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Market for sponsored links: mechanism design approach

Dmitry Arkhangelsky

Abstract
Sponsored search auctions are the main source of revenue for search engines around

the world. In this work I use mechanism design approach to construct efficient market
for sponsored links in asymmetric information environment. I explicitly model both
sides of the market: users and advertisers. In my model users do not observe true
quality of advertised products prior to click and make inferences about this quality. I
show that there is an equilibrium in which users believe that higher positions are better
than lower ones. This in turn generates a class of advertisers’ preferences that contains
the preferences considered before in the literature (e.g. Edelman et al. (2007) and
Börgers et al. (2008)). I construct a simple ascending auction that allocates sponsored
links efficiently given these preferences. I use my auction to analyze the properties of
the GSP auction. I show that GSP auction can fail to allocate efficiently if conversion
rates are lower at higher positions. I use my model to derive several properties of the
optimal mechanism.

1 Introduction

1.1 Motivation

In the last decade sponsored search technologies have been the main source of the revenue
of the most search engines around the world. Google, Yahoo around the world, Yandex in
Russia, all of these companies earned billions of dollars selling advertising positions. Their
business model is quite simple: when users search for some words, e.g., ”windows in Moscow”
several first results are sponsored links that are showed together with organic links, i.e., com-
panies have paid to search engine to show these links at the top of the page. Sponsored links
are vertically ordered, so there is a top one, a second one, etc. Advantages of such strategy
are quite clear: users see only those ads that they might be interested in, while companies
can target their potential customers better by using more special word combinations.

In this scheme a search engine can be seen as a mediator between the two parts: users
and advertisers (firms, producers, bidders). So, sponsored search might be considered as an
example of a two-sided market. Pricing in such markets is an issue: in our context one needs
to define how to place ads of different advertisers, how often to show them, and how much
(and whom) to charge for it. From economic standpoint all these problems are problems of
mechanism design with search engine being a designer.

In retrospective, these design problems were addressed in different ways.1 Today, the
most popular mechanism is a Generalized Second Price (GSP) auction. It works roughly in

1See short history of sponsored search in Edelman et al. (2007).
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the following fashion: at each moment of time each advertiser makes a bid that represents
a price that he is ready to pay for a click at the ad, then advertisers are ordered according
to their bids, top bidders get higher positions and pay the lowest bid they could have made
but still win the same position. It is easy to see that each winning bidder pays the bid of
the advertiser that is just below him, in a sense, bidder pays the second highest price for her
position, explaining the idea behind the name of the auction format.

To carefully analyze the just described scheme one needs to use the apparatus of the
auction theory. In the last 5-10 years much theoretical and empirical work has been done in
this direction (see Section 1.2), yet there are still lots of interesting questions. Most authors
considered only some fragments of the sponsored search market, e.g., only advertisers. The
most cited works (e.g., Edelman et al. (2007),Varian (2007)) postulate some simple form of
advertisers’ preferences and analyze properties of equilibria in GSP or similar auction format.
One important assumption about the preferences is constant value-per-click. This effectively
means that advertisers believe that users who click at different positions are the same.

One can argue that assumption of constant value per click is quite restrictive. For example,
consider the following story. Assume that due to some behavioral reasons top positions receive
a lot of ”noisy” clicks, i.e., users click on these links but the fraction of those who actually
buy something (this fraction is called conversion rate) is rather low. This in turn implies
that value per click is lower at higher positions. One can expect that GSP auction might
not work well in this case since advertisers pay for a click and clicks at lower positions are
more valuable comparing to those at top ones. On the other hand top positions receive more
clicks, so expected gain from these positions can be higher than from the lower ones.2

This simple story shows that advertisers’ preferences can be quite different and equilibrium
properties of auctions might depend on these preferences. One important thing to notice is
the fact that the preferences of advertisers depend on the properties of the users’ behavior. In
the story I assumed that conversion rates are lower at higher positions and this assumption
changed incentives of advertisers. On the other hand, one can assume that conversion rates
are higher at higher positions and analyze the game for this case.3 It is clear that the results
depend on this assumption and that both assumptions are in some sense plausible.

The discussion above indicates that in order to understand incentives of advertisers one
needs to understand a behavior of users. This behavior can be quite different. For example,
users might believe that advertisers at higher positions are in some sense better and click
more at higher positions. On the other hand, users can believe that advertisers are selected
at random, and, consequently, all positions are the same and users then can click at random.
Users’ beliefs, however, might not be exogenous and can be implied by the fact that search
engine places better advertisers at higher places (via some mechanism).

Building on this discussion one can tell the following story: if users believe that adver-
tisers at higher positions are in some sense better then they click more at these positions,
consequently advertisers value top positions higher and there is a tough competition for
them. Search engine exploits this competition and give top positions to the best advertisers.
Consequently, users’ beliefs are actually rational.

This story is quite appealing and intuitive but its every step requires clarification. What

2Unconditional probability of click is called click-trough-rate (CTR). It is usually assumed that higher
positions have higher CTR-s.

3This is actually the case considered in Börgers et al. (2008).
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does better means? How users search? What mechanism should search engine use in order
to place better advertisers at top positions and does such mechanism exist? What is clear is
the fact that in order to answer these questions one needs a framework that includes users,
advertiser and a search engine.

One attempt to answer all these questions is presented in Athey and Ellison (2011) and
looks like the following: imagine that users want to buy some good and that they value this
good in 2$. Producers’ price is equal to 1$. All producers can have this good with some
exogenous probability (this probability can be interpreted as a conversion rate). Then, better
producers are those who have the good with higher probability. Users do not observe this
probability, instead they can search for good and stop once they found it. Users believe that
better producers are placed at higher positions and search in top-down manner. Advertisers
anticipate it and compete for higher positions. Properly defined GSP auction then places
advertisers with higher conversion rates at higher positions. Consequently, users’ believe are
rational.

The just described model is highly stylized but it provides a lot of insights. It rationalizes
users’ behavior and highlights the role of search engine as an information aggregator. On
the other hand, several aspects of the model are misleading and ad hoc in nature. First,
while advertisers are different (they have different probabilities of successful trade), their
prices and consequently consumer surplus are the same. Next, conversion rates are just
exogenously given and depend on positions only in equilibrium. Advertisers’ preferences, on
the other hand, are quite complex in this story, since they have interdependent valuation.
This fact makes it difficult to compare the results and insights from the simple reduced form
models and this equilibrium model.

In this work I try to address the problems indicated in the previous discussion and con-
struct a simple equilibrium model that includes users, advertisers and a search engine. In
contrast with Athey and Ellison (2011) I build a model that endogenizes prices and conver-
sion rates, constructing them from the primitives. I assume that advertisers differ in the
quality of their goods. Different advertisers have different prices. I assume that advertisers
set their prices at some primary market which has the same characteristics as the on-line
market. In equilibrium, producers with higher quality are better meaning that they generate
a higher consumer surplus for a random user.

Users in my model have idiosyncratic shocks for different advertisers. They do not observe
quality of the product and its price, instead they make some inferences about it. In order
to simplify the analysis and focus on the main properties of the model, I assume that users
can click at most once. In the same time, users’ behavior is rational, meaning that they
click at the position with the highest expected consumer surplus. I show that there exist
an equilibrium in which users rationally believe that ceteris paribus their consumer surplus
is higher at higher positions. On the other hand, since users have idiosyncratic shocks for
advertisers they might actually prefer a lower position to a higher one. 4

In the proposed equilibrium top positions have higher CTR-s but not necessarily higher
conversion rates. Interestingly, in equilibrium my model generates advertisers’ preferences
that have the same structural properties as those considered in Edelman et al. (2007), Varian

4This is not true in Athey and Ellison (2011) where all users search in top-down manner starting from
the first position.
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(2007) and Börgers et al. (2008). As I show, from the mechanism design point of view, the
main property of the preferences is submodularity : better advertisers gain more from increase
in position. This fact aligns competition and efficiency and I can use a simple ascending
auction similar to GSP in order to allocate positions efficiently.

It is important to note that the proposed ascending auction is different from GSP in one
important aspect. In GSP advertisers make bids for a click, while in my ascending auction
advertisers make bids for an impression. In the literature one can find some discussion
about the difference between per click and per impression approach (e.g., see Edelman et al.
(2007)). In practice per click pricing seems to be the most reasonable: advertisers pay for the
event they observe and click is the best approximation for a purchase. On the other hand,
as I discussed above, there might be situations in which higher positions have lower CTR-s
and as I show in the paper this fact might lead to inefficient allocation in GSP. Note, that in
my model higher conversion rates for higher positions are not guaranteed and consequently
GSP might fail to allocate efficiently.5

I use structural properties of advertisers’ preferences generated by my model in order to
address important problem of optimal mechanism design. It appears that this problem has
no simple general solution and thus I just derive some properties of the optimal mechanism.
It appears that one of the main factors in this problem that was almost ignored before in the
literature (e.g., Edelman and Schwarz (2010)) is the relationship between an aggregate CTR
of all sponsored search links and a number of this links. I show that if one assumes that total
CTR does not depend on the number of positions then it is optimal to sell just one position
via second price auction with reserve price. Obviously, this is just an extreme result, since it
is reasonable to assume that total CTR increases with the number of positions.6

I see my contribution to the literature on position auctions in several things. First, I
constructed a new theoretical framework that can be used in further analysis. This framework
is quite simple yet general and one can, in principle, incorporate additional structure into
it. One important and appealing property of my model is the fact that in equilibrium
it generates advertisers’ preferences that are similar to those considered in the literature
before. Consequently, my model can be seen as a rational and equilibrium justification of the
simple reduced form models. Next, I proposed a simple auction format that can be used for
efficient allocation. This auction format can be used in theoretical analysis (one can derive
equilibrium properties of GSP using this format). Since the proposed auction is quite robust
(it works for any submodlar preferences) it actually might be used in practice. My theoretical
results also bring new arguments for per impression pricing schemes.

My results on optimal mechanism design can be seen as a contribution to the current
discussion of the topic. I show that optimal mechanism problem is more complicated that it
was previously thought (Edelman and Schwarz (2010)) and the optimal mechanism actually
might be quite sophisticated. Since in reality it is important to have simple form mechanisms
it might be important to analyze approximately optimal but robust schemes. Derived prop-
erties of optimal mechanism emphasize the most important concepts one need to analyze in
order to allocate optimally (virtual valuations and aggregate CTR-s).

5It is insightful to compare this fact with the results and assumptions from Athey and Ellison (2011).
6In this context one can see the results of Edelman and Schwarz (2010) as another extreme.
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1.2 Literature Review

Starting from 2002 most position auctions are conducted by means of the generalized second
price auction (GSP). In this auction each bidder places a sealed bid that represents her
payment per click. These bids then are ordered, the K highest bidders are selected, i-th
bidder is awarded i-th position; payment of each selected bidder is defined as a minimal
bid she has to place to retain a current position, i.e., the i + 1 bid. Actual auctions are
conducted in a similar but distinct fashion: each bidder has an assigned score that depends
on her identity and the place won; after submitting, all bids are ordered by their value times
their score and k highest bidders are selected from this order. Payment is defined in the same
way, but in this case, it’s not equal the next highest bid.

In the literature there are several approaches to GSP auctions. The first one is to con-
sider GSP auction as the game with the full information (e.g. Varian (2007),Edelman et al.
(2007),Aggarwal et al. (2006) and Börgers et al. (2008)), the second one is to consider it as
a game with imperfect information (Gomes and Sweeney (2009)), and the third one is to
analyze another auction which has the same equilibrium properties (Edelman et al. (2007),
Athey and Ellison (2011)). This auction is called Generalized English auction (GE). In a
standard case this auction has an ex post equilibrium that resembles a particular equilibrium
of GSP in a complete information game.7

The rules of the GE auction are quite simple: the click price is continuously ascending,
each bidder indicates her willingness to participate via some device, the price for the j position
is equal to the lowest price at which the demand is equal to j (i.e. the price at which the
(N − j)-th player bowed herself out of the game). In case of one position the auction is the
same as the usual English auction. Note, however, that the notion of Generalized English
auction is also used in the context of multi-unit auctions (for identical objects), where it has
different rules (price rises until demand is equal supply, then each object is sold at this price)
and different equilibrium features.8

The main result from the firs works on GSP (Edelman et al. (2007); Varian (2007);
Aggarwal et al. (2006)) can be formulated in the following way: GSP is not thoughtful
mechanism but it has an ex-post equilibrium in which poisitions are allocated efficiently and
payments are equal to those in Vickrey-Clark-Grooves mechanism (VCG).9

After the first works in the area, second wave of papers can be divided into two parts:
the first part somehow changes the initial model, allowing for slightly different designs and
preferences (incorporates scores, budget constraints, etc.); the second part tries to bring
the sponsored search auctions into more general model, endogenizing users behavior and
providing rationale for behavior of advertisers. The important paper that can be related to
the first part is Börgers et al. (2008) where authors both allow for more general preferences
and ad scores. The results of this paper resemble some of my results. Their analysis, however,
is devoted to GSP with full information. They demonstrate the presence of equilibria with
very low revenues and less obvious bidders’ behavior. Another relevant paper, that uses
classical setup but considers design issues is Edelman and Schwarz (2010). In this work

7See Varian (2007) and Edelman et al. (2007) for details
8The usual references are the works of Ausubel and Crampton on multi-unit auctions (see, e.g., Ausubel

and Cramton (2002)).
9For the formulation and analysis of VCG mechanism see Krishna (2009).
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authors analyze optimal design problems, find out that Generalized English auction with
reserve price is optimal and use this fact to justify particular equilibrium of GSP mechanism.

Another methodologically important paper is Gomes and Sweeney (2009). In this paper
authors analyze GSP in incomplete information setting. They use the Revenue Equivalence
Theorem (Myerson (1981)) to construct an equilibrium in monotone strategies and show that
this equilibrium might fail to exist in some cases. These results are challenging from the the-
oretical point of view, but on the other hand, it seems that it might be not methodologically
correct to model GSP as a game of incomplete information. In reality all advertisers have a
lot of information about other bids and what is more important it is not very costly for them
to experiment with their bids and gain additional information.

Another papers that might be attributed to the second strand of literature are the works
of Athey and Ellison (2011); Chen and He (2006) and Gomes (2010). These papers ana-
lyze both sides of the market, assuming different things about users’ behavior. The most
important and relevant paper is Athey and Ellison (2011) where authors explicitly model
sophisticated search behavior of users. In their setting in equilibrium users search in the
top-down manner. Advertisers in their model differ in exogenously given probability of suc-
cessful trade. Essentially each advertiser has a fixed conversion rate. Authors also analyze
optimal reserve prices and show that in some cases there is no trade-off between efficiency
and optimality.

1.3 Outline

The paper proceed in the following way: section 2.1 develops a theoretical framework. Next
I analyze users’ and producers’ behavior in a symmetric setting and then I focus on a mech-
anism design problem. I describe an efficient mechanism and show that simple ascending
auction can be used for its implementation. Next I derive some properties of the auction
explaining its connections with the GE auction. In section 3 I consider a general mechanism
design probelm and derive several properties of optiml mechanism. I completely characterize
optimal mechanism for a simple case when aggregate CTR does not depend on the number
of positions. Section 4 concludes.

2 Model

This section develops a general framework for an analysis of sponsored search markets. First,
I build a general model and then analyze a particular case with symmetric advertisers. For
this case I derive several properties of users’ and advertisers’ preferences and construct an
efficient mechanism.

2.1 Setup

My model consists of three parts: users, advertisers and search engine. In this subsection I
describe the structure of users’ preferences, pricing decision of advertisers and possible goals
of search engine.

8



2.1.1 Users

There is a continuum of consumers (users) I, where I is a measurable space with total mass
equal to one, with i denoting a particular user. Each user is ready to buy at most one unit of
some indivisible good. They search for this good and observe K sponsored positions (links),
each position being an ad space. This positions are vertically ordered: there is a top position,
the second one and so on. In what follows I do not distinguish between an ad and company
that placed it.10

Each link is associated with some company j from a measurable space J . Quality (in
monetary terms) of the good that company j sells might be a priori different, so I denote it
by ηj. I assume that each ηj is a random variable with absolutely continuous distribution
(measure) that I denote by µj. Support of ηj is some open interval in R+. Obviously, one
can represent ηj is the following way:

ηj = Eµj{ηj}+ θj (1)

where the first part is a systematic one, while the second one is a deviation from the average.
By construction we have that Eµj{θj} = 0. I denote a systematic part of the quality of the
firm j by tj = Eµj{ηj}. I assume that all ηj are independent in j although this assumption
is not essential.

Each user has preferences over the different goods. Utility (in monetary terms) of user i
from a good j is denoted by uij. I assume that this utility has the following structure:

uij = tj + θj + εij (2)

where εij is an idiosyncratic shock that consumer i has for a firm j. Formally εij is a
measurable function from a product space J ⊗ I with some product measure. Note that
this shock is a function from I ⊗ J not from I ⊗ J ⊗ R+. What this effectively means is
that a consumer has a shock for a firm not for a particular realization of the product of this
firm. This assumption is obviously with loss of generality but it seems to be a reasonable
approximation of the true state of the world.11

If we control for j then εij is a random variable with distribution (image measure) that
I denote by λj.

12 I assume that λj(·) is absolutely continuous with respect to Lebesgue
measure. For consistency in definition of ηj one should have that Eλj{εij} = 0, otherwise ηj
cannot represent an average quality. With this restriction we have that Eλj{uij} = ηj so it
is correct to think of ηj as an average value of a particular good j.

When a user i observes an ad that company j has placed she does not know her utility
level from this product. Instead, I assume that she observes only some part of the utility,
namely ξij = tj + εij, while another part which is equal to θj remains unknown until the user

10In reality one company can have many advertising campaigns. In this work I focus on one such campaign,
so there is no need to distinguish between ads and firms.

11One can relax this assumption and assume that ε depends on the quality. In this case consumers a priori
observe only expected shock, and observe the whole ε only after the click. With certain assumptions on the
dependence of ε and θ (like affiliation) one can get the same results. This brings not so much into the model
but requires some additional notation.

12Single index denotes the part that is hold fixed.
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actually clicks at the link and visit the site. Now we can represent utility of user i from an
ad j in the following way:

uij = ξij + θj (3)

Equation (3) represented utility levels in a way that is the most convenient for the analysis
and for the most part I will be working with this form. The notation might seem a little
cumbersome but an actual story behind it is quite simple. Imagine that you search for some
good and observe several ads. At that time you obviously cannot tell how much you are ready
to pay for these goods because you observe only ads. But at the same time you already have
some ideas about these goods, so you have some ex ante utility that in my case is represented
by ξij. If you click and observe actual characteristics of these goods then you observe a true
utility level, in my case – uij.

Given preferences defined this way consumers search for the best alternative. For the most
part of the work I assume that consumers’ search is the most simple as possible: they can
click only once. This assumption is very restrictive and obviously has nothing to do with the
reality. On the other hand, it greatly simplifies analysis and might be some approximation
of the reality. If we look at the real data then the number of users who clicked at more than
one ad is several times smaller than the number of users who clicked only once. Of course
this fact does not justify my assumption since such behavior might easily be endogenous but
at least this evidence provides some motivation for the assumption.

2.1.2 Advertisers

As it was noted above, there is a set of firms J , with j as a generic firm. Each firm sells one
good with a priori random quality θj + tj where θj is private knowledge of the firm j, while
tj is a common knowledge. Each firm might be characterized then by a tuple (tj, θj).

Each firm has a primary market at which it sells the goods. The fact that this market
is primary means that firms set their prices in order to serve this market. Additionally each
firm can participate in the Internet market where it can advertise its goods via sponsored
links. Note that by construction pricing and advertising decisions are divided here: prices
are determined solely at the primary market and do not depend on the Internet campaign
and more specifically they do not depend on the mechanism that a search engine uses to
sell sponsored links. Such structure might seem a little bit irrational – of course advertising
and pricing decisions are interconnected, but, on the other hand, it seems that in reality for
most firms on-line market (or on-line customers)constitute only some fraction of an actual
demand, so pricing decisions indeed might be considered as independent from advertising
ones.

I do not build a detailed model for a primary market in this work, since my interest is in
the on-line market. On the other hand, behavior of the firms in the on-line markets depends
on their pricing strategies. In order to make things as simple as possible, I assume that a
primary market has the most easiest structure possible: each firm behave like a monopolist
maximizing its profits; also I assume zero marginal costs. So, if I denote by D(p, θ, t) a
demand for a firm with a type (t, θ) then its problem has the following form:

D(p, θ, t)p→ max
p

(4)

10



This problem requires some comments. First, one needs to describe where the function
D(p, θ, t) comes from. In order to be consistent, I assume that customers at primary markets
and on-line markets are the same, meaning that the distribution of their reservation values
is the same. Of course, in some cases this is not true and these markets are really different.
In this case my pricing assumption might be inadequate. On the other hand, as the first
approximation one can think that the customers are the same.

I assume that at the primary market each customer behave in the following way: she
searches for goods and she searches in a random way. I assume that all customers solve the
following problem: they observe a firm, its good and its price and if their reservation utility
is high enough then they buy the good. This behavior might be justified using some more
complicated dynamic search model, but that is no my goal here. With this shortcut solution,
the demand for each firm has the following structure:

D(p, θj, tj) = Pλj{εij + tj + θj > p+ c} (5)

where c is an outside option; I use λj as a measure since the distribution of customers at
primary and on-line market is the same.

2.1.3 Search engine

Search engine plays a role of a mediator between users and advertisers.13 What it actually
does is that it determines the rules (or designs a mechanism) according to which advertisers
are selected and displayed ones a user searches for some keyword.

In practice the usual mechanism is some kind of an auction, typically some variation on
Generalized Second Price (GSP) auction. In GSP each advertiser makes a bid, these bids are
ordered, advertisers with highest bids are selected and displayed in respecting order. Each
advertiser pays the second highest bid (with respect to this order).14

In my case I do not focus a priori on GSP, instead I consider general mechanism design
problem. In order to solve this problem one should have some criteria to discriminate between
different mechanisms. Two typical criteria are efficiency and optimality. As usual, optimality
refers to the highest expected revenue for a search engine, while efficiency – to the social
optimum.

Note that this case differs from the usual mechanism design problem since modifications in
design might easily affect preferences of the participants (advertisers). For example, assume
that for some reasons advertisers believe that users click more on higher positions, then
advertisers have incentives to compete for higher positions and eventually better advertisers
might occupy higher positions and as a consequence higher positions now become more
attractive for users. On the other hand, if users a priori believe that advertisers are placed
at random and click at all positions in the same way then advertisers have no incentives to
compete for higher positions. So, the change in a mechanism affect not only incentives but
also preferences of participants on the final outcomes.

13In literature on two-sided markets such mediators are usually called platforms.
14See Edelman et al. (2007),Varian (2007) and Aggarwal et al. (2006).
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2.2 Symmetric advertisers

In this section I analyze a particular case which seems to be the first one consider. Formally,
I assume that qualities of products defined in 2.1.1 have a particular structure: ηj = t + θj,
where all θj are i.i.d. random variables. What this effectively means is that all advertisers
are a priori the same.

Also I assume that εij has a particular distribution: image measures λj are jointly inde-
pendent and distribution functions that they generate are the same. So εij are i.i.d. random
variables in j. Hence, one can say that it is the most symmetric case possible: advertisers are
symmetric and users treat them as symmetric as well. Nevertheless, this case is interesting
since it reflects the main features of the general problem.

For this section I also make the assumption mentioned in 2.1.1 about search model: all
users can click only once and have no costs of clicking.

2.2.1 User’s behavior

Since we restricted the number of clicks to be at most one and assumed away all search
costs, user’s problem is relatively simple: decide on which position to click. Remember
from Section 2.1.1 that users’ utility functions have two parts: observable and unobservable.
As we assumed above each firm has the same average quality so what really matters is an
unobservable deviation of the real quality from the average one (θj) and idiosyncratic shocks.
Since in this case θj completely describes the firm I will refer to it as its type.

From the section 2.1.2 we know that each firm has some pricing function p(tj + θj). Since
there is no variation in tj, I denote this function simply by p(θj). Consumers do not observe
the prices, but have degenerate beliefs about it: they believe that all firms charge prices
p(θj). Taking this into account one can say a user should solve the following problem:

find k? ∈ arg max
k∈K
{Ek

{
max{uij(k) − p(θj(k)); 0}

}
(6)

where k is a number of position (so k = 1 means that it is the top position) and j(k) stand
for index of the firm at k-th position.

Problem (6) requires some explanation. First of all, note that under expectation operator
we have maximum function. This reflects the fact that nobody can force a user to buy a
product if it is not valuable enough for her, so in the worst case consumer has zero utility
level. Next, it is important to explain why expectation operator has an index k. This index
reflects the fact that users have different beliefs about firms at different positions. Since the
only thing that users do not know about firms is their types this effectively means that users
have different beliefs about θ-s. These beliefs comes from the mechanism that search engine
uses to place and order advertisers. We have not defined a mechanism yet, but from now on
I will be seeking for an equilibrium in which users believe that higher positions are occupied
with the firms with higher θ-s. As I show later there is such an equilibrium, but for now this
is just an assumption.
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Assumption 1: Assume that users believe that θj(k) < θj(k−1) almost surely.15

Assumption 1 is very important for the analysis since it generates a considerable structure
on the payoffs. Denote by f(εij, θj(k)) a payoff of the user if she clicks at position k, that is

f(εij(k), θj(k)) = max{t+ εij(k) + θj(k) − p(θj(k)); 0}

a priori it is not clear whether f(εij(k), θj(k)) is increasing in its second argument. For this
to be true I need to assume that θ − p(θ) is an increasing function. In the next subsection I
show that this is indeed the case, but for now it is just an assumption.

Assumption 2: Assume that θ − p(θ) is an increasing function of θ.

With the second assumption at hand, I denote an expected payoff of a user if she clicks at
k-th position by f(ε, k):

f(ε, k) = Ek{f(ε, θ)} (7)

The following Proposition is quite simple but important.

Proposition 2.2.1. In the symmetric model under Assumption 1 and 2 expected payoff of a
user is decreasing in k and increasing in ε

Proof. By Assumption 1 distribution of θ(k) FOSD distribution of θ(k+1) and by Assumption 2
f(ε, θ) is increasing in θ, consequently (by properties of the domination) f(ε, k) is increasing
in k. The fact that it increases in ε is trivial.

Proposition 2.2.1 effectively tells us that users tend to prefer higher positions to lower
ones. But it describes the behavior of just one user. What we need is an aggregate demand
for product j. Obviously, it can be expressed in the following form:

D(p(θ)− θ, k) = P{k = arg max
l
{f(ε(l), l)}; t+ ε > p(θ)− θ} (8)

The first condition tells us that a user has selected the k-th position and the second one –
that she is ready to buy the good. In order to derive some features of this expected demand,
I need to introduce the following notation. Denote by g(ε, k, l) the infimum value of εl such
that f(εk, k) = f(εl, l), that is g(ε, k, l) = infεl{f(εl, l) > f(ε, k)}. This infimum exists due
to monotonicity of functions f(ε, k) in ε. In words g(ε, k, l) is the value of εl consumer should
have to be indifferent between position k with ε and l with εl. With this notation at hand
we are ready to state the following Proposition.

Proposition 2.2.2. In the symmetric model under Assumption 1 and 2 expected demand is
decreasing in k and D1(p(θ)− θ, k) is increasing in k.

15There is a trick here, since in order to specify these beliefs from the basics we need to assume that users
actually know what is the number of competitors in the mechanism. Formally, we might be tempted to
say that θj(k) is the k-highest statistics but in this case the number of competitors becomes important. In
reality users do not know this number, so we need to specify their beliefs about competition. As it really has
no effect on anything that follows I do not do this. It is not hard but technically demanding and as far as
number of competitors is not near infinity this really doesn’t matter.
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Proof. First, we can express expected demand in the following way:

D(p(θ)− θ, k) = Eλj(k)
{
Pλ−j(k)

{εl ≤ g(ε, k, l) for each l 6= k | ε}I{t+ ε > p(θ)− θ}
}

(9)

First, it is important to note that g(ε, k, l) is decreasing in k due to Proposition 2.2.1. It fol-
lows from the fact that f(ε, k) is decreasing in k and increasing in ε and hence infεl{f(εl, l) >
f(ε, k)} is weakly decreasing in k. Consequently Pλ−j(k)

{
{εl ≤ g(ε, k)}l 6=j(k) | ε

}
is decreasing

in k and I{t+ ε > p(θ)− θ} does not depend on k, thus D(p(θ)− θ, k) is decreasing in k.
The fact that D1(p(θ)− θ, k) is increasing is quite obvious:

D1(p(θ)− θ, k) = −Pλ−j(k)

{
{εl ≤ g(ε, k)}l 6=j(k) | ε = p(θ)− θ − t

}
dλj(p(θ)− θ − t)

where dλj(·) is a density with respect to Lebesgue measure. The first multiplier in this
expression is decreasing in k, consequently the whole expression in increasing. The logic is
very simple: at higher positions you have uniformly more customers, consequently increase
in price leads to larger decrease in demand.

This Proposition says that higher positions are unambiguously better than lower ones.
What we can conclude is that in symmetric model with simple search model, expected demand
has anticipated features. In the next subsection we use these qualities to establish some
properties of producer’s problem.

2.2.2 Producer’s behavior

In this subsection I establish some properties of producer’s behavior. As I described in section
2.1.2 producers select their prices at the primary market. Since their pricing behavior is
important for the justification of Assumption 2 I need to explore it in some detail. I denote
by Fε(·) a cumulative distribution function of ε (since they are i.i.d. this function is the same
for all j). Then the following assumption provides all the necessary properties of p(θ).

Proposition 2.2.3. Assume that 1− Fε(·) is log-concave. Then p(θ) is increasing in θ and
θ − p(θ) is increasing in θ.

Proof. First, note that D(p, θ, t) = 1−Fε(p−t−θ−c) from (5). Then the price elasticity of the

demand is equal to e(p, θ) = −p
(

fε(p−t−θ−c)
1−Fε(p−t−θ−c)

)
(density exists due to absolute continuity).

By log-concavity fε(p−t−θ−c)
1−Fε(p−t−θ−c) is increasing in p and decreasing in θ. The first fact implies

that p(θ) is well defined, the next one – that it is increasing in θ.
To see why θ−p(θ) is increasing consider the following reasoning: assume that p is optimal

price for some level of θ, then increase both p and θ by a small amount equal to δ. From the
first order conditions we know that e(p, θ) = −1; after the increase we have that

e(p+δ, θ+δ) = −(p+δ)

(
fε(p− t− θ − c)

1− Fε(p− t− θ − c)

)
= e(p, θ)−δ

(
fε(p− t− θ − c)

1− Fε(p− t− θ − c)

)
< −1

consequently, optimal p for θ+δ is less than p+δ which is equivalent to the fact that θ−p(θ)
is increasing.
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It is easy to see that the most important fact that I used in the proof is the log-concavity.
I cannot justify this assumption by some empirical evidence. On the other hand it is quite
common in auction theory and it seems to be not so restrictive, meaning that the class of
distributions that satisfies this property is quite large. Note that Proposition 2.2.3 justifies
Assumption 2, so now it is logical to restate it in the following way:

Assumption 2a: Assume that 1− Fε(·) is log-concave.

With these properties of pricing strategies I am ready to establish some properties of the
valuations of advertisers, that are given by the following equation:

ν(θ, k) = D(p(θ)− θ, k)p(θ) (10)

where D(p(θ) − θ, k) was defined in (8). Properties of the valuations are important for
determining the incentive of advertisers. The following Proposition describes some important
features of the valuations.

Proposition 2.2.4. In the symmetric model, under Assumption 1 and 2a, ν(θ, k) is decreas-
ing in k, increasing in θ and submodular in (k, θ).

Proof. The first two properties are obvious: the first one comes from Proposition 2.2.2, the
second one – from Proposition 2.2.3 and definition of D(p − θ, k). The only thing that I
actually need to prove is submodularity. First, note that by construction D(p(θ) − θ, k) is
differentiable in the first argument, consequently we have the following expression:

νθ(θ, k) = p′(θ)D(p(θ)− θ, k) + pD1(p(θ)− θ, k)(p′(θ)− 1)

To prove submodularity I need to show that νθ(θ, k) is decreasing in k. But this is actually
straightforward, since by Proposition 2.2.2 D(p(θ)−θ, k) is decreasing in k and D1(p(θ)−θ, k)
is increasing in k, by Proposition 2.2.3 p′(θ) is positive and p′(θ)−1 is negative. Consequently
the whole expression is decreasing in k and valuations are submodular.

Proposition 2.2.4 is very important. As I will show below, submodularity is just enough
to make mechanism design problem relatively easy and intuitive. Note that submodularity is
a consequence of two basics: properties of the pricing function and properties of the expected
demand. One important property that I haven’t mentioned yet but which is rather important
is the fact that νθ(θ, k) does not depend on the types of other firms. This fact is a consequence
of my simple search model: the only thing that user knows when she buys a good is the type
of the one particular ad. If we consider another search model then this fact might not be
true.

In the next subsection I consider the mechanism design problem. It will be more conve-
nient to introduce some additional notation that is common in sponsored search literature.
More specifically, I denote by αk – a click-through rate (CTR) of position k. Formally it is
equal to the following:

αk = P{k = arg max
l
{f(ε(l), l)}} = Eλj(k)

{
Pλ−j(k)

{εl ≤ g(ε, k, l) for each l 6= k}
}

(11)
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In words, CTR of k-th position is just a probability of click at this position. Observe that
in my model αk is decreasing in k – the usual property of the CTR-s. In most papers
on sponsored search this property (along with almost any other) is just assumed with the
reference that this is true in the real world. In the symmetric case I generated it (conditional
on Assumption 1 and 2a) as an equilibrium effect.

With this notation I can rewrite the valuations of advertisers in the following way:

ν(θ, k) = αkπ(θ, k) (12)

where π(θ, k) = ν(θ,k)
αk

. Function π(θ, k) is usually called a value-per-click. In the usual case

π(θ, k) is assumed to be independent from k (see Edelman et al. (2007),Varian (2007) etc).
Hence, any click at any position has the same expected value. In my case this is not true
and this comes from the fact that different users click at different positions.

Note that αk does not depend on θ. This is only logical because at the time of clicking
user cannot know θ. On the other hand, αk implicitly depends on j through tj which is
observable. But in this symmetric case all tj are equal, hence I can omit them. Another
interesting fact is that αk doesn’t depend on θ−j – the types of others. One can say that
there are no competition effects. This is an obvious consequence of my simple search model.

All these facts are pretty obvious but at the same time they are important. In practice
search engines are trying to forecast CTR-s and then it is important to understand what
structural properties this object has. My simple model indicates that position effects are
always there, while other effects, e.g. idiosyncratic effects and competition effects, come
from observable heterogeneity of advertisers (different tj) and from more sophisticated search
models (dependence on θ−j).

In practice functions π(θ, k) also divided into two parts:

π(θ, k) = γk(θ)p(θ) (13)

where γk(θ) is called conversion rate (CR) at k-th position. Conversion rate is a probability
of buying the good if user has already clicked at the position. So formally, it is equal to the
following:

γk(θ) =
Eλj(k)

{
Pλ−j(k)

{εl ≤ g(ε, k, l) for each l 6= k | ε}I{t+ ε > p(θ)− θ}
}

Eλj(k)
{
Pλ−j(k)

{εl ≤ g(ε, k, l) for each l 6= k}
} =

D(p(θ)− θ, k)

αk

Conversion rates are very important for search engines because they indicate how well their
advertising schemes work. Unfortunately (for search engines) these rates are not primary
observed and their forecasting is a practically relevant task.

With all this new notation I can express the valuations of advertisers in the following
form:

ν(θ, k) = αkγk(θ)p(θ) (14)

This way of presenting the valuations is quite common but might not be the most convenient
one. In the next subsection I will be using both this form and the usual one.
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2.2.3 Different number of positions

Analysis in the previous section was developed under two implicit assumptions. First, I
assumed that the total number of positions is equal to some K and this K is constant, second,
I assumed that consumers observe only sponsored links and nothing else. In this subsection
I derive some properties of valuations for different K-s and relax the second assumption.

One can expect that variation in K has two effects on users and consequently on adver-
tisers. First, decreasing the number of positions should have positive effect on CTR-s (α-s)
due to the fact that users have less options to select from. On the other hand, it can have
negative effect since the number of shown positions affects user’s beliefs. In what follows I
assume away the second effect.

Assumption 3: Users’ beliefs about θj(k) do not depend on the number of shown positions.

Assumption 3 is restrictive and simplifying but one can justify it in some way with the
following logic. In reality users do not know what kind of mechanism is used by the search
engine. They just believe that advertisers at higher positions are better on average. If users
have the same beliefs about competition when they observe different number of positions
then Assumption 3 is only logical. Actually, empirical analysis of this fact is quite interesting
and challenging.

Note that under Assumption 3 expected payoff function f(ε, k) defined in 7 does not
depend on K. Consequently, functions g(ε, k, l) are also the same. Expected demand, on the
other hand, depends on K this time:

D(p(θ)− θ, k,K) = Eλj(k)
{
Pλ−j(k)

{{εl ≤ g(ε, k, l)}l 6=k,l∈K | ε}I{t+ ε > p(θ)− θ}
}

(15)

where I (with a slight abuse of notation) use K for a set of positions. The following Propo-
sition is obvious but nevertheless is important.

Proposition 2.2.5. In symmetric model and under Assumption 2a and 3 D(p(θ)− θ, k,K)
is decreasing in K, D1(p(θ)− θ, k,K) is increasing in K and α(k,K) is decreasing in K.

Proof. The fact that D(p(θ)− θ, k,K) are decreasing is obvious – increase in K is equivalent
to additional restriction in definition of expected demand in (15) and CTR in (11).The fact
that D1(p(θ)− θ, k,K) is increasing in K is of similar nature (see Propositions 2.2.2).

The most important part of the Proposition is the fact that CTR-s are decreasing in K.
This fact is expected but it makes analysis of mechanisms rather complex. Notice that while
all CTR-s are decreasing in K, their sum remains the same and is equal to

∑
k∈K α(k,K) = 1.

This fact is a consequence of my modeling assumption. I assumed that users observe only
sponsored positions and have no search costs. With this assumption obviously all users
eventually click at some position.

Constant total CTR is not so important when the number of positions does not change.
When this is the case we can always normalize total CTR to unity, considering only users
who clicked at some position. When the number of positions is changing one cannot do
this. One can introduce dependence of the total CTR on K in the model in different ways.
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One obvious solution is to introduce search costs. It seems that this is not the best way to
approach the problem. Search costs should be taken into consideration if we assume more
complicated search model. On the other hand, there is a way to introduce dependence on K
in simple and intuitive way without any search costs. One just needs to introduce organic
links into the model.

One can introduce organic links in the same fashion as I did with sponsored links. The
only difference is the fact that these links are free. For consumers, however, there is no
difference. I assume that consumers have some beliefs about quality of the organic search.
In this case organic links are just equal to additional restriction in definition of expected
demand. On the other hand,

∑
k∈K α(k,K) is depends on K now. It is obvious that total

CTR of sponsored positions is increasing in K, while CTR of each ad is decreasing.

2.3 Efficient mechanism

In this subsection I consider the problem of the search engine that needs to design a proper
mechanism to discriminate between advertisers. Here I focus on the efficiency: I consider
the mechanism that maximizes the utility of all participants (both users and advertisers).
Usually users are not modeled explicitly so efficient mechanism is the one that generates the
greatest total revenue for advertisers (I call such mechanisms pseudo efficient). Here I model
the users, so their interests should be considered as well. In this section I assume that total
number of positions is exogenously given.16

In my model users have quasilinear preferences, zero search costs, and advertisers have
zero production costs. Consequently the only thing that matters is the total consumer surplus
of all users (everything else is just a transfer between users and advertisers).

The theoretical framework of most papers on sponsored search markets differs from my
approach.17 Most authors consider reduced form preferences of advertisers. In terms of the
Section 2.2.2 these preferences can be described as the following:

ν(θ, k) = αkπ(θ)

where π(·) is does not depend on k and αk are decreasing in k. Some authors (e.g. Börgers
et al. (2008)) consider another case where π(·) is increasing in k. All these preferences are
just particular examples of the valuations that come from my model.

The results of the most papers that analyze GSP and GE auctions can be briefly sum-
marized in the following way: GSP auction with complete information has a pseudo efficient
equilibrium and GE auction has equilibrium that is outcome equivalent to the aforementioned
GSP equilibrium (and consequently is pseudo-efficient).

In order to find efficient mechanism I use revelation principle and consider (at first)
direct mechanisms. In the direct mechanisms each participant (advertiser) just tells his type
to mechanism designer (search engine). Since I am working with the symmetric case the
only difference between firms are θ-s, so each firm j reports its θj (not necessarily truthfully).

16One can introduce different number of positions, but results here are trivial: the more links – the better.
In order to have some non-trivial connection between the number of positions and efficiency one needs to
introduce some adverse effects of advertising or consider more complicated search models.

17Notable exceptions are Gomes and Sweeney (2009), Athey and Ellison (2011), Chen and He (2006).
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Efficient mechanism should select and place K advertisers in such a way that it will maximize
total consumer surplus.

In order to find the efficient mechanism, I should describe the set of possible mechanisms.
Here I work only with the set of mechanisms S that I call simple order mechanisms. This is a
class of mechanisms that receives a vector ×j∈J(θj) maps it into an order on {θj}j∈J (so the
highest θ receive the highest number, the second one – the second and so on) and then work
only with this order. Simple order mechanisms do not depend on anything but the order of
θ-s. For example, one such mechanism selects advertisers with K highest θ-s and give the
first position to the highest one, the second to the next and so on. Another example selects
K highest θ-s and places them at random.

One can easily imagine a mechanism that does not belong to S. For example any auction
that has reserve price does not belong to S, because the fact that you receive the good
depends not only on the fact that you have the highest valuation but also on the level of this
valuation. A more sophisticated example is the following one: assume that search engine
has K slots for ads and divides it into the two groups: N special and K − N usual. The
mechanism works in the following way: it selects all firms with θj higher than some level θ?,
orders them and places the first N of them at special positions, while next N −K highest
occupy the usual positions; if the number of ads with θj higher than θ? is smaller than N
then not all special positions are occupied.

The just described mechanism is actually the one that is used in practice. For example,
Yandex has (roughly) two groups of positions: ”special placement” and ”guarantee”. These
groups differ in the placement at the search query page: ”special offereing” is just below the
search bar and ”guarantee” is to the right of the organic search links. In order to get into
special placement your bid should be high enough. Other engines, e.g., Google, have similar
rules.

Here I focus on mechanisms that belong to S primary for technical reasons. Set of this
mechanisms is quite simple and it is easy to find the best one. More complicated mechanisms
might be more efficient for the reasons that I describe below, but they are much harder to
analyze.

The following Proposition describes one particular efficient mechanism from S.

Proposition 2.3.1. The mechanism that selects firms with K highest reported θ-s and places
them into descending order is efficient in S

Proof. First, note that it is efficient to select firms with highest θ-s. This comes from the
fact that distribution of ε is the same for all j and the fact that θ − p(θ) is increasing in
θ, consequently there is no average gain from selecting firms with lower θ: total measure of
buyers shrinks and their utility decreases.

Next it is optimal to place firms in descending order (a firm with highest θ occupies the
first place and so on). To understand this fact, note that such ordering of the ads maxi-
mizes the amount of information that users have when they are making decisions. Formally,
such ordering provides the most finest information partition and any decision rules that are
measurable with respect to any other partitions are measurable with respect to this one.
Obviously, ascending order is not unique – any other non-random permutation has the same
properties. With better information users can make better decisions, consequently their ex
ante utility is the highest possible.
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The proof requires some comments. The first part is obviously true for any set of mech-
anisms not just S. The second one is more complicated. If there are no restrictions on the
number of positions then on can easily construct the mechanism that is better than any sim-
ple one. It works in the following way: you select K highest ads, place them in descending
order and if the first ad is good enough you show it on specific position that reflects this fact.
On the other hand, such construction is not absolutely correct because search engine shows
K positions but has K + 1 slots. One can construct then the mechanism with ”guarantee”
and ”special offering” described above. a priori it is not clear whether this mechanism is
better from informational point of view but it actually might be. On the other hand, there
is loss in efficiency since in some cases not all slots are occupied.

In practice, complicated mechanism with different sets of positions are justified by another
reasons: they generate more revenue. As the previous discussion indicates it is not a priori
clear whether there is a loss in efficiency in this case.18 On the other hand, Proposition 2.3.1
tells us that in S the efficiency problem has easy and intuitive solution.

Since we found how efficient mechanism should work what we need now is to find some
incentive compatible mechanism that implements efficient outcome. One obvious candidate
is a GSP auction since it works in some particular cases. But it turns out that GSP has
some restrictions that makes it efficient only in specific cases. Instead, consider the following
mechanism: each advertiser makes a bid, these bids are ordered, K highest are selected,
k-th advertiser pays the bid of (k + 1)-th advertiser. Scheme is the same as in GSP, the
only difference is that advertiser pays for show not for click. This might appear as a tiny
difference, but it is actually matters. To implement the mechanism I use a simple ascending
auction (Ascending auction). It works just in the same way as GE auction but with price
per position not per click. The following Proposition describes an equilibrium behavior in
Ascending auction.

Proposition 2.3.2. Assume that number of participants in the auction is N > K, then
under Assumptions 1 and 2a Ascending auction has an efficient equilibrium.

Proof. Consider the following strategy for player j:

β(p, k, θj) =

{
1, if ν(k, θj)− p > ν(k + 1, θj)− pk+1;

0, otherwise;
(16)

The strategy prescribes to stay active (”1”) if current price p for the position k is such that
surplus from this position is greater than the current outside option: surplus from getting
the position k+1 at the price pk+1 (already determined), and otherwise go out of the auction
(receiving k+1 position and determining the price for k position). Assuming that ties happen
with zero probability, such strategies uniquely determine all the prices and winners.

To show that this strategy is indeed an equilibrium assume that everybody except the
player j is following this strategy. The only thing that player j might change is the price at
which she exits. Assume that current prices and places are such that β(p, k, θj) = 1, then it is
clearly not optimal to exit, as the surplus of getting current position is larger than the value of
the current outside option. So, the only potential deviation is to wait and stay in the auction

18See Athey and Ellison (2011) for the discussion of the trade-off between optimality and efficiency.
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when β(p, k, θj) = 0. This, however, implies two things: (1) ν(k, θj)− ν(k+ 1, θj) ≤ p− pk+1

and (2) ν(k, θl) − ν(k + 1, θl) > p − pk+1 for all l 6= j that are currently active. These two
facts imply that ν(k, θj)−ν(k+1, θj) < ν(k, θl)−ν(k+1, θl) and by submodularity of ν(k, θ)
this implies that θj < θl for all l 6= j. Hence, bidder j has the least type among all currently
active bidders. This implies that in order to outbid any bidder for any higher position bidder
j should foregone some surplus (because, as everybody else are following their equilibrium
strategies, the prices for all higher positions will be such that it would be better for a bidder
to be outside of the game). Thus the K highest types win the auction and get K positions,
respectively. By Proposition 2.3.1 this outcome is efficient.

This proposition is important for two reasons: it describes the efficient mechanism and
justifies Assumption 1. Consequently I can state the following Corollary.

Corollary. Under assumption 2a there is a S-efficient mechanism that in equilibrium gener-
ates users’ beliefs from Assumption 1 and advertisers’ preferences from (10).

Proposition 2.3.2 and the Corollary effectively tells us that the whole story was consistent:
users have consistent beliefs and advertisers given these beliefs act as anticipated. On the
other hand, there is some value in Proposition 2.3.2 as it is, since it generalizes all the results
on the GSP auction for more general class of preferences – any submodular preferences.

The mechanism proposed above is quite good from theoretical point of view but in reality
its implementation has some problems. Obviously, advertisers are risk averse (at least to
some extent) and for them it is better to pay per click. So, it is only logical to ask when GE
auction can be used instead of Ascending auction. The following proposition describes the
sufficient conditions.

Proposition 2.3.3. Assume that γk(θ) is decreasing in k, then GE auction has an efficient
equilibrium.

Proof. The argument is quite straightforward. If average prices in Ascending auction increase
then GE auction has the same outcome and the same payments. From Proposition 2.3.2 we
can derive the following equalities for prices:

pk = pk+1 + αkγk(θk+1)p(θk+1)− αk+1γk+1(θk+1)p(θk+1) (17)

This equation and the fact that γk(θ) is increasing in k implies the following:

αkγk(θk+1)p(θk+1)− αk+1γk+1(θk+1)p(θk+1)

αk − αk+1

> γk+1(θk+1)p(θk+1) (18)

Now, for the last position we have the following expression:

pK
αK

<
αKγk(θk)p(θk)

αK
= γK(θK)p(θK) (19)

From (19) and (25) one can infer that average price is lower than marginal increase in price
for every position starting from K, consequently average prices increases. This fact implies
that equilibrium outcome in Ascending auction is the same as in GE auction.
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Proposition 2.3.3 is quite important since it provides sufficient conditions for AE auction
to be efficient. Note that for efficiency we need conversion rates be higher at higher positions
the fact that one can test empirically. My model does not place a priori restrictions on the
dependence of γk(θ) on k. It seems that in reality conversion rates on higher positions are
higher but this is just a speculation.

Proposition 2.3.3 can be reversed in the following way: if average prices in Ascending
auction decrease (for some positions), than there is no efficient equilibrium (in undominated
strategies) in Ascending auction. To see why it is true, consider any efficient equilibrium
of GE auction. This equilibrium naturally corresponds to efficient equilibrium of Ascending
auction. So, the point is, that the only efficient equilibrium in Ascending auction is the one
considered in Proposition 2.3.2. The following Proposition states this formally.

Proposition 2.3.4. Assume that conditions of Proposition 2.3.2 hold. Then there is a unique
ex-post equilibrium in undominated strategies in Ascending auction.19

Proof. Consider any efficient equilibrium of Ascending auction. Without loss of generality
assume that there are only K+1 bidders for K position. Consider the last position. While it
is traded each bidder should choose a price at which she exits the auction (thus defining the
price for the last position). Clearly, all exit prices that are less than ν(K, θj) are dominated
for bidder j: if she drops out before pj = ν(K, θj) she does not win anything but actually
might have won something. So, the exit price for K-th position is not less than in ex-post
equilibrium in Proposition 2.3.2. Now, proceed by induction: assume that pk+1 is not less than
p?k+1 – price in the ex-post equilibrium. It is clear then, that pk (for player j) should be greater
than or equal to ν(k, θj)− ν(k+ 1, θi) + pk+1 ≥ ν(k, θj)− ν(k+ 1, θj) + p?k+1 = p?k. The logic
is the same as before: exit at earlier prices is dominated. Hence, we get that all prices at this
equilibrium should be not lower than in the ex-post equilibrium. By Revenue Equivalence
they should be equal to the prices in ex-post equilibrium, otherwise proposed equilibrium
generates strictly higher revenue but allocates in the same way (we do not consider differences
on the subsets of types with zero measure).20

Corollary. If average prices in Ascending auction decreases than there is no efficient equilib-
rium in GE auction.

2.4 Discussion

In this section I have built a model of a market of sponsored links. In my model advertisers
have endogenous preferences over different positions generated by users’ endogenous beliefs.
The basic idea behind this whole construction is relatively simple: users just believe that those
advertisers who made their way to higher positions are somehow better and in equilibrium
this is indeed the fact.

The main contribution of this section can be divided into two parts. The first part is
developing a consistent framework for analysis of both advertisers and users. Existing models
differ greatly from the model presented here. In most of them users’ behavior is completely

19Up to zero-measure subsets of types.
20See, e.g., Williams (1999) for the statement of the Revenue Equivalence that I am using here.
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ignored and preferences of the advertisers are just given. The most developed framework
is presented in the article by Athey and Ellison (2011) but they focus on different things.
Their main contribution is a construction of the model with complicated consumer search and
analysis of this model, but their assumptions about producers’ behavior are very stylized.
Here I considered the simplest search model possible but instead endogenized producers’
preferences. I see this as an important development since it provides the rationale for existing
reduced form models of sponsored search auctions. Also, as I model explicitly both parts of
the market my framework can be used for a welfare analysis.

The second contribution is a development of Ascending auction and deriving its prop-
erties. These results generalize the works of Edelman et al. (2007) and Varian (2007) in
several aspects. First of all, here I consider more general setting and show that all results in
those papers hinges on two assumptions: submodularity of the valuation and constant val-
ues per click. While submodularity is indeed very important and guarantees simple efficient
allocations, constant values are not so important, meaning that one can use similar format
and allocate efficiently. Proposition 2.3.3 shows that GE auction works well when CR-s are
increasing but otherwise might fail. In this case the failure is drastic as there is no efficient
equilibrium in GE auction.

Idea to use submodularity in context of sponsored search auctions is not brand new.
Independently, Börgers et al. (2008) proposed the similar conditions. In the paper authors
assumed submodularity of ν(k, θ) and increasing CR-s, although, they used different notation.
One of the results of these papers corresponds to my Propositions 2.3.2 and 2.3.3 for GE
auctions. In their work Börgers et al. (2008) considered GSP with complete information and
showed that it has the same type of equilibrium as the usual model. In their paper Börgers
et al. (2008) underline the fact that increasing values per click assumption is quite restrictive
but did not do anything about it. My results can be seen as (independent) generalization of
these works: first of all, I considered more general case and, secondly, I show that the role of
increasing values is quite crucial, next, I proposed a useful and intuitive auction format.

One can generalize my model in several ways. Firstly, I have described only symmetric
case, while in reality it is clear that most auctions are asymmetric. Secondly, one can in-
troduce more complicated search into the model. This will generate several new effects. On
the other hand analysis of such models might be quite complicated and probably one should
assume particular functional forms in order to get some non-trivial results.

3 Optimal mechanism

3.1 Motivation

In this section I derive some properties of the efficient mechanism. This question already
received some attention in the work of Edelman and Schwarz (2010) where authors show
that GE auction with reserve price is optimal in the class of all mechanisms which allocate
one position to one bidder. Their analysis is, however, severely limited. The main problem
with optimal auctions in context of sponsored links is the fact that changes in design affect
preferences of advertisers. The most important effect comes from the following fact: different
mechanisms generate different number of positions in equiibrium. For example, GE auction
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with reserve price might result in different number of positions, depending on the types
of participants. On the other hand, different number of positions in equilibrium generate
different preferences of the firms as I noted in Section 2.2.3.

Unfortunately complete equilibrium analysis of optimal mechanism is very complicated
and requires very special properties of distributions, etc. Instead I proceed in the following
fashion: I take some properties of advertisers’ valuations derived in previous sections and
then derive some properties of optimal mechanism. In some places I assume purely ad hoc
properties of valuations that cannot be generated by the previous model.

I see the results of this section as a preliminary study of optimal mechanism. In what
follows I highlight several essential features that are the most important for the analysis. I
believe that careful analysis of these features and their incorporations into the framework
can be interesting and challenging area of further research.

3.2 Properties of optimal mechanism

In this section I build on the results of Section 2.2 and assume that advertisers’ valuations have
the following properties: ν(θ, k,K) is submodular in (θ, k), increasing in θ and decreasing in
k. I assume that θi is distributed according to the cumulative distribution function G(·) with
support [a, b]. I also assume that maximal number of positions is equal to some exogenous
K̄.

I begin with a usual notation. I consider direct mechanisms, so I ask bidders for their
types. Define by θ̂ = (θ̂1, . . . , θ̂n) the vector of reported types. Define by Qi(θ̂, k,K) prob-
ability that player i get position k while the total number of positions is equal to K, given
vector of reported types. Define by Mi(θ̂) the payment of firm i given vector of all reports.

Denote by qi(θ̂i, k,K) = Eθ−i

{
Qi(θ−i, θ̂i, k,K)

}
– expected probability that advertiser i get

the position k and the total number will be K, given that everybody reports his types truth-

fully and agent i reports θ̂i. Denote by mi(θ̂i) = Eθ−i

{
Mi(θ−i, θ̂i)

}
– expected payment of

agent i given his report. Now, denote by ν̄i(θi, θ̂i) = Eq(θ̂i,·,·) {ν(θi, k,K)} – expected gain of
the firm i from the mechanism. Then expected payoff of agent i looks like the following:

vi(θi, θ̂i) = ν̄(θi, θ̂i)−mi(θ̂i) (20)

With utility given by equation (20), IC constraints can be expressed in the following way:
(1) ν̄i(θi, θ̂i) is supermodular and (2)

vi(θi, K) = vi(θi, θi, K) = max
θ̂i

{vi(θi, θ̂i)} = vi(0) +

θi∫
a

ν̄1(τ, τ) dτ

where ν̄1(·) is a partial derivative with respect to the first argument. Conditions (1) and
(2) are well known in mechanism design literature: the first condition asks for some sort
of monotonicity, while the second one comes from the envelope theorem21 Using the second

21For careful discussion of these conditions see Milgrom (2004), Chapters 3 and 4.
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condition I can express expected payment in the following form (assuming that expected gain
of the firm of the type a is equal to zero):

mi(θi) = mi(a) + ν̄(θi, θi)−
θi∫
a

ν̄1(τ, τ) dτ (21)

From (21) one can construct the following representation of the expected revenue (all
mi(a) are set to zero):

ER = Eθ

{
K̄∑
K=0

Q(θ,K)
N∑
i=1

K∑
k=1

Qi(θ, k | K)

{
ν(θi, k,K)− v1(θi, k,K)

1−G(θi)

g(θi)

}}
(22)

where Q(θ,K) is probability that the total number of positions will be equal to K given
reports while Qi(θ, k | K) is a conditional probability that the firm i get position k given
reports, when the total number of positions is equal to K. Obvious restrictions on these
probabilities are the following:

K̄∑
K=0

Q(θ,K) = 1 (23)

K∑
k=1

Qi(θ, k | K) ≤ 1 (24)

N∑
i=1

K∑
k=1

Qi(θ, k | K) = K (25)

Optimal mechanism design problem then looks in the following way:{
(22)→ max

s.t.: (23)-(25) and IC constraints
(26)

Problem (26) appears to be rather complicated. In order to simplify analysis I make
several purely technical assumptions.

Assumption 4: Assume that function r(θi, k,K) = ν(θi, k,K)− ν1(θi, k,K)1−G(θi)
g(θi)

is sub-

modular in (θi, k) and is increasing in θ.

Assumption 4 plays the same role as regularity condition in the usual mechanism design prob-
lem. With this assumption at hand we can have the following first part of the characterization
of the optimal mechanism.

Proposition 3.2.1. Under Assumption 4 optimal deterministic mechanism has the following
property: Qi(θ, k | K) = I{θi 6= θk},where θk is the k-th highest among all θ-s.

Proof. Result is the direct consequence of the submodularity of r(θi, k,K).
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Proposition 3.2.1 is the first step for characterization of optimal mechanism. In a sense
it says that given that the number of positions has been already decided it is optimal to give
these positions with respect to the order of the types. This fact is intuitive and anticipated.
It corresponds to the regular case in the usual optimal mechanism.

If we assume that CTR-s do not depend on the total number of positions, then Proposition
3.2.1 almost characterizes the optimal mechanism. The only thing one should control for is
the fact that r(θi, k,K) are positive. This can be done with optimally chosen reserve price.
This is actually the result that one can find in Edelman and Schwarz (2010) (actually it is a
slight generalization). However, in reality if we change the number of positions CTR-s also
change.

Unfortunately I cannot solve Problem (26 )in general and even under severe assumptions.
The main obstacle is the fact that optimal K(θ) is quite a complicated function. My next
result highlights new properties of the optimal mechanism under new technical assumption.

Assumption 5: Assume that ν(θ, k,K) = α(k,K)π(θ, k).

Assumption 5 says that the only difference that we have from different number of positions
comes from difference in CTR-s, while values per click are not affected. This is not true in
my model, since values per click actually depend on K. However, in practice this might be
quite a reasonable assumption. Given this new condition I can derive another property of
optimal auction.

Proposition 3.2.2. Under Assumptions 4 and 5 optimal auction has the following property:

if π(θk, k)− π1(θk, k)1−G(θk)
g(θk)

< 0 then K? < k.

Proof. First note that r(θi, k,K) = α(k,K)
(
π(θ, k)− π1(θ, k)1−G(θ)

g(θ

)
and the second mul-

tiplier does not depend on K. From Proposition 3.2.1 we know that positions should be
allocated with respect to order on θ-s. Moreover, since r(θ, k,K) is increasing in θ and is
submodular in (θ, k) due to Assumption 4 we know that r(θk, k,K) is decreasing in k. From
Proposition 2.2.3 we know that α(k,K) is decreasing in K. Consequently, if for some k we

have that π(θk, k)−π1(θk, k)1−G(θk)
g(θk)

< 0 then we have the same inequality for all (θj, j), j > k
and consequently it is optimal to have less than k positions since decrease in the number of
positions increases α-s of those who receive positions and by constructions this has positive
effect on the total revenue.

Proposition 3.2.2 does not completely characterize optimal auction. It just says that it
is not optimal to give positions to firms with negative r(θ, k,K) since under Assumption 5
sign of r(θ, k,K) does not depend on K. Without further assumptions I cannot go beyond
Propositions 3.2.1 and 3.2.2. However, under one additional assumption optimal mechanism
can be characterized.

Assumption 6: Assume that π(θ, k) − π1(θ, k)1−G(θ)
g(θ)

is submodular in (θ, k). Further as-

sume that
∑K

k=1 α(k,K) = c, where c does not depend on K.
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Proposition 3.2.3. Under Assumptions 3-6 it is optimal to sell at most one price and
optimal mechanism can be implemented via second price auction with reserve price.

Proof. By Proposition 3.2.1 we know that it is optimal to allocate positions with respect to

other on θ-s. From Assumption 6 one can infer that π(θk, k)− π1(θk, k)1−G(θk)
g(θk)

is decreasing

in k (consequence of submodularity and monotonicity). If we normalize all CTR-s by c,

we get that the sum R(K) =
∑K

k=1
α(k,K)

c

(
π(θk, k)− π1(θk, k)1−G(θk)

g(θk)

)
can be interpreted

as expectation of π(θk, k) − π1(θk, k)1−G(θk)
g(θk)

under measure α(k,K)
c

. By Proposition 2.2.3

the measure {α(k,K)}Kk=1 is FOSD (with respect to reversed order on k) by the measure

{α(k,K − 1)}K−1
k=1 , and since π(θk, k)− π1(θk, k)1−G(θk)

g(θk)
is decreasing in k we get that R(K)

is decreasing in K. Consequently it is optimal to sell only one position and this is equivalent
to selling one good. Optimal mechanism in this case can be implemented via second price
auction with reserve price (Myerson (1981)).

Proposition 3.2.3 is rather striking since it tells us that there is no gain in selling more
positions than just one. Obviously this result is completely driven by Assumption 6. Note
that the first part of the Assumption is satisfied in the case when π(θ, k) does not depend on
k – the case that was analyzed before in the literature. On the other hand, the second part
of the Assumption is the most important. Note that it is generated by my symmetric model,
where

∑K
k=1 α(k,K) = 1 for all K. This is obviously driven completely by construction of

the model.
I see Proposition 3.2.3 as an interesting result that indicates the property of the model

that is crucial for optimality – dependence of
∑K

k=1 α(k,K) on K. One can introduce this
dependence in the model via different mechanisms. One obvious solution is introduction of
search costs. It seems that this is not the best way to approach the problem. Search costs
should be taken into consideration if we assume more complicated search model. On the other
hand, there is a way to introduce dependence on K in simple and intuitive way without any
search costs. One just need to introduce organic links into the model. With organic search
links we can generate two effects that are observed in practice: CTR-s decrease in K but
total CTR of the sponsored links is increasing.

Results of this section can be considered as some preliminary results on the optimal design
problem. It appears that previous analysis from Edelman and Schwarz (2010) is incomplete
and results from this Section indicates the main features one should focus on in order to find
optimal mechanism in general case. One important lesson one can draw from my analysis is
the fact that optimal mechanism is quite complicated and has little to do with conventional
auction formats.

4 Conclusion

In this paper I developed a new framework for analysis of markets of sponsored links. This
framework incorporates both advertisers and users. In equilibrium this model generates
preferences of advertisers that are similar to those considered by other authors. Also I
introduced simple Ascending auction that generates efficient allocation in equilibrium. Using
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this new format I derived some new properties of GE auctions. I also considered problem of
optimal mechanism design and found several properties of optimal mechanism.

My analysis indicates several possible aspects of further research. It seems that one can
introduce more complicated search model a la Athey and Ellison (2011) into my framework.
Another possible generalization is introduction of asymmetry beyond advertisers. This will
generate several additional complications but it seems that in principle it can be done.

Another possible line of research considers the problem of optimal design. As I show in
the text this problem is not so easy that was previously believed and its complicatedness
comes from purely equilibrium effects. It is important to emphasize that previous reduced
form models a la Edelman et al. (2007) cannot deal with optimal design problem since in
order to analyze it one needs to model users’ behavior.
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