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On the Belief Manipulation and Observational
Learning

Djulustan Nikiforov

Abstract

The literature on social learning studies how well information is
aggregated in the society under various assumptions. In the seminal
paper by Bikhchandani, Hirshleifer, and Welch (1992) it is shown that
observational learning process can be quite fragile and susceptible to
herdings. In this paper, we ask a question whether someone can use
this weakness of learning process in order to manipulate beliefs of a so-
ciety. We introduce a new player, Manipulator, into the observational
learning model of Bikhchandani et al. (1992). Manipulator’s aim is to
make people choose the action he wants regardless of the true state of
the world. For that, Manipulator can use a costly technology to insert
his own agent into the sequence. We find Perfect Bayesian Equilibria
of the game under various assumptions on informational structure and
type of the Manipulator. Also, we study how much the information
aggregation in the society is harmed or enhanced by that.

Keywords: Social learning, Observational learning, Information aggre-
gation
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1 Introduction

Our lives are guided by our beliefs and opinions. We have opinions over
various economic, political, social issues. For example, if you are deciding
what restaurant to go and what food to choose there, you will probably
consult your friends, who consulted their friends, and so on.

Because our time and possibilities are limited we cannot directly experi-
ence or learn most of the things in the world. Thus, we have to rely on others
to form our knowledge and opinions about the world. We learn through the
process of Social Learning – i.e. we get to know the world by observing
other people. One of the main results of the literature is that it explains
why people are often so susceptible to fads, fashion and so on (as was noted
in (Bikhchandani et al., 1992)) – people may conform on specific behavior
based on a very little information.

That leads us to a natural question - can this weakness of social learning
process be exploited by someone? Returning to the above example, may be
I will fall into common delusion by going to actually not such a good restau-
rant. Could the restaurant’s owner intentionally spread such misinformation
into the society and create a fad? Or, on the opposite, can some benevolent
person help the society to aggregate information better and not to fall into
wrong fads?

To motivate, let us think about more situations that can happen in real
life.

An owner of online-shop of electronics who tries to increase its popularity
by asking his friends to write good reviews on recommender sites. Potential
customers may be expecting this, so they look at positive reviews somewhat
skeptically. On the other hand, rivals of that shop may do the opposite by
intentionally inserting negative reviews. Thus, the negative opinions are also
may be taken with a grain of salt.

A candidate in presidential elections maximizes his chances by persuading
at the beginning key people whose decisions are observed by masses and can
significantly influence them.

A crafty trader who manipulates stock prices of a new firm by actively
buying its stocks at the beginning. Traders do not have knowledge about the
firm but some of them get excited by that and form a belief that the firm is
going to be successful, so they buy stocks, too. They lead to another wave
of deceived traders buying the stocks, and so on until trader-manipulator
cashes out with a huge profit.

A closed dictatorship country where government spreads and maintains
opinions in the society that life there is much better than abroad. Gov-
ernment lets loyal citizens visit other countries and then share with fellow
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citizens a negative “impression” about foreign countries.
Can the manipulator successfully manipulate public beliefs in these sto-

ries? And how will he do that? In this work, we make a first attempt to
formalize questions above using the classical observational learning frame-
work of Bikhchandani, Hirshleifer, and Welch (1992): there is an infinite
population of agents who sequentially (in some exogenous order) make de-
cisions regarding the uncertain state of the world. Each agent learns new
information by observing actions of his predecessors. In our model, we in-
troduce a Manipulator who is a strategic player outside of the sequence.
Manipulator possesses a technology which allows him to turn some agents
into his “pawns” who act as he wants. Aim of Manipulator is to make agents
choose certain action (possible, herd on that action).

In the basic model, we assume binary structure of private signals and
action sets of ordinary agents (as in (Bikhchandani et al., 1992)) , Manip-
ulator knows the true state of the world and can use the costly technology
which allows him with some rate of success to infiltrate his pawn into the
beginning of the learning sequence. The crucial thing is that Manipulator
has no commitment power, so we look for Perfect Bayesian Equilibria of this
game.

We study the equilibrium behaviour of Manipulator and how it affects
information aggregation in the learning sequence. We assess that in terms of
probability with which cascade on a correct action eventually occurs. When
the agents are not aware of the Manipulator, he is free to adjust the initial
direction of public belief subject to his costs. There is a non-trivial behavior
of Manipulator when he wants to implement opposite to θ: his interven-
tion with probability λ at first increases with q, but then decreases. In any
case, his strategy λ linearly affects the probability of the correct cascade.
As his cost parameter c decreases or discount parameter δ increases, his λ
increases and information aggregation in public is more affected (positively
or negatively).

When public is aware of the Manipulator, they correct their beliefs to his
strategies. Due to that, Manipulator opportunities for affecting public belief
change. When he is always a Good Manipulator, it is expectedly much easier
for him to enhance the learning process. The first agent could be interpreted
as a Fashion leader from the paper of (Bikhchandani et al., 1992): due to
the presence of a Good Manipulator, the action of the first agent conveys
more information then private signals of the following agents; thus, everyone
decides to just follow the Fashion leader. And this is precisely the reason why
Good Manipulator can, actually, harm the learning: at some values of the
parameters, presence of Good Manipulator results in decrease in probability
of correct cascade. Thus, sometimes even Manipulator with good intentions
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would prefer to act from undercover.
On the other hand, when the Manipulator is always Evil, public belief is

less sensible to his actions, but he is still able to well influence the learning
process. The handicap is that in low values of cost parameter c there will
not be equilibrium in the game: Manipulator over influences the public belief
whenever it is possible, thus disrupting the equilibrium.

This moment is important: for example, when the cost function is linear,
reasonable equilibria where Manipulator acts with a positive probability exist
only for specific values of its marginal cost. That is why, having convex cost
function stops Manipulator from overacting and reasonable equilibria emerge.

Also, we consider the problem of timing. If Manipulator can choose when
to use his technology (but can do that only once) then his behavior depends
on the parameters. Under some conditions he prefers to be cautious i.e. he
inserts a pawn only when there is imminent danger of falling into undesir-
able informational cascade. Under other conditions he will act right at the
beginning or act in the next period, so he can be impatient as well.

The paper is organized as follows. In Section 2 we give a review of the
related literature. Section 3 develops the framework in which we will work. In
Section 4 we analyse the model under assumption that Manipulator can act
only at the beginning. In Section 5 we study the optimal timing strategy of
Manipulator under the assumption that he can choose when to act. In Section
6 we propose very different approach to solving Manipulator’s problem by
assuming that he can commit. Appendix A contains figures, all omitted in
the main text proofs are provided in Appendix B.

2 Related Literature

First of all, my work is related to a large and growing literature on social
learning which originated in seminal papers by Bikhchandani et al. (1992)
and by Banerjee (1992). These works introduced a framework where Bayes-
rational agents come sequentially and learn by observing actions of all of their
predecessors. Their main result was that this process is susceptible to herding
i.e. inefficient outcome when agents disregard their own information and stick
just to public opinion. Smith and Sørensen (2000) provided a comprehensive
analysis of this model and one of their main results was that private signals of
unbounded strength guarantee that complete learning occurs i.e. agents learn
to make correct actions in the limit. Smith and Sorensen (2008) extended
the model by introducing random sampling – each agent observes actions
of a random sample of his predecessors. Acemoglu et al. (2011) go further
and incorporate network topology into the learning process – agents observe
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their neighbours. They showed that complete learning occurs provided that
private signals are of unbounded strength and network satisfies some very
mild connectivity conditions. These and other papers study extensively the
properties of observational learning but none of them consider the possibility
of intentional interruption into the process.

There is also parallel stream of this literature on Non-Bayesian social
learning. In Ellison and Fudenberg [1993,1995] and in Bala and Goyal
[1998,2001] agents learn by using simple rules-of-thumb. DeMarzo et al.
(2003), Golub and Jackson (2010), Acemoglu et al. (2010) are based on the
celebrated opinion formation model of DeGroot (1974). In these models,
agents in a finite network initially get signals to form their beliefs and then
these beliefs evolve over time by sharing with each other. Several papers
(for example,Acemoglu et al. (2010), Acemoglu et al. (2013), Andreoni and
Mylovanov (2012)) study how society may fail to aggregate information or
its individuals persist in their disagreement about something due to stub-
bornness of some agents. While the questions they study may resemble that
of ours, they are not about manipulation in society.

Our way of modeling and solving the Manipulator’s problem in our sec-
ond approach connects this paper to young but rapidly growing literature on
design of informational environments. The notable example is Kamenica and
Gentzkow (2009) which studies Sender-Receiver game where Sender designs
his optimal signalling structure ex ante. To list some of other papers:Ely
et al. (optimal design of entertainment), Horner and Skrzypacz (2011) (op-
timal design of information selling), Rayo and Segal (2010) (optimal infor-
mation disclosure by sender).

3 The Model Setup

3.1 Observational Learning setup

Now we introduce the observational learning setup of Bikhchandani, Hirsh-
leifer, and Welch (1992) using our notations.

States. There are 2 possible states of the world: θ = 0 and θ = 1. There
is a common prior about the states: P(θ = 0) = P(θ = 1) = 1

2
.

Learning Sequence. There is an infinite sequence of agents who come in an
exogenous order. For a descriptional convenience, let’s assume that there is a
discrete time in the model and the agent t comes in period t, t = 0, 1, 2, . . . .

Private Signals. Each individual t receives a private signal xt. All private
signals are independent conditionally on θ. In general, signals can have
discrete or continuous distributions which are heterogenous across the agents.
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Though, we will assume binary signals with the same precision for all agents:

P(xt = 1|θ = 1) = P(xt = 0|θ = 0) = q

P(xt = 1|θ = 0) = P(xt = 0|θ = 1) = 1− q,

where q > 1
2

is a precision of the signals.
Each agent forms his private belief about θ in Bayesian manner:

pt = P(θ = 1|xt) =

{
q if xt = 1,

1− q if xt = 0

Utilities. Utility of each agent is given by:

u(a) =

{
1 if a = θ,
−1 if a 6= θ

Each agent is an expected utility maximizer (i.e. risk-neutral).
A crucial notion for understanding the process of observational learning

is a public belief :
Pt = P(θ = 1|x0, x1, . . . , xt−1) - a common public prior about θ after

observing all actions till time t. By assumptions, P0 = 1
2
.

Define likelihood ratios of beliefs:
lt = pt

1−pt - private LR of agent t,

Lt = Pt
1−Pt - public LR of agent t,

Further, with a little abuse of terms, we will refer directly to lt and Lt as
private and public beliefs, correspondingly.

Observational learning process. An agent t comes with his public prior
Pt, observes his private signal xt and forms a posterior belief rt about θ:

rt
1−rt = ltLt
The agent will definitely choose at = 1 if ltLt > 1 and will choose at = 0

if ltLt < 1.
Throughout the paper we will assume the following tie-braking rule for

ltLt = 1: choose at = 1 if lt > 1, a = 0 if lt < 1 (i.e. an agent chooses
according to his private belief whenever he is indifferent).

Conditionally on θ, public belief Lt is a stochastic process:

1. Initial value: L0 = 1

2. No-cascade regime: If 1−q
q

6 Lt 6 q
1−q , then the agent’s decision is

determined solely by his private signal: at = xt. Therefore, other
agents observe his choice and update their belief Lt:
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at = 0⇒ Lt → Lt+1 = L+
t =

q

1− q
Lt

at = 1⇒ Lt → Lt+1 = L−t =
1− q
q

Lt,

P(Lt → L+
t |θ = 1) = P(Lt → L−t |θ = 0) = q

P(Lt → L−t |θ = 1) = P(Lt → L+
t |θ = 0) = 1− q

3. Cascade regime:

When public belief becomes more informative than private signals agents
start blindly following the public: occurs Informational cascade.

(UP Cascade) If Lt > L = q
1−q , then: at = 1.

(DOWN Cascade)If Lt < L = 1−q
q

, then: at = 0.

Agent chooses his action regardless of his private signal. That is why
other agents cannot extract any information from observing his action:
Lt → Lt+1 = Lt.

When informational cascade occurs, learning stops because agents’ ac-
tions stop being informative for others. Individuals do not care for their
followers – there are informational externalities which lead to information
not being aggregated well.

In the following lemma we calculate a probability of correct cascade oc-
currence 1:

Lemma 1. Correct cascade occurs with probability R = q2

q2+(1−q)2 , incorrect

cascade occurs with probability 1−R = (1−q)2
q2+(1−q)2

Proof. Without loss of generality, assume θ = 1 (If θ = 0 we just need to
reverse notations).

Let’s denote: µ - probability that UP cascade occurs, ν - probability
that DOWN occurs. After first two periods: with probability q2 UP occurs;
with probability 2q(1 − q) public belief returns to its initial value 1; with
remaining probability (1 − q)2 DOWN cascade occurs. We get following
recursive equations:

µ = q2 + 2q(1− q)µ
1the similar proposition was proven in Bikhchandani et al. (1992), but with different

tie-breaking rule
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ν = (1− q)2 + 2q(1− q)ν

From that we get above expressions.

Throughout the work, we will use R – probability of correct cascade as
a measure of information aggregation: the better society aggregates private
information of individuals, the higher the probability that it converges on a
correct cascade.

Two important remarks:

• Wrong herds occur only in “coarse” environments. When action space
of agents is rich enough, their actions fully reveal their beliefs and all
the information is aggregated well (see Lee 1993). Alternatively, when
signal space is rich enough i.e. when there are signals of unbounded
strength, incorrect herds are eventually overturned by well informed
agents (see Smith and Sørensen 2000).

• Informational cascades are inefficient only in a sense of information
aggregation. Herds cannot harm rational agents in expectation. They
choose to follow a herd because it is optimal for them.

3.2 Manipulator

Now we introduce a Manipulator into the model. Manipulator is a player
outside of the sequence who has a different objective. He can be of 2 types:
ξ = 0 and ξ = 1. Manipulator wants agents (as many of them as possible)
to choose the action ξ, regardless of the true θ. ξ can be fixed and known
to agents, or can be random and (un)correlated with ξ. Manipulator and all
agents have a common knowledge of joint distribution of ξ and θ.

Manipulator’s conspiracy. We will consider two variants of the model:
agents either have a common prior that there is no Manipulator (so they
behave just as in usual observational learning setup), or have a common
prior that there is indeed a Manipulator who tries to inflience them. In former
case, we will say that Manipulator is Hidden; in the latter – Manipulator is
Revealed.

Manipulator’s information. Manipulator knows the true state of the
world θ. If Manipulator is Revealed then it is a common knowledge of all the
agents and Manipulator. If he is Concealed then Manipulator knows that.

Manipulator’s action set. Manipulator has a technology which allows
him to persuade a chosen individual with some probability: persuading an
individual with positive probability λ costs c(λ), and persuaded agent plays
at = ξ. We will call persuaded agent a pawn of Manipulator. We assume a
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specific form of cost function: c(λ) = 1
2
cλ2 (As we will show, it is important

that cost is a convex function). When Manipulator persuades some agent,
it is unobservable by other agents (otherwise,they would simply disregard
action of that agent).

Manipulator’s utility function. Manipulator with aim ξ wants agents to
choose action ξ. In this work, we will consider two possible utility function
specifications of Manipulator: discounting utility and limit-of-means utility.

Manipulator with discounting utility:

U =
∞∑
t=0

δt
(
1{at = ξ} − 1

2
cλ2t

)
,

where at is an action of agent t (he may be a persuaded agent), λt - usage
of technology in period t.

Manipulator with limit-of-means utility:

U =

(
lim
T→∞

1

T + 1

T∑
t=0

1{at = ξ}

)
− C,

where C - costs of Manipulator on using his technology 2

Conditional on realized values of θ and ξ, we will say that Manipulator
is Good if θ = ξ, and that Manipulator is Evil if opposite.

Agents and the Manipulator play a dynamic game with imperfect infor-
mation – call this a “Manipulation game”.

We will look for Perfect Bayesian Equilibria (in the literature, they are
sometimes called Weak Sequential Equilibria) of the game where Manipulator
plays pure strategies. 3. For convenience, we will just call them equilibria.

3.3 The Interpretation of the Model

Before going on with the solving the model, we want to discuss the assump-
tions.

1. Interpretation of Manipulator’s technology. We could interpret Manip-
ulator’s technology in several ways. First, it may be Manipulator’s
own persuasion skills which he applies to one individual. In real world,
for example, politician tries to persuade a journalist. Moreover, if he
makes more effort, more probably will he succeed. Second, technology

2We will assume that Manipulator can act only once, then it makes no sense to include
costs inside the sum

3In fact, this is not restrictive because cost function of Manipulator is convex, and it
is non-optimal for Manipulator to randomize
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could simply represent the process of bribing by giving money, goods
or providing services. For example, shopkeeper pays the reporter to
spread the word that his shop has the lowest prices in town. Third,
Manipulator could just insert his own men (or robots) into the learn-
ing sequence. This is especially relevant to situation with recommender
sites: some of opinions (positive or negative) about anything particu-
lar can be fake ones injected by an interested side. Though, in this
example it is hard to justify costs as they are usually are almost zero.

2. Interpretation of Manipulator’s cost function. The main motivation for
assuming convex form of cost function was to use it as a commitment
tool for Manipulator. As it will be shown below, Manipulator with too
low costs tends to disrupt the equilibria in some cases. If the costs are
linear or concave then it will be happening very frequently which is bad
for getting meaningful results.

Besides, convex cost function is a standard one in economic literature.
In many cases, this assumption seems perfectly reasonable. For in-
stance, restaurant owner may personally serve and entertain particular
customers and try to give them best impression about the restaurant.
Probably, a marginal effectiveness of his efforts will be decreasing as
owner has to invent more and more “tricks” to impress them further.

3. Interpretation of Manipulator’s conspiracy. In some environments it is
more accurate to assume that individuals have no idea about Manipu-
lator, in others – the opposite. In the spirit of conspiracy theories, if
there is (just hypothetically) a clandestine organization consisting of
powerful individuals who in fact control the whole planet and aims to
building new “world order”, then that organization is indeed a very
well hidden Manipulator.

On the other hand, customers, who look for electronics in online rec-
ommender sites, are not born yesterday, and they understand that each
shop uses its resources to insert artificially good opinions (by different
channels) about itself but inserts negative opinions to their rivals. So,
rational customers will take every opinion and ratings with a grain of
salt.

4. Interpretation of Manipulator’s utility function.

We consider discounting and limit-of-means utility functions of Manip-
ulator. Discounting utility specification is adequate if there is a time
factor: if indeed individuals come sequentially with time then Manip-
ulator’s preferences should take into account time. If there is no time
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factor, then limit-of-means seems more adequate: as we assume that
all agents are identical, Manipulator cares only about the fraction of
agents who choose the desired action.

When it is not difficult to get tractable closed-form solutions we will
use discounting utility, as it is in fact less restrictive (we can get limit-
of-means results by appropriately taking limits δ → 1 4. Otherwise, we
will directly use limit-of-means utility, as it considerably simplifies our
calculations.

4 Manipulator who acts at the beginning

In this section, we study the question of how much incentives does Manipula-
tor have to manipulating society. For that, we will assume that Manipulator
can use his technology only at the beginning: he can either turn the agent
t = 0 into his pawn with some probability λ at cost c

2
λ2, or not act at all.

4.1 Hidden Manipulator (π = 0)

In this setting, individuals are not aware of the presence of Manipulator, so
there is no strategic interaction between Manipulator and agents, in fact. We
could interpret this as if Manipulator uses a technology which is costly but
allows him to insert pawns who are fully trusted by agents.

Proposition 1. The Manipulation game with Hidden Manipulator has an
unique equilibrium:

• If Manipulator is Good: Manipulator plays

λG = min

{
1− q
c

[
1 + δ2

(
q

1− δ
− (2q − 1)VG

)]
, 1

}
,

where VG =
1+q δ

1−δ+δ(1−q)
1−2q(1−q)δ2 q. The probability of a correct cascade is

RG =
q2 + λ1q(1− q)2

q2 + (1− q)2

.

4To make this, we also should make c drifting parameter: it should increase at rate
1

1−δ as δ → 1
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• If Manipulator is Evil: Manipulator plays

λE = min

{
q

c

[
1 + δ2

(
1− q
1− δ

+ (2q − 1)VE

)]
, 1

}
,

where VE =
1+(1−q) δ

1−δ+δq

1−2q(1−q)δ2 (1− q). The probability of a correct cascade is

RE =
q2 − λ0q2(1− q)
q2 + (1− q)2

.

If the technology of Manipulator is costly enough (c > (1− q)[ qδ
1−δ + (1−

2q)δVG]), then Manipulator chooses non-trivial probability:

λG =
1− q
c

[
1 + δ2

(
q

1− δ
− (2q − 1)VG

)]
< 1

λE =
q

c

[
1 + δ2

(
1− q
1− δ

+ (2q − 1)VE

)]
< 1

Then, the Manipulator ξ = θ always acts less than the other one:

λE − λG =
2q − 1

c
+
δ2

c
(2q − 1)(qVE + (1− q)VG) > 0

Comparative statics:
RG = RG(q

+
, δ
+
, c
−

) λG = λG(q
−
, δ
+
, c
−

)

RE = RE(q
+
, δ
−
, c
+

) λE = λE( q
+/−

, δ
+
, c
−

)

To get an idea of these dependencies, look at the Appendix (Figures 1,
2, 3).

Surprisingly, a simple change from Good to Evil Manipulator (remember
that we just made substitution q → 1−q) qualitatively changes his behavior:
while λG decreases monotonically in q, λE depends non-monotonically on a
parameter q.

lim
q→1

λG = lim
q→1

λE = 0

lim
q→ 1

2

λG = lim
q→ 1

2

λE = min

{
1 + δ2

2(1−δ)

2c
, 1

}
Intuitively, as q → 1, influence of Manipulator on the social learning

process becomes negligible (no matter what he does, a cascade on θ occurs
almost certainly), so he does not even try. When q → 1

2
, (. . . ).
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4.2 Revealed Manipulator (π = 1)

When Manipulator is fully revealed to ordinary agents, they anticipate his
interruption and correct their beliefs. The strategic interaction between Ma-
nipulator and agents changes the nature of the game and now Manipulator
cannot so straightforwardly influence their beliefs since his strategies are in-
corporated into public beliefs.

Notations: λξθ - probability of inserting a pawn by Manipulator of type ξ
when the state of the world is θ, sξθ = P(ξ|θ) - prior conditional probability
of ξ given θ (it is a common knowledge).

Then, after the first period, public updates its belief about the θ:

L = 1→ L+ =
[(1− λ11)s11 + (1− λ01)s01]q + λ11s11

[(1− λ10)s10 + (1− λ00)s00](1− q) + λ10s10
, if a = 1

L = 1→ L− =
[(1− λ01)s01 + (1− λ11)s11](1− q) + λ01s01

[(1− λ00)s00 + (1− λ10)s10]q + λ00s00
, if a = 0

One can see that L+ > 1⇔ L− < 1, and L+ > L⇔ L− < L.
After that, the usual observational learning process starts.
Let us use the following notations: Vab - expected utility of the Manipu-

lator after period t = 0, if indexes a and b indicate that: a = 1 indicates that
L updated in direction of the true θ (i.e. increase in case θ = 1 and decrease
in case θ = 0), the opposite for a = 0; b = 1 indicates that L updated in
desirable for Manipulator direction (i.e. increase in case ξ = 1 and decrease
in case ξ = 0), the opposite for b = 0. These values will prove to be useful
in solving Manipulator’s problem later.

Lemma 2. Depending on L+, the possible expected utilities of the Manipu-
lator after period t = 0 V00, V01, V10, V11 take the following values:

• If 1 < L+ 6 L :

V11 =
q

(1− δ)(1− q(1− q)δ2)

V10 =
(1− q)(1− qδ)

(1− δ)(1− q(1− q)δ2)

V01 =
1− q

(1− δ)(1− q(1− q)δ2)

V00 =
q(1− (1− q)δ)

(1− δ)(1− q(1− q)δ2)

where V0 and V1 are from Proposition 1.
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• If L+ > L :

V11 = V01 =
1

1− δ
V10 = V00 = 0

The following lemma proves that there cannot be strange equilibria.

Lemma 3. The Manipulation game with Revealed Manipulator has no equi-
libria where public beliefs do not update or update to reverse direction (i.e.
L+ 6 1). Consequently, in equilibrium Manipulator always plays λξθ > 0.

This lemma allows us to focus entirely on case L+ > 1. It says that there
must be positive aggregation of information at the first period in equilibrium.

We will derive equilibria at important special cases of the model: Always
Good Manipulator (ξ is perfectly correlated with θ) , Always Evil Manipula-
tor (ξ is perfectly anticorrelated with θ) and Biased Manipulator (ξ is fixed
and commonly known).

4.2.1 Always Good Manipulator

Let Manipulator always wants to help agents i.e. ξ = θ. Manipulator has 2
possible types that can be described by θ. Let λθ - probability with which
Manipulator inserts his pawn at moment t = 0.

Then, the updating rule of L after t = 0 is:

L+ =
(1− λ1)q + λ1
(1− λ0)(1− q)

, if a = 1

L− =
(1− λ1)(1− q)
(1− λ0)q + λ0

, if a = 0

Because agents are aware that there is a Manipulator and he wants to help
them, they put more weight to the action of the first agent when updating
their beliefs. Due to that, now Manipulator can more effectively influence
them compared to the situation when he is hidden.

Proposition 2. The Manipulation game with an Always Good Manipulator
has an unique equilibrium where Manipulator of both types plays

λ = min

{
(1− q)(2− δ)
c(1− δ)

, 1

}
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and the probability of a correct cascade is

R = q + λ(1− q)

.

Proof. We will look for symmetric equilibria: λ1 = λ0 = λ. According to
Lemma 3, in equilibrium must be λ > 0⇒ L+ > L , L− < L.

In both realizations of θ Manipulator faces the following decision problem:

(λ+ (1− λ)q)(1 + δV11) + (1− λ)(1− q)δV00 −
1

2
cλ2 =→ max

λ∈[0,1]

F.O.C.: (1− q)(1 + δ(V11−V00))− cλ = (1−q)(2−δ)
1−δ − cλ > 0, with equality

if λ < 1.

⇒ λ = min

{
(1− q)(2− δ)
c(1− δ)

, 1

}
Because a cascade occurs already in period t = 1, the probability of a

correct cascade is:
R = (1− λ)q + λ = q + λ(1− q)

One quite striking result is that Good Manipulator can, in fact, harm the
learning process! The first agent t = 0 becomes a “fashion leader” (the term
was used in (Bikhchandani et al., 1992)) - his action is more informative for
any other agent than his own private signal, so all the following agents choose
to blindly follow him. The thing is that Manipulator may prefer not to act
too much, causing by that risk of incorrect herding. As shown in Figure 4,
at some situations Revealed Good Manipulator can be more harmful for the
society than even Evil Manipulator. That is, good intentions sometimes lead
to an opposite result.

4.2.2 Always Evil Manipulator

Let the Manipulator always wants people not to guess true θ (ξ = ¬θ), i.e.
he is evil. As in the previous case, Manipulator has 2 possible types that can
be described by θ. Let λθ - probability of Manipulator inserting his pawn at
moment t.

Then, updating rule of L after t = 0 is:

17



L+ =
(1− λ1)q

(1− λ0)(1− q) + λ0
L, if a = 1

L− =
(1− λ1)(1− q) + λ1

(1− λ0)q
L, if a = 0

Because agents know that there is a Manipulator and he tries to deceive
them, they trust less to the choice of the first agent.

Proposition 3. The Manipulation game with Always Evil Manipulator has
an unique equilibrium where Manipulator of both types plays

λ = min

{
q

c

[
1 +

(1− q)qδ2

(1− δ)(1− q(1− q)δ2)

]
, 1

}
, provided that the cost parameter c is high enough. The probability of a
correct cascade is

R =
q2

1− q(1− q)
[1 + (1− λ)(1− q)].

If c is not high enough then the game has no equilibria.

Proof. Again, we will look for symmetric equilibria: λ1 = λ0 = λ. As in
equilibrium must be λ > 0, we have that L+ < L < 1 , 1 > L− > L. Then,
the Manipulator faces the same problem as in proof of Proposition 1:

(1− λ)qδV10 + (λ+ (1− λ)(1− q))(1 + δV01)−
1

2
cλ2 → max

λ∈[0,1]

F.O.C.: −qδV10 + q(1 + δV01)− cλ > 0, with equality if λ < 1⇒

λ = min

{
1

c
q(1 + δ(V01 − V10)), 1

}
= min

{
q

c

[
1 +

(1− q)qδ2

(1− δ)(1− q(1− q)δ2)

]
, 1

}
So, Evil Manipulator uses the same strategy as one which he would use

under the case π = 0. Though, this is equilibrium only if he does not act too
much:

L+ > 1⇔ λ < 2q−1
2q

So, there is a threshold value c of the parameter c: c > c ⇔ The game
possesses no equilibria.
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Probability of a correct cascade can be calculated in a similar way:

R = (λ+ (1− λ)(1− q)) q2

1− q(1− q)
+ (1− λ)q

q

1− q(1− q)

=
q2

1− q(1− q)
[1 + (1− λ)(1− q)]

Intuitively, even when agents are aware of Evil Manipulator, they have to
account for the information of the first agent, and this gives the Manipulator
an opportunity to affect the learning process, though less effectively than
he could in undercover (π = 0). Consequently, he uses significantly less
aggressive strategy (see Figure 4).

The important thing is that if Manipulator’s costs are low then he can-
not resist to interrupt too much into the learning and this causes agents to
completely ignore the first agent. Perhaps due to the shortcomings of the
model, the game has no equilibria in that case.

4.2.3 Biased Manipulator

Consider the Manipulator with a fixed type: ξ = 1 with probability 1. That
is, Manipulator is biased towards action 1 and ordinary agents expect that.
In contrast to the previous example, here Manipulator’s interests are not
completely opposite to agents’ interests. That gives the Manipulator more
possibilities to achieve his goals. Let λθ is the strategy of the Manipulator
when the state of the world is θ.

The updating rule of L after t = 0 is:

L+ =
(1− λ1)q + λ1

(1− λ0)(1− q) + λ0
, if a = 1

L− =
(1− λ1)(1− q)

(1− λ0)q
, if a = 0

Proposition 4. Provided that the cost parameter c is high enough, the Ma-
nipulation game with Biased Manipulator ξ = 1 and π = 1 has a unique equi-

librium where Manipulator plays λ1 = min
{

1−q
c

(
1 + q(1−q)δ2

(1−δ)(1−q(1−q)δ2)

)
, 1
}

if

θ = 1, plays λ0 = min
{
q
c

(
1 + q(1−q)δ2

(1−δ)(1−q(1−q)δ2)

)
, 1
}

if θ = 0. If c is not high

enough then the game has no equilibria.
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When the c is high enough:

λ0q − λ1(1− q) =
δ

c(1− δ)
q(1− q)(2q − 1)

1− q(1− q)δ2
< 2q − 1

The probability of a correct cascade, conditional on state of the world is:

R1 = (λ1 + (1− λ1)q)
q

1− q(1− q)
+ (1− λ1)(1− q)

q2

1− q(1− q)
, if θ = 1

R2 = (λ0 + (1− λ0)(1− q))
q2

1− q(1− q)
+ (1− λ0)q

q

1− q(1− q)
, if θ = 0

But we are more interested in unconditional probability of correct cascade,
as it is a measure of how well information is aggregated in presence of Biased
Manipulator:

R =
1

2
(R0 +R1)

As it can be seen in Figure 4, Biased Manipulator worsens the infor-
mation aggregation process. That happens because, Manipulator acts more
aggressively when he is Evil rather than Good.

When his aim conflict with the truth he uses the same strategy as the
Revealed Evil Manipulator. It is expected as the situation for him is the
same in both cases. When his interest is aligned with the truth, he acts, as
well, but less than any other type of Manipulator (see Figure 4).

5 The timing of Manipulator

In this section, we tackle the question of optimal timing for Manipulator. Is
it better to act earlier or later? On the one hand, inserting a pawn earlier
allows Manipulator to give at once an impulse to the public beliefs. On the
other hand, acting later implies more flexibility: Manipulator may decide to
act depending on current situation.

For this extension we will assume that Manipulator has a limit-of-means
utility, but cost c of using the technology is out of it:

U =

(
lim
T→∞

1

T + 1

T∑
t=0

1{at = ξ}

)
− 1

2
cλ2,

where λ - probability with which Manipulator will insert a pawn when
using technology.
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Note that such Manipulator does not care about actions of any finite
number of individuals, his expected payoff from learning sequence is equal to
probability of cascade on ξ:

VG =
q2

q2 + (1− q)2
(Good Manipulator)

VE =
(1− q)2

q2 + (1− q)2
(Evil Manipulator)

5.1 Manipulator acts once

With this assumption, we Manipulator’s problem gets a new dimension: tim-
ing of the strategy, i.e. Manipulator decides under which conditions he shall
use the technology. Whatever his strategy, there can be three possible out-
comes of Manipulator’s choice: he acts when public belief is L = 1 (say, at
that moment he gets expected utility equal to V̂ ); he acts when public belief
is L = L(L) (he gets an expected utility V̂ +(V̂ −) ).

Clearly, Manipulator’s optimal timing strategy has to be a function of L:
he decides at which values of L to act. That is, he has 8 possible strategies
to choose from – all subsets of {L, 1, L} where each subset corresponds to
states when Manipulator should act. If we take into account the fact that
initial state is L = 1 then it leaves with four timing strategies:

1. Act right now (at t = 0) – “Fast” strategy.

2. Act at next period (at t = 1) – “Wait and Strike” strategy.

3. Act when the victory is close (L = L) – “All-or-nothing” strategy.

4. Act when there is an imminent danger (L = L) – “Cautious” strategy.

Intuition does not tell which of these four strategies will be the best.
Indeed, the result we get by solving the problem is not so trivial:

Proposition 5. Consider the Manipulation Game with Hidden Manipulator
who can choose when he uses his technology.

• If the cost parameter c is high (c ≥ q2(1−q)
q2+(1−q)2 ), then: in equilibrium,

Good Manipulator will use “Wait and Strike” strategy if q ≤ q∗, and
use “Cautious” strategy if q ≥ q∗, where q∗ ≈ 0.59 is a solution of the
equation 3q3 − 4q2 + 3q − 1 = 0.
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• If the cost parameter c is low (c ≤ (1−q)3
q2+(1−q)2 ), then: in equilibrium,

Good Manipulator will use “Fast” or “Wait and Strike” strategy (they
give an equal payoffs).

So, if the cost of technology is low, then Manipulator prefers acting right
now (or, equivalently, definitely act in the next period). If the cost is high,
Manipulator prefers using cautious strategy: acting only when there is im-
minent danger. That is, when costs are high, the flexibility becomes more
important.

6 Manipulator with commitment power

Earlier we assumed that Manipulator cannot commit to his actions which was
the reason why he was so limited in manipulating agents when he is revealed.
Whenever beliefs of individuals become favorable to Manipulator, he uses this
opportunity and acts aggressively. Without proper commitment tool, that
results in absence of equilibria. We had an assumption that Manipulator
had a convex cost technology so that restricted him from overdoing things.
Moreover, we were unable to analyse well the model in case of Revealed
Manipulator: if he is not restricted to act only at one known time period it
is analytically challenging task to find equilibria of the model (if they exist
at all).

In this section, we propose an alternative way to model the Manipulation
game which will enable us to overcome those two drawbacks of the previous
model. Assume that Manipulator chooses his optimal strategy before real-
izations of θ and ξ, i.e. ex ante. So, now he is exogenously given power to
commit. This crucial assumption will let us deal with problem of Manipu-
lation in the spirit of the literature on design of informational environments
(most notably, Kamenica and Gentzkow (2009)).

6.1 Model Setup

We change only three assumptions in our previous model:

1. Manipulator has full commitment power. That means he solves his
optimization problem before the realization of θ and ξ, and he commits
to his optimal strategy.

2. Cost of technology: let Manipulator bears a fixed cost for each use of
technology. Precisely, at each period t he can either do nothing (so,
agent t acts independently) or bear cost c ∈ R+ and turn the agent t
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into his pawn. In the latter case, Manipulator makes his pawn to play
at = 1 with some probability λt.

3. Time horizon. Now we allow sequence of agents to be finite: t =
0, 1, 2, . . . , T , T ∈ Z+ ∪ {∞}.

As before, Manipulator may have discounting or limit-of-means utility
function.

We will look for subgame-perfect equilibria of the game.

6.2 Algorithm for solving Manipulator’s problem

Let’s assume that decision horizon of Manipulator is finite (i.e. the learning
sequence is finite)5.

For finite horizon, Manipulator has a discounting utility (possibly with
δ = 1).

For now, we will formulate the problem of Manipulator in more or less
general form, and provide a method to solve it.

Notations: µt = P (θ = 1|a0, a1, . . . , at−1) - public belief about state of

the world at moment t, µ
+(−)
t – updated public belief after agent t choosing

at = 1(0) .
Strategy of Manipulator has the following form: (mt(θ, ξ), λt(θ, ξ))

T
t=0, θ, ξ ∈

{0, 1}, where mt(θ, ξ) = 1 if Manipulator of type ξ turns agent t into his pawn
(mt = 0 otherwise) under θ , λt(θ, ξ) - probability with which agent t plays
at = 1 if mt = 1 (λt is indefinite if mt = 0).

Manipulator’s strategy generates a stochastic process for individuals’ pub-
lic beliefs: (µ̃t)

T
t=0, µ̃t ∈ ∆([0, 1]) (distribution over belief’s space), µ̃0 is de-

generate at 1
2

(common prior). Notational details: we use µ̃t when we mean
stochastic process , and we use µt when we mean realization of that process.

The process (µ̃t)
T
t=0 has to be a martingale: E[µ̃t+1|µ0, µ1, . . . , µt] = µt.

It is implied by the fact that agents are fully Bayes-rational. In terms of
Kamenica and Gentzkow (2009), we would call this requirement a Bayes-
plausibility.

Strategy of Manipulator can be completely described by (µ̃t,mt)
T
t=0 . Note

that, in fact, conditional distributions µ̃t+1|µt have support on one or two
points:

µ̃t+1|µt =

{
µ+
t w/p p,
µ−t w/p 1− p

5Later we will discuss how the results can be extended to an infinite horizon case
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µt+1 takes value µ+
t if agent t acts at = 1 and takes value µ−t if agent t

acts at = 0. If Manipulator decides to use his technology at t then he can
choose µ+

t , µ−t , p subject to Bayes-plausibility: µt = pµ+
t + (1− p)µ−t .

If Manipulator does not want to use his technology, then µ̃t+1|µt will have
a distribution generated by that agent’s own private signal. Let us denote
its parameters: µ̂+

t , µ̂
−
t , p̂.

We solve the problem of Manipulator as a dynamic programming: let
Vτ (µ) - expected residual payoff of Manipulator when the current public
belief is µ and there is τ periods till T .

We define the initial value V0(µ) as follows:

V0(µ) = Eµ[I(a(µ) = ξ)],

where a(µ) - choice of an agent with prior µ about θ (it is random variable
and its distribution depends on θ), Eµ - expectation conditional on the event
that θ = 1 with probability µ (possible correlation between θ and ξ is also
incorporated into that).

For all τ = 1, 2, . . . , T :

Vτ (µ) = max
µ+,µ−,p

s.t. pµ++(1−p)µ−=µ

[Eµ[I(a(µ) = ξ)] + δ(pVτ−1(µ
+) + (1− p)Vτ−1(µ−))

− c I{(µ+, µ−) 6= (µ̂+, µ̂−)}]

This form of the problem should not confuse the reader: Manipulator
does not make sequential choices period after period, as it is usually in dy-
namic programming problems. Rather, he makes his choices for all possible
realizations of uncertainty already now, before θ and ξ are unknown.

The great advantage of this approach is that we can provide an easy algo-
rithm to solving Manipulator’s problem for any structure of agents’ private
signals and any joint distribution of θ and ξ – we go beyond the model of
Bikhchandani et al. (1992).

1. Find V0(µ) for all µ ∈ [0, 1].

2. Set τ = 1. Let µτ is current value of µ. We will use a technique
similar to that of Bayesian Persuasion (Kamenica and Gentzkow): build
a concave closure of Vτ−1: W (µ) = sup{z|(µ, z) ∈ co(Vτ−1)}, where
co(Vτ−1) is a convex hull of Vτ−1. Let µ+, µ−, p - some distribution
such that pV (µ+) + (1− p)V (µ−) = W (µτ ).

6

6If co(Vτ−1) is open set, then such optimal distribution will not exist. In that case we
can just substitute the notion of optimality to ε-optimality, for example.
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The difference of our problem from Bayesian Persuasion is that Ma-
nipulator bears a cost c unless he chooses “status-quo” distribution
(µ̂+, µ̂−, p̂) (i.e. do nothing). Having these considerations, Manipula-
tor’s decision rule is:

W (µτ )− c > p̂V (µ̂+) + (1− p̂)V (µ−)⇒ choose µ+, µ−, p (using technology)

W (µτ )− c < p̂V (µ̂+) + (1− p̂)V (µ−)⇒ choose µ̂+, µ̂−, p̂ (no using technology)

This way, we find value of Vτ (µτ ) for all µτ ∈ [0, 1].

3. Sequentially do step 2 for τ = 2, 3, . . . , T .

Using this quite intuitive and simple method, we can find optimal strategy
of Manipulator in wide variety of settings. Though, we did not make a
thorough analysis of this method and did not strictly prove that our proposed
algorithm indeed finds the optimal solution of Manipulator’s problem. We
will tackle that in a future research.

7 Conclusion

The paper makes a first attempt to study belief manipulation in society of
fully Bayesian agents. To do that, we build a model of Manipulation game
by introducing Manipulator into the classical observational learning model
of (Bikhchandani et al., 1992). We gets a number of results suggesting that
Manipulator can indeed fairly successfully influence public beliefs. One of the
most interesting conclusions is that the cost of the technology is, sometimes,
in fact, an advantage, not handicap for the Manipulator, because it solves
for him a problem of commitment (not to overact). When solving optimal
timing for Manipulator’s acting, the results happens to be not so trivial:
sometimes it is optimal to behave cautiously, sometimes – quickly.

Also we develop a new methodology for solving Manipulator’s problem
when we assume that he can commit ex ante to his strategy. We provide
algorithm for solving the model in a quite general framework. This approach
seems to be very perspective and we plan to make further research on that.
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Appendix A. Figures

(a) The strategy λ

(b) Correct cascade probability R

Figure 1: Hidden Manipulator’s strategy λ and the probability of a correct
cascade R depending on q, when c = 1, δ = 0.8



(a) The strategy λ

(b) Correct cascade probability R

Figure 2: Hidden Manipulator’s strategy λ and the probability of a correct
cascade R depending on δ, when q = 0.7, c = 1



(a) The strategy λ

(b) Correct cascade probability R

Figure 3: Hidden Manipulator’s strategy λ and the probability of a correct
cascade R depending on c, when q = 0.7, δ = 0.8



(a) The strategy λ

(b) Correct cascade probability R

Figure 4: Manipulator’s strategy λ and probability of a correct cascade R
under different assumptions, when δ = 0.8 , c = 1



Appendix B. Proofs

Proof of Proposition 1. Individuals form their beliefs just like in usual Ob-
servational learning setting and play their dominant strategies: agent t plays
at = 1 if ltLt > 1, plays at = 0 if ltLt < 1, where lt - his private belief, Lt -
public belief.

Without loss of generality, fix state type of Manipulator at ξ = 1. So,
Good Manipulator corresponds to case θ = 1 and Evil Manipulator to case
θ = 0.

First, we consider case of Good Manipulator. We will need the following
notations: VG - the expected utility of Manipulator when he he does not act
and starts at L = 1, V +

G - when starts at L = q
1−q , V

−
G - when starts at

L = 1−q
q

.
We can find these values from the following system of equations:


V +
G = q 1

1−δ + (1− q)δVG
VG = q(1 + δV +

G ) + (1− q)δV −G
V −G = q(1 + δVG)

⇒ VG =
1 + q δ

1−δ + δ(1− q)
1− 2q(1− q)δ2

q

Good Manipulator’s maximization problem:

(λG + (1− λG)q)(1 + δV +
G ) + (1− λ)(1− q)δV −G −

1

2
cλ2G → max

λG∈[0,1]

F.O.C.: (1−q)(1+δV +
G )−(1−q)δV −G −cλG > 0, with equality if λG < 1⇒

λG = min

{
1− q
c

[
1 + δ2

(
q

1− δ
− (2q − 1)VG

)]
, 1

}
From the Lemma 1 we know that in absence of Manipulator the proba-

bility of a correct cascade (which is UP in case θ = 1) is R = q2

q2+(1−q)2 .
Probability RG of UP cascade when there is Good Manipulator:

RG = (λG + (1− λG)q)(q + (1− q)R) + (1− λG)(1− q)qR

= R + λG(1− q)[q +R− 2qR] =
q2 + λGq(1− q)2

q2 + (1− q)2
> R

Problem of Evil Manipulator will be the same as that of Good, except
that we need to substitute q into 1−q (because θ changes) and get the answer
of the proposition.
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Given the optimal strategy λE of Manipulator, the probability RE of a
correct cascade is:

RE = (1− λE)q(q + (1− q)R) + (λE + (1− λE)(1− q))qR

= R− λEq[q +R− 2qR] =
q2 − λEq2(1− q)
q2 + (1− q)2

< R

Proof of Lemma 2. Without loss of generality, assume that Manipulator is
of type ξ = 1.

First, consider the case 1 < L+ 6 L. At any of these four cases, after two
periods public belief L either gets into a cascade region or gets back at his
initial value (at t = 1). So, we can easily make the following equations:

V11 = q
1

1− δ
+ (1− q)qδ2V11

V10 = (1− q)2 1

1− δ
+ (1− q)q(1 + δ2V10)

V01 = (1− q) 1

1− δ
+ q(1− q)δ2V01

V00 = q2
1

1− δ
+ q(1− q)(1 + δ2V00)

From this we get the above formulas.
Second, consider the case L+ > L. If an action of the agent t = 0 coincides

with ξ then the desirable for Manipulator cascade occurs and gets 1
1−δ . On

the opposite case, undesirable cascade occurs and he gets nothing.

Proof of Lemma 3. Suppose that for some conditional distribution of ξ on θ
there is an equilibrium of the game with L+ 6 1. That also means L− > 1.

However, Manipulator’s pawn always plays ξ if, and that leads to a bad
result for Manipulator: inserted pawn moves public belief into the opposite
direction from ξ or does not move at all. In any case, Manipulator endures
cost of inserting but gains nothing. Thus, Manipulator will not act at all:
λξθ = 0 for all ξ,θ. However, this results in L+ = q

1−q > 1. We get a
contradiction.
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So, in any equilibrium L+ > 1 > L−. In any realization of ξ and θ
Manipulator gets a positive payoff from inserting a pawn which depends
linearly on λξθ, but cost function is quadratic⇒ Manipulator always chooses
some positive probability λξθ.

Proof of Proposition 4. In the case of Biased Manipulator, it is reasonable
to expect that equilibrium will not be symmetrical: λ1 6= λ0.

1. L+ > L

In this case, Manipulator has possibility to create a cascade if he inserts
a pawn. Manipulator’s problem when θ = 1:

(λ1 + (1− λ1)q)(1 + δV11) + (1− λ1)(1− q)δV00 −
1

2
cλ21 → max

λ1∈[0,1]

⇒ λ1 = min{ 1− q
c(1− δ)

, 1}

Manipulator’s problem when θ = 0:

(1− λ0)qδV10 + (λ0 + (1− λ0)(1− q))(1 + δV01)−
1

2
cλ20 → max

λ0∈[0,1]

λ0 = min{ q

c(1− δ)
, 1}

λ0 > λ1 ⇒ L+ 6 q
1−q ⇒ this case cannot be equilibrium.

Intuitively, the Manipulator has more incentives to interrupt when his
interest conflicts with interests of agents and that results in that agents
are reluctant to trust much to the first agent.

2. 1 < L+ 6 L

Here Manipulator solves the same problems as above.

The solution of Manipulator’s problem when θ = 1:
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λ1 = min

{
1− q
c

(1 + δ[V11 − V00]), 1
}

= min

{
1− q
c

(
1 +

q(1− q)δ2

(1− δ)(1− q(1− q)δ2)

)
, 1

}

The solution of Manipulator’s problem when θ = 0:

λ0 = min
{q
c

(1 + δ[V01 − V10]), 1
}

= min

{
q

c

(
1 +

q(1− q)δ2

(1− δ)(1− q(1− q)δ2)

)
, 1

}

λ0 > λ1 > 0⇒ L+ 6 L

Also, must hold the condition that L+ > 1:

(1− λ1)q + λ1
(1− λ0)(1− q) + λ0

> 1⇔ λ0q − λ1(1− q) < 2q − 1

When c is low enough, both λ1 and λ0 are equal to 1, and the condition
does not hold (L+ = 1) and there are no equilibria in the game. Even
though, the condition on the parameter c for an existence of equilibrium
is less restrictive because of possibility of Good Manipulator (i.e. case
θ = ξ):

(1− λ1)q + λ1
(1− λ0)(1− q) + λ0

>
(1− λ0)q

(1− λ0)(1− q) + λ0
.

Proof of Proposition 5. First, we consider Good Manipulator. Without loss
of generality, assume θ = 1 and ξ = 1.

The following expressions for values V̂G, V̂
+
G , V̂

−
G are true:
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V̂G = max
λ

{
(λ+ (1− λ)q)V +

G + (1− λ)(1− q)V −G −
c

2
λ2
}

= max
λ

{
(VG + λ(1− q)[V +

G − V
−
G ]− c

2
λ2)
}

λ = max{(1− q)[V +
G − V

−
G ], 1}

V̂ +
G = max

λ+

{
(λ+ + (1− λ+)q) + (1− λ+)(1− q)VG −

c

2
λ2+

}
= max

λ+

{
V +
G + λ+(1− q)[1− VG]− c

2
λ2+

}
λ+ = max{(1− q)[1− VG], 1}

V̂ −G = max
λ−

{
(λ− + (1− λ−)q)VG −

c

2
λ2−

}
= max

λ−

{
V −G + λ−(1− q)VG −

c

2
λ2−

}
λ− = max{(1− q)VG, 1}

We need to compare expected payoffs from four possible strategies:

WL = V̂G

WL = qV̂ +
G + (1− q)V̂ −G

WL = qV̂ +
G + (1− q)qWL

=
qV̂ +

G

1− q(1− q)
WL = q2 + q(1− q)WL + (1− q)V̂ −G

=
q2 + (1− q)V̂ −G

1− q(1− q)

1. Cost c is high: c > (1− q)VG.

Then:

V̂G = VG +
1

2c
(1− q)2[V +

G − V
−
G ]2 = VG +

1

2c
(1− q)2[q − (2q − 1)VG]2

V̂ +
G = V +

G +
1

2c
(1− q)2[1− VG]2

V̂ −G = V −G +
1

2c
(1− q)2V 2

G
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WL > WL ⇔ q2 + (1− q)V̂ −G > qV̂ +
G

⇔ q2 + (1− q)qVG +
(1− q)3

2c
V 2
G > q2 + q(1− q)VG +

q(1− q)2

2c
[1− VG]2

⇔ (1− q)q4 > q(1− q)4 ⇔ q3 > (1− q)3, holds for all q ∈ (0.5; 1]

WL > WL ⇔ qV +
G (1− q)V −G +

q(1− q)2

2c
[1− VG]2 +

(1− q)3

2c
V 2
G

> VG +
(1− q)2

2c
[V +
G − V

−
G ]2

⇔ q(1− VG)2 + (1− q)V 2
G > (q − (2q − 1)VG)2

⇔ q(1− q)4

(q2 + (1− q)2)2
+

(1− q)q4

(q2 + (1− q)2)2
>

q2(1− q)2

(q2 + (1− q)2)2

⇔ q3 + (1− q)3 > q(1− q)
⇔ 4q2 − 4q + 1 > 0, holds for q ∈ (0.5, 1]

WL > WL ⇔ VG +
(1− q)2

2c
[q(1− VG)2 + (1− q)V 2

G] >
q2 + q(1− q)VG + (1−q)3

2c
V 2
G

1− q + q2

⇔ [(1− VG)2q + V 2
G(1− q)](1− q + q2) > (1− q)V 2

G

⇔ q3 < (1− q)4 + q2(1− q)3 + q3(1− q) + q5

⇔ −3q3 + 4q2 − 3q + 1 > 0

⇔ q < q∗, where q∗ is a solution to −3q3 + 4q2 − 3q + 1 = 0

2. Cost c is low: c < (1− q)(1− VG). Then:

V̂G = V +
G −

c

2

V̂ +
G = 1− c

2

V̂ −G = VG −
c

2
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WL > WL ⇔ q2 + (1− q)VG −
(1− q)c

2
> q − qc

2

⇔ (1− q)VG +
c

2
(2q − 1) > q(1− q), holds for all q ∈ (0.5; 1)

WL = WL ⇔ q + (1− q)VG −
c

2
= V +

G −
c

2
, holds for all q ∈ (0.5; 1)

WL = WL > WL ⇔ V +
G −

c

2
>
q2 + (1− q)VG − (1−q)c

2

1− q(1− q)

⇔ (q + (1− q)VG −
c

2
)(1− q + q2) > q2 + (1− q)VG −

(1− q)c
2

⇔ c <
(1− q)3

q2 + (1− q)2

So, Manipulator uses strategy L if q < q∗ and uses L if q > q∗, where
q ≈ 0.59.
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