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Abstract

Sponsored search is a billion dollar business. Search engines place advertisement

on a web page, and merchants pay them for received user clicks. Slots for advertise-

ment are sold via auction-like mechanism where the more agent bids, the higher is the

probability to obtain slot that receives more clicks. Traditionally agents valuation of

a slot is modeled as a value per click multiplied by the number of clicks that slot

delivers. Thus, every click has the same value, no matter how many clicks is already

received by the agent. In my masters thesis I suggest an alternative approach. I

suppose that the value of click decreases with the number of clicks received by the

agent, and that there even might be a point at which it is not optimal for agent

to receive more clicks. Thus, I introduce capacity constraints in sponsored search

auctions. I consider the properties of equilibria arising in that setting show that in

the incomplete information setting the equilibrium is inefficient. I suggest using an

alternative mechanism of click allocation among agents based on Ausubel multi-unit

auction. Additionally, I use real data to analyze the behavior of agents buying slots

and categorize them to show that there really are capacity constrained agents.

1 Introduction

Sponsored search auctions attract a lot of attention during last 10 years. Early works

on sponsored search introduced formal models and investigated equilibria arising

in different settings. The standard model is as follows. There are N agents willing

to advertise their products via Internet, and K slots for advertisement allocation.

Usually it is assumed that each slot attracts constant number of clicks, and the

higher the slot is allocated on the screen, the more clicks it receives. Since position

on the screen defines the attractiveness of a slot, sponsored search auctions are often

called position auctions. The number of clicks received by each slot is a common

knowledge. Agents have constant click valuation, and therefore agent’s payoff from

a slot can be written as a number of clicks received by the slot multiplied by the

value per click minus pay per click. Thus, in the standard setting auctions for clicks

become auctions for slots providing clicks.
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In this work I relax the assumption of constant value per click and instead in-

troduce decreasing marginal click valuation. I do so by assuming that agents are

capacity constrained: there is a limit of number of clicks agents can effectively handle,

and therefore if the agent receives too many clicks his marginal valuation may even

become negative. I claim that budget constraint might be seen as consequence of

agents’ capacity constraints. I show that in that setting the current mechanism

of slot allocation is inefficient and suggest using Ausubel mechanism for efficient

multi-unit allocation. In addition, I analyze an experiment run by large Russian

search engine Yandex. In that experiment some advertisers were unexpectedly

moved to the positions on the screen receiving more clicks. I show that there is some

evidence supporting the presence of capacity constraints.

The rest of the paper is organized as follows. Section 2 reviews current litera-

ture on sponsored search auctions. Section 3 introduces model of sponsored search

with capacity constraints. Section 4 analyzes efficient allocation of slots and clicks.

Section 5 demonstrates general inefficiency of current mechanism in the presence

of capacity constraints. Section 6 suggests an alternative mechanism. Section 7

analyzes Yandex experiment, and Section 8 concludes.

2 Literature overview

Edelman, Ostrovsky, and Schwarz (2007) investigate properties of generalized second-

price auction (GSP) used by search engines to sell online advertising. They show

that GSP is not equivalent to Vickrey mechanism, and that truth-telling is not an

equilibrium strategy in that auction. They introduce the notion of locally envy-free

equilibrium – the equilibrium in which no agent can improve his payoff by switching

positions with the agent above him. They show that there is a locally envy-free

equilibrium in which advertisers receive payoffs coinciding with payoffs in Vickrey

mechanism, while in any other locally envy-free equilibrium seller’s revenue is at

2



least as high as in that equilibrium. Finally, authors introduce generalized English

auction corresponding to GSP and show that it has unique equilibrium in which

agents’ payments and slot allocation are the same as in Vickrey mechanism.

Independently and around the same time Varian (2007) describes the model of

sponsored search auctions which has become standard since then, and analyzes equi-

libria arising in that setting. He introduces the notion of symmetric Nash equilibria

which turns out to be the alternative way to define EOS locally envy-free equilibria.

He also analyzes auction revenue. The author points out the similarity between

slot allocation problem and the long-known Shapley-Shubik (Shapley and Shubik,

1971) assignment problem. He shows that the distribution of slots among agents is a

competitive equilibrium in Shapley-Shubik assignment game in which utilities are

of special structure. Finally, using the notion of symmetric Nash equilibria author

derives the bounds for agents’ click valuations and investigates empirical relationship

between bids and values.

Lahaie (2006) analyzes equilibria and welfare implications of sponsored search

auctions using both first- and second-price payment rules, and ranking bidders by

their bids or by the revenue generated. By revenue Lahaie assumes the product of

bid and an individual characteristic of the agent - the click through rate (CTR), the

probability of an ad to be clicked if viewed. He shows that in private information

setting ranking agents by revenue leads to efficient allocation, while ranking by bid

does not. He also proves that in full information setting with first-price payment

rule no pure-strategy equilibria exist, while in a second-price payment rule multiple

equilibria are possible, and one that leads to the efficient slot allocation is among

them.

Subsequent literature concentrated on particular aspects and properties of sponsored

search auctions. Budget constraints are usually discussed when the question of

distributing budget among different keywords arises. In the presence of budget

constraints the question of efficiency or revenue maximizing becomes much more
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complicated.

Ashlagi et al Ashlagi et al. (2010) suggest an elegant extension of EOS Generalized

English Auctions to account for budget constraints. They introduce Generalized

Position Auction. In Generalized Position Auction there are K rounds to sell K

slots (assuming the number of players N is greater or equal than K). Each round

the highest available slot is sold but the price rule is more sophisticated than the

rule used in EOS Generalized English Auction. Each round the price ascends from

zero to the point at which the number of agents willing to buy the lowest free slot

equals the number of free slots. At that point all agents start participating again,

the price continues to rise from the previous stop point until the moment at which

the number of agents willing to buy previous-to-lowest slot equals the number of

free slots minus one, and so forth. The price continues to rise until there is only

one participant willing to buy the highest free slot. This participant pays the price

and which all others refused to buy that slot. Indeed, this mechanism seems very

similar to EOS Generalized English Auction, but there is one significant difference.

The price starts not from zero but from the price at which there were two players

willing to buy second-highest slot (maybe the winner is not among these two), and

the price for second-highest slot starts from the point at which there are exactly

three agents willing to buy third-highest slot, and so forth. And at each stop-point

all agents can participate (even if the agent was not among those who were willing

to buy lower slot she still can participate in the auction for higher slot). The authors

prove that there is a truth-telling equilibrium in which all agents truthfully report

their valuation and budget. They also show that truth-telling equilibrium results in

Pareto-efficient and envy-free distribution of slots, and that any other mechanism

which leads to Pareto-efficient and envy-free outcomes necessarily lead to the same

distribution of slots and payments as Generalized Position Auction.

Since accounting for budget constraints is both theoretically difficult and practically

important, a lot of literature is devoted to algorithmic solutions to maximizing

revenue or increasing efficiency. For instance, Abrams et al. (2007) account for bid-
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ders’ budget constraints and suggest algorithm forecasting query frequencies, pricing

and ranking schemes to optimize advertisement delivery to the agents. They test

proposed algorithm via simulations, and claim to achieve significant improvements

in both seller’s revenue and efficiency of the mechanism. However, authors do not

take into account the possible change in bidding strategies by the agents in response

to suggested changes in advertising delivery mechanism. Borgs et al. (2007) study

behavior of budget constrained bidders bidding on more than one keyword. They as-

sume that bidders optimize to achieve equal return-on-investment from each keyword

they bid on. That approach allows authors to show that that heuristic may lead to a

cycling behavior of the system. To overcome it authors introduce bid perturbations.

It allows the system to converge to the point which authors call market equilibrium.

For the first-price auction they prove it, and for the second-price auction show it by

simulations. Mehta et al. (2005) suggest an algorithm which given agents, their daily

budgets, keywords agents bid on and bids for each keyword calculates the matching

of bidders with keywords maximizing revenue for the seller. Under the assumption

that bids are small compared to budgets the suggested algorithm is time efficient.

Again, authors do not take into account the possible change in bidders’ behavior in

response to introduction of a new algorithm.

In contrast with traditional view on budget constraints there is another one. Tradi-

tionally budget constraint is something agent cannot break, cannot physically spend

more money than he or she has. Such constraint is called hard budget constraint.

On the other hand, sometimes bankrupt firms or unprofitable projects are bailed

out by governments or investors. When a firm continues to spend money exceeding

its initial budget it is said to have soft budget constraint. The overview of works on

soft budgets is given in Maskin Maskin (1999).

I suggest an alternative view on position auctions. Assuming that it is clicks

agents are interested in, not the position on the screen, and that all clicks are

identical for the agent (thus, the source of click is of no interest itself) I consider

position auction as multi-unit auctions in which clicks are sold in bundles and every
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agent can buy only one such bundle. Good overview of multi-unit auctions is given

in Khrishna Krishna (2010).

3 Model

The standard model of position auction is as follows. There are N players and K

slots. Each slot receives γk clicks, and without loss of generality, we assume that

γ1 > γ2 > · · · > γK . Each agent i has a constant valuation of a click vi. Thus, if

the agent obtains slot number k and pays p per click, his payoff is ui = γk(vi − p).

The number of slots, agents, and clicks received by each slot are common knowledge.

In the full information game all valuations are common knowledge as well, whereas

in incomplete information setting vi is derived according to the commonly known

distribution function.

The game proceeds as follows. Each agent submits bid si, then bids are ordered and

K highest bids are granted corresponding slots. Thus, the highest bid gets the first

slot, the second highest gets the second slot and so on. Ties are broken randomly.

For simplicity of the notation let us renumber bids so that s1 > s2 > · · · > sN .

Every agent who obtained a slot pays next-highest bid for clicks that slot receives.

For instance, the agent getting slot number one pays γ1s2. If N ≤ K then payment

for slot number N (the lowest slot sold) is zero.

I want to concentrate on a situation when it is not optimal for agent to receive

unlimited number of clicks, even for free. I claim that if number of clicks made by

users is positively correlated with the number of purchases users make, then our

assumption is indeed relevant. Every agent is capacity constrained. Even Amazon

cannot handle infinite number of orders at a time. If there are too many clicks

on agent’s advertisement (and as a result too many orders), then some users get

unsatisfied with service provided by the agent. Therefore it might be optimal for

agent to restrict number of clicks received to some reasonable amount.
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The simplest (although not the only one) way to introduce capacity constraint

is to add a parameter reflecting agent’s capacity. Therefore, I modify the standard

model in the following way. Each agents still has a valuation of click ai, i = 1, . . . , N .

The value of click may be interpreted as expected profit from one click. I also assume

that there is a parameter bi corresponding to agent’s capacity (the higher bi is, the

more clicks agent wants to process, all else being equal). Thus, I write agent’s payoff

ui as quadratic function:

ui(x) = aix−
1

2bi
x2 − px

where x is the number of clicks received (x = γk for some k, or x = 0 is the agent

did not get a slot), and p is the price per click. Note that if p = 0 then the optimal

number of clicks for agent i is aibi, and agent does not want to get more than 2aibi

clicks even for free.

In the full information setting all (ai, bi) are common knowledge. In the incomplete

information setting (ai, bi) are distributed according to the distribution function

Fi(·), i = 1, . . . , N . The rules of the auction remain standard: all agents submit

bids, bids are ordered from highest to the lowest, K highest bids receive slots, and

pay next-highest bid per click.

4 Efficient allocation of slots and clicks

By efficient allocation of either slots or clicks I understand such allocation of slots or

clicks among agents that generates maximum aggregated payoff to agents. Without

capacity constraints efficient allocation of slots is obvious: we give slot receiving

maximum amount of clicks to the agent with highest click valuation, the second-

highest slot to the agent with second-highest valuation, and so forth. However, when

capacity constraints are present, the question of efficient slot allocation becomes a

non-trivial problem. Therefore in this section I consider in more details efficient
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allocation of slots and clicks among capacity-constrained agents.

4.1 Efficient slot allocation

Let σ : K → N be an injective function mapping slots to agents. Thus, σ(k) is the

number of agent that gets slot number k, and every agent can get at most one slot.

The problem of efficient slot distribution can then be written as

K∑
k=1

(aσ(k)γk −
1

2bσ(k)
γ2k)→ max

σ(·)

Since the number of possible slot distributions among agents is finite, the optimal

slot allocation always exists. There is a famous Hungarian algorithm suggested by

Kuhn and Yaw (1955) solving allocation problem in polynomial time, but for our

purposes it is only important to say that the allocation is non-trivial, and that there

is no simple allocating rule. Below are two numerical examples to illustrate that point.

Example 1. Let N = K = 2, γ1 = 100, γ2 = 80, and (a1, b1) = (1, 200),

(a2, b2) = (2, 50). We may interpret parameters saying that Agent 1 is a dis-

counter with high sales volumes but low margin, and Agent 2 is a small firm with

higher margin but lower sales volume. Then it is straightforward to check that in

efficient slot distribution higher slot (slot number 1) should go to an agent with

higher capacity (Agent 1), and lower slot should be given to a smaller agent (Agent 2).

Example 2. Let us slightly change the numbers. All parameters are the same

as in the previous example but γ2 = 20. Then the reader may easily check that

giving first slot to Agent 1 and second slot to Agent 2 generates total payoff of

111, while giving first slot to Agent 2 and second slot to Agent 1 yields total payoff

of 119. Thus, in efficient slot allocation higher slot should go to a smaller agent!

The interpretation is as follows. The total amount of clicks received by two slots is

relatively small and therefore it turns out to be more efficient to give most part of

those clicks to the smaller agent since she can extract higher revenue from it.
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4.2 Efficient click allocation

I have already mentioned that slots might be viewed as bundles of clicks. Obtaining

particular slot can be considered as buying a predefined bundle or flow of clicks.

Then it is natural to suggest breaking up the bundles and distributing clicks among

agents, not slots.

Formally, let µik be the “share” of clicks from slot k that goes to agent i, k = 1, . . . ,K,

i = 1, . . . , N . Then µik can be viewed as probability for Agent i’s advertisement to

be placed on slot k. Two important conditions should be met: first, each slot shares

cannot in total make greater than 1, since each slot cannot present more than one

advertisement at a time. And second, each agent cannot be allocated more than one

slot at a time. Therefore, each agent’s sum of slot shares also cannot be greater than

1. Thus, the problem of efficient click allocation among agents can be written as:

N∑
i=1

(aixi −
1

2bi
x2i )→ max

x1,...,xN

s.t. xi =
K∑
k=1

µikγk

∀i = 1, . . . , N
K∑
k=1

µik ≤ 1

∀k = 1, . . . ,K
N∑
i=1

µik ≤ 1

0 ≤ µik ≤ 1

The total amount of clicks is
∑K

k=1 γk, and those clicks are divided among agents.

The only important constraint is that no agent can be placed in more than one slot at

a time, and therefore no one can get more than 1 shares of slots in total. The solution

to the problem M = (µik) and xi =
∑K

k=1 µikγk is the optimal click distribution

among agents. It is simple linear optimization problem and the solution can be

found using standard methods. Since optimal slot allocation calculated in previous
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section is always among feasible click distributions, in general breaking up slots and

distributing clicks among agents leads to an increase in efficiency. To illustrate that

point, let us calculate efficient click allocations for two previous examples.

Example 1 (continued). Remember, we had two agents and two slots, γ1 = 100,

γ2 = 80. In efficient slot allocation we gave first slot to a bigger agent (Agent 1), and

the second slot to a smaller agent (Agent 2). It turns out that it would be the best

to give 104 clicks to Agent 1, and 76 clicks to Agent 2. However, giving 104 clicks

to the Agent 1 would mean that this agent’s advertisement should be allocated on

both available slots sometimes. Since it is impossible, an efficient click allocation

coincides with efficient slot allocation in that example: we give 100 clicks to Agent

1, and 80 clicks to Agent 2.

Example 2 (continued). In that example the second slot was much smaller:

γ1 = 100, γ2 = 20. Solving linear optimization problem of Efficient click allocation

among agents we get x1 = 56 and x2 = 64. Thus, Agent 1 receives 56 clicks, and

Agent 2 gets 64 clicks. In terms of slot shares it means that Agent 1 receives a share

of 0.45 of slot 1 and 0.55 of slot 2; and Agent 2, vice versa, gets share of 0.55 of slot

1 and 0.45 of slot 2. The aggregate payoff is 135.2. In efficient slot allocation first

slot was given to Agent 2, and second slot to Agent 1, and the aggregate payoff was

119. Thus, the ability to ”break up” slots selling clicks separately may sometimes

noticeably increase efficiency.

5 Equilibrium analysis

Let us consider incomplete information setting. Each agent i knows his own private

type (ai, bi), and submits bid si. All bids are then ordered, the highest bid receives

first slot and pays second-highest bid per click, the second bid receives second slot

and pays third-highest bid per click, and so on. Thus, each agent i has to choose
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bid si to maximize his expected payoff:

Eui = E(aix−
1

2bi
x2 − px)→ max

si

where x is the number of clicks (x = γk for some k, or x is zero if the agent does not

get any slot), and p is the price per click. Note that the higher submitted bid si is,

the higher are both expected number of clicks Ex and expected payment per click Ep.

Claim 1. Equilibrium strategies si are continuous in (ai, bi).

Proof. Since Eui is a strictly concave function of x it is a simple consequence of the

Maximum Theorem.

Claim 2. Equilibrium strategies si are nondecreasing in ai and bi.

Proof. Note that both ∂Eui
∂ai

and ∂Eui
∂bi

are nondecreasing in x. Therefore expected

payoff has increasing differences property with respect to (x, ai) and (x, bi). Thus

(see Milgrom and Shannon (1994)), optimal bid si should be a nondecreasing function

of both ai and bi. The intuition is straightforward: if it is optimal for agent to bid

some amount s when the agent’s type is (a, b), then it is still optimal to bid at least

s when either a or b increases.

Theorem 1. In incomplete information setting equilibrium allocation of slots is

inefficient.

Proof. On the contrary, suppose that for any profile of types (ai, bi)
N
i=1 the equi-

librium allocation is efficient. Let us consider a game with one slot (K = 1) and

two agents (N = 2), with types (a, b1) and (a, b2), b1 > b2. Thus, the agents differ

only in their capacity, and Agent 1 is bigger. Let as assume also that the amount of

clicks delivered by the slot, γ, is not too big, so both agents are better with slot than

without it: γ < ab2. Agents submit bids s1(a, b1) and s2(a, b2). Since by assumption

equilibrium allocation is efficient, the slot should go to the bigger agent (Agent 1).

Therefore the following inequality should hold:

s1(a, b1) > s2(a, b2)
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Because the inequality is strict and because strategies are continuous in (a, b), the

inequality should hold in sufficiently small neighborhood of (a, b2). Thus, there exists

ε > 0 such that for any (a′2, b
′
2) ∈ Uε(a, b2)

s1(a, b1) > s2(a
′
2, b
′
2)

Let us now consider (a′, b2) ∈ Uε(a, b2) such that a′ > a. Since (a′, b2) ∈ Uε(a, b2),

s1(a, b1) > s2(a
′, b2), and in equilibrium the slot still goes to the first agent. But if

γ <
2(a′ − a)
1
b2
− 1

b1

then

a′γ − 1

2b2
γ2 > aγ − 1

2b1
γ2

and it is more efficient to give slot the the second agent. Thus, the equilibrium

allocation is inefficient. A contradiction.

Note that we did not rely on the assumption of symmetric equilibrium strategies

or ex-ante symmetric agents.

6 Alternative auction design

Since we have shown that current auction design generally leads to inefficient slot

allocation, the natural question to ask is what design would lead to the efficient one?

As it was shown earlier, to allocate clicks efficiently we should consider selling not

slots but clicks to agents. Thus, the mechanism takes form of a much more familiar

multi-unit auction.

We know that in single-unit case sealed-bid Vickrey mechanism implements efficient

allocation, and that there is generalization for multi-unit case (see, for example,

Krishna (2010)). There is an elegant implementation of Vickrey mechanism suggested

by Ausubel (see Ausubel (2004)). In that implementation the auctioneer gradually
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increases price and the units are allocated to bidders at current price whenever

they are “clinched”, that is, whenever aggregate demand of all other participants is

lower than the number of units to sell. See the original paper for the explicit example.

Ausubel’s mechanism allows for external constrains like “no more than three units”

to a bidder. Thus, all we need to implement efficient click allocation is to ensure that

no agent gets more clicks than one slot can provide, that is, no agent’s advertisement

is placed on more than one slot at a time (see Section 4.2). Therefore I define

“clinch” rule as follows: the bidder is guaranteed clicks at current price any time

when aggregate demand of all other participants becomes less than current aggregate

supply of clicks without the highest unsold yet slot. That is, any time aggregate

demand of all other participants can be allocated on all unsold slots without the

largest one, we sell that largest slot. This rule prevents selling more clicks than one

slot can provide, and therefore implements efficient allocation described in Section

4.2. Thus, there are all means to allocate clicks efficiently among agents.

Note that in this section I did not actually rely on a particular form of agents’

payoff function. To apply Ausubel auction I used only the nonincresing marginal

utility of clicks. Thus, the suggested mechanism may be applied to any form of

payoff function with nonicreasing marginal utility property. In particular, in case

of constant click valuation the resulting click allocation coincides with efficient slot

allocation (the highest slot goes to the agent with highest click valuation, and so

forth), and resulting prices coincide with Vickrey prices.

7 Testing for capacity constraints

I have shown that presence of capacity constraints may significantly affect agents’

behavior and might lead to generally inefficient outcomes. Thus, testing for the

presence of capacity constraints is important. I use data from large Russian search

engine Yandex to analyze if there are capacity constraints.
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7.1 Experiment Design

Yandex generally displays advertisement on three different areas on the screen:

spetsrazmeschenie (SR), garantia (GR), and dinamica. SR locates below the search

string, there are no more than three advertisement slots in it. Garantia locates to

the right to the results of generic search, there are maximum four slots. See Figure

1 for the example of SR and garantia advertisement slots. Dinamica locates below

the garantia positions, and again no more than four advertisements is displayed

there. Because of their location, SR slots, if displayed, usually receive much more

clicks than any other slots. Thus, although, all else being equal, slot located higher

on the search screen receives more clicks, first three slots receive much more clicks

than all others.

For advertisement to be displayed in SR an important condition should be met. On

the basis of advertisement’s history Yandex estimates advertisers’s click-through

rate (CTR). Estimated CTR multiplied by bid should be higher than a certain

threshold. Minimum bid needed for advertisement to be located in SR is displayed in

advertiser’s web interface, and therefore is known to the advertiser. Each time some

user executes search an auction similar to the described in Section 3 runs, winning

ads is then displayed on the page with search results. If no ads meets threshold

condition then no SR is displayed on the search screen.

During summer of 2011 Yandex run a series of experiments with SR thresholds.

For the advertisement displayed in St. Petersburg and all Russian regions except

Moscow (Regions) it decreased the threshold by 10% on June 30, then on July 19,

and finally on August 11. The threshold for advertisement displayed in Moscow was

not changed. As a result, in St. Petersburg and Regions for some advertisement

the probability of being displayed in SR increased, and therefore some ads started

receiving much more clicks.
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7.2 Data

For analysis I have random sample from Yandex search logs1 in Moscow and Regions

for August 1 – 30, 2011. Those logs contain all information on search, clicks, etc.

Thus, I can analyze only one stage of the experiment: the outcomes of lowering the

thresholds on August 11.

I take advertisement campaign as a unit of observation. Generally speaking, adver-

tisement campaign is an advertisement linked to a list of keywords, with specified

budget and bid. In addition, the geographical area of displaying ads is usually

specified. For example, some ads might be displayed only for Moscow, some only for

Novosibirsk, other – for Moscow area except Moscow, etc. When a user executes

search, all suitable advertisements participate in an auction similar to described in

Section 2. If at least one advertisement meets the threshold, it is displayed in SR

area, otherwise winning advertisements are displayed in garantia area.

From the logs I extract those advertisement campaigns that were displayed only in

Moscow and only in Regions during August 1 – 10, before lowering the threshold. I

check for the migration between groups during August 11 – 28. Table 1 represents

the summary statistics on groups’ size and migration rate between groups. The

number of advertisement campaigns in group is displayed in Column (I). The number

of campaigns that were displayed in other geographical area during August 11 – 28

(after lowering the thresholds) is in columns (II) – (III). It turns out that very few

advertisement campaigns migrated.

Moscow is generally very different from Regions. The absolute number of clicks

sold in Moscow is several times higher than in Regions, the are more advertisers in

Moscow, and the price for clicks is higher (see Figure 2). Nevertheless, trends are

generally similar for both groups. Figures 3 and 4 demonstrate average bid made

and average number of clicks received by campaign during a day. The graphs a

1The size of sample is from %10 to %50 of all logs. I do not report the number more precisely since it
might reveal commercial secret information.
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rescaled to show the similarities in trends.

It can be seen from the figures that the amount of clicks sold decreases on weekends.

It is well known phenomena – during weekends traffic decreases, and many advertisers

prefer not to display their ads on weekends and holidays. In addition, on August 19

was a catastrophic event – Yandex failed. In all my estimates below I control for

weekends, and exclude the data on August 19.

It is hard to evaluate the effect of lowering the thresholds from the plots of average

clicks received and average bid made. Though from Figure 4 we can see that the next

week after August 11 the total number of clicks sold increased in Regions compared

to Moscow. Still, careful analysis is needed to test if there are capacity constraints

on number of clicks received by advertisers.

7.3 Testing for capacity constraints

I can only indirectly test for the presence of capacity constraints among advertisers.

The idea is to check if advertisers receiving more clicks than expected after lowering

the threshold turned off their campaigns or significantly decreased their bids to stop

receiving so many clicks.

First, I calculate the amount of clicks received by each campaign before and after

lowering the threshold, and use simple difference-in-difference analysis to check if

there are differences in trends in Moscow and Regions after lowering the threshold.

Using aggregated amounts of clicks allows to account for the fact that not receiving

clicks is an important event which I do not observe directly. Then I do the same

exercise with the amount of money paid by advertisers before and after lowering

the thresholds. The results are presented in Table 2, Panel A. Both the amount of

clicks received and the amount of money paid changed significantly after lowering

the threshold. The estimates, however, are very rough, and more detailed analysis is

needed.
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Next, I disaggregate the group participants to estimate the effect of lowering the

threshold on different campaigns. For each advertisement campaign I calculate the

number of clicks received while displayed in SR during August 1 – 10, before lowering

the thresholds. I also calculate the number of clicks received while displayed on

position 1 in garantia, and on positions 2 and 3 in garantia. The reasoning is simple:

if adveritisement was placed on top positions before the experiment, it should be

influenced more by lowering the thresholds, than the adveritisement from the lower

positions. I mark as “SR mostly” advertisement campaigns that received more clicks

from SR positions than from top 3 positions in garantia; I mark as “GR 1 mostly”

those that received most of their clicks from first position in garantia; finally, I mark

as “GR 2 – 3 mostly” those campaigns that received most clicks from positions 2

and 3 in garantia.

I analyze the impact of lowering the threshold on the amount of clicks received and

the amount of money paid controlling for the position on the screen before lowering

the threshold. The results are presented in Table 2, Panel B. As it can be seen from

the table, the difference in trends is still significant.

Advertisers might need time to note that they started receiving more clicks and are

paying more money. Learning new “rules of the game” and reoptimizing strategies

takes some time. Therefore it is reasonable to expect that the reaction to lowering

the threshold varies during time. Luckily for me, the threshold was lowered on

August 11, so I can divide available information into three roughly equal parts.

Using difference-in-difference analysis I compare first decade of the month (before

lowering the threshold) separately with second and third decades. The results for

clicks are presented in Table 3, and the results for the amount paid are in Table

4. We see that though second decade differs significantly from first decade, both

without controls and with position controls, the third decade of the month seem

to be unaffected by lowering the threshold. There is no differences in trends for

both clicks received and money paid between decade 1 and decade 3. Thus, there
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is some evidence supporting the idea that advertisers react to increased number

of clicks in a way to put things back and to return received clicks to the previous level.

To examine the impact of lowering the threshold more precisely I estimate a panel

regression with the number of clicks received per day as a dependent variable. I

control for time adding dummies for second and third decades. The results are

reported in Table 5, Column (I). It can be seen that lowering the threshold signifi-

cantly increased the number of received clicks in both decades. However, when I

add position controls (Column (II)), I do observe strong negative effect in the third

decade for those campaigns which were mostly in SR before lowering the threshold.

Thus, it appears that those campaigns that were mostly on top positions before

lowering the threshold in third decade started receiving fewer clicks.

The estimates might be biased since I do no observe directly no-click events. To

account for that fact I treat days with no observations for particular campaign as

days when that campaign received zero clicks. I repeat my estimates using this

artificially enriched panel, both controlling only for time and for time and position

on the screen. The results are presented in Table 5, Columns (III) and (IV). The

estimates are qualitatively the same. Effect of lowering the threshold on clicks is

positive and significant in both decades, and effect for SR campaigns is significantly

negative. Thus, there is even more indirect evidence that top campaigns reacted

somehow to decrease the number of clicks after lowering the threshold. However,

using information on clicks an alternative explanations cannot be ruled out. Top cam-

paigns might have started receiving less clicks because of increased competition in SR.

8 Conclusion

It is still very much work in progress. Nevertheless, in the simplest setting I show

that presence of capacity constraint makes current mechanism of slots allocation

inefficient. I also suggest an alternative mechanism of click allocation based on
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Ausubel multi-unit auction. Finally, I provide empirical evidence indicating that

capacity constraints indeed exist.

There are two major ways for the further research. First, empirical estimates

should be continued to accept or reject the existence of capacity constraints. Cur-

rently there is only indirect evidence, and advertisers’ behavior should be studied

more carefully. Since not all data on experiments is explored now there are all

conditions to do so. Second, the model should be closed to incorporate the reasons

for capacity constraints.

Though very large literature is devoted to position auctions, it seems that the

current theory is still a way behind full explanation of advertisers’ behavior. From

the practitioner’s point of view a lot of algorithms and optimization procedures are

suggested already. Theory still has no clear answers on the sources of click valu-

ations and budget constraints. It limits the ability of evaluating suggested algorithms.
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Figure 1: Yandex search page. Spetsrazmeschenie and garantia areas are marked by
large black bars.

Table 1: Summary statistics on groups. Column (I) represents the number of adver-
tisement campaigns is group on August 1 – 10. Columns (II) – (III) show the migration
between groups: number of advertisement campaigns that were displayed in other geo-
graphical area during August 11 – 30.

August 1 – 10 Migration during August 11 – 28

Group N. of campaigns Moscow Regions
(I) (II) (III)

Moscow 56 973 – 988
(1.73%)

Regions 39 206 941 –
(2.40%)
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Figure 2: Number of clicks sold. Aggregate number of clicks sold per day. Solid line:
Moscow, dashed line: Regions.

Figure 3: Average bid. Average daily bid made by advertisers rescaled to show similarities
in trends. Solid line: Moscow, dashed line: Regions.
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Figure 4: Clicks per order. Average daily number of clicks per order received by
advertisers, rescaled to show similarities in trends. Solid line: Moscow, dashed line:
Regions.

24



Table 2: Differences in trends between Moscow and Regions. This table analyzes
outcome of lowering the spetsrazmeschenie threshold on the amount of clicks received
by advertising campaign and on the total payments made by campaign. Clicks is the
aggregate amount of clicks received by campaign during August 1 – 10, before lowering
the threshold, and during August 11 – 30, after lowering the threshold. Aggregate cost
is the total amount of money paid by campaign for the received clicks before and after
lowering the threshold, in cents. Panel A represents plain difference-in-difference analysis,
while Panel B controls for the position of advertisement on the screen before lowering the
threshold: mostly spetsrazmeschenie, mostly first place in the garantia, or mostly second
of third place in the garantia. Standard errors are in parentheses.

Clicks Aggregate cost

Panel A: No controls

Moscow Regions Difference Moscow Regions Difference

Before 40.482*** 19.577*** -20.905*** 3,957.214*** 683.325 -3,273.889***
(0.818) (1.008) (1.298) (83.530) (102.934) (132.562)

After 70.253*** 34.085*** -36.168*** 6,782.606*** 1,105.934*** -5,676.672***
(0.832) (1.007) (1.306) (84.994) (102.798) (133.385)

Difference 29.771*** 14.508*** -15.263*** 2,825.392*** 422.609*** -2,402.784***
(1.167) (1.425) (1.841) (119.169) (145.475) (188.054)

Panel B: Controlling for the position on the screen

Moscow Regions Difference Moscow Regions Difference

Before 30.980*** 13.796*** -17.184*** 2,343.067*** -486.9 -2,829.926***
(1.639) (1.758) (1.306) (166.096) (178.2) (132.376)

After 60.959*** 28.827*** -32.132*** 5,201.00*** 28.42 -5,172.58***
(1.648) (1.758) (1.314) (167.0) (178.1) (133.149)

Difference 29.979*** 15.031*** -14.948*** 2,857.933*** 515.32*** -2,342.246***
(1.161) (2.486) (1.833) (235.535) (251.942) (185.760)

Number of 128,090 128,090
campaigns

***, **, and * denote significance at the 1, 5, and 10 percent levels respectively
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Table 3: Clicks: differences in trends between Moscow and Regions by decades.
This table analyzes the outcome of lowering the spetsrazmeschenie threshold on the amount
of clicks received by advertising campaign comparing first decade separately with second
and third decades. Clicks is the aggregate amount of clicks received by campaign during
August 1 – 10, before lowering the threshold, and during August 11 – 30, after lowering
the threshold. Aggregate cost is the total amount of money paid by campaign for the
received clicks before and after lowering the threshold, in cents. Panel A represents plain
difference-in-difference analysis, while Panel B controls for the position of advertisement
on the screen before lowering the threshold: mostly spetsrazmeschenie, mostly first place
in the garantia, or mostly second of third place in the garantia. Standard errors are in
parentheses.

Dependent variable: Aggregate number of clicks received by campaign

Decade 1 vs Decade 2 Decade 1 vs Decade 3

Panel A: No controls

Moscow Regions Difference Moscow Regions Difference

Before 40.482*** 19.577*** -20.905*** 40.482*** 19.577*** -20.905***
(0.533) (0.657) (0.846) (0.570) (0.703) (0.905)

After 36.692*** 18.844*** -17.848*** 41.538*** 20.935*** -20.603***
(0.567) (0.701) (0.901) (0.618) (0.767) (0.985)

Difference -3.790*** -0.733 3.057** 1.056 1.358 0.303
(0.778) (0.961) (1.236) (0.841) (1.040) (1.338)

Panel B: Controlling for the position on the screen

Moscow Regions Difference Moscow Regions Difference

Before 33.063*** 14.623*** -18.441*** 33.118*** 14.840*** -18.279***
(1.125) (1.202) (0.852) (1.196) (1.278) (0.912)

After 29.116*** 13.879*** -15.237*** 34.021*** 16.125*** -17.90***
(1.140) (1.225) (0.906) (1.219) (1.314) (0.989)

Difference -3.947*** -0.744 3.204*** 0.903 1.285 0.384
(0.774) (1.716) (1.230) (0.837) (1.833) (1.331)

Number of campaigns 121,784 119,477

***, **, and * denote significance at the 1, 5, and 10 percent levels respectively
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Table 4: Aggregate cost: differences in trends between Moscow and Regions by
decades. This table analyzes the outcome of lowering the spetsrazmeschenie threshold on
the payments made by advertising campaign comparing first decade separately with second
and third decades. Clicks is the aggregate amount of clicks received by campaign during
August 1 – 10, before lowering the threshold, and during August 11 – 30, after lowering
the threshold. Aggregate cost is the total amount of money paid by campaign for the
received clicks before and after lowering the threshold, in cents. Panel A represents plain
difference-in-difference analysis, while Panel B controls for the position of advertisement
on the screen before lowering the threshold: mostly spetsrazmeschenie, mostly first place
in the garantia, or mostly second of third place in the garantia. Standard errors are in
parentheses.

Dependent variable: Aggregate cost paid by campaign

Decade1 vs Decade2 Decade1 vs Decade3

Panel A: No controls

Moscow Regions Difference Moscow Regions Difference

Before 3,957.214*** 683.325*** -3,273.889*** 3,957.214*** 683.325*** -3,273.889***
(56.063) (69.087) (88.972) (58.851) (72.523) (93.397)

After 3,545.347*** 613.911*** -2,931.436*** 4,007.258*** 676.666*** -3,330.592***
(59.588) (73.664) (94.748) (63.772) (79.096) (101.602)

Difference -411.867*** -69.414 342.454*** 50.044 -6.659 -56.702
(81.816) (100.992) (129.973) (86.777) (107.312) (138.007)

Panel B: Controlling for the position on the screen

Moscow Regions Difference Moscow Regions Difference

Before 2,732.901*** -243.0*** -2,975.890*** 2,693.082*** -263.8*** -2,956.882***
(117.290) (125.3) (88.822) (122.315) (130.8) (93.258)

After 2,294*** -309.3*** -2,603.3*** 2,718*** -268.6*** -2,986.6***
(118.9) (127.7) (94.439) (124.7) (134.4) (101.148)

Difference -438.901*** -66.3 372.409*** 24.918 -4.8 -29.374
(167.015) (178.906) (128.263) (174.674) (187.542) (136.183)

Number of 121,784 119,477
campaigns

***, **, and * denote significance at the 1, 5, and 10 percent levels respectively
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Table 5: Clicks. This table examines the impact of lowering spetsrazmeschenie threshold
on the number of clicks received by advertising campaign per day. D2 and D3 are controls
for the second and third decade of the month. Threshold lowered indicated that the
threshold was lowered for the campaign. SR mostly, GR 1 mostly, and GR 2–3 mostly
are position dummies described in text. Clicks before is the amount of clicks received
before lowering the threshold. Column (I) reports estimates with only time and treatment
controls. Column (II) adds advertisement position covariates. Columns (III) and (IV)
repeat estimates treating no observations as zero-click events. Clustered (campaign)
standard errors are in parentheses.

Dependent variable: number of clicks

(I) (II) (III) (IV)

D2 -0.022 -0.022 -0.230*** -0.231***
(0.033) (0.033) (0.025) (0.025)

D3 0.174*** 0.174*** 0.019 0.019
(0.041) (0.041) (0.028) (0.028)

D2 × 0.394*** 0.393*** 0.325*** 0.326***
Threshold lowered (0.050) (0.050) (0.031) (0.031)

D3 × 0.303*** 0.411*** 0.265*** 0.323***
Threshold lowered (0.066) (0.104) (0.043) (0.055)

SR mostly 0.034 -0.037
(0.127) (0.080)

GR 1 mostly 0.243** 0.100**
(0.106) (0.048)

GR 2–3 mostly -0.069 -0.034
(0.054) (0.031)

SR mostly × -0.182** -0.017
Threshold lowered (0.085) (0.050)

GR 1 mostly × -0.198* -0.049
Threshold lowered (0.114) (0.050)

GR 2–3 mostly 0.071 0.044
Threshold lowered (0.075) (0.037)

D3 × SR mostly × -0.347*** -0.207***
Threshold lowered (0.097) (0.050)

D3 × GR 1 mostly × 0.097 0.055
Threshold lowered (0.121) (0.062)

D3 × GR 2–3 mostly × 0.035 0.022
Threshold lowered (0.105) (0.054)

Clicks before 0.097*** 0.097*** 0.095*** 0.095***
(0.003) (0.003) (0.003) (0.003)

Moscow 0.182** 0.117 0.098* 0.116**
(0.085) (0.080) (0.059) (0.052)

Saturday -2.265*** -2.264*** -1.834*** -1.834***
(0.054) (0.055) (0.026) (0.026)

Sunday -1.439*** -1.440*** -1.629*** -1.629***
(0.042) (0.044) (0.024) (0.024)

Constant 1.015*** 1.063*** 0.591*** 0.590***
(0.102) (0.083) (0.057) (0.048)

Number of campaign-days 887,742 887,742 1,485,911 1,485,911

***, **, and * denote significance at the 1, 5, and 10 percent levels respectively
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