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Abstract

We build on a model of informal insurance in communities, that was proposed in Genicot

and Ray (2003). In a homogeneous community where agents randomly draw high or low in-

comes, self-enforced insurance contracts can be devised that allow them to smooth consumption.

The distinct feature of the model is a recursive structure of stability, that arises when group

deviations are allowed, but only if the subgroup itself is robust to deviations in the future.

One of the main results of the GR model is that there is an upper boundary to the size of

the stable group. We generalize the model to more than two types of incomes and analyze

the set of stable schemes in detail. The new model leads to, with a slip of the tongue, same

result as the original one. In addition, we provide a microeconomic foundation to the particular

notion of stability. We also justify the two restrictions on the complexity of contracts that the

agents can devise, namely, stationarity and deterministicity, by showing that these assumptions

do not lead to the loss of generality. Finally, we introduce a perturbation of our model that

allows to incorporate features like costs/benefits of scale in a cooperating community, as well

as punishing/encouraging stimuli to the deviating agent. We show that for a small (in some

sense) perturbation of our model the result on the existence of the upper boundary preserves.

Put it differently, to maintain stability of an increasingly large risk-sharing group, the amount

of perturbation should explode.
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1 Introduction

Risk-sharing in underdeveloped rural areas is often characterized by limited access to financial mar-

kets and weak legal enforcement. A high volatility of agricultural production pushes households to

form certain informal agreements in order to smooth consumption. These contracts, however of-

ten fail to reach the ex-ante optimal allocation (which can be characterized by perfect consumption

smoothing). This observation is supported by a large body of empirical evidence from various vil-

lage communities : Townsend (1994), Udry (1994), Jalan and Ravallion (1999), Ligon, Thomas, and

Worrall (2002), Grimard (1997), Gertler and Gruber (2002), Foster and Rosenzweig (2001).

Among many factors that can explain this phenomenon, like information asymmetry, or costs of

devising and maintaining agreements, one is particularly appealing, namely, the self-enforced nature

of the agreements itself. Voluntary participation places certain incentive constraints on the amount

of insurance, which makes the first-best allocation infeasible. Several theoretic studies : Kimball

(1988), Coate and Ravallion (1993), Kocherlakota (1996), Kletzer and Wright (2000); investigate

this question. In a paper by Fafchamps and Lund (2003) a model of mutual insurance with limited

commitment is proposed and then tested on rice farmers in the Philippines. Ligon, Thomas, and

Worrall (2002) propose and test a similar model on an Indian village data.

All these studies, however, focus on deviations of a single agent as a threat to the insurance

agreement. A series of papers : Bloch (1996), Bloch (1997), Ray and Vohra (1997), Ray and Vohra

(1999), Ray and Vohra (2001), Genicot and Ray (2003), Bloch, Genicot, and Ray (2007), Bloch,

Genicot, and Ray (2008); investigate group deviations in various settings. We focus on one paper by

Genicot and Ray (2003) that studies very specific group deviations with regard to informal insurance

agreements. The paper models a repeated game, where deviations are allowed only to subgroups

that are themselves immune to future deviations. This idea reminds of the Coalition-Proof Nash

Equilibrium, but in fact, is slightly more complex, because blocking coalitions are separated in time.

This type of deviation leads to a specific type of recursive stability, that we are interested in. The set

of stable group sizes turns out to be finite, which is in sharp contrast to other literature on coalition

formation Bloch (1996), Ray and Vohra (1997) Ray and Vohra (2001), Acemoglu, Egorov, and Sonin

(2006).

In the current paper we construct a model that is very similar to the one in Genicot and Ray

(2003), but differs in several small, but important details. The new model is also more general,

because we allow for a finite discrete distribution of income for an agent, in contrast to the original
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model, that had a binary distribution. Luckily, we manage to reach the same result on the finiteness

of the set of stable sizes. Apart of that, we try to focus on some other aspects that were given little

or no attention in the original paper on the one hand, and provide a deeper insight into some of the

questions that were already discussed. We shall briefly state how our approach differs from that of

Genicot and Ray’s.

In the original model the agents exhibit some level of irrationality when making two types of

strategic choices. The first one is the choice of the optimal contract. The trivial insurance contract

(with zero transfers) was excluded from consideration in the original model. It seems strange that

the agents that can maintain a sophisticated arrangement fail to coordinate on the trivial one.

This also makes the set of decisions not compact, which is an undesirable property. We get rid

of this assumption. The second one is the decision to deviate to a subgroup. Deviations towards

unstable schemes were ruled out. We believe that such behavior deserves at least some microeconomic

foundation. In fact, if one tries to specify the payoffs of the agents that fail to get into the deviating

group (for example, they get their standalone payoffs to the rest of their days), a deviation towards

an unstable group may be a good alternative if the probability of further deviation is fairly small. To

justify such irrational fear of further deviations we set the payoffs of those agents to be negative and

unbounded (one may think that they get killed). We provide two formal game-theoretic settings, a

cooperative and a non-cooperative, that exhibit the exact behavior that was described in the original

model.

We pay special effort to develop a system of notations that is convenient for analyzing this setting

in all detail. In contrast to the original model, where agents had only two possible levels of income

(rich and poor), and then performed unilateral transfers from high-income to low-income ones, we

allow for more than two types. As a result, a more convenient description of the insurance contract

is a centralized mechanism that first collects the agents incomes and then somehow redistributes

them back. The scheme (if it is symmetric and stationary) that governs that mechanism depends

on the state of the world only, that is, in turn, determined by the quantity of agents of each type.

It turns out that the easiest way to get an insight into the insurance mechanism is to fix a state of

the world, but let the type of the agent be a random variable. From this point of view the optimal

scheme is a maximizer of a specific value function on a specific budget set. The incentive constraints

are just linear constraints on the product of budget sets over all states. Most of the analysis can be

conducted in these terms, allowing for simple geometric interpretation of the main ideas.
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Three restrictions on the complexity of the distribution scheme are considered in the original

model: symmetry, stationarity and deterministicity. The main result is first obtained in the presence

of all three assumptions, and then, as a robustness check, obtained when all of the three assumptions

are dropped. Though it may seem that the second result is a stronger version of the first one, it

in not the case. These two settings are just two independent problems. It turns out, however, that

each of these three assumptions has a different impact on the model. If we abstain from analyzing

the asymmetric case, it can be shown that the other two restrictions, in some sense, do not lead to

a loss of generality. In fact, the optimal symmetric self-enforced scheme can be always found in the

class of stationary and deterministic ones. This somehow contradicts the overall trend of considering

history-dependent schemes : Kocherlakota (1996), Kletzer and Wright (2000), Ligon, Thomas, and

Worrall (2002); but it is the essential property of this particular framework.

We also introduce a totally new extension to the model. We define two types of perturbations,

the change of the group’s total endowment, and the change of the deviator’s payoff. They can be

used to introduce a wide amount of real-life phenomena to the model, like: costs of maintaining

cooperation, increasing returns to scale, saving and borrowing, uncertainty from deviation, reaping

the deviator’s assets, e.t.c. These perturbations can be also thought of as policies applied to the

group by an external entity or institutions adopted by the groups themselves. We analyze, how

these perturbations can change the set of stable schemes, in particular, whether the group of an

arbitrary large size could be made self-enforced. We show, however, that for, in a specific sense,

small perturbations this is impossible, that is the result of the main theorem continues to hold.

Our results may have several implications. First, we have strengthened some of the existing

results, in particular, the existence of the upper boundary on the set of stable sizes. This fundamental

result suggests that risk-sharing agreements need not be community-wide, which is important for both

further theoretical and empirical studies. We have also built solid microeconomic foundations for

the type particular type of recursive stability, and proved the redundancy of the stochasticity and

history dependence when considering symmetric schemes, both of these are important to understand

the modeling methodology. Finally, the perturbations that we have introduced can qualitatively

predict the impact of certain policies or institutions on stability of risk-sharing agreements. One

intriguing result is that to maintain stability of a growing risk-sharing community, one should pour

in a flow of subsidies that grows linearly in the size of that community.
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2 Basic framework

We model a homogeneous community that is involved in production and consumption of a perishable

good. At each date agents produce the good independently from each other. The amount of product

is stochastic and taken from a distribution that is the same for all agents. The agents are ex-ante

identical, however, after the good is produced, they can be distinguished by the amount of good.

We say that at a certain date agents are of the same type, if they produce the same amount of

good. Types are re-defined at each date. There is no history of agent’s previous productivity, so only

today’s type can be observed.

These agents are the only consumers of this good, and they are risk-averse expected utility

maximizers with the same utility function. The only type of agreement that they can form is a

stationary and symmetric distribution scheme. Stationary means that the same mechanism is set in

action at each date, that can use only information available at that date. Symmetric means that

the mechanism can not distinguish among the agents of the same type, it can not randomize among

them as well. The distribution scheme works in the following way: at each date agents first give

away their amounts of good (that we call private endowments) to form a group endowment that is

then distributed back according to a predefined rule. We assume the technology to be costless, so

the total amount of good collected equals the total amount of good that was distributed back.

A key element in our model is that the scheme is self-enforced. At any date a unique subgroup of

agents, that does not coincide with the group itself, has a chance to deviate from the scheme. Each

member of the deviating subgroup can veto that decision, so, the deviation will happen if and only

if all members of the subgroup agree to do so. In this case they consume their private endowments,

then leave the original group to form a new distribution scheme, that will start operating at the next

date. They also permanently lose their ability to cooperate with the rest of the original group.

In this section we do not exactly model what happens to the rest of the group after deviation,

we also do not specify how the potential deviating subgroup is chosen. However, we impose one

substantial condition on the deviating subgroup. Only deviations to subgroups that are themselves

protected from further deviations are considered. It follows that a subgroup that could have agreed to

deviate in order to form a new enforced scheme, would not do so given even the slightest probability

of a subsequent deviation if their new scheme were self-enforced.

We shall describe the framework formally in detail in the following subsections.
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2.1 Types, states and information structure

Let the community consist of n agents, who live infinitely. At each date, each agent can be of one of

m types. Types are drawn independently from the distribution that is the same for all agents and

does not change from date to date. We do not distinguish between agents of the same type, and

there is no history, therefore, at a given date, the state of the world is determined by the quantity of

agents of each type.

• Denote T - set of types of agents, dimT = m.

• Denote S - set of states of the world.

Throughout the paper we shall refer to the type of an agent as t ∈ T , to the state of the world as

s ∈ S. For convenience, all type dependent variables shall have subscript t, and all state dependent

variables shall have subscript s. We shall drop the size of the group as an argument of these variables

occasionally.

• Denote pt - probability of being type t ∈ T (assume pt 6= 0 for all t ∈ T ).

• Denote Ps - probability of state s ∈ S.

• Denote qs,t - quantity of agents of type t ∈ T at state s ∈ S.

We shall use the following notations for the corresponding vectors.

• Denote p = {pt}t∈T - vector of probabilities.

• Denote qs = {qs,t}t∈T - vector of quantities of each type at state s ∈ S.

• Denote qs
n
= { qs,t

n
}t∈T - vector of shares of each type at state s ∈ S.

As we have mentioned earlier, state s ∈ S is fully determined by the vector of quantities qs (as

well as by the vector of shares qs
n
), and visa versa. The probabilities Ps of states s ∈ S can be easily

computed as functions of pt, t ∈ T .

Throughout the paper we shall refer to τ , σ as random variables, that determine the type of an

agent and the state of the world respectively. We assume that there are two possible information

structures in our community:

• ex-ante: agents know the distributions of σ, τ , but not the realizations.
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• ex-post: agents know the realizations s, t of σ, τ .

We also define τ |s as a random variable that determines the type of an agent conditional on the

realization s of the state of the world σ. For future analysis we shall need an additional artificial

information structure:

• in-state: agents know the realization s of σ, and the distribution of τ |s.

The last information structure reminds of the ex-interim, but it is not the same. In the ex-interim

case the realization of τ is known, and the realization of σ is unknown.

Agents are able to take expectations conditional on the current information structure. Let xt be

type dependent, xs state dependent and xs,t type and state dependent (nonrandom) variables, then:

• Denote Eτxt =
∑

t∈T ptxt.

• Denote Eσxs =
∑

s∈S Psxs.

• Denote Eτ |sxs,t =
∑

t∈T

qs,t
n
xs,t.

All the agent’s decisions are taken ex-post, after the types are learned. There are no ex-ante and

ex-interim stages, however, as we shall see later, it is extremely convenient to use them in our analysis.

2.2 Production, consumption and utility

Agents produce a perishable good, it can not be stored or traded, and they are the only consumers of

this good. They have the same preferences for consumption of the good and are risk averse expected

utility maximizers.

• Agents have the same str. increasing, str. concave utility function U .

• Discount factor is δ (assume δ ∈ (0, 1)).

All agents are ex-ante identical. After agents receive their private endowments of good they learn

their types and the types of other agents. Without cooperation an agent would simply consume his

private endowment.

• Denote et - private endowment of an agent of type t ∈ T (assume ei 6= ej for i 6= j).

• Denote e = {et}t∈T - vector of private endowments.
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Two values can be immediately computed as functions of e:

• One-day expected no-insurance utility: EτU(et)

• One-day expected full-insurance utility: U(Eτet)

2.3 Redistribution

Agents can write an agreement, that will govern the redistribution of good among them. Since

agents are risk-averse, they would prefer to insure themselves from bad outcomes. We model it by

saying that they can devise a distribution scheme d, that is symmetric, stationary and deterministic.

Symmetric means that the scheme does not distinguish between the agents of the same type. The

scheme is stationary in the sense that it is a function of today’s information only and does not depend

on the history. A deterministic scheme is the one that does not allow for randomization. The scheme

is conducted in three steps:

• step 1: agents give away their private endowments et.

• step 2: a group endowment Es is formed.

• step 3: Es is redistributed back.

In principle, we could consider various technologies, that make the group endowment out of the

private ones, but, in the baseline framework, we assume that Es is just the sum of all agents’ private

endowments:

Es =
∑

t∈T

qs,tet (1)

A distribution scheme d can be thought of as a dimT × dimS matrix. Each row is a vector of

distributions to different types at a particular state. Each column is a vector of distributions to a

particular type at different states.

• Denote ds,t - distribution to a t ∈ T type agent at state s ∈ S.

• Denote ds = {ds,t}t∈T , d = {ds}s∈S.

• Denote Ds - set of attainable distribution schemes at state s ∈ S, D = {Ds}s∈S.

9



The set Ds is simply the set of positive distributions such that the total amount of good distributed

does not exceed the total amount of good collected:

Ds = {ds : ds,t ≥ 0,
∑

t∈T

qs,tds,t ≤ Es} (2)

Assume for now that all agents abide to the distribution scheme d ∈ D. We can compute the expected

value of one-day participation in that scheme, depending on the information available to the agent.

• ex-post: vs,t(d) = U(ds,t)

• in-state: vs(d) = Eτ |svs,t(d)

• ex-ante: v(d) = Eσvs(d)

Note that the in-state utility depends only on ds, just like the ex-post utility depends only on ds,t.

2.4 In-state utility maximization problem

Assume that the designer of the scheme knows the state of the world s ∈ S, and all agents abide. His

objective is to maximize the ex-interim utility of an agent. We can formulate this as a consumption

problem of a single fictive agent.

e1

e2

d1

d2

v
s
( )d

e

a) at state s, such that qs,1 > qs,2

e2

e1

d2

d1

e

v
s
( )d

b) at state s, such that qs,1 = qs,2

Figure 1: In-state utility maximization problem, case n = 2

• Let the number of goods be m = dimT .

• Let et - be the initial endowment of good t ∈ T .

• Let qs,t - be the price of good t ∈ T .
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It follows that Es - is the total wealth of our agent. He trades his goods at a fictive market at given

prices. Intuitively, good t is an act of distributing towards a t type agent, and the price of this good

is the quantity of agents of type t at this state of the world. The consumption bundle therefore is

ds, and the budget set is Ds.

• Let vs(d) - be the utility function.

We maximize vs(d) (that depends on ds only) subject to ds ∈ Ds, where Ds is given by formulas (1),

(2). When the number of types is m = 2, this problem can be easily illustrated on a 2-dimensional

plane, see Figure 1.

Note that the picture does not depend on the number of agents, which is extremely convenient.

The budget line passes through e - vector of private endowments and is orthogonal to qs - vector of

quantities. The slope of the budget line corresponds to the state of the world. The level curve of

vs(d) is tangent to the budget line at the point of intersection with the bisector. For states of the

world such that some types are missing, the picture degenerates.

2.5 Stability

We shall operate two notions: stable distribution scheme and stable group size.

Stability of a distribution scheme is to be defined by induction by the size of the group. For a

singleton group all distribution schemes should be stable. If we can find stable distribution schemes

for all group sizes smaller than the size of a given group, then we can tell whether a given distribution

scheme is stable or not.

A given distribution scheme is stable iff for all states of the world there does not exist a subgroup of

agents for whom the expected utility of abiding to the scheme is smaller than utility from consuming

ones private endowment and then forming a new group and abide to a new distribution scheme that

will start operating from the next day.

To formalize this we first introduce an individual-level dominance relation on the set of all schemes,

and then aggregate it to the group-level. In this section we only postulate this as a definition of

stability. The game-theoretic foundation of this exact type of stability will be given in Section

”Game”.

• Denote S - set of all schemes (d, n) (assuming d ∈ D(n)).
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• Denote (d′, k) ≻s,t (d, n), if k < n and

δ

1− δ
v(d′) + U(et) >

δ

1− δ
v(d) + vs,t(d). (3)

The left part of the inequality is the discounted value of consuming ones private endowment today

and abiding to the scheme (d′, k) starting from tomorrow. The right part is the discounted value

of staying in the scheme (d, n). If the inequality holds then the new scheme dominates, that is,

preferred at state s from the standpoint of an agent of type t.

For a given state of the world let the set of such types be Ws, with a slight abuse of notations we

drop the arguments (d, n) and (d′, k). Intuitively, this is the set of types that are willing to deviate

from (d, n) to (d′, k). If the amount of people that prefer a new scheme to the old one is big enough

to form a group of a respective size, then we say that the new scheme dominates from the standpoint

of the group.

• Denote Ws ⊂ T - set of types such that (d′, k) ≻s,t (d, n).

• Denote (d′, k) ≻s (d, n), if at state s ∈ S(n) :
∑

t∈Ws
qs,t ≥ k.

We have introduced an aggregated dominance relation ≻s on S. Now we can introduce the notion

of a stable scheme. The set of stable schemes SS is correctly defined by induction by the size of the

group.

• Denote (d′, k) ≻ (d, n), if there exists s ∈ S : (d′, k) ≻ (d, n).

• A scheme (d, n) is stable if there does not exist a stable scheme (d′, k) : (d′, k) ≻ (d, n).

• Denote SS ⊂ S - set of stable schemes.

It is easy to verify that the following two properties are satisfied:

• Internal stability: for any (d, n), (d′, k) ∈ SS: (d′, k) ⊁ (d, n).

• External stability: for any (d, n) ∈ S \ SS there exists (d′, k) ∈ SS such that (d′, k) ≻ (d, n).

This means that SS is a vNM stable set in S with respect to dominance relation ≻.

Finally, we can define a stable group size.

• A group size n is stable if there exists a stable distribution scheme d ∈ D(n).
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2.6 Value

For a group of size n we point out two particular distribution schemes: dfb(n) - first best, dsb(n) -

second best. We shall drop the argument n occasionally.

• Denote dfb(n) = argmax v(d) s.t. (d, n) ∈ S.

• Denote dsb(n) = argmax v(d) s.t. (d, n) ∈ SS.

For these schemes we compute the expected one-day values of participation: vfb(n), vsb(n).

• Denote vfb(n) = v(dfb(n)) - value of a group when participation is enforced.

• Denote vsb(n) = v(dsb(n)) - value of a group when participation is voluntary.

Using the notion of a second best scheme we can equivalently define a stable distribution scheme.

• A scheme (d, n) is stable iff there does not exist k < n : (dsb, k) ≻ (d, n).

To define stability of a group one can focus only on second best schemes in groups of smaller sizes.

This means that the second best scheme is the result of maximization subject to a finite number of

constraints. We describe these constraints in the next section.

2.7 Incentive constraints

In the previous section we have defined the first best scheme as the result of an unconstrained

maximization of the value function v(d) over the set of attainable distribution schemes D.

In contrast, the second best scheme is the result of a constrained maximization. These constraints

are called incentive constraints and reflect the self-enforced nature of the group.

For each size of the original group one can distinguish a finite set of incentive constraints.

IC =
⋂

k<n

⋂

s∈S

⋂

T̄

⋃

t∈T̄

IC(k, s, t) (4)

where T̄ ⊂ T :
∑

t∈T̄ qs,t ≥ k, and k is a stable size. Each single constraint is just a linear constraint

of the form:

IC(k, s, t) = {d ∈ D :
δ

1− δ
v(dsb(k)) + U(et) ≤

δ

1− δ
v(d) + vs,t(d)} (5)
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Note that there is a finite amount of non-strict constraints, which means that the maximization set

is compact. However, it need not be convex.

3 Analysis

3.1 Probabilities

First, we want to compute the probability of a given state of the world. Recall, that each agent can

be of type t ∈ T with probability pt. Since the types are drawn independently, the states of the

world have a multinomial distribution.

Lemma 1. The probability Ps of state of the world s ∈ S(n):

Ps =
n!

qs,1! . . . qs,m!
p
qs,1
1 . . . pqs,mm

These probabilities define the distribution of σ. The first trivial property is that the expectation

of shares of agents of each type equals to the probabilities of these types. The second property is

that the variance of these shares goes to zero as n goes to infinity.

Lemma 2. Eσ
qs,t
n

= pt, Vσ
qs,t
n

= pt(1−pt)
n

It follows that as the number of agents increases to infinity, the distribution of shares of agents

concentrates around its expected values.

3.2 Universal space of states

By now we have one difficulty, the random variable σ(n) depends on n, and for each n the set of

states S(n) is different. To cope with it we define a universal for all n set of outcomes X and a

sequence of random variables with finite support that will play the role of σ(n) for each given n.

• Denote the universal space of states X = {x ∈ Rm : xi ≥ 0,
m
∑

i=1

xi = 1}

Note that for any given n and s ∈ S(n), the vector of shares qs
n
belongs to X as well as the vector of

probabilities p. We induce the standard vector norm Rm to measure distance in X.

• Define a closed ε-neighborhood Uε(x) of point x ∈ X as :
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Uε(x) = {y ∈ X : ||y − x|| ≤ ε}, ||x|| = (
∑m

i=1 x
2
i )

1/2

We can treat p as a random variable on X that is constant. Clearly, by the Law of Large Numbers,

σ(n) converges to p in probability limit, and, moreover the following two properties hold:

Lemma 3. There exist {αn}
∞
n=1, {βn}

∞
i=n, monotonically decreasing to zero: Prob( qs

n
/∈ Uαn

(p)) ≤ βn.

Lemma 4. For a continuous function f : lim
n→∞

Eσ(n)f(
qs
n
) = f(p).

In both lemmas s denotes the realization of σ(n) for every given n.

3.3 First best

Our first goal is to characterize the first best distribution scheme. Recall, that U(.) is a strictly

concave and a strictly increasing function, and the ex-ante value v(d) of a distribution scheme d is

just a linear combination of ex-post values vs,t(d) = U(ds,t).

Lemma 5. v(d) is a strictly concave and strictly increasing in d.

It follows that the first-best distribution scheme is to divide Es equally among all agents.

Lemma 6. dfb(n) = {d : ds,t = Es/n}.

In the baseline model the first best value of a group of size n monotonically increases up to the

full insurance utility of a single agent as n goes to infinity.

Lemma 7. vfb(n) is increasing in n.

Lemma 8. lim
n→∞

vfb(n) = U(Eτet).

3.4 Second best

Our next goal is to characterize the second best scheme.

Lemma 9. If a stable scheme d ∈ S(n) exists, then there exists dsb(n)

Fix a state of the world s ∈ S(n). The first observation is that the optimal scheme should belong

to the budget hyperplane.

Lemma 10. If dsb(n) exists, then
∑

qs,td
sb
s,t = Es for all s ∈ S(n).
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Let k, n be stable group sizes and k < n. We can derive a simple necessary condition for this to

be true.

Lemma 11. If two group sizes k < n are stable, then for any s ∈ S(n):

∑

t∈Ws(k,n)

qs,t(n) < k, Ws(k, n) = {t ∈ T :
δ

1− δ
vsb(k)+U(et) >

δ

1− δ
vsb(n)+vs,t(d

sb(n))}. (6)

Here Ws(k, n) ⊂ T is the set of types that are willing to deviate from a group of size n to a group

of size k at state s ∈ S(n). For the types t ∈ T \Ws(k, n) the incentive constraint IC(k, s, t) must

hold:

δ

1− δ
vsb(k) + U(et) ≤

δ

1− δ
vsb(n) + vs,t(d) (7)

The left part of the inequality is the marginal utility of consuming ones private endowment instead

of abiding to the scheme. The right part is the discounted marginal utility of staying in the original

group.

Condition (7) is equivalent to:

dsbs,t(n) ≥ et − γt(k, n), (8)

where γt(k, n) solves the equation:

U(et)− U(et − γt(k, n)) =
δ

1− δ
(vsb(n)− vsb(k)) (9)

Lemma 12. For stable n, k such that k < n : vsb(n)− vsb(k) ≥ 0, and γt(k, n) ≥ 0.

Lemma 13. For two stable sequences {ni}
∞
i=1, {ki}

∞
i=1 such that ki > ni :

lim
i→∞

(vsb(ni)− vsb(ki)) = 0 =⇒ lim
i→∞

γt(ki, ni) = 0.

At a given state of the world, in a second best scheme, either one of the participation constraints

binds, or the scheme coincides with the first-best.

Lemma 14. If dsb(n) exists, then for any s ∈ S(n) either (i) or (ii) holds:

(i) dsbs = dfbs
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(ii) dsbs,t(n) = et + γt(k, n) for some stable k < n and t ∈ T .
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Figure 2: Second best schemes

Though for m = 2 the second best scheme is obviously unique, this need not be the case for

greater m. Recall that at a given state of the world only a subset of types is to be incentivized. For

a given subset of types the participation constraints determine a convex subset in D, and hence the

strictly concave function v(d) is maximized in a unique point by the separating hyperplane theorem.

In our case, however, different subsets of T can be chosen, and hence the true maximization set is

not necessarily convex.

We informally provide a possible scenario for a non-unique second best scheme. Let there be

three types {t1, t2, t3} and a group of size n. Consider two schemes that coincide in all but one state

s. Let in that state there exist a stable size k < n : k > qs,t1+qs,t2 , k > qs,t1+qs,t3 and k > qs,t2+qs,t3 .

This means that to block a deviation towards a subgroup of size k it is sufficient to incentivize only

one of the three possible types. On Figure 3 we show that the value function vs(d) can be maximized

over the constraint
⋃

t∈{t1,t2,t3}
IC(k, s, t) in two distinct points simultaneously. If the rest of the

constraints are satisfied in these points, then each of the two schemes will be second best.
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Figure 3: Two second-best schemes

We shall refer to dsb as one of the second best schemes, or the collection of all second best schemes.

3.5 Stability in the basic framework

Now we are ready to answer, whether the set of stable sizes is finite or not.

Consider first the case m = 1, when there is no uncertainty, and all agents have identical private

endowments. Obviously, the second best scheme coincides with first best, and, hence, the set of

stable sizes is infinite.

Assume now that m ≥ 2 there is some nontrivial uncertainty:

• pt 6= 0 for all t ∈ T

• ei 6= ej for some i 6= j

Lemma 15. vsb(k) ∈ [EτU(et), U(Eτet)] for any stable k.

Theorem 1. In the assumptions of the baseline model either vsb(n) = EτU(et) for all stable n, or

the set of stable sizes is finite.
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Define v∗(δ) - the second best value of the biggest stable group (the biggest value of a stable

group) as a function of the discount factor δ.

Lemma 16. limδ→1 v
∗(δ) = U(Eτet).

Lemma 17. limδ→0 v
∗(δ) = EτU(et).

4 Game-theoretic foundations

The aim of this section is to provide a game-theoretic reasoning to the notion of stability described

above.

4.1 Cooperative setting

To describe this setting we need two things: payoffs and a decision rule.

At each date each agent can either abide to the scheme, or deviate, or stay while others deviate.

For an agent of type t at state s and a scheme d ∈ D the payoffs are:

• if abide the payoff is U(ds,t)

• if deviate the payoff is U(et)

• if stay while others deviate the payoff is −∞.

Assume that a group agents operate a predefined scheme (d, n). Now consider a scheme (d′, k) for

some k < n (not necessarily stable). There are two alternatives for the group: stay together or

form a deviating subgroup that will start operating (k, n) from the next period. We first define the

individual and group preferences over the set of this two alternatives.

• Denote (d′, k) ≻s,t (d, n) if at state s ∈ S(n) an agent of type t ∈ T strictly prefers to get into

the deviating group rather then no deviation at all.

• Denote (d′, k) ≻s (d, n) if at state s ∈ S(n) there are at least k agents such that (d′, k) ≻s,t (d, n).

We want to define a decision rule that will transfer these preferences into the final decision of the

group.

(i) if at state s ∈ S(n) there exist (d′, k) : (d′, k) ≻s (d, n) then some deviation will necessarily

occur.
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(ii) the deviating group is formed from those agents for whom (d′, k) ≻s,t (d, n).

(iii) only deviations to second best schemes are considered.

(iv) if there are several potential deviating groups, a unique is chosen randomly.

Using this decision rule we can determine which kind of deviation (or a lottery over potential devia-

tions) is chosen in each state of the world, recursively by the size of the group. It turns out that a

deviation towards a group that poses a threat of future deviation will never occur since the expected

utility of this choice is −∞ for each participant.

It follows that the individual preferences ≻s,t (and hence ≻s) take exactly the same form as in

Section 2.5.

Theorem 2. The set of stable schemes SS coincides with the set of schemes that are proof to devi-

ations given described payoffs and decision rule.

4.2 Non-cooperative setting

To describe this setting we need payoffs, timing, strategies and an equilibrium concept. Let the

payoffs be the same as in the cooperative setting.

At each date there is a unique agenda setter chosen randomly among all agents. The agenda

setter proposes a subgroup of size k < n and a scheme d′ ∈ D(k) (or he does nothing). The agents in

that subgroup then vote for or against that deviation, and if all of them vote for, that group deviates.

Theorem 3. There exists a subgame perfect Nash equilibrium in which agents vote positively iff

(d′, k) ≻s,t (d, n) and the agenda setter proposes a second best scheme that yields the highest value

among those for which (d′, k) ≻s (d, n) (and nothing if such scheme does not exist).

This means that there exists a subgame perfect Nash equilibrium such that the described voting

procedure bears exactly the same properties as the decision rule in the cooperative setting. Note

that the strategies are symmetric and stationary. Moreover, this kind of voting is sincere, that is,

agents vote positively for the alternative iff they truly prefer it.

Unfortunately, there are other subgame perfect Nash equilibria. For example, agents always

vote negatively except for the case when the subgroup consists of the agenda setter himself, and

all agenda setters propose deviations towards singleton groups. This equilibrium is also symmetric

and stationary and involves sincere voting, the difference is that it supports a different structure of

stability, namely, when only individual deviations are considered.
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5 On stationarity and deterministicity

In the basic framework schemes were stationary and deterministic. One may ask how non-stationary

and stochastic schemes affect stability. A non-stationary scheme is a function of history. A stochastic

scheme is a lottery over the space of attainable deterministic schemes. In the most general case a

non-stationary stochastic scheme maps the space of histories into the set of lotteries over attainable

simple (deterministic and stationary) schemes.

At a first glance this setting seems to be a generalization of the baseline model, but this is a

deceptive feeling. Due to the recursive structure of stability, relaxing the set of contracts that the

agents can use affects the incentive constraints for all group sizes simultaneously.

There is one peculiar feature of the assumptions of stationarity and deterministicity though.

It turns out that they do not really change the incentive constraints. It is possible to show that

allowing for history dependence and randomization, separately or simultaneously, in some sense,

does not change the set of stable schemes at all, if symmetry is maintained. It follows that these two

assumptions do not lead to a loss of generality in the basic framework.

5.1 Histories and lotteries

We first modify the notations to incorporate the new features of the distribution schemes.

• Denote Ij - information on date j only.

• Denote h = {I1, . . . , Ij} – a history up to date j.

• Denote H – the space of all finite histories.

At the end of each day the latest realizations of the state of the world as well as the outcome of

the lottery are added to the history. This history is then used to determine the scheme (that can be

stochastic) for the next day. Note that the lottery itself need not be added to the history, since it is

already a function of the part of that history.

• Recall D = {Ds}s∈S(n) is the set of attainable deterministic stationary schemes.

• Denote M(D) is the set of probability measures (lotteries) over D.

• A non-stationary stochastic scheme d is an element in HM(D) (it maps H into M(D)).
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Note that a stationary scheme is a particular case of a non-stationary scheme that is constant

over H, and a deterministic scheme is a particular case of a stochastic scheme where there is only

one outcome of the lottery, or the schemes coincide for all outcomes.

• Denote λ - the probability measure (lottery) on D.

• Denote l - realization of the lottery.

• Denote L(d, h) - support of λ for the scheme d and history h.

5.2 Value

Second, we need to introduce a proper value function that can order our new class of schemes. For

a non-stationary stochastic scheme d let d(h, l) denote a particular point in D that corresponds to

history h and the outcome l of the lottery.

• Denote vl,s,t(d, h) = vs,t(d(h, l)) – ex-post one-day utility from a scheme d given h, s, l, t.

• Denote vl(d, h) = EσEτ |svl,s,t(d, h)

• Denote v(d, h) = Eλvl(d, h) – ex-ante one-day utility from scheme d given history h.

• Denote v̄(d, h) – discounted future utility from scheme d, given history h.

Let h be the history of length j, and let h∪ Ij+1(s, l) denote one of the possible histories that follow

from h after the realization of s - state of the world and l - outcome of the lottery.

v̄(d, · ) : H → R, v̄(d, h) = v(d, h) + δEλEσv̄(d, h ∪ Ij+1(s, l)) (10)

Finally we can order the new set of schemes by means of function v̄(d, ∅).

5.3 Incentive constraints

Skipping several steps, the set of incentive constraints now takes the following form:

IC =
⋂

h∈H

⋂

k<n

⋂

λ

⋂

s∈S

⋂

T̄

⋃

t∈T̄

IC(k, s, h, λ, T̄ , t) (11)

IC(k, s, h, l, T̄ , t) = {d ∈ D : δv̄(dsb(k), ∅) + U(et) ≤ δv̄(d, h ∪ Ij+1(s, l)) + vl,s,t(d)} (12)
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Again, T̄ is such that
∑

t∈T̄ qs,t ≥ k, and k is the stable group size. We here assume (rightfully, as

we shall later see) that the second best scheme is correctly defined for all k < n. Finally we can say

what a second best scheme is:

• dsb = argmax v̄(d, ∅) subject to IC.

Note that at this point we can non even guarantee existence of the second best scheme, because

the maximization set is not finite-dimensional, however, we are able to show that maximization

set can be reduced to the subset of stationary and deterministic schemes, which is compact and

finite-dimensional, and, hence maximum is attained.

5.4 Equivalence to the basic framework

Our first observation is that for any stable stochastic scheme d there exists a deterministic stable

scheme d′ that yields at least the same expected value: v̄(d′, ∅) ≥ v̄(d, ∅).

Let for some history h a scheme d assigns a stochastic outcome, that is, there be at least two

outcomes l1, l2 (with nonzero probability) of the lottery such that d(h, l1) 6= d(h, l2). Consider the

closure of the support L(d, h) of the lottery λ and pick the one l⋆ that yields the highest value vl(d, h)

(the incentive constraints hold for it due to continuity). Then a new scheme can be constructed that

coincides with d at each point in H except for h. At point h the new scheme assigns the deterministic

outcome that coincides with l⋆. Repeating the procedure for all h ∈ H we can come up with a

deterministic scheme d′. At each step the incentive constraints continue to hold, because v̄(d, h) does

not decrease. Hence the scheme d′ is stable.

Our second observation is that for any stable history-dependent scheme d there exists a stationary

stable scheme d′′ that yields at least the same expected value.

Note that first we can replace d with a deterministic scheme d′ that will yield at least the same

value. Consider the closure of the set of all schemes that are used in d′ and pick a point that yields

the highest value (it exists by W.Th). Construct a new stationary scheme d′′ that corresponds to

that point. The incentive constraints will hold and hence the scheme will be stable.

Theorem 4. The function v̄(d, ∅) attains maximum in the set of stochastic and history-dependent

schemes, and there exists a stationary and deterministic scheme that maximizes it.

Applying this theorem iteratively by induction by size of the group we can prove that the structure

of stability does not change under the assumptions of stationarity and deterministicity. The only
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difference comes from non-uniqueness of second best schemes, that can generate stochastic history-

dependent schemes, but they will yield the same value.

6 Adding perturbations

We can think of two types of natural perturbations of the model that can promote stability. The

first one is punishing the deviating agent. Intuitively, a strong enough punishment can stop an agent

from leaving his group. The second one is encouraging the agents that stay in the group. Since their

wealth is optimally redistributed, we can consider just a subsidy to the group endowment. Again,

it is intuitive that by subsidizing a group with a big enough amount of good, one can incentivize

agents to stay. We are interested in whether the results of the basic framework are preserved under,

in some sense, small perturbations of these two types.

6.1 Policies and institutions

These perturbations can be thought of in two ways. If punishing or encouraging is applied to a single

group, but not to any of its potential succeeding deviating subgroups, we call it a policy, meaning

that it is applied by some external entity to a particular group, in order to promote stability. An

institution, in contrast, is an endogenous property of the group, hence, it is natural to assume that

it is available to all groups. We shall call an institution a collection of perturbations of groups of all

sizes.
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Figure 4: Policies

To model a punishing policy we modify the structure of deviation, by changing the incentive
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constraints in the following way:

IC(k, s, t) = {d ∈ D :
δ

1− δ
v(dsb(k)) + U(rs,t) ≤

δ

1− δ
v(d) + vs,t(d)}, rs,t = et − ϕs,t(n) (13)

Here rs,t is the (reserved) amount of good that the deviating agent of type t ∈ T can take with him

if he chooses to deviate.

• rs = {rs,t}t∈T - vector of reserved amounts of good.

In other words, ϕs,t(n) is the amount of punishment (in terms of good) applied to an agent of type

t at state s if he deviates. As applied to Figure 1, a point rs appears, see Figure 4 a). This point is

used in the modified incentive constraint (13) instead of e. In other words, rs is the vector of private

endowments as seen by the deviator.

• A punishing policy is a profile {ϕs,t(n)}s∈S(n),t∈T of punishments applied to a group of size n.

• A punishing institution is a sequence of profiles {ϕs,t(n)}
n∈N
s∈S(n),t∈T applied to all groups.

To model an encouraging policy we modify the definition of group endowment by changing the

formula (1) in the following way:

Es =
∑

t∈T

qs,tet + ψs(n) (14)

Here ψs(n) is the group premium (in terms of good), that can reflect either a subsidy by an external

entity, or a property of a redistributing technology. As applied to Figure 1, the group premium

simply shifts the budget line outwards, see Figure 4 b).

• An encouraging policy is a profile {ψs(n)}s∈S(n) of punishments applied to a group of size n.

• An encouraging institution is a sequence of profiles {ψs(n)}
n∈N
s∈S(n) applied to all groups.

We would like to impose some reasonable restrictions on the magnitude of these perturbations.

Intuitively, the perturbations are considered small if they are per-capita negligible when n → ∞.

There are at least three forms of this restriction:

(i) ψs(n) (
∑

t∈T

qs,tϕs(n)) is uniformly bounded.

(ii)
ψs(n)
n (

∑

t∈T

qs,tϕs(n)
n ) converges to zero uniformly over s ∈ S(n).
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(iii) Eσ
ψs(n)
n (Eσ

∑

t∈T

qs,tϕs(n)
n ) converges to zero.

Condition (i) says that there is just a physical restriction to the amount of the policy, however,

we believe that this condition is too strict. Condition (ii) says that the per capita amount of policy

converges to zero uniformly across states, and it follows from (i). The weakest assumption is (iii),

that says that the average of per capita amount of policy converges to zero.

6.2 Punishing policy

Consider a punishing policy or institution. The new participation constraint is given by equation

(13). The analog of Lemma 11 states:

Lemma 18. If two group sizes k < n are stable, then for any s ∈ S(n):

∑

t∈Ws(k,n)

qs,t(n) < k, Ws(n, k) = {t ∈ T :
δ

1− δ
vsb(k)+U(et−ϕs,t(n)) >

δ

1− δ
vsb(n)+vs,t(d

sb(n))}.

Our first observation is that for an arbitrary punishing institution, if the amount of punishment

is non-positive, that is, deviating agents consume at least their private endowments at the date of

deviation, then the result of Theorem 1 holds.

Lemma 19. For a non-positive sequence of punishing profiles {ϕs,t(n)}
n∈N
s∈S(n),t∈T , Theorem 1 holds.

Clearly, to promote stability, the amount of punishment should be positive at least for some states.

From this moment we will consider only nonnegative punishing profiles. The second observation is

that there exists a punishing policy such that a given group is stable. To construct such a policy it is

sufficient to set rs,t in such a way that the first-best allocation satisfies all participation constraints

at all states.

Our first example is such that rs,t = min(et), see Figure 5.
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Figure 5: First example of a punishing policy.

A rule of thumb for this example is: to promote stability in a group, a deviating agent should

consume no more than the smallest income in the group.

Lemma 20. With a punishing profile {ϕs,t(n)}s∈S(n),t∈T such that rs,t = min(et), the group is stable.

The example above is an extreme case of punishment. Intuitively, the uncertainty in the group is

implicitly reduced to zero, and hence the first best distribution is attainable. Moreover, for a sequence

of profiles constructed in this way, all groups will be stable. In other words, under this institution,

the set of stable groups is infinite, and all of them reach the first-best distribution. Unfortunately,

the capacity of punishment needed for this institution, explodes as n increases to infinity.

Lemma 21. With a punishing profile {ϕs,t(n)}s∈S(n),t∈T such that rs,t = mint∈T (et),

lim
n→∞

Eσ
∑

t∈T

qs,t(n)ϕs,t(n)

n
=

∑

t∈T

pt(et −min
t∈T

et) > 0.

Our second example is such that rs,t = min(et,Eτ |set), see Figure 6.
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Figure 6: Second example of a punishing policy.

A rule of thumb for this example is: to promote stability in a group, a deviating agent should

consume no more than the average income in the group.

Lemma 22. With a punishing profile {ϕs,t(n)}s∈S(n),t∈T such that rs,t = min(et,Eτet), the group is

stable.

Note that this example is more sophisticated that the first one, since the point rs depends on the

state. However, the capacity needed for punishment still grows linearly in n.

Lemma 23. With a punishing profile {ϕs,t(n)}s∈S(n),t∈T such that rs,t = min(et,Eτet),

lim
n→∞

Eσ
∑

t∈T

qs,t(n)ϕs,t(n)

n
=

∑

t∈T

pt(et −min(et,Eτet)) > 0.

6.3 Encouraging policy

Consider an encouraging policy or institution. The new formula for the group endowment is (14). It

follows that the set of attainable distributions is given by formula:

Ds = {ds : ds,t ≥ 0,
∑

t∈T

qs,tds,t ≤
∑

t∈T

etds,t + ψs(n)}

The first observation is very similar to the one for the punishing institution: if the group premium

ψs(n) is non-positive for all s ∈ S(n), that is, there is less good distributed than it was collected,

then the result of Theorem 1 holds.

Lemma 24. For a non-positive sequence of encouraging profiles {ψs(n)}
n∈N
s∈S(n), Theorem 1 holds.
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Clearly, to promote stability, the group premium should be positive at least in some states. From

now on, we shall consider only nonnegative encouraging profiles. The second observation is that

there exists an encouraging policy such that a given group is stable. To construct such a policy it

is sufficient to shift the budget hyperplane in such a way that the first-best allocation satisfies all

participation constraints at all states.

Our first example is such that ψs(n) = n(maxt∈T (et)−mint∈T (et)), see Figure 7.
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Figure 7: First example of an encouraging policy.

A rule of thumb for this example is: to promote stability in a group, one should subsidize it in

such a way that all agents can get at least as much as their highest income.

Lemma 25. With an encouraging profile {ψs(n)}s∈S(n) such that ψs(n) = n(maxt∈T (et)−mint∈T (et)),

the group is stable.

The example above is an extreme case of encouraging. Intuitively, the uncertainty in the group

is implicitly reduced to zero, and hence the first best distribution is attainable. Just like in the case

of a punishing policy, the amount of good needed for this policy explodes as n increases to infinity.

Lemma 26. With an encouraging profile {ψs(n)}s∈S(n) such that ψs(n) = n(maxt∈T (et)−mint∈T (et)),

lim
n→∞

Eσ
ψs(n)

n
= max

t∈T
(et)−min

t∈T
(et) > 0.

Our second example is more tricky. At each state s ∈ S(n) there are types that are relatively

rich, or et ≥ Eτ |set, and there are types that are relatively poor, that is, et < Eτ |set. We want to

insure the poor so that they are ex-ante as good as with the first-best scheme, but leave the rich

with the same level of good so that they have no incentives to deviate, see Figure 8.
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Figure 8: Second example of an encouraging policy.

A rule of thumb for this example is: to promote stability in a group, one should subsidize it in

such a way that all rich agents can get what they have, and the poor are insured up to the first-best

level.

Lemma 27. With an encouraging profile {ψs(n)}s∈S(n) such that there exists a scheme d ∈ D satis-

fying vs(d) = U(Eτ |set), but if et ≥ Eτ |set then ds,t = et; the group is stable.

However, as the size of the group increases, the subsidy still explodes.

Lemma 28. With an encouraging profile {ψs(n)}s∈S(n) such that there exists a scheme d ∈ D satis-

fying vs(d) = U(Eτ |set), but if et ≥ Eτ |set then ds,t = et;

lim
n→∞

Eσ
ψs(n)

n
> 0.

6.4 Saving and borrowing

In the previous section we considered cases of non-negative and non-positive encouraging policies.

We can model saving and borrowing by assuming that a group can purchase a risky asset. It will be

an encouraging policy that is positive or negative depending on the state of the world.

Consider an example, where the group is subsidized when the group endowment is below average

and it is taxed when the group endowment is above average, so that it gets its own average at all

states of the world. Clearly, under this policy the group is stable.
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Lemma 29. With an encouraging profile {ψs(n)}s∈S(n) such that ψs(n) = EσEs − Es, the group is

stable.

Moreover, under such institution (if all groups have access to this asset), there will be an infinity

of stable groups. Though the average amount of policy is always zero, it explodes at some states of

the world.

Lemma 30. With an encouraging profile {ψs(n)}s∈S(n) such that ψs(n) = EσEs − Es,
ψs
n does not

converge uniformly to zero.

6.5 Stability in the perturbed framework

Assume a sequence of punishing and encouraging profiles {ϕs,t(n), ψs(n)}
n>1
s∈S(n),t∈T . We let them be

almost arbitrary, the only restrictions that we impose are that they are nonnegative on they are

bounded in magnitude (in fact we make a weaker assumption):

•
∑

t∈T

qs,tϕs,t(n)
n → 0 uniformly on s ∈ S(n).

•
ψs(n)
n → 0 uniformly on s ∈ S(n).

Assume again that there is some nontrivial uncertainty:

• pt 6= 0 for all t ∈ T

• ei 6= ej for some i 6= j

Recall the assumptions of the extended model:

• Group endowment : Es =
∑

t∈T qs,tet + ψs(n)

• Set of attainable distributions : Ds = {ds : ds,t ≥ 0,
∑

t∈T qs,tds,t ≤ Es}

• Participation constraint : U(rs,t)− vs,t(d
sb(n)) ≤ δ

1−δ
(vsb(n)− vsb(k))

• Reserved value : rs,t = et − ϕs,t(n)

Lemma 31. In the assumptions of the perturbed model, vsb(k) is bounded for all stable k.

Lemma 32. For any increasing sequence {ki}
∞
i=1 of stable sizes such that {vsb(ki)}

∞
i=1 is monotonic,

lim
i→∞

vsb(ki) = EτU(et).
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Lemma 33. For any increasing sequence {ki}
∞
i=1 of stable sizes such that {vsb(ki)}

∞
i=1 converges,

lim
i→∞

vsb(ki) ≥ vsb(kj) for all j.

Theorem 5. In the assumptions of the perturbed model either vsb(n) = EτU(et) for all stable n, or

the set of stable sizes is finite.

7 Proofs

Lemmas 1, 2 are simply algebraic properties of the multinominal distribution. Lemmas 3, 4 are less

trivial.

Proof of Lemma 3:

Apply the multivariate case of the Chebyshev inequality :

Prob(||
qs
n

− p|| >
1

ln(n)
) ≤ (

∑

t∈T

Vσ
qs,t
n

) ln2(n) = const ·
ln2(n)

n

Proof of Lemma 4:

Step 1: By the Law of Large Numbers:

qs
n

p
−→ p

Step 2: By the Continuous Mapping Theorem it follows that for a continuous function f :

f(
qs
n
)

p
−→ f(p).

Step 3: Apply the Lebesgue’s Dominated Convergence Theorem to show that:

Eσf(
qs
n
) −→ f(p).

Lemma 5 is obvious, since v(d) is a linear combination of U(ds,t).

Proof of Lemma 6:

We can show that the first best distribution maximizes vs(d) separately in each state s ∈ S(n):

vs(d) = Eτ |sU(ds,t) ≤ U(Eτ |sds,t) = U(Es/n)

32



Proof of Lemma 7

Step 1: Let {ξi}
∞
i=1 be a sequence of identically distributed random variables.

Denote Sn =
∑n

i=1 ξi and let f be a concave function.

Due to symmetry:

E(ξ1|Sn, Sn+1) = · · · = E(ξn|Sn, Sn+1) =
Sn
n

on the other hand

E(ξ1|Sn+1) = · · · = E(ξn+1|Sn+1) =
Sn+1

n+ 1

Step 2: By the law of iterated expectations and by conditional Jensen inequality

E(f(
Sn
n
)) = E(E(f(

Sn
n
)|Sn+1)) = E(E(f(E(ξ1|Sn, Sn+1))|Sn+1)) ≤ E(f(E(ξ1|Sn+1))) = E(f(

Sn+1

n+ 1
))

Step 3: The first best distribution dfbs,t =
Es

n
is the average of all private endowments that are identi-

cally distributed. It then follows that v(dfb(n)) ≤ v(dfb(n+ 1)).

Proof of Lemma 8

We use Lemma 4 to show:

lim
n→∞

vfb(n) = lim
n→∞

EσU(Es/n) = lim
n→∞

EσU(
∑

t∈T

qs,t
n
et) = U(

∑

t∈T

ptet) = U(Eτet)

Proof of Lemma 9

Since we maximize a continious function on an intersection of a compact set (D) with a finite col-

loction of closed sets (participation constraints), a maximum is always attained.

Proof of Lemma 10

Assume that
∑

qs,td
sb
s,t < Es for some states s ∈ S(n). Then there exists a distribution sheme d̃sb

such that d̃sbs,t > dsbs,t for all t and if a constraint is satisfied for dsb then it is satisfied for d̃sb, hence

d̃sb is stable and gives a higher value. This contradicts the fact that dsb maximises v(d) over SS.

Proof of Lemma 11

...
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Proof of Lemma 12

Pick a state ŝ ∈ S(n) such that all agents are of the same type t̂. At this state dsb
ŝ,t̂

≤ et̂, and, hence,

vŝ,t̂(d
sb) ≤ U(et̂). On the other hand, t̂ should not belong to Wŝ(n, k), otherwise the deviation will

occur. It follows that vsb(n)− vsb(k) ≥ 0 and, hence γt(k, n) ≥ 0.

Proof of Lemma 13

...

Proof of Lemma 14

If dsbs 6= dfbs and none of the participation constraints binds, then, since v(d) is a continuous func-

tion, one can choose d̃sbs arbitrarily close to dsbs such that all the participation constraints hold and

v(d̃sb) > v(dsb). This contradicts the fact that dsb maximizes v(d) over SS.

Proof of Lemma 15

Assume that vsb(n) < EτU(et). In the state of the world s such that all agents are of the same type

the participation constraint then will certainly fail: vsb(n) < vsb(1). The upper bound comes from

the upper bound of vfb(n).

Proof of Lemma 16

Notice that since all value functions are bounded for a given group size n, the incentive constraints

degenerate to vsb(n) ≥ vsb(k) for all stable k < n, as δ → 1. Consequently, for δ close enough to 1,

any group can become stable and the second best scheme approaches to the first best one. It then

follows that limδ→1 v
⋆(δ) = U(Eτet).

Proof of Lemma 17

Notice that since all value functions are bounded for a given group size n, the incentive constraints

degenerate to v(ds,t) ≥ U(et) for all s, t, as δ → 0. It then follows that limδ→0 v
⋆(δ) = EτU(et).

Proof of Lemma 31

Since ψs(n)
n

→ 0 uniformly on s ∈ S(n), it is also bounded uniformly on s, n. The second best value

vsb(n) therefore is smaller than U(Eτet + sup ψs(n)
n

).
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Proof of Lemma 32

Let {ki}
∞
i=1 be an increasing sequence of stable sizes such that {v(ki)}

∞
i=1 is monotonic.

Step 1: Pick a small ε-neighborhood of point p such that for any point x in this neighborhood all

coordinates xi are strictly positive.

ε =
mint pt

2
=⇒ ∀x ∈ Uε(p) : ∀t xt > 0

It then follows that there exist two positive constants c1, c2:

c1 ≤
qs,t
n

≤ c2, ∀t ∈ T, s ∈ S(n) ∩ Uε(p)

In other words, the slope of the budget hyperplane is uniformly bounded in the neighborhood of p.

Step 2: For any k define nε(k) such that for any n > nε(k) and a state s ∈ S(n) that appears in the

ε-neighborhood of point p, the minimal amount of agents of the same type is greater or equal than

k.

nε(k) =





k

min
x∈Uε(p)

min
t
xt



+ 1, n > nε(k) =⇒ min
s∈S(n), qs

n
∈Uε(p)

min
t
qs,t ≥ n · min

x∈Uε(p)
min
t
xt ≥ k

Step 3: Construct a subsequence {ni}
∞
i=1 of the original sequence {ki}

∞
i=1, such that ni > ki and the

set of types of agents who are willing to deviate from dsb(ni) to d
sb(ki) is empty.

ni = min(n ∈ {ki}
∞
i=1 : n > nε(ki), ni > ni−1) =⇒ Ws(ki, ni) = ∅, ∀s ∈ S(ni) ∩ Uε(p)

If at a certain state of the world the minimal amount of agents of the same type is greater than k,

then the set of types that are willing to deviate to a group of size k at this state of the world is

nesessarily empty, otherwise a deviation will occur.

Step 4: Since for the states that appear in the ε-neighborhood of p the participation constraints

when deviating from dsb(ni) to d
sb(ki) hold for all types, it follows that

∀t ∈ T, ∀s ∈ S(ni) ∩ Uε(p) : d
sb
s,t(ni) ≥ (et + ϕs,t(ni))− γt(ki, ni)
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Step 5: Since
∑

t∈T

qs,tϕs,t(n)
n ≥ c1

∑

t∈T ϕs,t(n) in the ε-neighborhood of p :

∀t ∈ T : ϕs,t(ni) → 0 uniformly on s ∈ S(ni) ∩ Uε(p)

That is, the distance from the point e to the point p shrinks.

Step 6: Since
ψs(n)
n ≥

c2ψs(n)
√

∑

q2s,t

in the ε-neighborhood of p :

∀t ∈ T :
ψs(ni)
√

∑

q2s,t

→ 0 uniformly on s ∈ S(ni) ∩ Uε(p)

That is, the distance from the point e to the budget hyperplane shrinks.

Step 7: Since vsb(ki) is monotonic by assumption and bounded by Lemma,

lim(vsb(ni)− vsb(ki)) = 0,

and hence

∀t ∈ T : lim γt(ki, ni) = 0

Step 8: Combining steps 4-7 and keeping in mind that the slope of the budget hyperplane is bounded

in the ε-neighborhood of point p, we obtain that

∀t ∈ T : dsbs,t(ni) → et uniformly on s ∈ S(ni) ∩ Uε(p)

Step 9: By Lemma 3 there exist two sequences {αi}
n
i=1, {βi}

n
i=1 decreasing to zero such that

Prob
(qs
n
/∈ Uαi

(p)
)

≤ βi.

Write down the ex-post value vsb(ni) = V1(i) + V2(i):

V1(i) =
∑

s∈S(n), s∈Uαi
(p)

Psvs(d
sb(ni)), V2(i) =

∑

s∈S(n), s/∈Uαi
(p)

Psvs(d
sb(ni))

Step 10: On the one hand, since vs is a continuous function, it is bounded on a compact, and hence
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limV2(i) = 0. On the other hand, from step 8 it follows that limV1(i) = EτU(et). Hence

lim vsb(ni) = EτU(et)

and hence

lim vsb(ki) = EτU(et).

Proof of Lemma 33

Let {ki}
∞
i=1 be an increasing sequence of stable sizes such that {v(ki)}

∞
i=1 converges.

Fix a stable size kj and let lim vsb(ki) < vsb(kj).

Step 1: Repeat steps 1,2 from Lemma 32.

Step 2: Construct a subsequence {ni}
∞
i=1 of the original sequence {ki}

∞
i=1, such that ni > kj and the

set of types of agents who are willing to deviate from dsb(ni) to d
sb(kj) is empty.

ni = min(n ∈ {ki}
∞
i=1 : n > nε(kj), ni > ni−1) =⇒ Ws(kj, ni) = ∅ ∀s ∈ S(ni) ∩ Uε(p)

If at a certain state of the world the minimal amount of agents of the same type is greater than k,

then the set of types that are willing to deviate to a group of size k at this state of the world is

necessarily empty, otherwise a deviation will occur.

Step 3: Repeat steps 4,5,6 from Lemma 32

Step 4: By construction lim(vsb(ni)− vsb(kj)) < 0, and hence ∀t ∈ T : lim γt(kj, ni) < 0.

Step 5: For i large enough the incentive constraints together with the budget constraint, at some

state s, will form a system of inequalities that have no solution. Hence lim vsb(ki) ≥ vsb(kj).

Proof of Theorem 1

Follows from Theorem 5.

Proof of Theorem 5

The proof follows from Lemmas 31, 32 and 33.
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