining rule satisfies Symmetry I axiom, then each Nash
equilibrium in the investment game of sellers belongs to a family of Nash equilibriums,
corresponding to the orbit of a symmetry group of graph 𝐺. Specifically, let 𝜋 = 𝜋𝑠𝜋𝑏 is
a group of index permutations, for which graph 𝐺 is invariant. Let 𝑖(1) is an equilibrium
vector of investments with components 𝑖𝑗𝑘 = 𝑖

(1)
𝑗𝑘 . Then vector 𝜋(𝑖(1)) with components

𝑖𝑗𝑘 = 𝑖
(1)

𝜋−1
𝑠 (𝑗)𝜋−1

𝑏 (𝑘)
is also an equilibrium vector of investments. Let’s formalize this:

Proposition 5. Assume, bargaining rule satisfies Symmetry I axiom. Then each Nash
equilibrium profile of investments 𝑖𝑁𝐸 generates an orbit of equilibriums, corresponding to
the symmetry group of a graph 𝐺.

Proof. Sketch of the proof. The conclusion of the theorem follows from the following
points:

∙ The bargaining rule is symmetric. Thus,

𝑝𝜋(𝑖)(𝑘) = 𝑝𝑖(𝜋𝑘) (66)

∙ The joint distribution of the noise is symmetric. This, ∀ function 𝑔(𝛼; 𝜀) we have:

𝐸[𝑔(𝛼; 𝜋𝜀) = 𝐸[𝑔(𝛼; 𝜀)]] (67)
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∙ Cost functions transforms one into another by the symmetry of graph G:

𝜋 ∘ (
∑︁

𝑗:𝑖𝑗∈𝐺

𝑖2𝑖𝑗
2

) =
∑︁

𝑗:𝜋(𝑖)𝑗∈𝜋𝐺

𝑖2𝜋(𝑖)𝑗
2

=
∑︁

𝑗:𝜋(𝑖)𝑗∈𝐺

𝑖2𝜋(𝑖)𝑗
2

(68)

Then, given the vector of other sellers’ investments, being components of vector �̂�𝑙𝑚 =
𝑖𝑁𝐸
𝜋(𝑙)𝜋(𝑚), seller 𝑖 solves the same problem, as seller 𝜋(𝑖) with the vector of other seller’s

investments being components of vector 𝑖𝑁𝐸, and since the solution of the latter problem
yields NE outcome, the corresponding solution of the former problem give the NE outcome
too.

4.4 Large noise limit

Here I study the existence of NE under the assumption of large noise limit. I show
that similar to the results of the proposition (2), if noise is large (𝑎 → ∞), then under
suitable conditions there exists a unique Nash equilibrium of the investment’s game.

Proposition 6. Sufficient conditions for the unique NE in large noise limit.
Let the bargaining rule satisfies Payoff Uniqueness (A1), Participation Rationality (A2),
Balanced Budget (A3) and Piecewise Linearity (A6) axioms. Then there exists 𝑎 such
that ∀𝑎 > 𝑎 there is a unique Nash equilibrium of the investments’ game. Additionally,
if Symmetry I (A5) axiom holds, then at this equilibrium all links, who are translated to
each other by the symmetry of graph 𝐺, have the same levels of investments.

Proof.

Lemma 2. Under the conditions of proposition (6) ∀𝑛 > 0 ∃𝑎 : ∀𝑎 > 𝑎 the following
operator is a contraction mapping on the set 𝑋 : 𝑖 ∈ [0;𝑛(1 +

√
1 + 𝑎)]|𝐺|:

̂︀𝐻(𝑖) : ̂︀𝐻𝑗𝑘(𝑖) =

{︂ 𝜕
𝜕𝑖𝑗𝑘

𝐸𝑝𝑗(𝑖 + 𝜀) if 𝜕
𝜕𝑖𝑗𝑘

𝐸𝑝𝑗(𝑖 + 𝜀) ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(69)

Proof. See Appendix.

For each seller FOCs look as:{︃
𝜕

𝜕𝑖𝑗𝑘
𝐸𝑝𝑗(𝑖 + 𝜀) − 𝑖𝑗𝑘 = 0 if 𝑖𝑗𝑘 > 0

𝜕
𝜕𝑖𝑗𝑘

𝐸𝑝𝑗(𝑖 + 𝜀) − 𝑖𝑗𝑘 = 𝜕
𝜕𝑖𝑗𝑘

𝐸𝑝𝑗(𝑖 + 𝜀) ≤ 0 if 𝑖𝑗𝑘 = 0
(70)

Hence, all Nash equilibria are fixed points of the mapping ̂︀𝐻(𝑖). Let 𝑛 be the number of
links in maximal matching. Denote 𝑖𝑚 = max(𝑖𝑖𝑗). Since Participation Rationality (2)
and Balanced Budget (3) implies non-negative payoffs of all sellers, we have:

0 ≤
∑︁
𝑠𝑒𝑙𝑙𝑒𝑟𝑠

(payoffs) < 𝑛(𝑖𝑚 +
𝑎

2
) − 𝑖2𝑚

2
⇒ 𝑖𝑚 ≤ 𝑛(1 +

√
1 + 𝑎) (71)

Finally, for fixed 𝑎 > 𝑎 the set [0;𝑛(1 +
√

1 + 𝑎)]|𝐺| is compact, and using lemma (2) and
Contraction Mapping Theorem, we find that ̂︀𝐻(𝑖) has exactly one fixed point ∀𝑎 > 𝑎.
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Now let’s show, that the unique fixed point of our operator is indeed a NE, i.e. the
intersection of best responses of sellers. First order conditions are satisfied for all sellers
in this point, so we should check the second order conditions. Consider arbitrary seller 𝑖.
The matrix of second derivatives of his payoff is given by:

𝑆𝑂𝐶𝑗𝑘 =
𝜕2𝐸𝑈𝑖

𝜕𝑖𝑘𝜕𝑖𝑗
= −𝐼𝑗𝑘 +

𝜕 ̂︀𝐻𝑖𝑗

𝜕𝑖𝑖𝑘
(72)

where 𝐼𝑗𝑘 is an identity matrix. In the appendix it is shown that

| 𝜕𝐻𝑗𝑘(𝑖)

𝜕𝑖𝑠𝑏
|≤ 1

𝑎

[︀
𝑐1(𝛼, 𝛽)sup(𝑓0) + 𝑐2(𝛼, 𝛽)sup(𝑓0)

2 + 𝑐3(𝛼, 𝛽)sup(𝑓0) + 𝑐4(𝛼, 𝛽)sup(𝑓 ′
0)
]︀

(73)
where 𝑐(𝛼, 𝛽) are some functions of parameters of the bargaining rule. Thus, choosing
sufficiently small 𝑎, we always can make matrix 𝑆𝑂𝐶𝑗𝑘 negatively defined, and our fixed
point indeed gives maximum expected utility for each seller.
If Symmetry I axiom holds, than by proposition (5) Nash equilibrium generates an orbit of
group of symmetry of graph 𝐺. Since the equilibrium is unique, all elements of symmetry
group reflects vector of equilibrium investments in itself.

Discussion Now let’s discuss possible properties of the equilibrium levels of investments,
if it satisfies axioms (A1,A2,A3,A6) in case of large noise. The optimal decisions of each
seller then depend on the decisions of others only by the term of order of 𝑂(𝑎−1), as it
can be seen from the proof of the contraction mapping lemma in the appendix, because
for 𝑖𝑖𝑗 > 0 we have:

𝜕 ̂︀𝐻𝑖𝑗

𝜕𝑖𝑠𝑏
= 𝑂(𝑎−1) (74)

Let’s consider the solution (which is determined by FOC) up to the terms of order 𝑂(𝑎−1)
(assuming 𝑖𝑖𝑗 > 0). Remind, that payoff of seller 𝑖 could be rewritten as:

𝑝𝑖 =
𝑁∑︁

𝑛=1

Θ𝑛(𝑘) ·

(︃∑︁
𝑖′𝑗′

𝛼𝑛
𝑖,𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛼𝑛

𝑖,0

)︃
(75)

where
Θ𝑛 =

{︂
1 𝑖𝑓 𝑘 ∈ 𝑋𝑛

0 otherwise (76)

is an indicator function for the region 𝑋𝑛, corresponding to some bargaining conditions.
Then we have:

𝑖𝑖𝑗 = ̂︀𝐻𝑖𝑗 =

∫︁ 𝑁∑︁
𝑛=1

𝛼𝑛
𝑖,𝑖𝑗Θ𝑛𝑑𝐹 (𝜀) +

∫︁ 𝑁∑︁
𝑛=1

𝜕Θ𝑛

𝜕𝑖𝑖𝑗

(︃∑︁
𝑖′𝑗′

𝛼𝑛
𝑖,𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛼𝑛

𝑖,0

)︃
𝑑𝐹 (𝜀) = (77)

=
𝑁∑︁

𝑛=1

𝛼𝑛
𝑖,𝑖𝑗𝑃𝑟(𝑋𝑛) +

∫︁ 𝑁∑︁
𝑛=1

𝜕Θ𝑛

𝜕𝑖𝑖𝑗

(︃∑︁
𝑖′𝑗′

𝛼𝑛
𝑖,𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛼𝑛

𝑖,0

)︃
𝑑𝐹 (𝜀)
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The first term corresponds to the averaged share of surplus of the link 𝑖𝑗, that seller
𝑖 gets, weighted on the probabilities of the different "bargaining situations" 𝑋𝑛. The
second term consists of sum of integrals with delta-functions, which after the integration
becomes integrals over the | 𝐺 | −1 dimensional hyperplanes (the borders of bargaining
regions 𝑋𝑛). This term takes into account the discontinuities of the payoff function on
the borders of regions 𝑋𝑛: subject to the bargaining conditions 𝑋𝑛, the seller may get
different limits of payoffs on the borders of these regions, and it is indeed the case for many
bargaining rules (for example, it can be shown that it is the case for the "𝑁" network
with the Balanced Nash bargaining rule).

We can think about the two types of network effects which influence the resolution
of the hold-up problem in the large noise limit. The first type correspond to the first
term in eq. (77): locally (subject to the event 𝑋𝑛), bargaining rule determine coefficients
𝛼𝑛
𝑖,𝑖𝑗, which stand for the share of surpluses over the corresponding links 𝑖𝑗, which are

given to the seller 𝑖. Thus we should compare average 𝛼𝑖,𝑖𝑗-s with the probabilities of the
corresponding links to be in the efficient matching in order to understand, how far are
these incentives from the social ones.

The second type of network effects corresponds to the second term in (77). As
we can see, if seller gets better bargaining power and gets larger payoff when switching
from 𝑋𝑛 to 𝑋𝑚, then he has an incentives to invest (or disinvest) in order to increase
the probability of 𝑋𝑚 and decrease the probability of 𝑋𝑛. For natural bargaining rules
we may intuitively expect that the role of the possible surplus of a particular link 𝑘𝑖𝑗
in ex-post trade increases with the increasing of 𝑘𝑖𝑗, thus we may expect that this term
indeed provides sellers with the additional incentives to invest in links in order to get
better bargaining position. This may be shown by the examples, and in particular, it
may be shown that some bargaining rules provide incentives to overinvest in comparison
with the first best profile of investments.

5 Nash Bargaining solution with endogenous outside
options
In this section I discuss the generalization of Nash Bargaining solution for one-seller-

one-buyer case on the case of agents, connected over network. Here I use a few results
from the paper Kleinberg & Tardos (2008) of Jon Kleinberg and Éva Tardos (and also
I use the notation "Balanced" Nash Bargaining solution over network - their "Balanced
Outcomes in Social Exchange Networks"). The purpose of this section is firstly to find out
a nice natural generalization of the Nash Bargaining solution, which is correctly defined
and satisfies bargaining axioms, and secondly to investigate, how payoffs of sellers depend
on the surpluses of their adjacent links in order to realize their incentives to invest.

The basic idea seems to be simple: let’s search for some trade concept, which gives
us Nash Bargaining solution for the case of 1 seller and 1 buyer; and additionally in case
of several buyers and sellers let each matched pair bargain over the value of their joint
project, taking into account outside options, consisting of opportunities to attract other
agents. That is, payoffs of a seller and a buyer in each matched pair are determined as
follows:

𝑝 = 𝑂𝑂𝑠 +
1

2
(𝑘 −𝑂𝑂𝑠 −𝑂𝑂𝑏) =

1

2
𝑘 +

1

2
𝑂𝑂𝑠 −

1

2
𝑂𝑂𝑏 (78)
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𝑞 = 𝑂𝑂𝑏 +
1

2
(𝑘 −𝑂𝑂𝑠 −𝑂𝑂𝑏) =

1

2
𝑘 − 1

2
𝑂𝑂𝑠 +

1

2
𝑂𝑂𝑏 (79)

When we study the solution for one-seller-one-buyer case, we may consider outside options
to be exogenously given. But in case of network, we have to determine them endogenously
through the payoffs of other players. Assume seller 1 is matched with buyer 1. Suppose
that he also is connected with buyers 2 and 3, and the possible value of their joint project
are 𝑘12 and 𝑘13 correspondingly. Assume also that buyer 2 is matched with seller 2, and
gets payoff 𝑞2, and buyer 3 is unmatched. Seller 1 may consider to outside opportunities.
Firstly, he may try to attract buyer 3 by giving him slightly larger than zero money and
getting the rest of 𝑘13. Another alternative is to try attract buyer 2 by giving him slightly
more than 𝑞2, and getting the rest 𝑘12 − 𝑞2. The best of these options is seller 1’s outside
option (given that it is greater than zero). In our example,

𝑂𝑂(𝑠)1 = 𝑚𝑎𝑥{𝑘13, 𝑘12 − 𝑞2, 0} = 𝑚𝑎𝑥{𝑘13 − 𝑞3, 𝑘12 − 𝑞2, 0} (80)

Since the payoff of unmatched buyer 3 is zero. Analogously we may think about the
outside options of the buyer 1 and about all other agents. Thus, we may define:

Definition 8. Balanced Nash Bargaining (BNB) solution Let 𝑀 be the efficient
matching. Balanced Nash Bargaining payoffs is a non-negative solution with respect to
(𝑝, 𝑞) of the following system of equations:

𝑝 = 0 if agent is unmatched, otherwise: (81)

𝑝𝑖 =
1

2
𝑘𝑖𝑀(𝑠)(𝑖) +

1

2
𝑂𝑂(𝑠)𝑖 −

1

2
𝑂𝑂(𝑏)𝑀(𝑠)(𝑖)

𝑞𝑗 =
1

2
𝑘𝑖𝑀(𝑏)(𝑗) +

1

2
𝑂𝑂(𝑏)𝑗 −

1

2
𝑂𝑂(𝑠)𝑀(𝑏)(𝑗)

𝑂𝑂(𝑠)𝑖 = 𝑚𝑎𝑥
𝑖𝑏∈𝐺,𝑏 ̸=𝑀(𝑠)(𝑖)

{𝑘𝑖𝑏 − 𝑞𝑏, 0}

𝑂𝑂(𝑏)𝑖 = 𝑚𝑎𝑥
𝑠𝑗∈𝐺,𝑠 ̸=𝑀(𝑏)(𝑗)

{𝑘𝑠𝑗 − 𝑝𝑠, 0}

Here 𝑀 (𝑠)(𝑖) is an index of buyer who is matched with seller 𝑖, and analogously 𝑀 (𝑏)(𝑗)
is a seller who is matched with buyer 𝑗.

This concept gives reasonable solutions, however there are two subtle points. Firstly,
it there is a possibility that there are several different profiles of outside options, giving
different solutions. Another opportunity is that there are multiple solutions of these equa-
tions even with the same graph of outside options.

5.1 Multiplicity of Balanced Nash Bargaining solutions

Example of multiplicity of BNB solutions: Consider the full bipartite 2 × 2 graph:
𝐺 = {11, 12, 21, 22}. Let the vector of surpluses is 𝑘11 = 𝑘22 = 10, 𝑘12 = 𝑘21 = 9. The
unique efficient matching is 𝑀 = {11, 22}. Then it is easy to see, that ∀𝜆 ∈ [0; 8] the
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Figure 5: examples of BNB graphs ℋ = {𝑀 ;𝑂(𝑠);𝑂(𝑏)} . Blue lines represent matching
𝑀 , red arrows go from sellers to their outside options and represent the graph of sellers’
outside options 𝑂(𝑠), black arrows go from buyers to their outside options and represent
the graph of buyers’ outside options.

following is the BNB solution:
𝑝1 = 𝑝2 = 1 + 𝜆 (82)

𝑞1 = 𝑞2 = 9 − 𝜆

Indeed, consider the first seller. His outside option is 𝑂𝑂(𝑠)1 = 𝑘12−𝑞2 = 9−9+𝜆 = 𝜆 ≥ 0.
The outside option of the first buyer is 𝑂𝑂(𝑏)1 = 𝑘21− 𝑞2 = 9− 1−𝜆 = 8−𝜆 ≥ 0. Hence,
𝑝1 = 1

2
𝑘11 + 1

2
𝑂𝑂(𝑠)1 − 1

2
𝑂𝑂(𝑏)1 = 5 + 𝜆

2
− 4 + 𝜆

2
= 1 + 𝜆, which is correct. Analogous

equations hold for the second seller and second buyer. Let’s investigate, what is the source
of multiplicity in the considered example. Assume that all outside options are positive.
Let’s express payoffs of buyers through sellers’ payoffs:

𝑞1 = 𝑘11 − 𝑝1 𝑞2 = 𝑘22 − 𝑝2 (83)

Then the system of equations looks as:

𝑝1 =
1

2
𝑘11 +

1

2
(𝑘12 − 𝑘22 + 𝑝2) −

1

2
(𝑘21 − 𝑝2) = 𝑝2 +

1

2
(𝑘11 − 𝑘22 + 𝑘12 − 𝑘21) (84)

𝑝2 =
1

2
𝑘22 +

1

2
(𝑘21 − 𝑘11 + 𝑝1) −

1

2
(𝑘12 − 𝑝1) = 𝑝1 −

1

2
(𝑘11 − 𝑘22 + 𝑘12 − 𝑘21)

Clearly, these equations are linearly dependent, which gives us multiple solutions. Let’s
turn to the general case. Using the fact, that

𝑞𝑀(𝑖)(𝑖) = 𝑘𝑖𝑀(𝑠)(𝑖) − 𝑝𝑖 (85)

we can rewrite the BNB equations in terms of sellers’ payoffs as:

𝑝𝑖 = 0 if seller 𝑖 is unmatched, otherwise: (86)
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Figure 6: Candidates for BNB graphs ℋ = {𝑀 ;𝑂(𝑠);𝑂(𝑏)} with the directed cycles,
giving multiple solutions (top graphs ℋ1, ℋ2) and no solutions (bottom graph ℋ3). Blue
lines represents matching, red arrows - outside option of sellers, and black arrows - outside
options of buyers.

𝑝𝑖 =
1

2
𝑘𝑖𝑀(𝑠)(𝑖) +

1

2
1(𝑂𝑂(𝑠)𝑖 ≥ 0) 𝑚𝑎𝑥

𝑖𝑏∈𝐺,𝑏 ̸=𝑀(𝑠)(𝑖)
{𝑘𝑖𝑏 − 𝑘𝑀(𝑏)(𝑏)𝑏 + 𝑝𝑀(𝑏)(𝑏)}−

− 1

2
1(𝑂𝑂(𝑏)𝑀(𝑠)(𝑖) ≥ 0) 𝑚𝑎𝑥

𝑠𝑀(𝑠)(𝑖)∈𝐺,𝑠 ̸=
{𝑘𝑠𝑀(𝑠)(𝑖) − 𝑝𝑠}

where 𝑂𝑂... means the same as in the previous equations.

Consider some BNB solution and fix the outside options of all players. Then we have
the triplet of graphs: ℋ = {𝑀 ;𝑂(𝑠);𝑂(𝑏)} where 𝑀 represents matching, 𝑂(𝑠) represents
the directed graph of sellers’ outside options and 𝑂(𝑏) represents the directed graph of
buyers’ outside options. For the sake of simplicity, we will call the triplet of graphs ℋ just
a "BNB graph". If buyer 𝑗′ is an outside option for the seller 𝑖, let’s denote 𝑗′ = 𝑂(𝑠)(𝑖),
and if seller 𝑖′ is an outside option for the buyer 𝑗, let’s say that 𝑖′ = 𝑂(𝑏)(𝑗). Let’s say also
that if seller 𝑖 has no match, than 𝑀 (𝑠)(𝑖) = ◇, if he has no outside option, then 𝑂(𝑠)(𝑖) = ◇,
and similar if some buyer has no outside option. Denote also 𝑘𝑖◇ = 𝑘◇𝑗 = 𝑘◇◇ = 0. Finally,
let’s introduce "fictive" seller ◇ with payoff equal to 𝑝◇ (we may think that it is an exoge-
nous outside seller) and let’s require 𝑀 (𝑠)(◇) = 𝑀 (𝑏)(◇) = 𝑂(𝑠)(◇) = 𝑂(𝑏)(◇) = ◇, and also
𝑝◇ = 0. With these notations we can rewrite our equations as:

∀𝑖 = 1, ..., 𝑆 : 𝑝𝑖 =
1

2
𝑘𝑖𝑀(𝑠)(𝑖) +

1

2
(𝑘𝑖𝑂(𝑠)(𝑖) − 𝑘𝑀(𝑏)(𝑂(𝑠)(𝑖))𝑂(𝑠)(𝑖) + 𝑝𝑀(𝑏)(𝑂(𝑠)(𝑖)))− (87)

− 1

2
(𝑘𝑂(𝑏)(𝑀(𝑠)(𝑖))𝑀(𝑠)(𝑖) − 𝑝𝑂(𝑏)(𝑀(𝑠)(𝑖)))
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𝑝◇ = 0

Finally, introducing 𝑆 + 1 dimensional vector �̂� with components

∀𝑖 = 1, ..., 𝑆 : �̂�𝑖 = 𝑘𝑖𝑀(𝑠)(𝑖) + 𝑘𝑖𝑂(𝑠)(𝑖) − 𝑘𝑀(𝑏)(𝑂(𝑠)(𝑖))𝑂(𝑠)(𝑖) − 𝑘𝑂(𝑏)(𝑀(𝑠)(𝑖))𝑀(𝑠)(𝑖) (88)

�̂�◇ = 0

we can rewrite these 𝑆 + 1 equations in matrix form:

(𝐼 − 1

2
𝑀 (𝑏)𝑂(𝑠) − 1

2
𝑂(𝑏)𝑀 (𝑠))𝑝 =

1

2
�̂� (89)

where 𝐼 is (𝑆 + 1) × (𝑆 + 1) identity matrix;

∀𝑖 = 1, ..., 𝑆 : 𝑀
(𝑠)
𝑖𝑗 =

{︂
1 if 𝑀 (𝑠)(𝑖) = 𝑗
0 otherwise (90)

∀𝑗 = 1, ..., 𝐵 : 𝑀
(𝑏)
𝑗𝑖 =

{︂
1 if 𝑀 (𝑠)(𝑗) = 𝑖
0 otherwise

∀𝑖 = 1, ..., 𝑆 : 𝑂
(𝑠)
𝑖𝑗 =

{︂
1 if 𝑂(𝑠)(𝑖) = 𝑗
0 otherwise

∀𝑗 = 1, ..., 𝐵 : 𝑂
(𝑏)
𝑗𝑖 =

{︂
1 if 𝑂(𝑏)(𝑗) = 𝑖
0 otherwise

and 𝑀
(𝑠)
◇𝑗 = 𝑀

(𝑏)
𝑖◇ = 𝑂

(𝑠)
◇𝑗 = 𝑂

(𝑏)
𝑖◇ = 0. Hence, we deal with the linear system of equations.

Clearly, the matrix

𝐴 = (𝐼 − 1

2
𝑀 (𝑏)𝑂(𝑠) − 1

2
𝑂(𝑏)𝑀 (𝑠)) (91)

plays a crucial role in the question of existence and multiplicity of solutions. If 𝑟𝑎𝑛𝑘(𝐴) =
𝑓𝑢𝑙𝑙, then the solution exists and it is unique; however if 𝑟𝑎𝑛𝑘(𝐴) ̸= 𝑓𝑢𝑙𝑙, then it could
have either a continuum of solutions (as in our case with 2 × 2 full bipartite graph), or it
could have no solutions.

5.2 Refinement of multiplicity of Balance Nash Bargaining solu-
tions: BNB-delta solution.

Here I describe one possible approach of refinement of multiplicity of the BNB
solution, which I call "BNB-delta solution" trade rule. Strictly speaking, it is a slightly
different bargaining concept, but my definition coincide with the BNB solution in case
when parameter 𝛿 = 1. Thus, we may investigate the BNB-delta solution for 𝛿 close to 1,
and intuitively our conclusions about the properties of investment game’s equilibria would
be the same as for the BNB solution with the advantage that our bargaining concept is
not ill-defined and satisfies all bargaining axioms. I proceed as follows. Firstly, I define
the bargaining rule, then investigate whether it satisfies bargaining axioms and show,
that it exhibits continuity of payoffs given that matching remains the same. After that,
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I discuss local and global monotonicity properties of the BNB-delta solution and finish
with the Proposition (7) that summarizes all findings.

∙ Definition of the bargaining rule
There could be several approaches of how to deal with multiplicity of solutions, and one
seems to be straightforward: we may transform matrix 𝐴 in eq. (91) in such a way that
it surely has full rank. Consider an alternative to Balanced Nash Bargaining concept,
where agents discount outside option with some discount factor 𝛿 ∈ (0; 1) (we may think
that there that is, "𝐵𝑁𝐵𝛿" equilibrium is defined as a solution of the set of equations:

𝑝 = 0 (or 𝑞 = 0) if agent is unmatched, otherwise: (92)

𝑝𝑖 =
1

2
𝑘𝑖𝑀(𝑠)(𝑖) +

1

2
𝛿𝑂𝑂(𝑠)𝑖 −

1

2
𝛿𝑂𝑂(𝑏)𝑀(𝑠)(𝑖)

𝑞𝑗 =
1

2
𝑘𝑖𝑀(𝑏)(𝑗) +

1

2
𝛿𝑂𝑂(𝑏)𝑗 −

1

2
𝛿𝑂𝑂(𝑠)𝑀(𝑏)(𝑗)

𝑂𝑂(𝑠)𝑖 = 𝑚𝑎𝑥
𝑖𝑏∈𝐺,𝑏 ̸=𝑀(𝑠)(𝑖)

{𝑘𝑖𝑏 − 𝑞𝑏, 0}

𝑂𝑂(𝑏)𝑖 = 𝑚𝑎𝑥
𝑠𝑗∈𝐺,𝑠 ̸=𝑀(𝑏)(𝑗)

{𝑘𝑠𝑗 − 𝑝𝑠, 0}

Definition 9. BNB-delta solution is the following bargaining rule:

1. Matching 𝑀 is efficient.

2. Payoffs of agents are defined as solutions of eq. (92)

∙ Existence and Payoff Uniqueness
Consider the region of surplus’ vector 𝑘, where efficient matching remains constant. Using
our trick with ◇, we can rewrite the equations as:

∀𝑖 = 1, ..., 𝑆 : (93)

𝑝𝑖 =
1

2
𝑘𝑖𝑀(𝑠)(𝑖) +

𝛿

2
𝑚𝑎𝑥

𝑗 ̸=𝑀(𝑠)(𝑖)
[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝𝑀(𝑏)(𝑗)] −

𝛿

2
𝑚𝑎𝑥
𝑙 ̸=𝑖

[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝𝑙]

Where first maximum goes over all buyers 𝑗 who are connected with seller 𝑖 except of seller
𝑖’s matching, but including exogenous outside option ◇, which stands for the exogenous
(external) outside option which gives seller 𝑖 zero payoff. Similarly, maximum over buyer’s
outside options include other sellers with whom he is connected and an exogenous outside
option ◇, giving him zero. Consider now the compact set 𝑋 = [0;𝑥]𝑆 × {0}. With
sufficiently large 𝑥 (for example, 𝑥 =

∑︀
𝑖𝑗∈𝑀 𝑘𝑖𝑗) we get: (𝑝1, ..., 𝑝𝑆, 𝑝◇) ∈ 𝑋. Now consider

an operator
𝐺 : 𝑋 → 𝑋 𝐺◇(𝑝(𝑠)) = 0 ∀𝑖 = 1, ..., 𝑆 : (94)

𝐺𝑖(𝑝(𝑠)) =
1

2
𝑘𝑖𝑀(𝑠)(𝑖) +

𝛿

2
𝑚𝑎𝑥

𝑗 ̸=𝑀(𝑠)(𝑖)
[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝𝑀(𝑏)(𝑗)] −

𝛿

2
𝑚𝑎𝑥
𝑙 ̸=𝑖

[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝𝑙]

Clearly, each solution of the equation 93 is a fixed point of operator 𝐺 and vice versa.
The existence and payoff uniqueness of the BNB-delta bargaining rule follows from the
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fact, that as far as 𝛿 = [0; 1), 𝐺 is a contraction mapping with respect to the metric in
𝑋, defined as the maximum of absolute value of differences between the corresponding
coordinates of vector 𝑝:

Lemma 3. BNB-delta contraction mapping lemma. Operator 𝐺, defined by equa-
tion (94), is a contraction mapping on the set 𝑋 = [0;𝑥]𝑆×{0} with respect to the metrics
on 𝑋, defined as:

𝑑(𝑦, 𝑧) = 𝑚𝑎𝑥
𝑖∈{1,...,𝑆,◇}

| 𝑦𝑖 − 𝑧𝑖 | (95)

In Particular,

∀𝑝(1), 𝑝(2) ∈ 𝑋 : 𝑑(𝐺(𝑝(2)), 𝐺(𝑝(1))) ≤ 𝛿𝑑(𝑝(2), 𝑝(1)) (96)

Proof. Proof is given in the appendix.

Since the BNB-delta solution is unique, there is exactly one BNB-graph ℋ of match-
ings and outside options, and payoffs of sellers are determined from:

(𝐼 − 𝛿

2
𝑀 (𝑏)𝑂(𝑠) − 𝛿

2
𝑂(𝑏)𝑀 (𝑠))𝑝 =

1

2
̂︀𝐾𝛿 (97)

This system of equations has a unique solution, and it is given by the following matrix
expansion:

𝑝 =
1

2

∞∑︁
𝑟=0

𝛿𝑟𝜒𝑟 ̂︀𝐾𝛿 (98)

where

𝜒 =
𝑀 (𝑏)𝑂(𝑠) + 𝑂(𝑏)𝑀 (𝑠)

2
(99)

is a matrix, which represents the influence of outside options. Each row of this matrix
looks as: (0, ..., 0), or (0, .., 0, 1

2
, 0, ..0, or (0, .., 0, 1

2
, 0, ..0, 1

2
, 0, ..0), or (0, .., 0, 1, 0, ..0), since

each seller-buyer pair has at most two outside options together (one for the seller and one
for the buyer).

∙ Continuity of BNB-delta solution for the fixed efficient matching 𝑀 .
Lemma (3) guarantees that there always exists exactly one BNB-delta solution as long
as 𝛿 ∈ (0; 1). However, we still don’t know anything about its properties, and what we
are interested in is how the solutions for different vector 𝑘 are connected with each other.
The first question is whether the solution is a continuous function of vector 𝑘. Intuitively,
there is no guarantee for this in general case; however, under the condition of fixed ef-
fective matching 𝑀 , the solution turns out to be indeed continuous in 𝑘. Note, that the
continuity property does not depend on whether we use the standard Euclidian metrics
on 𝑋, or our metrics 𝑑(𝑦, 𝑧) = 𝑚𝑎𝑥

𝑖∈{1,...,𝑆,◇}
| 𝑦𝑖 − 𝑧𝑖 |, since they induce the same topology

on 𝑋. With this remark we get the following:

Lemma 4. BNB-delta continuity lemma BNB-delta solution 𝑝(𝑘) as a function of 𝑘
is continuous with respect to 𝑑(𝑦, 𝑧) = 𝑚𝑎𝑥 | 𝑦𝑖 − 𝑧𝑖 | metrics on each compact subset of
𝑌 ⊂ 𝑅|𝐺| × {0}, where matching 𝑀 ∈ 𝐴𝑟𝑔𝑚𝑎𝑥(

∑︀
𝑖𝑗∈𝑀 𝑘𝑖𝑗) remains the same.

Proof. Proof is given in the appendix.
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∙ Monotonicity properties of the BNB-delta solution.
Let’s proceed to the core of this section: investigation of the monotonicity properties of
the BNB-delta solution. I want to use them for the clarification of possible equilibria in
sellers’ investments game in the small noise limit. Let’s think about local monotonicity
properties firstly. When a seller 𝑖 think about the increasing of surplus of one of his
adjacent links 𝑖𝑗, there could be 5 different situations:

1. The link is his matching: 𝑖𝑗 ∈ 𝑀 .

2. The link is his outside option, and also it is an outside option for the buyer j:
𝑖𝑗 ∈ 𝑂(𝑠), 𝑖𝑗 ∈ 𝑂(𝑏)

3. The link is his outside option, but it is not an outside option for the buyer j:
𝑖𝑗 ∈ 𝑂(𝑠), 𝑖𝑗 ̸∈ 𝑂(𝑏).

4. The link is not his outside option, but it is an outside option for the buyer j:
𝑖𝑗 ̸∈ 𝑂(𝑠), 𝑖𝑗 ∈ 𝑂(𝑏).

5. The link does not correspond to a matching or any outside option: 𝑖𝑗 ̸∈ 𝑀 , 𝑖𝑗 ̸∈
𝑂(𝑠), 𝑖𝑗 ̸∈ 𝑂(𝑏).

I claim that for our seller it is beneficial to increase 𝑘𝑖𝑗 in the first three cases, but
it is not beneficial for him to increase 𝑘𝑖𝑗 in the last two cases:

Lemma 5. Local monotonicity properties of the BNB-delta solution. Let the
bargaining rule be BNB-delta solution. Consider the region 𝑋𝑙𝑛 of the space of surpluses
vectors, where the BNB graph ℋ𝑙𝑛 = {𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 } remains the same. Consider some

link 𝑖𝑗. Then:

1. If link 𝑖𝑗 corresponds to the matching or the outside option of seller 𝑖 (that is,
𝑗 = 𝑀 (𝑠)(𝑖) or 𝑗 = 𝑂(𝑠)(𝑖)), the payoff of seller 𝑖 in this surpluses’ region is a linear
function of surplus 𝑘𝑖𝑗 with strictly positive coefficient:

𝑝𝑖(𝑘) = 𝛽𝑖𝑗𝑘𝑖𝑗 +
∑︁

𝑖′𝑗′ ̸=𝑖𝑗

𝛽𝑖′𝑗′𝑘𝑖′𝑗′ 𝛽𝑖𝑗 > 0 (100)

2. Otherwise, and if link 𝑖𝑗 corresponds to the outside option of buyer 𝑗, (that is, 𝑗 ̸=
𝑀 (𝑠)(𝑖) and 𝑗 ̸= 𝑂(𝑠)(𝑖), but 𝑖 = 𝑂(𝑏)(𝑗)), the payoffs of all sellers in this surpluses’
region 𝑋𝑙𝑛 are a linear functions of surplus 𝑘𝑖′𝑗′ with non-positive coefficient:

∀𝑙 = 1, ..., 𝑆 : 𝑝𝑙(𝑘) = 𝛽𝑖𝑗𝑘𝑖𝑗 +
∑︁

𝑖′𝑗′ ̸=𝑖𝑗

𝛽𝑖′𝑗′𝑘𝑖′𝑗′ 𝛽𝑖𝑗 ≤ 0 (101)

3. Finally, if link 𝑖𝑗 does not correspond to any matching or outside option (that is,
𝑗 ̸= 𝑀 (𝑠)(𝑖), and 𝑗 ̸= 𝑂(𝑠)(𝑖), and 𝑖 ̸= 𝑂(𝑏)(𝑗)), then all payoffs are independent of
𝑘𝑖𝑗 whenever ℋ𝑙𝑛 remains fixed.

Proof. The second and the third points are proven in the appendix, the first point remains
as hypothesis
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Now let’s turn to the global properties of the BNB-delta solution, i.e. properties
which are not restricted for the region 𝑋𝑙𝑛 with fixed BNB graph ℋ. For our purpose it
is important to get two results. Firstly, that it is beneficial for the seller to increase the
surplus over his matching even if the BNB-graph ℋ changes. Secondly, it is important to
understand, that if a seller to decrease the surplus of the link, which does not correspond
to his matching or outside option, then it could not damage his payoff.

Lemma 6. Global positive responsiveness of investing in matching for the
BNB-delta solution.
Let the bargaining rule be BNB-delta solution. Let 𝑖𝑗 ∈ 𝑀𝑙 be an arbitrary link in the
matching with the initial surplus 𝑘

(0)
𝑖𝑗 . Then the payoff of seller 𝑖 is strictly increasing

piecewise linear continuous function of surplus 𝑘𝑖𝑗 for 𝑘𝑖𝑗 ≥ 𝑘
(0)
𝑖𝑗 under the condition that

other surpluses 𝑘−𝑖𝑗 remain the same.

Proof. When we increase 𝑘𝑖𝑗, the matching remains the same, and hence the payoff is a
continuous function of 𝑘𝑖𝑗. Inside each region 𝑋𝑙𝑛 it is strictly positive linear function of
𝑘𝑖𝑗 for 𝑘𝑖𝑗 ≥ 𝑘

(0)
𝑖𝑗 by lemma (9).

Lemma 7. Global non-positive responsiveness to the increasing of buyers’ out-
side options for the BNB-delta solution.
Let the bargaining rule be BNB-delta solution. Consider some BNB graph ℋ𝑙𝑛 = {𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 }.

Suppose that some link 𝑖′𝑗′ stands for the outside option of buyer 𝑗′, but it does not stand
for the outside option of seller 𝑖, that is: 𝑖′𝑗′ ∈ 𝑂(𝑏)∖𝑂(𝑠), and let 𝑘(0)

𝑖′𝑗′ be the initial surplus
for this link. Then the payoff of an arbitrary seller 𝑖 is a non-increasing piecewise linear
continuous function of surplus 𝑘𝑖′𝑗′ for 𝑘𝑖′𝑗′ ≤ 𝑘

(0)
𝑖′𝑗′ under the condition that other surpluses

𝑘−𝑖′𝑗′ remain the same.

Proof. The idea of the proof is given in the appendix. Strict proof will be given during
further studies.

∙ Summary of properties of the BNB-delta solution.

Proposition 7. The BNB-delta solution bargaining rule is correctly defined by (9) and
has the following properties:

1. It satisfies axioms Payoff Uniqueness (A1), Participation Rationality (A2), Bal-
anced Budget (A3), Efficiency (A4), Symmetry I (A5), Piecewise Linearity (A6)
and No Cross-Transfers (A7).

2. The payoffs of agents are continuous functions of surpluses’ vector 𝑘 in the region
where matching remains the same.

3. It exhibits local monotonicity conditions (lemma 5): positive responsiveness of in-
vesting in matching (lemma 9) and seller’s outside option (lemma 10), non-positive
responsiveness to the increasing of buyers’ outside options (lemma 11), local neutral
responsiveness to the irrelevant options (lemma 12).

39



4. It exhibits global monotonicity conditions: positive responsiveness of investing in
matching (lemma 6), non-positive responsiveness to the increasing of buyers’ outside
options (lemma 7).

Proof. Proofs for the most points are given in the appendix. At this moment the Payoff
Uniqueness (A1) is not strictly proven, as well as local positive responsiveness of investing
in matching (lemma 9) and seller’s outside option (lemma 10), and global non-positive
responsiveness to the increasing of buyers’ outside options (lemma 7). For the rest of
points:
Balanced Budget (A3), Efficiency (A4) and No Cross-Transfers (A7) axioms hold by
construction. Symmetry I (A5) follows from the fact that initial BNB-delta equations
exhibit symmetry of a graph 𝐺; hence, each profile of payoffs for the BNB-delta solution
forms an orbit of solutions with respect to symmetry group of graph 𝐺. However, the
solution is unique, therefore it should be an invariant with respect to all elements of
symmetry group of graph 𝐺.

6 Small noise limit for the Balanced Nash Bargaining
solution
In this section I explore the peculiarities of the small noise limit (meaning 𝑎 is small

or 𝑎 → 0) under the assumption that agents trade ex-post according to the BNB-delta
trade rule with 𝛿 arbitrary close to 1. In the examples I consider the limit 𝛿 → 1, and
thus BNB-delta solution becomes just Balanced Nash Bargaining solution; however, at
this moment I have no general result for the existence of such a limit, and thus for the
general case I consider 𝛿 < 1.

The small noise limit is important in understanding of strategic interactions of
agents when they face the Hold-up problem over network, since investment levels of other
sellers become good predictors of the ex-post surpluses, and each seller make his decisions
taking into account actions of others. One more argument in favor of investigation of this
case is the relatively simplicity of calculations in comparison with the general case, where
it is very hard to calculate even simple examples.

When the uncertainty is small, sellers become more sure about the ex-post bargain-
ing conditions. In particular, they better understand what matching will be, what outside
options they will have, and what outside options buyers will have as well (that is, they
become more sure in the ex-post ℋ = {𝑀 ;𝑂(𝑠);𝑂(𝑏)}). This allows sellers to concentrate
their investments in a few links, because if they know with high probability the graph
of matching and outside options, there is no sense for them to invest in any other links
except of their own matchings and outside options.

I start with the consideration of two non-star networks of 2 sellers and 2 buyers,
namely, "𝑁" network and the full graph. While describing the 𝑁 network I show, that
there is a unique equilibrium in the small noise limit, and in this limit only two graphs of
matchings and outside options has ex-ante non-zero probabilities. I show, that in case of
full network there are only one type of equilibria, which corresponds to the equilibrium
for the "𝑁" network. Since full graph has 𝑍2 × 𝑍2 group of symmetry with respect to
the permutations of the index numbers of sellers and buyers, and equilibrium investments
levels for the "𝑁" network has trivial group of symmetry, there are as many as 4 different
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Figure 7: Top figures: different possible graphs of matchings and outside options
ℋ = (𝑀,𝑂(𝑠), 𝑂(𝑏)) for the "𝑁" graph 𝐺 = {11, 21, 22} under Balanced Nash Bargain-
ing solution. Bottom figures: regions of surpluses for different graphs of matchings and
outside options ℋ. Left figure stands for the positive values of 𝑘21. X Axes measures 𝑘11

𝑘21
,

and Y Axes measures 𝑘22
𝑘21

. The black circle stands for the surpluses in Nash Equilibrium
for the small value of noise. Right figure stands for the negative values of 𝑘21. X Axes
measures 𝑘11, and Y Axes measures 𝑘22.

equilibriums for the full graph, turning into each other by index permutations of the
agents.

The result for the 2× 2 network, that at equilibrium only two BNB graphs ℋ have
ex-ante non-zero probabilities, could be generalized for more complicated networks. In
particular, I show that if BNB solution indeed satisfies a few natural properties (which
is not proven by now in this work), then in any equilibrium each seller ex-ante considers
only few opportunities of his own matching and outside option; moreover, he invests in
only two links, and for sure one of two opportunities are realized: either the first link is
seller’s matching and the second is his outside option, or vice versa the first is his outside
option, while the second is his matching.
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6.1 Simple example: "𝑁" network with 2 sellers and 2 buyers

Let’s consider the simplest network which is distinct from the star. Partially, the details of
calculations are presented in the appendix (section "Calculations for the "N" network").
Here I discuss the main points. Suppose we have two sellers and two buyers, and they
form 𝑁 network:

𝐺 = {11, 21, 22} (102)

The BNB solution operates with the triple ℋ = {𝑀 ;𝑂(𝑠);𝑂(𝑏)}, where 𝑀 is the undirected
graph of the efficient matching, 𝐴(𝑠) is a directed graph of the sellers’ outside options,
and 𝐴(𝑏) is the directed graph of buyers’ outside options. There are 13 different triples ℋ,
describing possible BNB solutions. They are represented at the top figures (7). Conditions
on 𝑘 for which these triples are possible, are represented at the bottom figures (7).

The most interesting graph is ℋ12 = {{11, 22}; {21}; {21}}:

𝑘11 ≤ 𝑘21 + 1
2
𝑘22 0 ≤ 𝑘21 ≤ 𝑘11 + 𝑘22 𝑘22 ≤ 𝑘21 + 1

2
𝑘11 (103)

𝑝1 =
1

3
𝑘11 −

1

3
𝑘21 +

1

3
𝑘22 𝑝2 =

2

3
𝑘22 +

1

3
𝑘21 −

1

3
𝑘11

As we can see, the presence of link 21 allows second seller to increase his share of surplus
from good delivery to the buyer 2. This appears, because when 𝑘22 increases, the payoff
of the second seller increases, and hence the outside option of buyer 1 when he trade with
the seller 1, decreases. Then, payoff of the 1𝑠𝑡 buyer decreases, which in turn increase
the outside option of the 2𝑛𝑑 seller in his trade with the 2𝑛𝑑 buyer. That is why marginal
return from increasing of 𝑘22 by 𝜉 becomes 2

3
𝜉 instead of usual 1

2
𝜉 in other graphs ℋ with

22 ∈ 𝑀 . Since our bargaining rule is neutral with respect to sellers and buyers, then
the same arguments explain why the first buyer gets 2

3
𝑘11, and the first seller gets only

1
3
𝑘11, thus having less incentives to invest. If 𝑘21 increases, it has two different effects

on the payoffs of the second seller. Firstly, it directly increases his outside option, since
𝑂𝑂(𝑠)2 = 𝑘21− 𝑞1 in this case. However, it also increases the payoff of the first buyer, and
thus decreases outside option of the second seller. That is why the marginal return of
increasing 𝑘21 by 𝜉 is 1

3
𝜉 which is lower in comparison with 1

2
𝜉 for the graphs with 22 ∈ 𝑀

and 21 ∈ 𝑂(𝑠).

The careful investigation of NE for the "𝑁" network proceed as follows. Firstly, I check
FOCs, assuming that 𝑃𝑟(𝑋𝑛) = 1 for some 𝑛 = 0, 1, ..., 12. The only one candidate is
ℋ9. Next I examine the possibility that several 𝑋𝑛 have non-zero probabilities. This
gives me the candidate (ℋ11&ℋ12). Then I check if these candidates for NE are stable
with respect to global deviations of players. It turns out to be, that the NE candidate
for ℋ9: (𝑖11 = 1

2
, 𝑖21 = 0, 𝑖22 = 1

2
) is not an NE, since the second seller wants to deviate

by investing both in 21 and 22. The second candidate turns out to be the true NE, with
equilibrium investment levels:

𝑖11 = 𝑖21 =
2

5
− 1

6
𝜉

3

5
− 1

6
𝜉 (104)

𝑤ℎ𝑒𝑟𝑒 𝜉 𝑠𝑜𝑙𝑣𝑒𝑠 𝑃𝑟[
1

12
𝜉 + 𝜀21 +

1

2
𝜀11 ≥ 𝜀22] =

3

5
+ 𝜉
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2 × 2 full bipartite graph case.
Let 𝐺 = {11, 12, 21, 22}. Here I use the BNB-delta solution with 𝛿 → 1 as a refinement
of BNB equilibrium. Let the graph ℋ = {{11, 22}; {12, 21}; {12, 21}}. Then:

𝑝1 =
1

2
𝑘11 +

1

4
𝑘12 −

1

4
𝑘21 (105)

𝑝2 =
1

2
𝑘22 +

1

4
𝑘21 −

1

4
𝑘12

Interestingly, that the solution for the case of "𝑁" network still is a NE for the full
graph (with 𝑖12 = 0), since it is not profitable for the first seller to invest differently from
𝑖11 = 2

5
− 𝜉, 𝑖12 = 0. There is also one more candidate for the NE, for which FOC holds:

(𝑖11 = 1
2
; 𝑖12 = 1

4
; 𝑖21 = 1

4
; 𝑖22 = 1

2
). But it turns out to be that this profile of investments

gives sellers too low total profits (taking into account costs of investments) and thus for
each seller it is better to invest in only one link as a best response for the investments of
the other.

6.2 General result for small noise in case of BNB solution

Here I discuss the characterization of the investments’ picture for the small noise
limit. When we studied examples with 1-2 sellers and 1-2 buyers, we have seen, that
sellers tend to invest in one or two links, but we did not study, what is going on when
seller could invest in three or more links. However, we have seen one interesting feature:
in the equilibrium for the full bipartite graph 𝐺 = {11, 12, 21, 22} one of the sellers did
not invest in one of his links at all. It turns out to be the general case for the small noise
limit. In particular, I claim that if the bargaining concept is the BNB-delta solution, then
in small noise limit each seller should invest in no more than two links.

Let me illustrate this point in the example of 1 seller and 3 buyers, (assuming 𝛿 → 1,
i.e. Balanced Nash Bargaining solution, since there is no problems with multiplicity of
payoff profiles). Clearly, when 𝑎 → 0, the profile of equilibrium investment levels of the
seller looks as:

𝑖11 =
1

2
𝑖12 =

1

2
𝑖13 = 0 (106)

or any other profile which may be made from this by indexes permutations; i.e. link 13 is
redundant for the seller, and he is happy, using one of links 1, 2 as an ex-post matching,
and another - as an outside option, receiving almost all surplus from the ex-post trade.
Why is it not profitable for the seller to invest in the third link? Let’s clarify this. Suppose,
all 𝑖1𝑗 ̸= 0, 𝑗 = 1, 2, 3 at equilibrium. Then each link 1𝑗 is a matching or an outside option
with a non-zero probability. Under the small noise limit it means that 𝑖 = 𝑖11 ≈ 𝑖12 ≈ 𝑖13
up to the terms of order of 𝑂(𝑎). However in this case seller cannot get ex-post surplus
larger, than 𝑖 up to the terms of order of 𝑂(𝑎). Hence, if he wants to invest in all tree
links, his best expected payoff is approximately:

𝐸𝑈 (3) = 𝑚𝑎𝑥
𝑖

[𝑖− 3 · 1

2
𝑖2] + 𝑂(𝑎) (107)
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But if he decides to invest in only two links, his best expected payoff is given by:

𝐸𝑈 (2) = 𝑚𝑎𝑥
𝑖

[𝑖− 2 · 1

2
𝑖2] + 𝑂(𝑎) (108)

Since 𝑖𝑒𝑞 ∼ 𝑂(1), 𝐸𝑈 (2) > 𝐸𝑈 (3), and it is not profitable for the seller to invest in more
than two links: he would only increase his investment costs without increasing the ex-
pected ex-post payoff.

I claim, that similar picture holds for the general case as well:

Proposition 8. Assume that the bargaining rule is BNB-delta solution. Then for any
graph 𝐺 there exists 𝑎 > 0 such that ∀𝑎 < 𝑎 in any equilibrium in pure strategies of the
sellers’ investments game, each seller invest in no more than two links. Moreover, ex-post
one of these links is a matching for the seller, and another is his outside option.

Proof. The proof is given in the appendix. The idea of the proof consists of the following
steps:
Step 1. Assume that with probability 1 only one two adjacent to the seller 𝑖 links
participate in the ex-post BNB-graph ℋ. Then seller would invest only in these two links,
since by global monotonicity properties he do not lose, investing zero in other links, but
he save investment costs.
Step 2. Assume that seller 𝑖 has more than two adjacent links, which participates in
ℋ with non-zero probability. Then all this possible graphs ℋ should give seller 𝑖 payoffs
which differs one from another by 𝑂(𝑎) as 𝑎 → 0, otherwise seller 𝑖 may invest a bit more
in the link, which is the matching in the best for the 𝑖-s seller BNB-graph ℋ, and get this
best payoff for sure.
Step 3 Based on the result of step 2, if seller 𝑖 has more than two adjacent links, which
participates in ℋ with non-zero probability, than the worst ℋ gives him approximately
the same payoff, as others. Let he invest only in the matching and outside option of this
BNB-graph. Using global monotonicity property of BNB-solution, we conclude, that he
gets no less than in the worst case initially, but he saves costs of investments in other
links, and thus it is a profitable deviation.
Thus, the only one opportunity is that seller 𝑖 invests in no more than two links (see step
1).

6.3 Problem of multiplicity of NE and endogenous network for-
mation as a possible way of its solution.

The basic problem seems to be serious: in case of the small noise limit we often get
a multiplicity of equilibria. Moreover, even the profiles of first best levels of investments
tend to be multiple. This fact allows us to make an observation, that the multiplicity of
equilibria could be driven by the underlying properties of the network. In particular, if
the bipartite graph 𝐺 of seller-buyer interactions exhibits some symmetry with respect
to index permutations among sellers and buyers, then the first best levels of investments
should necessarily exhibit multiplicity (see the Proposition 3), which might be reflected
by the multiplicity of equilibria (see the Proposition 5). Thus, it turns out to be that
the symmetry of the network plays an important role in the problem of coordination
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of agents when they play this or that Nash equilibrium. Therefore, thinking about the
endogenous network formation, we may imagine that sellers do not like to build symmetric
networks at all, since they are aware that they may fail to coordinate on the NE during
the subsequent investments game, or because they could not get better payoffs, since in
the emerging networks part of sellers may have less bargaining power.

Developing this idea, assume that there are several possible graphs of equilibrium
investments 𝐼 for some graph 𝐺 (according to the Proposition (8), 𝐼 contains no more than
two adjacent links for each seller, and for the dense enough graph 𝐺 we could have a lot
of different graphs of equilibria investments). Let’s fix one such graph 𝐼 ⊂ 𝐺. If agents
may transform their network by removing all links which has zero investments (𝐺∖𝐼),
than they may drop out many other possible equilibria. Thus if agents may commit
not to use some links (for example, by publicly breaking relationships or by some other
way), they may solve the coordination problem at least partially; this may also include
transfers to those agents who break their links, as a compensation for the decreasing of
their bargaining power.

These basic ideas can be seen from the examples of "𝑁" network and full 2 × 2
graph: at any NE equilibrium for the latter (and there are 4 of them) one link is not
used for the investments, thus agents may break it (with the compensation for these pair
of agents, who break it, say, seller 1 and buyer 2) and switch to the situation with "𝑁"
network and the unique NE.

7 Conclusion
In this paper I study, how the structure of relationships between buyers and sellers

influence the resolution of the Hold-up problem, when each seller may make sunk specific
investments in the quality of a joint project with a buyer, with whom he is connected,
and these investments as well as the ex-post surplus have unverifiable nature. I consider
the common used in literature framework where a seller may supply a buyer with a single
indivisible good. In my specification only sellers could make investments.

I focus on several questions. Is there an ex-post bargaining rule over network, which
provides sellers with the motivation to invest ex-ante efficient? What is role of network and
bargaining concept in incentives’ distortions, do they help to solve the hold-up problem,
or do they provide "wrong incentives" to invest? What is the role of strategic interaction
of players? If we allow for endogenous network formation, what kind of networks may
emerge, do they better or worse in terms of efficiency of investments?

The key result of the paper is that there always exists the "ex-ante efficient" ex-
post bargaining rule. According to this bargaining rule each seller gets an additional
value which he adds to the maximum social gain from the trade over network by adding
his links to the network of the rest agents. Each buyer gets non-negative payoff equal
to the difference of the value of his match and payoff of the corresponding seller. The
ex-ante efficiency of this (ex-post) bargaining rule is robust to the assumptions about the
joined noise distribution, cost functions and presence of general investments. However
non-efficient Nash equilibria may also appear together with the efficient ones.

The important finding is that the behavior of sellers crucially depends on the scale
of noise. In particular, for the large scale of noise for a good enough bargaining rule
there always exists a unique NE in pure strategies. Strategic interaction between sellers
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plays a diminishing role as uncertainty becomes large. In case of the small noise the
picture changes sufficiently. Even the existence of the equilibrium is under the question,
and multiplicity of NE becomes a natural property (as well as multiplicity of first-best
levels of investments). This may cause the coordination problems. Also, in case of the
small noise most bargaining rules provide sellers with incentives to invest in links which
has otherwise zero first-best investment levels. This is because sellers wants to use the
possible surpluses as outside options during the ex-post bargaining.

The rest of findings are partially in terms of hypothesis and some further research
is needed in order to make rigorous conclusions. In order to investigate the small noise
limit, I assume that each matched seller-buyer pair shares the value of their joint project
according to the Nash Bargaining solution with outside options, endogenously determined
through the opportunities to attract other agents, given their payoffs. This bargaining
concept has some problems which should be resolved in order to use it for the general
networks. I present the possible way of doing this, namely, the BNB-delta solution, which
becomes the BNB solution as parameter 𝛿 goes to one. Using this bargaining concept, I
conclude that in small noise limit sellers would invest in no more than two links. This
allows to suggest an interesting method of equilibria refinement, based on endogenous
network formation.

One interesting by-product of this paper is the uncovering of problems, connected
with the Balanced Nash Bargaining solution, which is studied mostly in the experimental
economics, sociologists, and computer science literature. To the best of my knowledge,
the existing studies do not focus on the problem of multiplicity of solutions and their
refinements. However, even the simple example with the 2 × 2 full bipartite graph shows
that the problem does exists. The possible way of refinement of this multiplicity is to
consider instead the BNB-delta solution bargaining concept, when we assume that agents
discounts outside option by some factor 𝛿 close to 1. This approach may be useful in
further studies of bargaining in social networks.

There are several issues which should be covered by the further research. Firstly, I
have to prove several hypotheses about the properties of the BNB-delta bargaining rule
(some of the monotonicity properties and Participation Rationality). Secondly, it is im-
portant to study, whether the ex-ante efficient bargaining rule and the BNB-delta solution
exhibit pairwise stability property. More general, it could be that these bargaining rules
are stable with respect to broader set of coalitions’ deviations, or even they are coalitional
stable. These are the important properties of a bargaining rule, which I do not consider
in this paper. Indeed, if our ex-ante efficient bargaining rule turns out to be non-pairwise-
stable, then it is hard to implement it. Thirdly, the ex-ante efficient bargaining rule seems
to be similar to the Vickrey mechanism, and I should clarify this connection. Finally, it
is interesting to assume the presence of information asymmetry during the ex-post trade,
and understand, what constrains on the bargaining rules this assumption imposes, and
what are the consequences of the ex-post information asymmetry on the resolution of the
Hold-up problem.
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A Appendix

A.1 Contraction mapping lemma for the FB investments, large
noise limit

Proof of Lemma (1).
Remind Lemma (1): Under the conditions of proposition (2) ∃𝑎 such that ∀𝑎 > 𝑎 H(i) is
a contraction mapping with respect to the Euclidian metrics in 𝑅|𝐺|.

Proof. Let’s rewrite
𝐻𝑗𝑘(𝑖) = (A-1)

=

∫︁ ∞

−∞
.

∫︁ ∞

−∞

∑︁
𝑀 :𝑗𝑘∈𝑀

(︃ ∏︁
𝑀 ′ ̸=𝑀

𝜃

(︃∑︁
𝑠𝑏∈𝑀

(𝑖𝑠𝑏 + 𝜀𝑠𝑏) −
∑︁

𝑠′𝑏′∈𝑀 ′

(𝑖𝑠′𝑏′ + 𝜀𝑠′𝑏′)

)︃)︃ ∏︁
𝑠′′𝑏′′∈𝐺

1

𝑎
𝑓0(

𝜀𝑠′′𝑏′′

𝑎
)𝑑𝜀𝑠′′𝑏′′

Where 𝜃(𝑥) = 1 if 𝑥 ≥ 0 and 𝜃(𝑥) = 0 if 𝑥 < 0.
Let 𝑖(1) and 𝑖(2) be two points in 𝑋 = [0; 1]|𝐺|. Then:

𝐻(𝑖(2))𝑗𝑘 −𝐻(𝑖(1))𝑗𝑘 =

∫︁ 𝑖(2)

𝑖(1)
(∇𝐻𝑗𝑘(𝑖) · 𝑑𝑖) (A-2)

Hence, we have:

| 𝐻(𝑖(2))𝑗𝑘 −𝐻(𝑖(1))𝑗𝑘 |≤ 𝑠𝑢𝑝𝑖∈𝑋 | ∇𝐻(𝑖) | · | 𝑖(2) − 𝑖(1) |≤ (A-3)

≤
√︀

| 𝐺 | ·𝑚𝑎𝑥𝑙𝑚[𝑠𝑢𝑝𝑖∈𝑋 | 𝜕𝐻(𝑖)

𝜕𝑖𝑙𝑚
|]· | 𝑖(2) − 𝑖(1) |

Let’s show, that 𝑎 → ∞ implies | 𝜕𝐻(𝑖)
𝜕𝑖𝑙𝑚

|→ 0. For the derivative of 𝜃-function we have:
𝜕𝑥𝜃(𝑥) = 𝛿(𝑥). From (A-1) we have:

𝜕𝐻𝑗𝑘(𝑖)

𝜕𝑖𝑙𝑚
=

∫︁ ∞

−∞
.

∫︁ ∞

−∞

∑︁
𝑀 :𝑗𝑘∈𝑀

⎛⎝∑︁
̃︁𝑀 ̸=𝑀

(︃
𝜕𝜃
(︀∑︀

𝑠𝑏∈𝑀(𝑖𝑠𝑏 + 𝜀𝑠𝑏) −
∑︀̃︀𝑠̃︀𝑏∈̃︁𝑀(𝑖̃︀𝑠̃︀𝑏 + 𝜀̃︀𝑠̃︀𝑏))︀

𝜕𝑖𝑙𝑚
×

(A-4)

×
∏︁

𝑀 ′ ̸=𝑀,̃︁𝑀
𝜃

(︃∑︁
𝑠𝑏∈𝑀

(𝑖𝑠𝑏 + 𝜀𝑠𝑏) −
∑︁

𝑠′𝑏′∈𝑀 ′

(𝑖𝑗′𝑏′ + 𝜀𝑗′𝑏′)

)︃⎞⎠⎞⎠ ∏︁
𝑠′′𝑏′′∈𝐺

1

𝑎
𝑓0(

𝜀𝑠′′𝑏′′

𝑎
)𝑑𝜀𝑠′′𝑏′′

Note, that 𝜃(𝑥) ∈ {0, 1}. Each derivative in (A-4) is either zero or has a form of ±𝛿(𝜀𝑙𝑚 +
𝐴(𝑖, 𝜀−𝑙𝑚)), where 𝐴(𝑖, 𝜀−𝑙𝑚) is some linear function of investments and noise levels except
of 𝜀𝑙𝑚. Then we can take an integral with respect to 𝑑𝜀𝑙𝑚. As a result, we get a sum of
no more then | ℳ |2 terms, and absolute value of each term looks as:

|
∫︁ ∞

−∞
.

∫︁ ∞

−∞

∏︁
𝜃(...) · 1

𝑎
𝑓0(𝐴(𝑖, 𝜀−𝑙𝑚)) ·

∏︁
𝑠′′𝑏′′∈𝐺−𝑙𝑚

1

𝑎
𝑓0(𝜀𝑠′′𝑏′′)𝑑𝜀𝑠′′𝑏′′ |≤

1

𝑎
sup 𝑓0(𝜀) (A-5)

Hence, we have:

| 𝜕𝐻𝑗𝑘(𝑖)

𝜕𝑖𝑙𝑚
|≤ 1

𝑎
| ℳ |2 sup 𝑓0(𝜀) (A-6)
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Finally, we get:

| 𝐻(𝑖(2)) −𝐻(𝑖(1)) |≤| 𝐺 |
1
2 𝑚𝑎𝑥𝑙𝑚 | 𝐻(𝑖(2))𝑙𝑚 −𝐻(𝑖(1))𝑙𝑚 |≤ (A-7)

≤| 𝐺 | ·1
𝑎
· | ℳ |2 sup 𝑓0(𝜀)· | 𝑖(2) − 𝑖(1) |

For some 𝑞 ∈ (0; 1) take
𝑎 = 𝑞−1 | 𝐺 || ℳ |2 sup 𝑓0(𝜀) (A-8)

Note, that since 𝑓0(𝜀) is a continuous p.d.f., defined on a compact set [−1
2
; 1
2
], then

sup 𝑓0(𝜀) < ∞, and then for any 𝑎 > 𝑎 we get

| 𝐻(𝑖(2)) −𝐻(𝑖(1)) |≤ 𝑞 | 𝑖(2) − 𝑖(1) | (A-9)

which is the condition of 𝐻(𝑖) to be the contraction mapping. Estimation (A-8) of 𝑎
could be improved. Roughly, remark that essentially sums of products of 𝜃-functions in
(A-4) represents different matchings, and integral with respect to | 𝐺 | −1 dimensional
noise over them is a | 𝐺 | −1 dimensional probability measure of a surface, where efficient
matching changes because of the increasing of 𝜀𝑙𝑚. This is much less, then | ℳ |2 which
we use for the upper bound of a sum. However, I have no aim to find the lowest 𝑎, I only
want to show that such 𝑎 exists.

A.2 Contraction mapping lemma for the equilibrium investments,
large noise limit

Proof of Lemma (2).
Remind Lemma (2): under the conditions of proposition (6) ∀𝑛 > 0 ∃𝑎 : ∀𝑎 > 𝑎 the
following operator is a contraction mapping on the set 𝑋 : 𝑖 ∈ [0;𝑛(1 +

√
1 + 𝑎)]|𝐺|:

̂︀𝐻(𝑖) : ̂︀𝐻𝑗𝑘(𝑖) =

{︂ 𝜕
𝜕𝑖𝑗𝑘

𝐸𝑝𝑗(𝑖 + 𝜀) if 𝜕
𝜕𝑖𝑗𝑘

𝐸𝑝𝑗(𝑖 + 𝜀) ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(A-10)

Proof. The proof is similar to that of Lemma (1). Since bargaining rule satisfies Piecewise
Linearity Axiom, we can rewrite payoffs as:

𝑝𝑖 =
𝑁∑︁

𝑛=1

Θ𝑛(𝑘) ·

(︃∑︁
𝑖′𝑗′

𝛼𝑛
𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛼𝑛

0

)︃
(A-11)

where
Θ𝑛 =

{︂
1 𝑖𝑓 𝑘 ∈ 𝑋𝑛

0 otherwise (A-12)

is an indicator function for the region 𝑋𝑛. For the sake of simplicity I also omit seller’s
index 𝑖 from 𝛼s, since we consider here only payoff of this seller and other 𝛼s does not
play any role here (remind that initially 𝛼𝑛

𝑖𝑗 is a 𝑆 +𝐵 dimensional vector, and I consider
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one component of it, corresponding to the seller 𝑖). Under the conditions of the lemma,

Θ𝑛 =
∏︁
𝑙∈𝐵𝑛

𝜃(
∑︁
𝑖′𝑗′

𝛽𝑙
𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛽𝑙

0) (A-13)

Where we denote by 𝐵𝑛 the set of index numbers for all hyperplanes that bound region 𝑋𝑛

(i.e., the index number of active inequalities for 𝑋𝑛). Consider firstly the "unconstrained"
operator

𝐻𝑗𝑘(𝑖) =
𝜕

𝜕𝑖𝑗𝑘
𝐸𝑝𝑗(𝑖 + 𝜀) (A-14)

and show, that is a contraction mapping for the sufficiently large values of 𝑎. Meanwhile,
we have: ̂︀𝐻𝑗𝑘(𝑖) =

{︂
𝐻𝑗𝑘(𝑖) if 𝐻𝑗𝑘(𝑖) ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(A-15)

In the spirit of the proof of Lemma (1), we consider:

| 𝐻(𝑖(2)) −𝐻(𝑖(1)) |≤| 𝐺 |
1
2 𝑚𝑎𝑥

𝑗𝑘
| 𝐻(𝑖(2))𝑗𝑘 −𝐻(𝑖(1))𝑗𝑘 |≤ (A-16)

≤| 𝐺 | ·𝑚𝑎𝑥
𝑗𝑘

[𝑚𝑎𝑥
𝑠𝑏

[sup
𝑋

| 𝜕𝐻𝑗𝑘(𝑖)

𝜕𝑖𝑠𝑏
|]]· | 𝑖(2) − 𝑖(1) |

Hence, we want to show that for large 𝑎 we get | 𝜕𝐻𝑗𝑘(𝑖)

𝜕𝑖𝑠𝑏
|<| 𝐺 |−1. We have:

𝐻𝑖𝑗(𝑖) =

∫︁ 𝑁∑︁
𝑛=1

Θ𝑛𝛼
𝑛
𝑖𝑗𝑑𝐹 (𝜀) +

∫︁ 𝑁∑︁
𝑛=1

𝜕Θ𝑛

𝜕𝑖𝑖𝑗

(︃∑︁
𝑖′𝑗′

𝛼𝑛
𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛼𝑛

0

)︃
𝑑𝐹 (𝜀) (A-17)

Denote the first integral by 𝐽1 and the second by 𝐽2. We have:

𝜕Θ𝑛

𝜕𝑖𝑠𝑏
=
∑︁
𝑙∈𝐵𝑛

[︃
𝛽𝑙
𝑠𝑏𝛿(
∑︁
𝑖′𝑗′

𝛽𝑙
𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛽0)

∏︁
𝑙′∈𝐵𝑛, 𝑙′ ̸=𝑙

𝜃(
𝑙′∑︁
𝑖′𝑗′

𝑘𝑖′𝑗′ + 𝛽0)

]︃
(A-18)

Hence,

𝜕

𝜕𝑖𝑠𝑏
𝐽1 =

𝑁∑︁
𝑛=1

𝛼𝑛
𝑠𝑏

∑︁
𝑙∈𝐵𝑛

1(𝛽𝑙
𝑠𝑏 ̸= 0)

∫︁ ∏︁
𝑙′∈𝐵𝑛, 𝑙′ ̸=𝑙

𝜃

(︃ ∑︁
𝑖′𝑗′ ̸=𝑠𝑏

(𝛽𝑙′

𝑖′𝑗′ −
𝛽𝑙′

𝑠𝑏

𝛽𝑙
𝑠𝑏

𝛽𝑙
𝑖′𝑗′)𝑘𝑖′𝑗′ + 𝛽𝑙′

0 − 𝛽𝑙′

𝑠𝑏

𝛽𝑙
𝑠𝑏

𝛽𝑙
0

)︃
×

(A-19)

× 1

𝑎
𝑓0

(︃
1

𝑎

(︃
−𝑖𝑠𝑏 −

1

𝛽𝑙
𝑠𝑏

(
∑︁

𝑖′𝑗′ ̸=𝑠𝑏

𝛽𝑙
𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛽𝑙

0)

)︃)︃
𝑑𝐹 (𝜀−𝑠𝑏)

Where we have integrated over 𝜀𝑠𝑏, using delta-functions. The product of a number of
theta functions is either 1 or 0, and hence the absolute value of integral is bounded by
𝑎−1sup(𝑓0). Then,

| 𝜕

𝜕𝑖𝑠𝑏
𝐽1 |≤

1

𝑎
𝑐1(𝛼, 𝛽)sup(𝑓0) (A-20)

where 𝑐1(𝛼, 𝛽) =|
∑︀𝑁

𝑛=1 𝛼
𝑛
𝑠𝑏

∑︀
𝑙∈𝐵𝑛

1(𝛽𝑙
𝑠𝑏 ̸= 0) | is a bounded function of parameters 𝛼, 𝛽.
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Let’s evaluate 𝐽2 analogously:

𝐽2 =
𝑁∑︁

𝑛=1

∑︁
𝑙∈𝐵𝑛

1(𝛽𝑙
𝑖𝑗 ̸= 0)

∫︁ ∏︁
𝑙′∈𝐵𝑛, 𝑙′ ̸=𝑙

𝜃

(︃ ∑︁
𝑖′𝑗′ ̸=𝑖𝑗

(𝛽𝑙′

𝑖′𝑗′ −
𝛽𝑙′
𝑖𝑗

𝛽𝑙
𝑖𝑗

𝛽𝑙
𝑖′𝑗′)𝑘𝑖′𝑗′ + 𝛽𝑙′

0 −
𝛽𝑙′
𝑖𝑗

𝛽𝑙
𝑖𝑗

𝛽𝑙
0

)︃
×

(A-21)

×

[︃ ∑︁
𝑖′𝑗′ ̸=𝑖𝑗

(𝛼𝑛
𝑖′𝑗′ −

𝛽𝑙
𝑖′𝑗′

𝛽𝑙
𝑖𝑗

𝛼𝑛
𝑖𝑗)𝑘𝑖′𝑗′ + 𝛼𝑛

0 −
𝛽𝑙
0

𝛽𝑙
𝑖𝑗

𝛼𝑛
𝑖𝑗

]︃
1

𝑎
𝑓0

(︃
1

𝑎

(︃
−𝑖𝑖𝑗 −

1

𝛽𝑙
𝑖𝑗

(
∑︁

𝑖′𝑗′ ̸=𝑖𝑗

𝛽𝑙
𝑖′𝑗′𝑘𝑖′𝑗′ + 𝛽𝑙

0)

)︃)︃
𝑑𝐹 (𝜀−𝑖𝑗)

Now consider what kind of terms could be in 𝜕𝐽2
𝜕𝑠𝑏

. We should be careful, since now
there is a term ∼ 𝑘 ∼ 𝑖 + 𝜀 in the integral. Derivatives of theta functions gives us
delta functions and after integration over 𝜀𝑠𝑏 (in case if 𝑠𝑏 ̸= 𝑖𝑗), and they gives terms
∼ 𝑎−2𝑓 2

0 · (𝑖 + 𝜀) ∼ 𝑎−1𝑓 2
0 + 𝑂(𝑎−

3
2 ), since 0 ≤ 𝑖𝑙𝑚 < 𝑛(1 +

√
1 + 𝑎) and | 𝜀𝑙𝑚 |≤ 𝑎. If

𝑠𝑏 = 𝑖𝑗, this gives us zero (theta functions does not depend on 𝑖𝑖𝑗 after integration over
𝜀𝑖𝑗, since in all theta functions 𝑖𝑖𝑗 comes together with 𝜀𝑖𝑗 in a combination 𝑘𝑖𝑗 = 𝑖𝑖𝑗 + 𝜀𝑖𝑗,
and 𝑘𝑖𝑗 becomes a linear combination of other 𝑘𝑖′𝑗′ after the integration).

Next, the derivatives of middle brackets (expression with 𝛼-s) gives us terms ∼
𝑎−1𝑓0. Finally, derivative of 𝑓0(...) gives us one more 1

𝑎
multiple, and this term is of order

of ∼ 𝑎−2𝑓 ′
0 · (𝑖 + 𝜀) ∼ 𝑎−1𝑓 ′

0 + 𝑂(𝑎−
3
2 ). Overall,

| 𝜕

𝜕𝑖𝑠𝑏
𝐽2 |≤

1

𝑎
𝑐2(𝛼, 𝛽)sup(𝑓0)

2 +
1

𝑎
𝑐3(𝛼, 𝛽)sup(𝑓0) +

1

𝑎
𝑐4(𝛼, 𝛽)sup(𝑓 ′

0) (A-22)

Since 𝑓0 is twice continuously differential function, defined on the compact set, then
sup(𝑓 ′

0) < ∞. Hence,

| 𝜕𝐻𝑗𝑘(𝑖)

𝜕𝑖𝑠𝑏
|≤ 1

𝑎

[︀
𝑐1(𝛼, 𝛽)sup(𝑓0) + 𝑐2(𝛼, 𝛽)sup(𝑓0)

2 + 𝑐3(𝛼, 𝛽)sup(𝑓0) + 𝑐4(𝛼, 𝛽)sup(𝑓 ′
0)
]︀

(A-23)
As we can see, by choosing 𝑎 sufficiently large, we always can get

| 𝜕𝐻𝑗𝑘(𝑖)

𝜕𝑖𝑠𝑏
|≤ 𝑞· | 𝐺 |−1 (A-24)

for some 𝑞 ∈ (0; 1). Hence, we have proven, that 𝐻(𝑖) is indeed a contraction mapping.
Finally, let’s consider ̂︀𝐻. For each 𝑖𝑗 ∈ 𝐺 we have:

| ̂︀𝐻𝑖𝑗(𝑖
(2)) − ̂︀𝐻𝑖𝑗(𝑖

(1)) |= (A-25)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
| ̂︀𝐻𝑖𝑗(𝑖

(2)) − ̂︀𝐻𝑖𝑗(𝑖
(1)) |=| 𝐻𝑖𝑗(𝑖

(2)) −𝐻𝑖𝑗(𝑖
(1)) | if 𝐻𝑖𝑗(𝑖

(2)) ≥ 0 & 𝐻𝑖𝑗(𝑖
(1)) ≥ 0̂︀𝐻𝑖𝑗(𝑖

(2)) <| 𝐻𝑖𝑗(𝑖
(2)) −𝐻𝑖𝑗(𝑖

(1)) | if ̂︀𝐻𝑖𝑗(𝑖
(2)) ≥ 0 & ̂︀𝐻𝑖𝑗(𝑖

(1)) < 0̂︀𝐻𝑖𝑗(𝑖
(1)) <| 𝐻𝑖𝑗(𝑖

(2)) −𝐻𝑖𝑗(𝑖
(1)) | if ̂︀𝐻𝑖𝑗(𝑖

(2)) < 0 & ̂︀𝐻𝑖𝑗(𝑖
(1)) ≥ 0

0 ≤| 𝐻𝑖𝑗(𝑖
(2)) −𝐻𝑖𝑗(𝑖

(1)) | if ̂︀𝐻𝑖𝑗(𝑖
(2)) < 0 & ̂︀𝐻𝑖𝑗(𝑖

(1)) < 0

Hence, in any way

| ̂︀𝐻𝑖𝑗(𝑖
(2)) − ̂︀𝐻𝑖𝑗(𝑖

(1)) |≤| 𝐻𝑖𝑗(𝑖
(2)) −𝐻𝑖𝑗(𝑖

(1)) | (A-26)
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And for large 𝑎 > 𝑎 we get:

| ̂︀𝐻(𝑖(2)) − ̂︀𝐻(𝑖(1)) |≤| 𝐻(𝑖(2)) −𝐻(𝑖(1)) |≤ 𝑞 | 𝑖(2) − 𝑖(1) | (A-27)

And ̂︀𝐻 is a contraction mapping too.

A.3 Properties of the BNB-delta solution

A.3.1 Existence and Uniqueness: contraction mapping lemma.

Proof of lemma (3). Remind lemma (3): Consider a compact set 𝑋 = [0; 𝑥]𝑆 × {0}.
Define operator 𝐺 as:

𝐺 : 𝑋 → 𝑋 𝐺◇(𝑝) = 0, ∀𝑖 = 1, ..., 𝑆 : (A-28)

𝐺𝑖(𝑝) =
1

2
𝑘𝑖𝑀(𝑠)(𝑖) +

𝛿

2
· 𝑚𝑎𝑥

𝑗∈({𝑗: 𝑖𝑗∈𝐺}∖𝑀(𝑠)(𝑖))∪{◇}
[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝𝑀(𝑏)(𝑗)] −

− 𝛿

2
· 𝑚𝑎𝑥

𝑙∈({𝑙: 𝑙𝑀(𝑠)(𝑖)∈𝐺}∖𝑖)∪{◇}
[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝𝑙]

Then 𝐺 is a contraction mapping with respect to the metrics on 𝑋, defined as:

𝑑(𝑦, 𝑧) = 𝑚𝑎𝑥
𝑖∈{1,...,𝑆,◇}

| 𝑦𝑖 − 𝑧𝑖 | (A-29)

In details,
∀𝑝(1), 𝑝(2) ∈ 𝑋 : 𝑑(𝐺(𝑝(2)), 𝐺(𝑝(1))) ≤ 𝛿𝑑(𝑝(2), 𝑝(1)) (A-30)

Proof. In what follows, for simplicity I will use 𝑗 ̸= 𝑀 (𝑠)(𝑖) instead of 𝑗 ∈ ({𝑗 : 𝑖𝑗 ∈
𝐺}∖𝑀 (𝑠)(𝑖))∪ {◇}, and similarly 𝑙 ̸= 𝑀 (𝑠)(𝑖) instead of 𝑗 ∈ ({𝑗 : 𝑖𝑗 ∈ 𝐺}∖𝑀 (𝑠)(𝑖))∪ {◇}.
Consider two arbitrary points 𝑝(1), 𝑝(2) ∈ 𝑋. We are interesting in 𝑑(𝐺(𝑝(2)), 𝐺(𝑝(1))). We
have:

𝐺𝑖(𝑝
(2)) −𝐺𝑖(𝑝

(1)) =
𝛿

2
𝜌𝑖 −

𝛿

2
𝜎𝑖 (A-31)

where

𝜌𝑖 = 𝑚𝑎𝑥
𝑗 ̸=𝑀(𝑠)(𝑖)

[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝
(2)

𝑀(𝑏)(𝑗)
] − 𝑚𝑎𝑥

𝑗 ̸=𝑀(𝑠)(𝑖)
[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝

(1)

𝑀(𝑏)(𝑗)
] (A-32)

and
𝜎𝑖 = 𝑚𝑎𝑥

𝑙 ̸=𝑀(𝑠)(𝑖)
[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝

(2)
𝑙 ] − 𝑚𝑎𝑥

𝑙 ̸=𝑀(𝑠)(𝑖)
[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝

(1)
𝑙 ] (A-33)

Consider 𝜌𝑖. Let
𝑚 ∈ Argmax

𝑗 ̸=𝑀(𝑠)(𝑖)

[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝
(1)

𝑀(𝑏)(𝑗)
] (A-34)

Then

𝜌𝑖 = 𝑚𝑎𝑥
𝑗 ̸=𝑀(𝑠)(𝑖)

[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝
(2)

𝑀(𝑏)(𝑗)
] − [𝑘𝑖𝑚 − 𝑘𝑀(𝑏)(𝑚)𝑚 + 𝑝

(1)

𝑀(𝑏)(𝑚)
] ≥ (A-35)

≥ [𝑘𝑖𝑚 − 𝑘𝑀(𝑏)(𝑚)𝑚 + 𝑝
(2)

𝑀(𝑏)(𝑚)
] − [𝑘𝑖𝑚 − 𝑘𝑀(𝑏)(𝑚)𝑚 + 𝑝

(1)

𝑀(𝑏)(𝑚)
] =
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= 𝑝
(2)

𝑀(𝑏)(𝑚)
− 𝑝

(1)

𝑀(𝑏)(𝑚)
≥ −𝑑(𝑝(2), 𝑝(1))

Now let
𝑟 ∈ Argmax

𝑗 ̸=𝑀(𝑠)(𝑖)

[𝑘𝑖𝑗 − 𝑘𝑀(𝑏)(𝑗)𝑗 + 𝑝
(2)

𝑀(𝑏)(𝑗)
] (A-36)

Then
𝜌𝑖 ≤ [𝑘𝑖𝑟 − 𝑘𝑀(𝑏)(𝑟)𝑟 + 𝑝

(2)

𝑀(𝑏)(𝑟)
] − [𝑘𝑖𝑟 − 𝑘𝑀(𝑏)(𝑟)𝑟 + 𝑝

(1)

𝑀(𝑏)(𝑟)
] = (A-37)

= 𝑝
(2)

𝑀(𝑏)(𝑟)
− 𝑝

(1)

𝑀(𝑏)(𝑟)
≤ 𝑑(𝑝(2), 𝑝(1))

Hence,
− 𝑑(𝑝(2), 𝑝(1)) ≤ 𝜌𝑖 ≤ 𝑑(𝑝(2), 𝑝(1)) ⇔ | 𝜌𝑖 |≤ 𝑑(𝑝(2), 𝑝(1)) (A-38)

Analogously, considering Argmax
𝑙 ̸=𝑀(𝑠)(𝑖)

[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝
(1)
𝑙 ] and Argmax

𝑙 ̸=𝑀(𝑠)(𝑖)

[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝
(2)
𝑙 ], we get:

| 𝜎𝑖 |≤ 𝑑(𝑝(2), 𝑝(1)) (A-39)

Finally,

𝑑(𝐺(𝑝(2)), 𝐺(𝑝(1))) = 𝑚𝑎𝑥
𝑖=1,...,𝑆,◇

| 𝐺𝑖(𝑝
(2)) −𝐺𝑖(𝑝

(1)) |≤ 𝛿

2
| 𝜌𝑖 | +

𝛿

2
| 𝜎𝑖 |≤ 𝛿𝑑(𝑝(2), 𝑝(1))

(A-40)
Since 𝛿 ∈ (0; 1), this proves the lemma.

A.3.2 Continuity, conditional on matching

Proof of lemma (4). Remind lemma (4): BNB-delta solution 𝑝(𝑠)(𝑘) as a function of 𝑘
is continuous with respect to 𝑑(𝑦, 𝑧) = 𝑚𝑎𝑥 | 𝑦𝑖 − 𝑧𝑖 | metrics on each compact subset of
𝑌 ⊂ 𝑅|𝐺| × {0}, where matching 𝑀 ∈ 𝐴𝑟𝑔𝑚𝑎𝑥(

∑︀
𝑖𝑗∈𝑀 𝑘𝑖𝑗) remains the same.

Proof. Let 𝑝(0) be the BNB-delta solution for vector 𝑘. Consider vector 𝑘 = 𝑘+ M 𝑘 ∈ 𝑌 ,
and let’s try to find the solution for this vector. Since 𝐺 is a contraction mapping, we
can start from arbitrary point 𝑝 ∈ 𝑋, and 𝑙𝑖𝑚

𝑛→∞
𝐺𝑛𝑝 gives us a solution5 𝑝(𝑘+ M 𝑘). In

particular, 𝑝(𝑘+ M 𝑘) = 𝑙𝑖𝑚
𝑛→∞

𝐺𝑛𝑝(0). Let

|M 𝑘 |≡ 𝑑(M 𝑘, 0) = 𝑑(𝑘+ M 𝑘, 𝑘) (A-41)

Under the conditions of lemma (fixed efficient matching M), we have:

| 𝐺𝑖𝑝
(0) − 𝑝(0) |= (A-42)

=| 1

2
M 𝑘𝑖𝑀(𝑠)(𝑖)+

𝛿

2
max
𝑗 ̸=𝑀(𝑖)

[𝑘𝑖𝑗−𝑘𝑀(𝑏)(𝑗)𝑗+𝑝(0)+ M 𝑘𝑖𝑗− M 𝑘𝑀(𝑏)(𝑗)𝑗]−
𝛿

2
max
𝑗 ̸=𝑀(𝑖)

[𝑘𝑖𝑗−𝑘𝑀(𝑏)(𝑗)𝑗+𝑝(0)]−

− 𝛿

2
max
𝑙 ̸=𝑖

[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝𝑙+ M 𝑘𝑙𝑀(𝑠)(𝑖)] +
𝛿

2
max
𝑙 ̸=𝑖

[𝑘𝑙𝑀(𝑠)(𝑖) − 𝑝𝑙] |≤

≤ 1

2
|M 𝑘 | +

𝛿

2
|M 𝑘 | +

𝛿

2
|M 𝑘 | +

𝛿

2
|M 𝑘 |= 2 |M 𝑘 |

5I use 𝑙𝑖𝑚 with respect to metrics 𝑑(𝑦, 𝑧) = 𝑚𝑎𝑥 | 𝑦𝑖 − 𝑧𝑖 |
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Hence,
𝑑(𝐺𝑝(0), 𝑝(0)) = 𝑚𝑎𝑥

𝑖∈{1,...,𝑆,◇}
| 𝐺𝑖𝑝

(0) − 𝑝
(0)
𝑖 |≤ 2 |M 𝑘 | (A-43)

Overall, using lemma (3), we get:

𝑑(𝑝(𝑘+ M 𝑘), 𝑝(0)) = 𝑑( 𝑙𝑖𝑚
𝑛→∞

𝐺𝑛𝑝(0), 𝑝(0)) ≤ (A-44)

≤
∞∑︁
𝑛=1

𝑑(𝐺𝑛𝑝(0), 𝐺𝑛−1𝑝(0)) ≤ 1

1 − 𝛿
2 |M 𝑘 |

Hence,

𝑑(𝑝(𝑘+ M 𝑘), 𝑝(𝑘)) ≤ 2

1 − 𝛿
𝑑(𝑘+ M 𝑘, 𝑘) (A-45)

and since 𝛿 ∈ (0; 1), this means that 𝑝 is a continuous function of surpluses’ vector 𝑘 with
respect to metrics 𝑑.

A.3.3 Piecewise linearity.

Lemma 8. Piecewise linearity lemma for the BNB-delta solution.
BNB-delta rule satisfies Piecewise Linearity axiom (A6).

Proof. The fact that BNB-delta solution is continuous with respect to vector 𝑘 allows us
better understand its other properties. In particular, each term under maximums in eq.
(92) stands for the possible outside option of a seller or a buyer. There is a finite set
of possible graphs ℋ = {𝑀 ;𝑂(𝑠);𝑂(𝑏)}, and for the fixed ℋ we get the following matrix
equation for BNB-delta solution:

𝐴𝛿𝑝 =
1

2
�̂�𝛿 (A-46)

where
𝐴𝛿 = (𝐼 − 𝛿

2
𝑀 (𝑏)𝑂(𝑠) − 𝛿

2
𝑂(𝑏)𝑀 (𝑠)) (A-47)

and �̂�𝛿 have the following components:

�̂�𝛿
𝑖 = 𝑘𝑖𝑀(𝑠)(𝑖) + 𝛿𝑘𝑖𝑂(𝑠)(𝑖) − 𝛿𝑘𝑀(𝑏)(𝑂(𝑠)(𝑖))𝑂(𝑠)(𝑖) − 𝛿𝑘𝑂(𝑏)(𝑀(𝑠)(𝑖))𝑀(𝑠)(𝑖) (A-48)

This equation has a unique solution (as we have proven previously), and hence it is given
by

𝑝(𝑘) =
1

2
(𝐴𝛿)−1�̂�𝛿 (A-49)

Let’s divide the space of vectors 𝑘 on the regions �̂�𝑙, corresponding to different matchings
𝑀 . As we know, the borders of these regions are a finite number of hyperplanes. Con-
sider some region �̂�𝑙, and let’s divide it regions 𝑋𝑙𝑛, corresponding to different graphs
ℋ = {𝑀 ;𝑂(𝑠);𝑂(𝑏)} (matching remains the same, but graphs of outside options may be
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different). Assume that for some vector 𝑘, all maximums in eq. (92) are unique, that is,
there is no agent who is indifferent between two outside options. Then from the continuity
of BNB-delta solution, in sufficiently small neighborhood of 𝑘 payoffs of the sellers are
close to their values at point 𝑘, and outside options remains the same (since the corre-
sponding expressions for the outside options are strictly larger than other alternatives).
Hence, all these points are internal for the corresponding region 𝑋𝑙𝑛. The only one candi-
date for the border between two regions 𝑋𝑙𝑛1 , 𝑋𝑙𝑛2 is the set of vectors 𝑘 for which there
is at least one agent who is indifferent between two outside options. Since the payoff is
unique, and it is defined inside each region by eq. (A-49), it is a linear function of vector
𝑘 inside each region 𝑋𝑙𝑛 (because 𝐴𝛿 consists of constants inside each region 𝑋𝑙𝑛, and �̂�𝛿

is linear in 𝑘); it is one of the conditions for the bargaining rule to be piecewise linear.
Moreover, each outside option is the linear function of surplus vector 𝑘 and payoff vector
𝑝(𝑠), and thus it is a linear function of vector 𝑘 after the substitution of 𝑝(𝑠)(𝑘). It means
that the condition for a point to be in the border between two regions looks as:

𝑂𝑂1(𝑘) = 𝛼1 +
∑︁
𝑖𝑗∈𝐺

𝛽1
𝑖𝑗𝑘𝑖𝑗 = 𝛼2 +

∑︁
𝑖𝑗∈𝐺

𝛽2
𝑖𝑗𝑘𝑖𝑗 = 𝑂𝑂2(𝑘) (A-50)

This equation defines a hyperplane in the space of surpluses’ vectors 𝑘. Finally, 𝑞𝑗 =
𝑘𝑀(𝑏)(𝑗) − 𝑝𝑀(𝑏)(𝑗) and thus it is also linear inside each region 𝑋𝑙𝑛, since sellers’ payoffs are
linear.

A.3.4 Monotonicity properties of the BNB-delta solution

Remind lemma (5) "Local monotonicity properties of the BNB-delta solution": Let the
bargaining rule be BNB-delta solution. Consider the region 𝑋𝑙𝑛 of the space of surpluses
vectors, where the BNB graph ℋ𝑙𝑛 = {𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 } remains the same. Consider some

link 𝑖𝑗. Then:

1. If link 𝑖𝑗 corresponds to the matching or the outside option of seller 𝑖 (that is,
𝑗 = 𝑀 (𝑠)(𝑖) or 𝑗 = 𝑂(𝑠)(𝑖)), the payoff of seller 𝑖 in this surpluses’ region is a linear
function of surplus 𝑘𝑖𝑗 with strictly positive coefficient:

𝑝𝑖(𝑘) = 𝛽𝑖𝑗𝑘𝑖𝑗 +
∑︁

𝑖′𝑗′ ̸=𝑖𝑗

𝛽𝑖′𝑗′𝑘𝑖′𝑗′ 𝛽𝑖𝑗 > 0 (A-51)

2. Otherwise, and if link 𝑖𝑗 corresponds to the outside option of buyer 𝑗, (that is, 𝑗 ̸=
𝑀 (𝑠)(𝑖) and 𝑗 ̸= 𝑂(𝑠)(𝑖), but 𝑖 = 𝑂(𝑏)(𝑗)), the payoffs of all sellers in this surpluses’
region 𝑋𝑙𝑛 are a linear functions of surplus 𝑘𝑖′𝑗′ with non-positive coefficient:

∀𝑙 = 1, ..., 𝑆 : 𝑝𝑙(𝑘) = 𝛽𝑖𝑗𝑘𝑖𝑗 +
∑︁

𝑖′𝑗′ ̸=𝑖𝑗

𝛽𝑖′𝑗′𝑘𝑖′𝑗′ 𝛽𝑖𝑗 ≤ 0 (A-52)

3. Finally, if link 𝑖𝑗 does not correspond to any matching or outside option (that is,
𝑗 ̸= 𝑀 (𝑠)(𝑖), and 𝑗 ̸= 𝑂(𝑠)(𝑖), and 𝑖 ̸= 𝑂(𝑏)(𝑗)), then all payoffs are independent of
𝑘𝑖𝑗 whenever ℋ𝑙𝑛 remains fixed.

Proof. Let’s prove it, considering different situations separately.
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Lemma 9. Local positive responsiveness of investing in matching for the BNB-
delta solution.
Let the bargaining rule be BNB-delta solution. Consider the region 𝑋𝑙𝑛 of the space of
surpluses vectors, where the BNB graph ℋ𝑙𝑛 = {𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 } remains the same. Let

𝑖𝑗 ∈ 𝑀𝑙 be an arbitrary link in the matching. Then the payoff of seller 𝑖 in this region is
a linear function of surplus 𝑘𝑖𝑗 with strictly positive coefficient:

𝑝𝑖(𝑘) = 𝛽𝑖𝑗𝑘𝑖𝑗 +
∑︁

𝑖′′𝑗′′ ̸=𝑖𝑗

𝛽𝑖′′𝑗′′𝑘𝑖′′𝑗′′ 𝛽𝑖𝑗 > 0 (A-53)

Proof. The idea of the proof. Inside region 𝑋𝑙𝑛 the vector of sellers’ payoffs is given by
the eq. (A-49). The idea is to solve it by steps, expressing payoffs of each seller 𝑖′ ̸= 𝑖
through the payoffs of other sellers, and finally get an expression like 𝑎 · 𝑝𝑖 = 𝛽 · 𝑘. Since
𝛿 < 1, 𝑎 > 1 − 𝛿. Then, careful investigation of cases, when 𝑘𝑖𝑗 enters with negative sign
(corresponding only to the buyers’ outside options), gives us a coefficient6 𝑏𝑖𝑗 ≥ 1

4
(1 − 𝛿).

Strict proof should be done during further studies.

Lemma 10. Local positive responsiveness of investing in seller’s outside option
for the BNB-delta solution.
Let the bargaining rule be BNB-delta solution. Consider the region 𝑋𝑙𝑛 of the space of
surpluses vectors, where the BNB graph ℋ𝑙𝑛 = {𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 } remains the same. Let

seller 𝑖 is such that he participates in matching 𝑀 , and he has an endogenous7 outside
option 𝑂(𝑠)(𝑖) = 𝑗′ ∈ {1, ..., 𝐵}. Then the payoff of seller 𝑖 in this region is a linear
function of surplus 𝑘𝑖𝑗′ with strictly positive coefficient:

𝑝𝑖(𝑘) = 𝛽𝑖𝑗′𝑘𝑖𝑗 +
∑︁

𝑖′′𝑗′′ ̸=𝑖𝑗′

𝛽𝑖′′𝑗′′𝑘𝑖′′𝑗′′ 𝛽𝑖𝑗′ > 0 (A-54)

Proof. The idea is the same as in the proof of lemma (9). Strict proof should be done
during further studies.

Lemma 11. Local non-positive responsiveness to the increasing of buyers’ out-
side options for the BNB-delta solution.
Let the bargaining rule be BNB-delta solution. Consider the region 𝑋𝑙𝑛 of the space of
surpluses vectors, where the BNB graph ℋ𝑙𝑛 = {𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 } remains the same. Suppose

that some link 𝑖′𝑗′ stands for the outside option of buyer 𝑗′, but it does not stand for the
outside option of seller 𝑖′, that is: 𝑖′𝑗′ ∈ 𝑂(𝑏)∖𝑂(𝑠). Then the payoff of an arbitrary seller
𝑖 in this surpluses’ region is a linear function of surplus 𝑘𝑖′𝑗′ with non-positive coefficient:

∀𝑖 : 𝑝𝑖(𝑘) = 𝛽𝑖′𝑗′𝑘𝑖′𝑗′ +
∑︁

𝑖′′𝑗′′ ̸=𝑖′𝑗′

𝛽𝑖′′𝑗′′𝑘𝑖′′𝑗′′ 𝛽𝑖′𝑗′ ≤ 0 (A-55)

Proof. Remind that locally

𝑝 =
1

2

∞∑︁
𝑟=0

𝛿𝑟𝜒𝑟 · ̂︀𝐾𝛿 (A-56)

6this is not a strict calculation up to this moment
7meaning that seller 𝑖’s outside option is not external (exogenous), but there is some buyer j’ such

that 𝑘𝑖𝑗′ ≥ 𝑝(𝑏)𝑗′
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Consider the change of surplus vector 𝑘 such that ̂︀𝐾𝛿 → ̂︀𝐾𝛿+ M ̂︀𝐾𝛿. Then for the change
of payoff vector 𝑝, M 𝑝, we get:

M 𝑝 =
1

2

∞∑︁
𝑟=0

𝛿𝑟𝜒𝑟· M ̂︀𝐾𝛿 (A-57)

Note, that matrix 𝜒 has only non-negative entries. In its turn, the only one change in the
surpluses’ vector 𝑘 is 𝑘𝑖′𝑗′ → 𝑘𝑖′𝑗′+ M 𝑘𝑖′𝑗′ , Hence under the conditions of lemma we have:

M ̂︀𝐾𝛿
𝑖 =

{︂
− M 𝑘𝑖′𝑗′ 𝑖𝑓 𝑖 = 𝑀 (𝑏)(𝑗′)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(A-58)

Thus,
M 𝑝𝑖 =

∑︁
[(non-negative terms) · (non-positive terms)] ≤ 0 (A-59)

Since locally vector of payoffs is a linear function of surpluses, this proves the lemma.

Intuitively, lemma (11) holds because increasing of outside option of buyer 𝑗′ in-
creases his payoff, which in turn decreases the payoff of his matched seller 𝑂(𝑏)(𝑗′), in-
creasing values of outside options of buyers for which this seller is an outside option, etc.
And there is no opposite effect, because the surplus of this link does not influence the
outside option of seller 𝑖′ directly, but only through the network effects, which turn out
to be negative or zero.

Lemma 12. Local neutral responsiveness to the irrelevant options for the BNB-
delta solution.
Let the bargaining rule be BNB-delta solution. Consider the region 𝑋𝑙𝑛 of the space of
surpluses vectors, where the BNB graph ℋ𝑙𝑛 = {𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 } remains the same. Suppose

that some link 𝑖′𝑗′ ̸∈ 𝑀 ∪ 𝑂(𝑠) ∪ 𝑂(𝑏) does not participate in ℋ𝑙𝑛 at all. Then all payoffs
are independent of 𝑘𝑖′𝑗′ whenever ℋ𝑙𝑛 remains fixed.

Proof. It follows from eq. (A-49), since �̂�𝛿 does not depend on 𝑘𝑖′𝑗′ in this case.

At this moment, there are proves for the last two lemmas, and the first two lemmas
should be proved during further studies.

Global monotonicity properties of the BNB-delta solution.
Remind lemma (7):

Let the bargaining rule be a BNB-delta solution. Consider some BNB graph ℋ𝑙𝑛 =
{𝑀𝑙;𝑂

(𝑠)
𝑙𝑛 ;𝑂

(𝑏)
𝑙𝑛 }. Suppose that some link 𝑖′𝑗′ stands for the outside option of buyer 𝑗′, but

it does not stand for the outside option of seller 𝑖, that is: 𝑖′𝑗′ ∈ 𝑂(𝑏)∖𝑂(𝑠), and let 𝑘(0)
𝑖′𝑗′ be

the initial surplus for this link. Then the payoff of an arbitrary seller 𝑖 is a non-increasing
piecewise linear continuous function of surplus 𝑘𝑖′𝑗′ for 𝑘𝑖′𝑗′ ≤ 𝑘

(0)
𝑖′𝑗′ under the condition

that other surpluses 𝑘−𝑖′𝑗′ remain the same.
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Proof. Sketch of the proof. When we decrease 𝑘𝑖′𝑗′ , the matching remains the same, and
hence the payoff is a continuous function of 𝑘𝑖′𝑗′ . The only one peculiar moment is that it
might be that during the decreasing of 𝑘𝑖′𝑗′ after change of ℋ the link 𝑖′𝑗′ becomes outside
option of some seller, and we cannot use lemma (11) further. Intuitively, it might not be
the case, since we decrease the surplus over this link; however we should investigate this
moment more strictly. Then, inside each region 𝑋𝑙𝑛 it is a non-positive linear function of
𝑘𝑖𝑗 for 𝑘𝑖𝑗 ≥ 𝑘

(0)
𝑖𝑗 by lemmas (11) and (12). Strict proof of this lemma should be given

during further studies.

A.3.5 Other properties of the BNB-delta solution

∙ Participation Rationality
Let’s investigate, whether BNB-delta bargaining rule satisfies Participation Rationality
(A2) axiom; that is, 𝑃 ≥ 0. Consider the following definition of the pairwise stable
bargaining rule in case when alternative matchings are discounted by the agents:

Definition 10. Delta-Pairwise Stability. The bargaining rule 𝑅 is pairwise stable
if for any seller-buyer pair 𝑙𝑚 ̸∈ 𝑀 who are not matched with each other, both 𝑝𝑙 ≥
𝛿(𝑘𝑙𝑚 − 𝑞𝑚) and 𝑞𝑚 ≥ 𝛿(𝑘𝑙𝑚 − 𝑝𝑙).

Lemma 13. BNB-delta solution is a delta-pairwise stable bargaining rule.

Proof. Idea of the proof. This result is a consequence of efficiency of the bargaining rule.
When 𝛿 = 1, delta-pairwise stability turns out to be pairwise stability: 𝑙𝑚 ̸∈ 𝑀 ⇒ 𝑘𝑙𝑚 ≤
𝑝𝑙 + 𝑞𝑚. Jon Kleinberg and Éva Tardos in Kleinberg & Tardos (2008) have shown that
for the bipartite graph the BNB solution (which is our BNB-delta solution with 𝛿 = 1)
satisfies pairwise stability condition. Intuitively, this result could be extrapolated for
𝛿 < 1 as well by the same methods. I postpone proof of this point to the MT defence.

Now let’s show that delta-pairwise stability implies Participation Rationality.

Lemma 14. If lemma (13) for the BNB-delta solution holds, then this bargaining rule
also satisfies Participation Rationality axiom.

Proof. 𝑃 ≥ 0 for BNB-delta solution as far as

∀𝑖𝑗 ∈ 𝑀 : 𝑘𝑖𝑗 − 𝛿𝑂𝑂(𝑠)(𝑖) − 𝛿𝑂𝑂(𝑏)(𝑗) ≥ 0 (A-60)

WLOG (using our trick with ◇), let 𝑂(𝑠)(𝑖) = 𝑗′ and 𝑂(𝑏)(𝑗) = 𝑖′. Consider

𝑘𝑖𝑗 − 𝛿𝑂𝑂(𝑠)(𝑖) − 𝛿𝑂𝑂(𝑏)(𝑗) = 𝑘𝑖𝑗 − 𝛿(𝑘𝑖𝑗′ − 𝑞𝑗′) − 𝛿(𝑘𝑖′𝑗 − 𝑝𝑖′) = (A-61)

= [𝑝𝑖 − 𝛿(𝑘𝑖𝑗′ − 𝑞𝑗′)] + [𝑞𝑗 − 𝛿(𝑘𝑖′𝑗 − 𝑝𝑖′)] ≥ 0

where I use lemma (13) in the last inequality.
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A.4 Theorem about the investments’ graph in case of small noise
limit for the BNB-delta solution

Remind Proposition (8): Assume that the bargaining rule is BNB-delta solution. Then
for any graph 𝐺 there exists 𝑎 > 0 such that ∀𝑎 < 𝑎 in any equilibrium in pure strategies
of the sellers’ investments game, each seller invest in no more than two links. Moreover,
ex-post one of these links is a matching for the seller, and another is his outside option.

Proof. Here I extensively use the Proposition (7) for the BNB-delta solution. Consider
arbitrary seller 𝑖. If the number of his adjacent links is less than 3, then he trivially can’t
invest in more than two links. Suppose, he has more than two adjacent links. Then:

1. Assume that with probability 1 the ex-post BNB-graph ℋ is such that there are
only two links, WLOG 𝑖1 and 𝑖2, which may seller 𝑖’s matching and outside option,
that is: 𝑃𝑟(𝑀 (𝑠)(𝑖) = 𝑗) = 0 𝑓𝑜𝑟 𝑗 ̸= 1, 2 : 𝑖𝑗 ∈ 𝐺 and 𝑃𝑟(𝑂(𝑠)(𝑖) = 𝑗) =
0 𝑓𝑜𝑟 𝑗 ̸= 1, 2 : 𝑖𝑗 ∈ 𝐺. Then his investments profile in this equilibrium is such that
𝑖𝑖𝑗 = 0 𝑓𝑜𝑟 𝑗 ̸= 1, 2 : 𝑖𝑗 ∈ 𝐺.

Proof. Assume by contradiction that 𝑖𝑒𝑞𝑖𝑗 > 0 for some 𝑗 ̸= 1, 2 : 𝑖𝑗 ∈ 𝐺. Assume
at first that 𝑖𝑒𝑞𝑖𝑗 ∼ 𝑂(1) when 𝑎 → 1. Consider a deviation when seller 𝑖 invest less
in this link. Then link 𝑖𝑗 does not participate in the ex-post matching 𝑀 for sure,
because it was not in 𝑀 with probability 1 initially, and we decrease 𝑘𝑖𝑗 for each
realization of uncertainty. Moreover, by the same reason this deviation does not
influence the probabilities of different matchings 𝑀𝑙 to be the efficient ones. Then
the expected utility of seller 𝑖 is given by the following expression, which is valid as
long as 𝑖𝑖𝑗 ≤ 𝑖𝑒𝑞𝑖𝑗 and 𝑖−𝑖𝑗 = 𝑖𝑒𝑞−𝑖𝑗:

𝐸𝑈𝑖(𝑖) =
𝐿∑︁
𝑙=1

Pr(𝑋𝑙)𝑔𝑙(𝑖𝑖𝑗) + 𝑂(𝑎) −
𝑖2𝑖𝑗
2

+ ℎ(𝑖−𝑖𝑗) (A-62)

where 𝑔𝑙 for each 𝑙 is some piecewise linear continuous non-increasing function of 𝑘𝑖𝑗
according to the Proposition (7). Consider the deviation 𝑖𝑖𝑗 = 0, 𝑖−𝑖𝑗 = 𝑖𝑒𝑞−𝑖𝑗. Then:

𝐸𝑈𝑖(𝑖
𝑑𝑒𝑣) − 𝐸𝑈𝑖(𝑖

𝑒𝑞) =
𝐿∑︁
𝑙=1

Pr(𝑋𝑙)[𝑔𝑙(0) − 𝑔𝑙(𝑖
𝑒𝑞
𝑖𝑗 )] +

(𝑖𝑒𝑞𝑖𝑗 )2

2
+ 𝑂(𝑎) > 0 (A-63)

Hence, this deviation is profitable and we get the contradiction. Let’s postpone
the case when 𝑖𝑒𝑞𝑖𝑗 ∼ 𝑂(𝑎). Thus we have proved, that 𝑖𝑖𝑗 > 0 : 𝑖𝑖𝑗 ∼ 𝑂(1) for
𝑗 ̸= 1, 2 : 𝑖𝑗 ∈ 𝐺 is impossible in the equilibrium.

2. Now assume that there are more than two links, WLOG, 𝑖1, 𝑖2, ..., 𝑖𝑡 with 𝑡 > 2 such
that they appear ex-post as 𝑀 (𝑠)(𝑖) or 𝑂(𝑠)(𝑖) with non-zero probability of order
𝑂(1) when 𝑎 → 0. Let’s firstly show that at the equilibrium the ex-post payoff of
seller 𝑖 could be distinct subject to the uncertainty realization only by the value of
order of 𝑂(𝑎).

Proof. Assume by contradiction that there are two distinct possible realizations
𝑝𝑖(𝑘

1) and 𝑝𝑖(𝑘
2) such that, WLOG, 𝑝𝑖(𝑘2) > 𝑝𝑖(𝑘

1) and 𝑝𝑖(𝑘
2)−𝑝𝑖(𝑘

1) = 𝑦 = 𝑂(1).
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We may consider8 𝑝𝑖(𝑘
1) = 𝑚𝑎𝑥

𝜀
𝑝𝑖(𝑖

𝑒𝑞 + 𝜀) and 𝑝𝑖(𝑘
2) = 𝑚𝑖𝑛

𝜀
𝑝𝑖(𝑖

𝑒𝑞 + 𝜀), because
if there are two realizations with payoffs’ difference ∼ 𝑂(𝑎), then the maximum
possible payoff and the minimum possible payoff realizations satisfies this as well.
These realizations should correspond to the different matchings 𝑀1 ̸= 𝑀2, otherwise
by the continuity property of the BNB-delta solution it should be 𝑝𝑖(𝑘

2) − 𝑝𝑖(𝑘
1) =

𝑂(𝑎). Let at the equilibrium 𝑃𝑟(𝑀 = 𝑀2) = 𝑟2 > 0, 𝑟2 = 𝑂(1). Then, seller
𝑖 could make a profitable deviation. Indeed, let WLOG 𝑖𝑖1 ∈ 𝑀1 and 𝑖𝑖2 ∈ 𝑀2.
Consider a deviation:

𝑖𝑑𝑒𝑣𝑖1 = 𝑖𝑒𝑞𝑖1 +
1

2
𝑣+, 𝑖𝑑𝑒𝑣−𝑖1 = 𝑖𝑒𝑞−𝑖1. (A-64)

where 𝑣+ ∼ 𝑂(1) is a positive root of 𝑟2𝑦 − 𝑖𝑒𝑞𝑖1𝑣 −
𝑣2

2
= 0

When 𝑎 → 0, it should be that∑︁
𝑖𝑗∈𝑀1

𝑘𝑖𝑗 −
∑︁
𝑖𝑗∈𝑀𝑙

𝑘𝑖𝑗 = 𝑂(𝑎) (A-65)

for any matching 𝑀𝑙, which appears as the ex-post efficient matching with non-
zero probability. Then, for sufficiently small 𝑎, after our deviation it should be
𝑃𝑟(𝑀 = 𝑀1) = 1, and the expected utility of seller 𝑖 increases:

𝐸𝑈𝑖(𝑖
𝑑𝑒𝑣) − 𝐸𝑈𝑖(𝑖

𝑒𝑞) ≥ 𝑟2𝑦 − 𝑖𝑖1𝑣+ − 1

4
𝑣2+ + 𝑂(𝑎) > 0 (A-66)

Hence, we get a contradiction.

3. Next, let’s consider the case when at the equilibrium the ex-post payoff of seller 𝑖
could be distinct subject to the uncertainty realization only by the value of order
of 𝑂(𝑎), and seller 𝑖 makes investments of order of 𝑂(1) in more than two links:
𝑖1, 𝑖2, 𝑖3, .... Consider some ex-post BNB graph ℋ1 which realizes with probability
∼ 𝑂(1). Let 𝑖1 ∈ 𝑀1 and 𝑖2 ∈ 𝑂

(𝑠)
1 be the matching and the outside option9 of seller

𝑖. Then he has a profitable deviation to invest 𝑣1 ∼ 𝑂(1) and 𝑣2 ∼ 𝑂(1) in links
𝑖1 and 𝑖2 such that BNB graph ℋ1 realizes with probability 1, and do not invest in
any other links. Indeed, by the Proposition (7) and in particular, by the lemma (7),
the ex-post payoff of seller 𝑖 could not decrease larger than on the value of order of
𝑂(𝑎). However, as 𝑎 → 0, we also may choose 𝑣1, 𝑣2 ∼ 𝑂(1) such that seller 𝑖 wins
on investment costs quantity of order of 𝑂(1):

𝐶𝑖(𝑖
𝑑𝑒𝑣) − 𝐶𝑖(𝑖

𝑒𝑞) = −𝑖𝑒𝑞𝑖1𝑣1 −
1

2
𝑣21 − 𝑖𝑒𝑞𝑖2𝑣2 −

1

2
𝑣22 +

∑︁
𝑗 ̸=1,2

𝑖2𝑖𝑗
2

> 0 (A-67)

Hence, there is always a profitable deviation in case when seller 𝑖 makes investments
of order of 𝑂(1) in more than two links: 𝑖1, 𝑖2, 𝑖3, ....

8Since 𝜀 is defined on the compact set [−𝑎
2 ;

𝑎
2 ]

|𝐺|, and payoff function is continuous at finite set of
compacts 𝑋𝑙, then after introducing the correct tie-breaking rule on the borders of 𝑋𝑛 (where payoff
vector could be non-unique since there are multiple efficient matchings), we way consider 𝑚𝑎𝑥 instead of
𝑠𝑢𝑝, and similar for the 𝑚𝑖𝑛 instead of 𝑖𝑛𝑓

9case when seller 𝑖 has no endogenous outside option in ℋ1 could be considered analogously
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4. Finally, we should consider technical cases when probabilities of some BNB-graphs ℋ
are of order of 𝑂(𝑎) and similar for the equilibrium levels of investments 𝑖𝑒𝑞 ∼ 𝑂(𝑎).
We may do it with the help of Proposition (7), and in particular by the local
monotonicity lemmas for the BNB-delta solution. I postpone this technical part for
further research.

A.5 Calculations for the "N" network

Here is the part of calculations for the "N" network in case of small noise.
Let’s explicitly write down the conditions on 𝑘 (we further refer to them as 𝑘 ∈ 𝑋𝑛 for
the corresponding region 𝑋 of the space of possible surpluses 𝑅3) and payoffs of sellers
for different ℋ (the payoff of buyers are 𝑞𝑗 = 𝑘𝑀(𝑏)(𝑗)𝑗 − 𝑝𝑀(𝑏)𝑗 if they are matched and
zero otherwise):

∙ ℋ0 = {∅;∅;∅}:
𝑘11 ≤ 0 𝑘21 ≤ 0 𝑘22 ≤ 0 (A-68)

𝑝1 = 0 𝑝2 = 0

∙ ℋ1 = {{11};∅;∅}:

𝑘11 ≥ 0 𝑘21 ≤ 0 𝑘22 ≤ 0 (A-69)

𝑝1 =
1

2
𝑘11 𝑝2 = 0

∙ ℋ2 = {{11};∅; {21}}:
𝑘11 ≥ 𝑘21 ≥ 0 𝑘22 ≤ 0 (A-70)

𝑝1 =
1

2
𝑘11 −

1

2
𝑘21 𝑝2 = 0

∙ ℋ3 = {{22};∅;∅}:

𝑘11 ≤ 0 𝑘21 ≤ 0 𝑘22 ≥ 0 (A-71)

𝑝1 = 0 𝑝2 =
1

2
𝑘22

∙ ℋ4 = {{22}; {21};∅}:
𝑘22 ≥ 𝑘21 ≥ 0 𝑘11 ≤ 0 (A-72)

𝑝1 = 0 𝑝2 =
1

2
𝑘22 −

1

2
𝑘21

∙ ℋ5 = {{21};∅;∅}:

𝑘11 ≤ 0 𝑘21 ≥ 0 𝑘22 ≤ 0 (A-73)

𝑝1 = 0 𝑝2 =
1

2
𝑘21
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∙ ℋ6 = {{21};∅; {11}}:
𝑘21 ≥ 𝑘11 ≥ 0 𝑘22 ≤ 0 (A-74)

𝑝1 = 0 𝑝2 =
1

2
𝑘21 −

1

2
𝑘11

∙ ℋ7 = {{21}; {22};∅}:
𝑘21 ≥ 𝑘22 ≥ 0 𝑘11 ≤ 0 (A-75)

𝑝1 = 0 𝑝2 =
1

2
𝑘21 +

1

2
𝑘22

∙ ℋ8 = {{21}; {22}; {11}}:

𝑘21 ≥ 𝑘22 + 𝑘11 𝑘11 ≥ 0 𝑘22 ≥ 0 (A-76)

𝑝1 = 0 𝑝2 =
1

2
𝑘21 +

1

2
𝑘22 −

1

2
𝑘11

∙ ℋ9 = {{11, 22};∅;∅}:

𝑘11 ≥ 2𝑘21 𝑘11 ≥ 0 𝑘22 ≥ 2𝑘21 𝑘22 ≥ 0 (A-77)

𝑝1 =
1

2
𝑘11 𝑝2 =

1

2
𝑘22

∙ ℋ10 = {{11, 22};∅; {21}}:

𝑘11 ≥ 𝑘21 + 1
2
𝑘22 𝑘21 ≥ 0 0 ≤ 𝑘22 ≤ 2𝑘21 (A-78)

𝑝1 =
1

2
𝑘11 −

1

2
𝑘21 +

1

4
𝑘22 𝑝2 =

1

2
𝑘22

∙ ℋ11 = {{11, 22}; {21};∅}:

0 ≤ 𝑘11 ≤ 2𝑘21 𝑘21 ≥ 0 𝑘22 ≥ 𝑘21 + 1
2
𝑘11 (A-79)

𝑝1 =
1

2
𝑘11 𝑝2 =

1

2
𝑘22 +

1

2
𝑘21 −

1

4
𝑘11

∙ ℋ12 = {{11, 22}; {21}; {21}}:

𝑘11 ≤ 𝑘21 + 1
2
𝑘22 0 ≤ 𝑘21 ≤ 𝑘11 + 𝑘22 𝑘22 ≤ 𝑘21 + 1

2
𝑘11 (A-80)

𝑝1 =
1

3
𝑘11 −

1

3
𝑘21 +

1

3
𝑘22 𝑝2 =

2

3
𝑘22 +

1

3
𝑘21 −

1

3
𝑘11

Let’s think now about the NE of the investments game on the network "𝑁" in case
when noise is small. In what follows we assume parameter to be arbitrary small, but
positive 𝑎 > 0. Since all expected payoffs are integrals of piecewise linear functions of
𝑘 = 𝑖 + 𝜀 with respect to noise 𝜀, these payoffs are differentiable functions of investments
𝑖. Hence, at equilibrium FOCs should hold.

One possibility is that the vector of investments 𝑖 lies inside one of the region 𝑋𝑛

for 𝑘 with constant graph ℋ𝑛, than the probability that this graph will appear in the
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ex-post NBN solution, is 1. Indeed, possible values of 𝑘 lies within a sphere with radius
𝑎 and center 𝑖. Hence:

𝑖 ∈ 𝑖𝑛𝑡(𝑋𝑛) ⇒ ∃𝑎 > 0 : ∀𝑎 < 𝑎 𝑃𝑟(ℋ = ℋ𝑛) = 𝑃𝑟(𝑋 = 𝑋𝑛) = 1 (A-81)

In other words, sellers in this case are sure about the ex-post bargaining conditions. Let’s
check if we have this kind of equilibria. FOCs for each seller should be satisfied. Clearly,
in our case FOCs give us that 𝑖11, 𝑖21, 𝑖22 should be equal to the corresponding coefficient
of 𝑘11 in the payoff of the first seller, and coefficients of 𝑘21 and 𝑘22 in the payoff of the
second seller. Before we start to check FOCs, we can say, that ℋ0, ℋ1 and ℋ3 could not
support the equilibrium solely(meaning that it could not be that they have probability 1
to be the ex-post BNB graphs), since one of the sellers always may invest a bit and get
positive expected return. Let’s consider others:

ℋ2 : 𝑖21 = 0 ⇒ 𝑃𝑟(𝑘21 ≥ 0) < 1 ⇒ 𝑃𝑟(ℋ = ℋ2) < 1 ⇒ contradiction

ℋ4 : 𝑖11 = 0 ⇒ 𝑃𝑟(𝑘11 ≥ 0) < 1 ⇒ 𝑃𝑟(ℋ = ℋ4) < 1 ⇒ contradiction

ℋ5 : 𝑃𝑟(𝑘22 ≥ 0) > 0 ⇒ 𝑃𝑟(ℋ = ℋ5) < 1 ⇒ contradiction

ℋ6 : 𝑖11 = 0 ⇒ 𝑃𝑟(𝑘11 ≥ 0) < 1 ⇒ 𝑃𝑟(ℋ = ℋ6) < 1 ⇒ contradiction

ℋ7 : 𝑖11 = 0 𝑖21 = 𝑖22 =
1

2
⇒ 𝑃𝑟(ℋ = ℋ4) > 0 ⇒ contradiction

ℋ8 : 𝑖11 = 0 𝑃𝑟(ℋ = ℋ8) < 1 ⇒ contradiction

ℋ9 : 𝑖11 = 𝑖22 =
1

2
𝑖21 = 0 ⇒ 𝑃𝑟(ℋ = ℋ9) = 1 ⇒ FOC

√

ℋ10 : 𝑖21 = 0 ⇒ 𝑃𝑟(ℋ = ℋ10) < 1 ⇒ contradiction

ℋ11 : 𝑖11 = 𝑖21 = 𝑖22 =
1

2
⇒ 𝑃𝑟(ℋ = ℋ11) < 1 ⇒ contradiction

ℋ12 : 𝑖11 = 𝑖21 =
1

3
= 𝑖22 =

2

3
⇒ 𝑃𝑟(ℋ = ℋ12) < 1 ⇒ contradiction
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