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1 Abstract. The problem statement

The problem of dynamic joint distribution estimation is very important from both the-

oretical and practical points of view: econometricians would be interested in developing

new techniques and approaches to model dynamic joint distributions, whereas practi-

tioners (especially, risk and asset managers) would be interested in obtaining dynamic

distributions for computing risk measures and making optimal portfolio choices. This

paper uses the principles that are similar to Engle’s (2009) approach of estimating a

vast-dimensional DCC model by merging estimates of pairwise models and introduces a

new sequential methodology for dynamic joint distributions modeling based on combin-

ing small-dimensional distributions into higher-dimensional ones through compounding

and aggregating functions. The new proposition uses marginal and bivariate distri-

butions as inputs, combines them to capture the dependence between one marginal

and one bivariate, and then aggregates all of the dependencies to obtain trivariate dis-

tributions. Higher-dimensional distributions are built in a similar manner from one-

dimension-smaller distributions and univariate ones through compounding and then ag-

gregating them into a single distribution. Additionally, the paper demonstrates how to

apply this new sequential technique to model five-dimensional distribution of five DJIA

constituents (as of June 8, 2009). Two different types of compounding functions are con-

sidered. Kolmogorov-Smirnov goodness-of-fit tests are conducted. Moreover, the paper

compares this new methodology to copula-type modeling of distributions based on single

five-dimensional time-varying t-copula.

2 Introduction. A brief literature review

The studies of the last two decades show that log-returns of stocks are non-normally

distributed and their distribution experience fat tails and skewness (for example, a com-

prehensive analysis of the properties of financial data is given by Rydberg, 2000). Boller-

slev (1987) was first to demonstrate the advantage of combining GARCH models with

Student’s t-Distribution of innovations to take into account heavy tails. In particular,

GARCH models with normal errors do exhibit unconditional excess kurtosis, however it
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is not large enough to explain most financial time series, and errors distributed accord-

ing to Student’s t-Distribution or Generalized Error Distribution (GED) typically resolve

the problem. However, these approaches do not capture the distribution asymmetry that

may appear in financial time series.

A useful method of addressing the asymmetry of financial returns is introducing

skewness into the well-known distributions. Hansen (1994) was first to use a Skewed

Student’s t-Distribution for modeling GARCH innovations in financial time series. His

approach is based on rescaling the distribution separately on the left and on the right from

the threshold selected in a way to make the expectation to be zero. Fernández and Steel

(1998) propose a similar method of introducing skewness to a symmetric distribution

by explicit scale changing of the negative and positive its parts. Gallant and Tauchen

(1989) use Gram-Charlier series expansion to describe the deviations from normality

of errors in a GARCH model, introducing skewness and excess kurtosis. Theodossiou

(2000) derives Skewed GED distribution. It also accounts for leptokurtosis and skewness,

however like many skewed distributions it is obtained by considering two parts of the

symmetric distribution separately, and hence, lacks smoothness. Azzalini and Capitanio

(2003) generalize Student’s t-Distribution in order to take into account the asymmetry.

This approach incorporates both the advantage of using t-Distribution for modeling fat

tails and the benefit of allowing for distribution skewness. Their proposal has superiority

in the fact that it does not separate negative and positive parts of a distribution and

does not restrain the smoothness property of the density.

In addition, Engle and Ng (1993) propose Nonlinear Asymmetric GARCH model

(NAGARCH) for taking into account the leverage effect, which is usually observed on the

stock markets: negative returns increase future volatility by a larger amount than positive

ones of the same magnitude. NAGARCH specification implies introducing asymmetry

not in the distribution of innovations, but in the standard GARCH model specification

in order to reflect the leverage effect.

To model bivariate joint distributions, copulas are applied as proposed by Sklar

(1959). According to his theorem, any multivariate distribution can be decomposed

to marginal distributions and the function called copula that describes the dependence
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between them. A straightforward extension of Sklar’s (1959) theorem to conditional

joint distributions is provided by Patton (2006). This theorem is successfully applied

to the time-varying multivariate series. The main advantage of this approach is the

fact that one can separately describe marginal distributions taking into account their

specific features and the dependence structure between them. The most popular copulas

are Gaussian copula, Student’s t-copula, and the class of Archimedean copulas (see a

detailed survey by Nelsen, 2006). Ausin and Lopes (2010) suggest using t-copula instead

of normal one, because normal copula implies that there is no interdependence in the

tails of the distribution and t-copula is able to capture that dependence.

The main value of this paper is the introduction of a new sequential methodology

for dynamic joint distributions modeling based on combining small-dimensional distribu-

tions into higher-dimensional ones by compounding and aggregating functions. This idea

uses the principles that are similar to the Engle’s (2009) proposition of estimating vast

dimensional Dynamic Conditional Correlation (DCC) model through merging the esti-

mates of pairwise models. However, the problem of modeling joint distributions is much

more complex one, because it takes into account not only the first two moments (like

GARCH or DCC model) of the joint distribution, but the whole distribution that incor-

porates all of the moments. Similar to Engle (2009), on each step of the high-dimensional

distribution estimation procedure the new sequential method allows operating only with

two objects: a marginal distribution and a one-dimension-smaller distribution. So, the

number of parameters used in optimization problem on each compounding step is the

same across all dimensions, but the number of parameters that is obtained after aggre-

gating these estimated compounding functions is rather large to ensure the flexibility of

the parametric form of the model. Whereas, this number in the standard approaches

usually either grows as O(k2) with increasing dimension k (as they may contain correla-

tion matrix as a parameter) and the estimation is computationally very difficult (or even

impossible), or remains constant for all dimensions, and hence, the parametric model is

too restrictive.

To perform the first two steps of the new methodology and estimate its basic blocks,

this paper combines the advantages of the approaches described above for estimation of
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marginal distributions and bivariate copulas. It uses Skew t-Distribution proposed by

Azzalini and Capitanio (2003) for innovations in a NAGARCH (Engle and Ng, 1993)

structure for modeling marginal distributions of several DJIA-constituents. Besides this,

it applies time-varying t-copula suggested by Ausin and Lopes (2010) for modeling dy-

namic joint distribution of the stocks’ log-returns.

For implementing the subsequent steps of the new methodology, (1) asymmetrized

time-varying t-copula and (2) asymmetrized time-varying Clayton-copula are used as the

compounding functions and compared to each other. Arithmetic mean is used as the

aggregating function as it is proved to be the best one among all considered forms.

Goodness-of-fit tests based on Diebold et al. (1998) and Breymann et al. (2003)

are conducted to assess the approach for the estimation of both marginals and joint

distributions.

To sum up this section, the new sequential approach allows for dynamic modeling of

the joint distributions of a number of stocks’ log-returns. This means that the whole joint

behavior of the log-returns is obtained, rather than just a few moments of the distribution

are modeled (as it is done in most of the papers on financial time series modeling).

Moreover, this new sequential approach makes it possible to model joint distributions

for vast dimensional cases, because it splits a single huge problem into smaller ones and

solves them sequentially, and hence, makes the whole problem computationally feasible.

Probably, a lot of financial institutions (hedge funds, brokers, banks, investment banks

and many others) would be interested in such attractive procedure because they have a

lot of open positions in a very huge number of assets. Modeling the whole distribution

allows computing not only values at risk, variances and other simple risk measures, but

also a lot of complex ones, such as expected shortfalls, that may depend not only on the

first few moments of the distribution, but on the whole distribution itself. Additionally,

it allows making complex portfolio choices that are based not only on the variance

minimization criteria, but also on some more complicated ones, that takes into account

higher moments of the joint distribution or even the whole distribution.

The paper is organized as follows. Part 3 briefly outlines Engle’s (2009) approach.

Part 4 describes the new proposal for dynamic joint distributions modeling based on
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transition from small-dimensional distributions to higher-dimensional ones. Part 5 de-

scribes models used for the estimation of marginal distributions and joint distributions:

the concept of Skew t-Distribution is introduced, GARCH structure for marginals is de-

fined, t-copula along with likelihood function for the estimation is given. Additionally,

the two parametric forms for compounding functions are described. Part 6 shows the

application of the new sequential technique to five DJIA-constituents and provides with

the goodness-of-fit tests for both the marginal distributions and the joint distributions,

comparing the new methodology to the standard single-copula based approach. Part 7

outlines further research directions and part 8 concludes.

3 Engle’s (2009) approach

Engle (2009) is interested in measuring risk in a highly multivariate framework. In

particular, in order to forecast vast-dimensional correlation matrices he uses a simple

multivariate GARCH model proposed by Engle (2002) and called Dynamic Conditional

Correlation (DCC). The model is used in a standard framework of conditionally normal

returns:

rt|Ft−1 ∼ N(0, Ht),

Ht := DtRtDt,

Dt := diag
��

hit

�
,

where rt is a vector of time t returns, Ht and Rt are respectively its conditional covariance

and correlation matrices, Ft−1 denotes information available at time t − 1, and hit is

conditional variance of an individual return. Define εt := D−1
t rt. Hence, ignoring some

constants the log-likelihood function can be expressed as

L = − 1

2T

T�

t=1

�
log | Ht | +r�tH

−1
t rt

�
(3.1)

= − 1

2T

T�

t=1

�
2 log | Dt | +r�tD

−2
t rt

�
− 1

2T

T�

t=1

�
2 log | Rt | +ε�tR

−2
t εt

�
+

1

2T

T�

t=1

ε�tεt.
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The first step of Engle’s (2009) approach implies estimation of standard univariate

GARCH(Pi, Qi) model for each individual asset:

hit = ωi +
Pi�

p=1

αipr
2
it−p +

Qi�

q=1

βiqhi,t−q.

Hence, the DCC model could be written as follows:

Qt = (1−
M�

m=1

αm −
N�

n=1

βn)Q+
M�

m=1

αmεt−mε
�
t−m +

N�

n=1

βnQt−n,

Rt = Q∗−1
t QtQ

∗−1
t , Q∗

t = diag (
√
qiit) ,

where Q can be estimated as 1
T

T�
t=1

εtε�t.

The second step of Engle’s (2009) approach is the pairwise estimation of the DCC

model, imposing the following dynamics on the conditional covariance of the assets i and

j (here the case of M = N = 1 is considered):

qijt = (1− α− β)Rij + αεit−1εjt−1 + βqij,t−1,

where the Rij’s are the elements of the matrix R, which can be estimated as R =

1
T

T�
t=1

εtε�t. To estimate the model, Engle (2009) suggest a method of approximate log-

likelihood maximization of (3.1) by maximizing separately the first sum by volatility

parameters and the second sum by the correlation parameters. Hence, the log-likelihood

function for this pair become:

Lij = −
�

t

�
log(1− ρ2ijt) +

ε2it + ε2jt − 2ρijtεitεjt
1− ρ2ijt

�
,

ρijt :=
qijt√
qiitqjjt

.

After maximizing log-likelihood parameters for each pair, one will obtain a set of

estimated parameters
�
�θij

�
, where �θij =

�
�αij, �βij

�
. Engle (2009) suggests to aggregate

it using so-called blend function:
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�θ = b(�θ12, �θ13, . . . , �θk−1k),

b(θ, θ, . . . , θ) = θ ∀θ ∈ Θ.

The corresponding estimate is called MacGyver estimator. Engle (2009) shows that a

componentwise median as a blend function seems to be the most appropriate one among

the functions he considered.

Additionally, Engle et al. (2008) propose a similar method of estimating vast di-

mensional conditional correlations. The method combines pairwise log-likelihoods into

the composite log-likelihood function. As a part of the proposal, they suggest using not

all pairs of the assets in the composite log-likelihood, but contiguous pairs or even a

certain number of random pairs, if extremely high computational efficiency is required.

They demonstrate that the efficiency loss of considering a fixed number of random pairs

instead of all pairs can be extremely small, and the computational time benefit is very

large.

4 New sequential approach

Engle (2009) proposes the method of estimating vast dimensional DCC model through

merging the estimates of pairwise models. This paper applies the same principles for

more complicated problem of dynamic joint distributions modeling and suggests combin-

ing small-dimensional distributions into higher-dimensional ones by compounding and

aggregating functions. The methodology uses the estimates of marginal distributions

and that of bivariate copulas as building blocks, and hence, the first two steps of it are

in choosing appropriate models for them. The essence of the new sequential approach is

described below.

4.1 Algorithm

The basic idea of the whole methodology can be described in the following sequence of

steps:

1. estimate the marginal distributions, for example, by Skew-t-NAGARCH model
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proposed in this paper below (log-returns of the DJIA-constituents and Russian

stocks are proved to be fitted well by this model) or by some non-parametric

estimators to improve the fit:

�F1, �F2, . . . , �FK ;

2. transit from the estimates of the univariate distributions to bivariate ones by esti-

mating them for all pairs of the stocks, for example, through copula-based approach

(time-varying t-copula considered in this paper proved to be an appropriate one

for modeling joint distributions of DJIA-constituents):

�F12, �F13. . . . , �F1K , �F23, . . . , �FK−1,K ;

3. derive trivariate distributions for all groups of three stocks using the following

formula:

�Fijk =
�C(3)

�
�Fi, �Fjk; �θijk

�
+ �C(3)

�
�Fj, �Fik; �θjik

�
+ �C(3)

�
�Fk, �Fij; �θkij

�

3
,

where �Fijk is the distribution function of interest, �Fi and �Fjk are the distribution

functions estimated from the first and the second steps respectively, �C(3)
�
�Fi, �Fjk; �θijk

�

is a parametrized “distribution” function that captures the dependence between an

ith stock and a pair of (jth, kth) stocks (this paper considers two specifications for

this function: (1) asymmetrized time-varying t-copula and (2) asymmetrized time-

varying Clayton-copula), and �θijk is the set of unknown parameters that should be

estimated;

4. similarly, estimate the m-dimensional distribution functions for all groups of m

stocks: ∀i1 < i2 < . . . < im,

�Fi1,i2,...,im =

m�
l=1

�C(m)
�
�Fl, �Fi1,...,l−1,l+1,...,im ; �θl,i1,...,l−1,l+1,...,im

�

m
;
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5. finally, the joint distribution for all K stocks:

�F1,2,...,K =

K�
l=1

�C(K)
�
�Fl, �F1,...,l−1,l+1,...,K ; �θl,1,...,l−1,l+1,...,K

�

K
. (4.1)

4.2 Discussion

This section provides motivation behind compounding and aggregating functions and

makes some notes on flexibility of the methodology and possible computational improve-

ments.

Naturally, the intuition for the third step of the procedure is the following: similar to

Engle’s (2009) pairwise consideration, compounding functions �C(3)
�
�Fi, �Fjk; �θijk

�
capture

the dependence of a pair (an ith stock and a pair of (jth, kth) stocks), whereas similar

to Engle’s (2009) blend function, the aggregation merges three estimated compounding

functions for the three stocks into a single estimate of their trivariate distribution func-

tion. Note, arithmetic mean as an aggregating function is used in this paper because it

is proved to be the best among considered ones, however, some other functions can be

considered.

Alternatively, for m-dimensional case the following intuition for compounding and

aggregating functions can be provided: �C(m) can not capture “all of the dependence”

between every stock (like Engle’s (2009) pairwise estimation can not take into account

all influence of all assets on its first step), however, it tries to capture the dependence

between a stock and a group of stocks. After applying these functions, aggregation is

conducted in order to capture “all of the dependence” (similar to Engle’s (2009) blend

function that merges pairwise estimates in the single one), and may be, in some sense

aggregate out the error (like taking mean of several estimates in order to integrate out

the error).

Again, as it was stated in the introduction, on each step of the high-dimensional dis-

tribution estimation procedure the new methodology operates only with two objects: a

marginal distribution and a one-dimension-smaller distribution. This allows the number

of parameters used in each optimization problem on each step of compounding function

estimation to be the same across all dimensions, but overall number of parameters that
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is obtained after aggregating these estimated compounding functions is rather large to

ensure the sufficient flexibility of the parametric form of the model. As for the standard

single-copula approaches, this number is usually either grows as O(k2) with increasing

dimension k and the estimation becomes computationally very difficult, or remains con-

stant across all dimensions, and hence, the parametric model for distribution estimation

is too restrictive (additionally, see Section 6.5.1 for discussion on number of parameters

while using the new sequential approach and the standard one).

Additional notes:

• the aggregation function can be selected different from the arithmetic mean (this

requires further research) and it may even include some parameters in order to be

more flexible;

• for reducing computational costs one can use the approach similar to one of the

approaches by Engle et al. (2008), and if the number of stocks is very large,

consider choosing pairs, triples, etc. randomly, instead of considering all of them

in the aggregating functions.

This section has demonstrated the ideas of the new sequential approach for joint dis-

tributions modeling. It seems to be a reasonable instrument to make the estimation of

vast dimensional joint distributions feasible and sufficiently flexible. The next section

proposes models for the entities that have been considered in this section.

5 The models

In this section the basic model capturing heavy tails and skewness in marginal distri-

butions along with the models for bivariate copulas and for compounding functions is

described. First of all, the Skew t-Distribution used for innovations is described. Then,

the model for marginal distributions with NAGARCH structure is shown. After that,

the t-copula model is demonstrated. And finally, the two specifications for compounding

functions based on asymmetrized time-varying t-copula and Clayton-copula are consid-

ered.
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5.1 Skew t-Distribution

Azzalini and Capitanio (2003) propose one of the possible generalizations of Student’s

t-Distribution. It is able to capture fat tails and skewness observed in the marginal

distributions of financial data. Another advantage of their generalization is the fact that

their transformation does not restrain the smoothness of the density function obtained,

which is useful for quasi-maximum likelihood optimization problem. Here is the proposed

p.d.f. of Skew t-Distribution for univariate case:

fY (y) = 2 tν(y)Tν+1

�
γ
y − ξ

ω

�
ν + 1

ν +Qy

�1/2
�
,

where

Qy =

�
y − ξ

ω

�2

,

tν(y) =
Γ((ν + 1)/2)

ω (πν)1/2Γ(ν/2)
(1 +Qy/ν)

−(ν+1)/2 ,

and Tν+1(x) denotes the c.d.f. of standard t-distribution with ν + 1 degrees of freedom.

The parameter γ reflects the skewness of the distribution. Denote later

Y ∼ St1(ξ, ω, γ, ν).

It is worth displaying here the first three moments of the distribution when ξ = 0

(Azzalini and Capitanio, 2003):

µ :=
γ�

1 + γ2

�ν
π

�1/2 Γ((ν − 1)/2)

Γ(ν/2)
,

E(Y ) = ω µ, (5.1)

E(Y 2) = σ2 = ω2 ν

ν − 2
, (5.2)

E(Y 3) = λ = ω3µ
3 + 2γ2

1 + γ2

ν

ν − 3
.

The last equation indicates that varying γ one can vary skewness of the distribution.

One can see, however, that the first moment of Y is different from 0 and its sec-

ond central moment is not equal to 1. It is useful to define the standardized Skew
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t-Distribution by adjusting for zero expectation and unit variance through setting ξ and

ω in the following way:

ω =

�
ν

ν − 2
− µ2

�−1/2

,

ξ = −ω µ.

Denote below the standardized Skew t-Distribution as St (γ, ν). Additionally, assume

now that the following data sample of log-returns is available: {yt = {yit}pi=1}
T
t=1, where

yit is the individual log-return of the ith stock at the time moment t, p is the total number

of stocks, and T is the length of the data sample.

5.2 Marginal distributions

The standard NAGARCH structure is imposed and the following model for marginal

distributions is proposed:

yit = µi +
�
hitεit, εit ∼ i.i.d. St(γi, νi),

hit = ωi + αi

�
{yi,t−1 − µi}+ κi

�
hi,t−1

�2
+ βihi,t−1,

where i denotes the number of an asset, yit’s are log-returns of the asset, hit’s are the

conditional variances of yit’s, and (µi, γi, νi, ωi, αi, βi, κi) is the set of parameters. It is

worth noting here that the parameter κi reflects the leverage effect and is expected to

be negative.

Using this structure one can derive the conditional distribution of yit:

Fi (yit|hit) = F St
γi,νi

�
yit − µi

h1/2
it

�
,

where F St
γi,νi denotes the distribution function of the standardized Skew t-Distribution

St (γi, νi).

The log-likelihood function for estimation of each of the marginal distributions will

have the following form:
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lnLi =
T�

t=2

�
ln fSt

γi,νi

�
yit − µi

h1/2
it

�
− 1

2
lnhit

�
.

Note, that it is assumed that the univariate data follows the process defined in this

subsection and the goodness-of-fit tests below do not reject the hypothesis that the data

do follow this process.

5.3 The t-copula

The model for copula is modified from the basic one of Ausin and Lopes (2010) and is

assumed to be the following one:

Cη,R (u1, . . . , up) =

T−1
η (u1)ˆ
−∞

· · ·
T−1
η (up)ˆ
−∞

Γ
�
η+p
2

� �
1 + v�R−1v

η−2

�− η+p
2

Γ
�
η
2

��
(π(η − 2))p |R|

dv,

where T−1
η (·) is the inverse of the c.d.f. of the standardized Student’s t-Distribution,

η is its degrees of freedom and R is correlation matrix. Denote the expression under

the integral as fη,R (u). It is the p.d.f. of the standardized multivariate Student’s t-

Distribution.

Following Ausin and Lopes (2010) the dynamics of the correlation matrix R is as-

sumed to be the following one:

Rt = (1− a− b)R + aΨt−1 + bRt−1,

where a ≥ 0, b ≥ 0, a+ b ≤ 1, R is positive definite constant matrix with unit diagonal,

and Ψt−1 is a matrix with the following elements:

Ψij,t−1 =

�m
h=1 xit−hxjt−h��m

h=1 x
2
it−h

�m
h=1 x

2
jt−h

,

xit = T−1
η

�
F St
γi,νi

�
yit − µi

h1/2
it

��
.

The advantage of such defined Rt lies in the fact that this form of matrix is positive

definite and a well-defined correlation matrix, so no additional transformations (like
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logistic transformation in the work of Patton, 2006) are needed to ensure that.

Substituting the marginal distributions to the assumed copula function the model

for the joint c.d.f. of a vector of financial log-returns yt = (y1t, . . . , ypt) will take the

following form:

F (yt|ht) = Cη,Rt (F1 (y1t|h1t) , . . . , Fp (ypt|hpt)) . (5.3)

In order to find the log-likelihood function one first need to find the joint p.d.f. by

differentiating the above equation of the joint c.d.f. (5.3):

f (yt|ht) = fη,Rt

�
T−1
η (F1 (y1t|h1t)) , . . . , T

−1
η (Fp (ypt|hpt))

�

p�

i=1

�
1

tη
�
T−1
η (Fi (yit|hit))

� fSt
γi,νi

�
yit − µi

h1/2
it

�
1

h1/2
it

�
.

Hence, the log-likelihood function for the estimation procedure could be written as

the following one:

lnL =
T�

t=m+1

ln fη,Rt

�
T−1
η (F1 (y1t|h1t)) , . . . , T

−1
η (Fp (ypt|hpt))

�

+
T�

t=m+1

p�

i=1

�
− ln tη

�
T−1
η (Fi (yit|hit))

�
+ ln fSt

γi,νi

�
yit − µi

h1/2
it

�
− 1

2
lnhit

�
.

This paper applies the sequential approach and the marginal distributions are esti-

mated on the first step (note: this may lead to inefficiency of the estimates). Hence, the

last two summands in the last sum of the log-likelihood written above do not depend on

the copula parameters, and the log-likelihoods for pairwise copulas can be written in the

following form:

lnLij =
T�

t=m+1

ln fη,Rt

�
T−1
η

�
�Fi (yit|hit)

�
, T−1

η

�
�Fj (yjt|hjt)

��

−
T�

t=m+1

�
ln tη

�
T−1
η

�
�Fi (yit|hit)

��
+ ln tη

�
T−1
η

�
�Fj (yjt|hjt)

���
.

17



5.4 Models for compounding functions

Again, the basic idea of compounding functions is to capture the dependence between

the marginal distribution of log-returns of a single asset and the joint distribution of a

group of assets. For this purpose the author considers modeling them as asymmetrized

copulas. One of the reasons is described below.

5.4.1 Asymmetrized copulas

When one estimates bivariate distributions using copulas, he or she deals with two a priori

similar objects of the same nature: namely, marginal distributions of two assets under

consideration. Hence, it might make sense to use symmetric1 copulas for distribution

modeling in that case. In contrast, compounding functions operate with two objects of

similar, but different nature: namely, a marginal distribution of an asset and a joint

distribution of a group of assets. Thus, it seems to be better to use asymmetric copulas

rather than symmetric ones as compounding functions.

Khoudraji (1995) in his Ph.D. thesis proposes a theorem that allows constructing

asymmetric bivariate copulas from any symmetric one:

Theorem 1. Any symmetric bivariate copula C(sym)(u, v) can be transformed to the

asymmetric bivariate copula C(asym)(u, v) by the following transformation:

C(asym) (u, v) = uαvβC(sym)
�
u1−α, v1−β

�
, 0 ≤ α, β ≤ 1.

This theorem is used below in order to build asymmetric copulas from t-copula and

Clayton-copula. Then, these asymmetric copulas are used for constructing compounding

functions for the new sequential approach.

5.4.2 Asymmetrized time-varying t-copula

Symmetric standardized t-copula has already been described in the Subsection 5.3. Ap-

plying Theorem 1, one can obtain the functional form of the asymmetrized bivariate

standardized t-copula:
1
Here and further symmetric means that C(X,Y ) = C(Y,X) as functions and asymmetric means

that C(X,Y ) �= C(Y,X) as functions. Do not confuse with asymmetric tail dependence, like in Clayton-

copula.
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C(t,asym)
η,ρ (u, v) = uα vβ

T−1
η (u1−α)ˆ
−∞

T−1
η (v1−β)ˆ
−∞

Γ
�
η+2
2

� �
1 + x2+y2−2 ρ x y

(η−2)(1−ρ2)

�− η+2
2

Γ
�
η
2

�
π (η − 2)

�
1− ρ2

dx dy,

where u denotes the marginal distribution of an asset, v is the distribution of a group

of assets, and similar time-varying structure on the correlation coefficient as in the

Subsection 5.3 is applied. The form of the compounding function on the m-th step

in this case will be the following one: �C(m)
�
�Fl, �Fi1,...,l−1,l+1,...,im ; θl,i1,...,l−1,l+1,...,im

�
=

C(t,asym)
η,ρ

�
�Fl, �Fi1,...,l−1,l+1,...,im

�
, where θl,i1,...,l−1,l+1,...,im = {α, β, η, ρ, a, b} is the set of

parameters (the last three parameters come from the time-varying structure of the cor-

relation matrix R, that is reduced to the correlation coefficient ρ in bivariate case). One

can see, that in the case of asymmetrized time-varying t-copula there are only six pa-

rameters to estimate in each optimization problem on each step of the new sequential

approach regardless of the dimension of the whole problem.

5.4.3 Asymmetrized time-varying Clayton-copula

Similarly, using Theorem 1, one can obtain the form of asymmetrized bivariate Clayton-

copula. It will have the following form:

C(Clayton,asym) (u, v) =






uαvβ
�
max

�
u−θ(1−α) + v−θ(1−α) − 1, 0

��−1/θ
, θ ∈ [−1;+∞] \{0}

u v, θ = 0

,

where parameter θ can be rewritten through Kendall’s τ : θ = 2τ
1−τ , and similar to the

t-copula’s correlation parameter (except the facts that x’s are defined as just u’s and

v’s and instead of Pearson correlation Kendall’s τ is used for computing Ψ’s) time-

varying structure on the Kendall’s τ is imposed and θ is recomputed through it. In

this case, the compounding function on the m-th step will have the following form:

�C(m)
�
�Fl, �Fi1,...,l−1,l+1,...,im ; θl,i1,...,l−1,l+1,...,im

�
= C(Clayton,asym)

�
�Fl, �Fi1,...,l−1,l+1,...,im

�
, where

θl,i1,...,l−1,l+1,...,im = {α, β, τ , a, b} is the set of parameters (the last three parameters come

from the time-varying structure of τ). One can see, that in the case of asymmetrized
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time-varying Clayton-copula there are just five parameters to estimate in each optimiza-

tion problem on each step regardless of the dimension of the whole joint distribution

estimation problem.

5.5 Aggregating functions

As it has been already stated, one can consider different non-parametric and even para-

metric aggregators. The basic idea of them is to aggregate the parts of the dependencies

that are caught by the compounding functions in order to obtain the whole dependence

of all assets, or alternatively, integrate out the error that is introduced by each individ-

ual compounding function. The author has considered two non-parametric aggregating

functions: geometric mean and arithmetic mean. As the intuition suggests, arithmetic

mean is proved to be much more suitable according to the conducted goodness-of-fit

tests for the joint distributions, and thus, in this paper the results only for arithmetic

mean aggregating function are included (for the results see plots in the Appendix).

The next section demonstrates how to apply the new sequential method proposed in

this section for modeling five-dimensional distribution of real financial data and compares

it to the standard single-copula approach.

6 Empirical evidence and estimation

6.1 Data

Five DJIA-constituents (as of June 8, 2009) are chosen to conduct the empirical tests.

The selection is based on the high level of liquidity and the availability of historical

prices. In particular, GE – General Electric Co, MCD – McDonald’s Corp, MSFT –

Microsoft Corp, KO – Coca-Cola Co, and PG – Procter & Gamble Co stocks are used

to estimate the models. Daily data for 1 year (from Jan 03, 2007 to Dec 31, 2007) were

used for estimation to exclude the period of the recent financial crisis. The prices of the

stocks are adjusted for splits and dividends, and then the log-returns are constructed and

used in the models. The relative prices dynamics plots, histograms of the log-returns,

and sample statistics of the log-returns for all five stocks are presented below.
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Figure 6.1: Relative prices and returns dynamics for GE, MCD, MSFT, KO, and PG on
NYSE from Jan 03, 2007 to Dec 31, 2007

GE MCD MSFT KO PG
minimum -0.0384 -0.0298 -0.0421 -0.0285 -0.0506
maximum 0.0364 0.0589 0.0907 0.0254 0.0359

mean, ×10−3 0.0248 1.2831 0.7575 1.0363 0.5987
standard deviation 0.0115 0.0116 0.0143 0.0087 0.0091

skewness
(zero-skewness: p-val)

-0.0349
(0.8216)

0.2617
(0.0912)

0.9461
(0.0000)

0.0512
(0.7408)

-0.6106
(0.0001)

kurtosis
(zero-ex.kurtosis: p-val)

3.9742
(0.0017)

4.8977
(0.0000)

8.7270
(0.0000)

3.6313
(0.0416)

9.2954
(0.0000)

Table 1: Sample statistics on returns for GE, MCD, MSFT, KO, and PG on NYSE from
Jan 03, 2007 to Dec 31, 2007
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Figure 6.2: Histograms of GE, MCD, MSFT, KO, and PG returns on NYSE from Jan
03, 2007 to Dec 31, 2007
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One can see that the unconditional sample distributions in some cases demonstrate

skewness and heavy tails (the corresponding hypotheses about zero skewness and zero

excess kurtosis can be rejected on the 95% confidence level). This at least partially

justifies the selection of the Skew t-Distribution for modeling marginals.
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Figure 6.3: Pairwise scatter plots of the marginal distributions along with sample corre-
lations of GE, MCD, MSFT, KO, and PG returns on NYSE from Jan 03, 2007 to Dec
31, 2007
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The scatter plots and correlations show that as expected all of the stocks are positively

correlated (because they are partially driven by the same economic environment). The

pair of MSFT and PG, for example, has correlation lower than most of others because

these stocks are from the completely different sectors of the economy: the first one

is from the Technology sector and the second one is from the Consumer Goods sector

(classification by http://finance.yahoo.com). At the same time, the pair KO and PG has

greater correlation than others due to the fact that they are both from the Consumer

Goods sector.

The estimation procedure is conducted sequentially: first, estimation of the marginal

distributions; then, estimation of the bivariate copula parameters; and finally, stepwise

estimation of compounding functions and aggregation of them into the distributions of

interest. The author is aware about the inefficiencies that may arise in the procedure,

however such approach allows the estimation for large dimensions to be computationally

feasible.

6.2 Marginal distributions estimation

As it has been described in the Section 5, Skew-t-NAGARCH model is used for the

marginals in order to take into account the asymmetry, heavy tails, the leverage effect,

and volatility clustering that are all usually observed in the financial data, especially in

the log-returns of stocks. For marginal distributions estimation the initial value of the

conditional variance to start the GARCH process, hi1, is selected to be the sample un-

conditional variance of log-returns, that is hi1 = V (yit). In addition, several constraints

on the parameters are imposed in order to guarantee the stationarity of the processes

for returns and conditional variances. The estimates of the parameters of marginal dis-

tributions are summarized in the table below. It is worth noting the economic meaning

of the parameters presented here: µ accounts for mean return, ω – for unconditional

variance, α – for ability to predict the conditional variance by current innovation, β –

for persistence of the conditional variance, κ – for the leverage effect, ν – for heavy tails,

and γ – for skewness.
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GE MCD MSFT KO PG
µ, ×10−3 -0.032

(0.615)

1.340
(0.709)

0.660
(0.886)

0.750
(0.673)

0.574
(0.645)

ω, ×10−5 0.569
(0.581)

5.845
(1.893)

0.852
(0.809)

0.667
(0.740)

0.608
(0.523)

α 0.106
(0.062)

0.153
(0.090)

0.041
(0.024)

0.142
(0.082)

0.107
(0.052)

β 0.861
(0.084)

0.379
(0.130)

0.915
(0.055)

0.787
(0.139)

0.837
(0.063)

κ -0.074
(0.364)

-0.530
(0.394)

-0.174
(0.796)

-0.032
(0.740)

-0.168
(0.606)

ν 6.482
(2.325)

9.672
(4.976)

5.898
(2.360)

8.098
(4.046)

3.305
(0.734)

γ -0.014
(0.077)

-0.431
(0.706)

0.176
(0.533)

-0.236
(0.950)

-0.106
(0.482)

Table 2: Parameters estimates for marginal distribution of GE, MCD, MSFT, KO, and
PG returns on NYSE from Jan 03, 2007 to Dec 31, 2007. Robust standard errors are in
the round brackets

It is useful to compare the values of µ parameter in the model for marginal distribu-

tions with the sample means of the log-returns of the financial data under consideration:

one can see that they are rather close to each other. This indicates that our model is

rather good. The ν parameters reflect the extent to which the tails are fat and also

correspond to the histograms and kurtosis values given above (note: the parameter ν is

inversely related to the kurtosis). The γ parameters reflect the skewness of the distri-

butions, and one can note that this parameter is insignificant for all stocks. However,

the hypothesis of zero-skewness is rejected for MSFT and PG stocks on 95% confidence

level (see Table 1 on page 21) and one can see that the signs of the γ parameter for

the log-returns of these stocks correspond to the signs of their sample skewness. Thus,

the author does not exclude this parameter from consideration. Moreover, the proposed

sequential procedure is intended to be universal, and for example, these parameters are

significant for most Russian stocks that were considered during the research. See below

the goodness-of-fit tests for marginal distributions to determine how well the proposed

model describes the data.
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6.2.1 Goodness-of-fit tests for marginal distributions

The goodness-of-fit tests need to be conducted in order to assess the validity of the Skew-

t-NAGARCH specification that was chosen for modeling the marginal distributions. For

this purpose the following approach based on the paper of Diebold et al. (1998) is

used. The approach is based on transforming the time series of log-returns into the new

series that should have the known pivotal distribution in the case of correct specification

and then testing the hypothesis that the transformed series indeed have that known

distribution.

They use the following proposition:

Proposition 1. Suppose a sequence {yt}Tt=1 is generated from the distributions {Ft(yt|Ωt)}Tt=1,

where Ωt = {yt−1, yt−2, . . .}. Then under the usual condition of a non-zero Jacobian with

continuous partial derivatives, the sequence of transformations {Ft(yt|Ωt)}Tt=1 is i.i.d.

U(0, 1).

They propose testing the uniformity property and the independence property sepa-

rately by investigating the histogram and correlograms of the moments up to degree of

4. This paper follows this approach, however the statistical tests rather than graphi-

cal analysis are conducted in order to test the uniformity and independence properties

separately, as they suggest.

In order to test the uniformity of the transformed series Kolmogorov-Smirnov tests

for uniformity are conducted. The author is aware about the parameter estimation effect

that arises in such kind of tests (when firstly, the parameters of the distribution functions

are estimated, and only then the transformed series is constructed) and that the tests

require adjustments due to it, however, in practice almost everybody neglects this effect

while conducting such kind of tests, and so does the author. The conducted tests show

that on 95% confidence level the hypotheses about uniformity of the transformed series

is not rejected. The quantitative results along with the diagrams are presented below.

The model passes this part of the tests successfully, and next, the independence property

of the transformed series should be tested.
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Figure 6.4: Kolmogorov-Smirnov tests for the marginals’ GoF tests (p-value is presented
after the “PASSED” word)

Next, the tests for serial correlation are conducted. Diebold et al. (1998) claim that

on practice it is sufficient to investigate the moments up to degree of 4. This paper

follows their proposition and tests the hypothesis about the joint insignificance of the

coefficients of the regression of each moment on its 20 lags using the F-test. The results

are presented in the table below.

degree of the
central moment

GE MCD MSFT KO PG

1 0.701 0.454 0.762 0.336 0.310
2 0.763 0.805 0.448 0.070 0.437
3 0.567 0.672 0.763 0.611 0.657
4 0.887 0.774 0.635 0.032 0.172

Table 3: P-values of the F-tests for serial correlation for the marginals’ GoF tests
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The hypotheses about the absence of serial correlation are not rejected almost ev-

erywhere on 95% confidence level. The exception is the 4th central moment of the KO

stock: the hypothesis is not rejected there on 99% confidence level. This is considered

to be satisfactory for the purposes of this paper.

Additionally, the Ljung-Box tests are carried out to test for autocorrelation in the

residuals of the marginals’ specification. All of the tests do not reject the hypothesis

of the absence of serial correlation in the residuals of the models considered. This also

indicates good fit of the marginal distributions.

6.3 Pairwise copula estimation

The estimates of the parameters of the pairwise copulas are summarized in the following

table:

GE,MCD GE,MSFT GE,KO GE,PG MCD,MSFT
η 9.627

(7.732)

7.948
(3.006)

6.107
(2.390)

14.236
(11.290)

9.883
(8.488)

a 0.074
(0.075)

0.089
(0.113)

0.002
(0.002)

0.038
(0.023)

0.159
(0.096)

b 0.399
(0.241)

0.001
(0.130)

0.486
(0.306)

0.913
(0.031)

0.385
(0.226)

ρ̄ 0.418
(0.062)

0.625
(0.042)

0.513
(0.050)

0.557
(0.076)

0.429
(0.073)

MCD,KO MCD,PG MSFT,KO MSFT,PG KO,PG
η 11.825

(9.397)

6.011
(2.476)

5.672
(2.226)

6.926
(2.968)

10.760
(9.417)

a 0.072
(0.087)

0.170
(0.091)

0.031
(0.225)

0.197
(0.152)

0.053
(0.076)

b 0.447
(0.288)

0.394
(0.266)

0.462
(2.057)

0.000
(0.169)

0.342
(0.209)

ρ̄ 0.417
(0.059)

0.368
(0.080)

0.556
(0.056)

0.469
(0.065)

0.504
(0.050)

Table 4: Parameters estimates for the pairwise copulas of GE, MCD, MSFT, KO, and
PG returns on NYSE from Jan 03, 2007 to Dec 31, 2007. Robust standard errors are in
the round brackets
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One can note that the parameter ρ̄ reflects the historical correlation between the

stocks’ log-returns, and so it is expected their values to be close to the correlations com-

puted from the data sample under consideration. Indeed, if one looks on the Figure 6.3

on page 22 where these values are shown, he or she can verify that the sample correla-

tions are rather close to the ρ̄ parameters estimated in the pairwise copulas models. This

partially indicates the adequacy of the model applied for modeling pairwise distributions

of the stocks considered.

6.3.1 Goodness-of-fit tests for bivariate copulas

The goodness-of-fit tests in this section are based on the approach proposed by Breymann

et al. (2003). The approach relies on the definition of Probability Integral Transform

that was first given by Rosenblatt (1952):

Definition 1 (Probability Integral Transform (PIT)). Let X = (X1, . . . , Xd) denote a

random vector with marginal distributions Fi(xi) and conditional distributions Fi|i−1...1 (xi|xi−1, . . . , x1)

for i = 1, . . . , d. The PIT of x is defined as z = T (x) = T (x1, . . . , xd) = (T1, . . . , Td):

T1 = F1(x1),

Tp = Fp|p−1...1(xp|xp−1, . . . , x1), p = 2, . . . , d.

One can show that T (X) is uniformly distributed on the p-dimensional hyper-cube

(for details, see Rosenblatt, 1952). This implies that Z1, . . . , Zp are uniformly and in-

dependently distributed on [0, 1]. Similar to the Section 6.2.1, this approach can be

extended to the time series case (see for example, Patton, 2006). The same approach for

testing as in that section is chosen, that is Kolmogorov-Smirnov tests for uniformity and

F-tests for serial uncorrelation are conducted. However, here one can note that there

exist p! ways of choosing conditional distributions. For example, in the case of pairwise

copulas there exist two ways of writing conditional distributions: X2 | X1 and X1 | X2.

This paper examines them for all pairs of stocks considered. The results are presented

in the two figures below (the marginal distributions are not included because they have

already been examined in the Section 6.2.1).
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Figure 6.5: Pairwise Kolmogorov-Smirnov tests for conditional distributions for the first
five pairs of GE, MCD, MSFT, KO, and PG – GoF tests for the bivariate copula speci-
fication (p-values are presented after the “PASSED” word, see overleaf for other pairs)

One can see that all Kolmogorov-Smirnov tests are passed on any reasonable confi-

dence level. This indicates that the time-varying t-copula used for modeling bivariate

distributions is good enough and can be selected as a second basic block for the new

sequential approach. See also the figure overleaf for the tests for the complete set of

pairs.
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Figure 6.6: Pairwise Kolmogorov-Smirnov tests for conditional distributions for the sec-
ond five pairs of GE, MCD, MSFT, KO, and PG – GoF tests for the bivariate copula
specification (p-values are presented after the “PASSED” word)

As it was proposed above in the Section 6.2.1, the hypothesis about the absence of

serial correlation is tested through testing the hypothesis about the joint insignificance

of the coefficients of the regression of each of the 4 moments on its 20 lags using the

F-test. Additionally to that method, here one needs to include the lags of the moments

of other series of PIT in order to test for the independence of each of the PIT series.

The results obtained suggest that the hypotheses about the absence of serial correlation
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are not rejected on any reasonable confidence level almost in every case. The table with

the results is not presented in this paper because of its huge size.

The results of this subsection indicate that the specification of the pairwise copulas

is rather good and can be used in the next steps of the new sequential approach.

6.4 Compounding functions estimation

This paper proposes the following approach for estimating the parameters of the com-

pounding functions. The equation (4.1) is interpreted as mean of the joint distribution

estimators that is taken in order to cancel out the individual errors in each estimate.

Hence, it might make sense to estimate each of the summands separately by, for exam-

ple, Maximum Likelihood Estimator. Thus, in each optimization problem there are only

fixed number of parameters (it is 5 for Clayton-based and 6 for t-based compounding

functions as shown in the Section 5.4), because each compounding function operates only

with two objects: a marginal distribution of an asset and a joint distribution of a group

of assets. This makes it feasible the estimation of the distributions for any dimension.

In order to use MLE for estimating parameters of the compounding functions one

needs to differentiate the function �C(m) (·, ·) m times. There are two ways of differen-

tiating: symbolic and numeric. The first one leads to huge formulas (because such a

function is highly nested), and hence, may require great computations. The second one

may require computing the �C(m) (·, ·) function with a good accuracy, because numeric

differentiating requires finding finite differences that are usually small, and hence, the

function itself should be computed rather accurately. This paper adopts the second

approach because the first approach requires more powerful computational resources.

Nevertheless, it seems that one could use even more computationally efficient estima-

tion way: Maximum Spacings Estimator (MSPE, for more details on univariate case see

among others Cheng & Amin, 1983; Ranneby, 1984; and Anatolyev & Kosenok, 2005).

6.4.1 Maximum Spacings Estimator (MSPE)

This subsection describes MSP estimator for the i.i.d. univariate case. The basic idea

of the MLE lies in maximizing the product of the values of the density function in
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the points of data (the red bars on the 6.7) on the parameters of that density. When

number of observation grows, the lengths of red bars on the 6.7 tend to be equal to

the corresponding hatched areas (surely, divided by the base of an area). Thus, if one

defines the product of spacings as the product of hatched areas, when asymptotically

the problem of likelihood maximization should be equivalent to the problem of product

of spacings maximization. Anatolyev and Kosenok (2005) show, that in fact, in the

univariate case the two problems give asymptotically first-order equivalent estimates of

the distribution parameters.

Figure 6.7: Maximum Spacings Estimator illustration

Note, that MSPE as opposed to MLE offers the estimation of parameters without

computing the values of p.d.f.’s (and hence, the derivatives of compounding functions),

but only with knowing the values of c.d.f.’s. This is what one needs to make the com-

putations even more efficient.

Ranneby, Jammalamadaka, and Teterukovskiy (2005) extend MSPE approach for the

multivariate i.i.d. case, however there does not exist that extension to the multivariate

time series case. When such an extension will be devised, the Maximum Spacings Es-

timator may be a useful alternative to the Maximum Likelihood Estimator for using in

the new sequential method of joint distributions modeling.

6.4.2 Estimates of the parameters

For the present, the new sequential approach uses Maximum Likelihood for estimation.

The following tables summarize the estimates of the parameters of the compounding
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functions considered. The first three tables show the values of the parameters in the

t-based approach for different groups of assets, and the second three tables show the

values in the Clayton-based approach.

�C (·; ·) α β η ρ a b

(GE; MCD, MSFT) 0.044 0.322 8.612 0.884 0.004 0.992
(MCD; GE, MSFT) 0.007 0.011 8.557 0.408 0.124 0.351
(MSFT; GE, MCD) 0.008 0.001 8.828 0.503 0.143 0.092

(GE; MCD, KO) 0.002 0.251 8.544 0.499 0.001 0.249
(MCD; GE, KO) 0.000 0.112 9.928 0.403 0.059 0.399
(KO; GE, MCD) 0.017 0.008 61.964 0.446 0.048 0.334

(GE; MCD, PG) 0.023 0.114 14.379 0.468 0.109 0.059
(MCD; GE, PG) 0.009 0.028 5.197 0.338 0.114 0.423
(PG; GE, MCD) 0.001 0.194 5.306 0.472 0.106 0.275

(GE; MSFT, KO) 0.076 0.224 8.508 0.670 0.076 0.128
(MSFT; GE, KO) 0.007 0.007 6.867 0.536 0.036 0.232
(KO; GE, MSFT) 0.031 0.162 8.459 0.602 0.004 0.314

(GE; MSFT, PG) 0.002 0.161 10.151 0.638 0.015 0.946
(MSFT; GE, PG) 0.030 0.001 10.296 0.498 0.101 0.034
(PG; GE, MSFT) 0.057 0.251 8.786 0.612 0.060 0.242

(GE; KO, PG) 0.046 0.069 13.185 0.496 0.001 0.033
(KO; GE, PG) 0.009 0.001 23.245 0.497 0.066 0.484
(PG; GE, KO) 0.001 0.234 7.505 0.612 0.136 0.016

(MCD; MSFT, KO) 0.005 0.219 6.018 0.469 0.119 0.362
(MSFT; MCD, KO) 0.003 0.001 9.917 0.436 0.054 0.402
(KO; MCD, MSFT) 0.129 0.025 19.673 0.541 0.026 0.286

(MCD; MSFT, PG) 0.133 0.315 8.481 0.588 0.358 0.136
(MSFT; MCD, PG) 0.001 0.000 6.562 0.407 0.078 0.606
(PG; MCD, MSFT) 0.001 0.128 5.165 0.425 0.120 0.561

(MCD; KO, PG) 0.000 0.004 6.686 0.320 0.154 0.324
(KO; MCD, PG) 0.231 0.020 19.575 0.577 0.066 0.605
(PG; MCD, KO) 0.000 0.405 4.553 0.587 0.164 0.365

(MSFT; KO, PG) 0.002 0.001 6.930 0.473 0.125 0.015
(KO; MSFT, PG) 0.002 0.001 23.721 0.530 0.067 0.251
(PG; MSFT, KO) 0.022 0.143 8.385 0.544 0.159 0.221

Table 5: MSP estimates of the parameters of the t-based compounding functions for the
group of three assets
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�C (·; ·) α β η ρ a b

(GE; MCD, MSFT, KO) 0.057 0.326 8.580 0.630 0.007 0.646
(MCD; GE, MSFT, KO) 0.005 0.180 8.326 0.440 0.137 0.244
(MSFT; GE, MCD, KO) 0.022 0.110 8.443 0.508 0.058 0.238
(KO; GE, MCD, MSFT) 0.015 0.062 8.540 0.466 0.023 0.477

(GE; MCD, MSFT, PG) 0.026 0.137 8.868 0.523 0.096 0.103
(MCD; GE, MSFT, PG) 0.046 0.201 8.464 0.447 0.189 0.390
(MSFT; GE, MCD, PG) 0.007 0.008 8.666 0.423 0.185 0.047
(PG; GE, MCD, MSFT) 0.025 0.235 6.492 0.511 0.092 0.494

(GE; MCD, KO, PG) 0.026 0.269 10.768 0.447 0.092 0.188
(MCD; GE, KO, PG) 0.023 0.228 8.492 0.400 0.163 0.320
(KO; GE, MCD, PG) 0.140 0.073 8.825 0.440 0.101 0.304
(PG; GE, MCD, KO) 0.048 0.400 8.507 0.675 0.079 0.730

(GE; MSFT, KO, PG) 0.013 0.109 8.563 0.553 0.004 0.706
(MSFT; GE, KO, PG) 0.004 0.004 9.226 0.475 0.105 0.130
(KO; GE, MSFT, PG) 0.022 0.073 9.093 0.506 0.064 0.316
(PG; GE, MSFT, KO) 0.022 0.225 8.615 0.591 0.120 0.186

(MCD; MSFT, KO, PG) 0.022 0.356 8.839 0.481 0.229 0.112
(MSFT; MCD, KO, PG) 0.023 0.056 8.487 0.418 0.100 0.345
(KO; MCD, MSFT, PG) 0.041 0.022 8.652 0.450 0.066 0.757
(PG; MCD, MSFT, KO) 0.035 0.327 8.487 0.564 0.102 0.552

Table 6: MSP estimates of the parameters of the t-based compounding functions for the
group of four assets

�C (·; ·) α β η ρ a b

(GE; MCD,MSFT,KO,PG) 0.175 0.265 10.818 0.546 0.157 0.227
(MCD; GE,MSFT,KO,PG) 0.189 0.410 9.088 0.578 0.247 0.199
(MSFT; GE,MCD,KO,PG) 0.394 0.301 8.580 0.463 0.309 0.285
(KO; GE,MCD,MSFT,PG) 0.285 0.585 8.680 0.433 0.312 0.321
(PG; GE,MCD,MSFT,KO) 0.045 0.252 8.499 0.520 0.051 0.782

Table 7: MSP estimates of the parameters of the t-based compounding functions for the
group of five assets
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�C (·; ·) α β τ a b

(GE; MCD, MSFT) 0.001 0.282 0.382 0.074 0.111
(MCD; GE, MSFT) 0.150 0.210 0.423 0.184 0.141
(MSFT; GE, MCD) 0.000 0.075 0.299 0.094 0.010

(GE; MCD, KO) 0.212 0.227 0.449 0.000 0.008
(MCD; GE, KO) 0.006 0.309 0.391 0.000 0.013
(KO; GE, MCD) 0.003 0.002 0.239 0.000 0.639

(GE; MCD, PG) 0.236 0.332 0.466 0.163 0.003
(MCD; GE, PG) 0.204 0.286 0.434 0.215 0.003
(PG; GE, MCD) 0.002 0.429 0.418 0.061 0.013

(GE; MSFT, KO) 0.086 0.013 0.340 0.002 0.366
(MSFT; GE, KO) 0.000 0.000 0.292 0.178 0.007
(KO; GE, MSFT) 0.149 0.291 0.513 0.015 0.524

(GE; MSFT, PG) 0.149 0.003 0.303 0.037 0.862
(MSFT; GE, PG) 0.185 0.000 0.343 0.070 0.719
(PG; GE, MSFT) 0.273 0.383 0.702 0.244 0.097

(GE; KO, PG) 0.358 0.337 0.637 0.176 0.000
(KO; GE, PG) 0.135 0.289 0.456 0.000 0.002
(PG; GE, KO) 0.269 0.323 0.578 0.151 0.018

(MCD; MSFT, KO) 0.001 0.298 0.370 0.019 0.309
(MSFT; MCD, KO) 0.000 0.262 0.385 0.088 0.027
(KO; MCD, MSFT) 0.011 0.014 0.259 0.007 0.292

(MCD; MSFT, PG) 0.004 0.144 0.249 0.256 0.010
(MSFT; MCD, PG) 0.146 0.216 0.370 0.126 0.212
(PG; MCD, MSFT) 0.355 0.353 0.606 0.324 0.010

(MCD; KO, PG) 0.078 0.289 0.345 0.050 0.007
(KO; MCD, PG) 0.236 0.001 0.332 0.009 0.929
(PG; MCD, KO) 0.295 0.338 0.506 0.000 0.001

(MSFT; KO, PG) 0.228 0.242 0.511 0.127 0.417
(KO; MSFT, PG) 0.160 0.251 0.449 0.136 0.023
(PG; MSFT, KO) 0.231 0.287 0.541 0.205 0.013

Table 8: MSP estimates of the parameters of the Clayton-based compounding functions
for the group of three assets
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�C (·; ·) α β τ a b

(GE; MCD, MSFT, KO) 0.073 0.186 0.369 0.002 0.242
(MCD; GE, MSFT, KO) 0.025 0.317 0.403 0.111 0.251
(MSFT; GE, MCD, KO) 0.012 0.238 0.405 0.073 0.204
(KO; GE, MCD, MSFT) 0.009 0.016 0.260 0.002 0.133

(GE; MCD, MSFT, PG) 0.101 0.176 0.345 0.013 0.264
(MCD; GE, MSFT, PG) 0.142 0.288 0.404 0.216 0.120
(MSFT; GE, MCD, PG) 0.083 0.248 0.392 0.094 0.119
(PG; GE, MCD, MSFT) 0.141 0.329 0.429 0.161 0.117

(GE; MCD, KO, PG) 0.177 0.287 0.434 0.091 0.008
(MCD; GE, KO, PG) 0.091 0.307 0.393 0.122 0.267
(KO; GE, MCD, PG) 0.016 0.036 0.246 0.002 0.382
(PG; GE, MCD, KO) 0.021 0.416 0.444 0.016 0.238

(GE; MSFT, KO, PG) 0.145 0.349 0.472 0.069 0.128
(MSFT; GE, KO, PG) 0.108 0.283 0.434 0.085 0.310
(KO; GE, MSFT, PG) 0.172 0.317 0.485 0.083 0.119
(PG; GE, MSFT, KO) 0.273 0.375 0.643 0.218 0.342

(MCD; MSFT, KO, PG) 0.011 0.272 0.317 0.195 0.164
(MSFT; MCD, KO, PG) 0.093 0.227 0.376 0.127 0.325
(KO; MCD, MSFT, PG) 0.027 0.051 0.256 0.023 0.297
(PG; MCD, MSFT, KO) 0.304 0.316 0.571 0.266 0.106

Table 9: MSP estimates of the parameters of the Clayton-based compounding functions
for the group of four assets

�C (·; ·) α β τ a b

(GE; MCD,MSFT,KO,PG) 0.144 0.269 0.397 0.049 0.109
(MCD; GE,MSFT,KO,PG) 0.123 0.335 0.403 0.189 0.210
(MSFT; GE,MCD,KO,PG) 0.075 0.236 0.392 0.070 0.281
(KO; GE,MCD,MSFT,PG) 0.069 0.187 0.313 0.028 0.188
(PG; GE,MCD,MSFT,KO) 0.248 0.304 0.494 0.199 0.080

Table 10: MSP estimates of the parameters of the Clayton-based compounding functions
for the group of five assets

The standard errors of the estimates are not presented on the tables due to their

huge size.
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6.5 Constructing distributions through aggregating functions

The overall distribution is constructed through taking the mean of the estimated com-

pounding functions from the previous step. The intuition is to cancel out the individual

errors obtained in each step of compounding functions estimation. The results are sum-

marized in the next subsection as goodness-of-fit tests. Due to huge number of serial

correlation tests conducted, their results are not included in this paper. However, it is

worth saying that they are passed on 95% confidence level almost in all cases.

6.5.1 Goodness-of-fit tests. Comparison to five-dimensional t-copula

This subsection compares three approaches for dynamic modeling of joint distributions.

The first one is using time-varying five-dimensional t-copula estimated through ML.

The second and the third ones are the demonstrations of the new sequential approach

based on (1) asymmetrized time-varying bivariate t-copula and (2) asymmetrized time-

varying bivariate Clayton-copula respectively. The graphical results are presented in the

Appendix. Note: two dimensional conditional densities are not included for 5D t-copula

here, however all Kolmogorov-Smirnov tests are passed for them (as for that of the new

sequential approach).

Before conducting goodness-of-fit tests, the benchmark, which the new sequential

approach will be compared to, is estimated. Time-varying five-dimensional t-copula is

used as such benchmark. Its parameters estimates are summarized in the following table:

�
ρij

�
1 2 3 4 5

η 13.426
(4.380)

1 1.000
(0.000)

0.425
(0.055)

0.621
(0.042)

0.502
(0.055)

0.510
(0.049)

a 0.030
(0.035)

2 0.425
(0.055)

1.000
(0.000)

0.415
(0.056)

0.398
(0.055)

0.367
(0.062)

b 0.157
(0.308)

3 0.621
(0.042)

0.415
(0.056)

1.000
(0.000)

0.539
(0.053)

0.465
(0.057)

4 0.502
(0.055)

0.398
(0.055)

0.539
(0.053)

1.000
(0.000)

0.495
(0.049)

5 0.510
(0.049)

0.367
(0.062)

0.465
(0.057)

0.495
(0.049)

1.000
(0.000)

Table 11: Parameters estimates for the time-varying five-dimensional t-copula, that
models the distribution of (1) GE, (2) MCD, (3) MSFT, (4) KO, and (5) PG log-returns
on NYSE from Jan 03, 2007 to Dec 31, 2007. Robust standard errors are in the round
brackets
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One can see that both five-dimensional copula-based approach and the new sequential

approach pass the Kolmogorov-Smirnov tests for all distributions on 95% confidence level.

However, time-varying five-dimensional t-copula and t-based new method do not pass the

test on 90% confidence level for one conditional distribution (MSFT | GE, MCD, KO),

whereas Clayton-based new method still passes the test on that level. Although, there

is no explicit leader in this comparison, it should be stated here that the new method

is still have the advantage: it is feasible for higher dimension, because the number of

parameters in the optimization problem remains fixed (5 in the case of Clayton-based

approach), whereas in standard single-copula based approach this number usually grows

fast and optimization problem may become computationally infeasible. The following

table demonstrates how the number of parameters in each optimization problem for

standard and new approaches grows with the dimension of the whole joint distribution.

dimension Standard t-copula New t-based New Clayton-based
3 6 6 5
4 9 6 5
5 13 6 5
6 18 6 5
7 24 6 5
8 31 6 5
9 39 6 5
10 48 6 5
11 58 6 5
12 69 6 5
13 81 6 5
14 94 6 5
15 108 6 5

Table 12: Growth of the number of parameters in each optimization problem for the
standard t-copula approach and the new t-based sequential method

It seems that the simultaneous whole-distribution estimation is computationally in-

feasible for the dimensions of 10 and higher. Although, there are a lot optimization

problems to solve in the new sequential approach, it proposes a great alternative to the

standard approaches for modeling dynamic joint distributions in such high-dimensional
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problems. For example, five dimensional problem requires solving 5 problems with 7

parameters on the first step, 20 problems with 6 parameters on the second step, 30

problems with 5 parameters on the third step, 20 problems with 5 parameters on the

fourth step, and 5 problems with 5 parameters on the fifth step, whereas the standard

t-copula based approach requires estimating of 5 problems with 7 parameters on the first

step and 1 problem with 13 parameters on the second step. One can see that there are

a huge number of the optimization problems in the new sequential approach, however,

it takes only a few seconds to solve one problem for the Clayton-based compounding

function, whereas the standard approach requires tens of minutes in order to be solved

for such large number of parameters. This makes the whole estimation time for the new

sequential approach even less than for the standard one. The time difference seems to

become even greater in higher-dimensional case.

7 Further research

This paper has suggested the new sequential approach for dynamic modeling of joint

distributions, and thus, outlined the directions of further research:

1. develop other goodness-of-fit tests that will be computationally feasible in higher

dimensions (here only five stocks are considered, because in higher dimensions the

conducted goodness-of-fit tests are computationally infeasible for t-based copulas

as their c.d.f. is not a function that can be easily computed, it is an n-dimensional

integral that can not be expressed in elementary functions);

2. examine the approaches of simplifications of the calculations by either using Max-

imum Spacings Estimator or considering random pairs, triples, etc. (note: the

second simplification should be done with a great caution due to huge interdepen-

dence among steps of the new sequential approach);

3. use the approach for financial applications (like computing value at risk, expected

shortfall, or other quantities that could be obtained from knowing the whole joint

distribution of the assets) and conduct out-of-sample assessment of the effectiveness

of the method.
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8 Conclusion

This paper has developed the new sequential approach for dynamic joint distributions

modeling based on combining small-dimensional distributions into higher-dimensional

ones by compounding and aggregating functions. Additionally, it has demonstrated its

implementation for the series of log-returns of five NYSE-traded stocks. (The author

has considered only five stocks because in higher dimensions the conducted goodness-

of-fit tests are computationally infeasible for t-based copulas as their c.d.f. is not a

function that can be easily computed: it is an n-dimensional integral that can not be

expressed in elementary functions.) First, for estimating the marginal distributions Skew-

t-NAGARCH specification is used and it seems to be effective in modeling the log-returns,

capturing heavy tails, skewness and leverage effect observed in the data. Then, the t-

copula is applied for modeling pairwise bivariate distributions of the log-returns and it is

proved to be rather good method for this purpose. Next, five-dimensional distributions

are constructed using the new sequential approach that divides the huge problem into

smaller ones, and hence, unlike to the standard sufficiently flexible single-copula based

approaches, seems to be computationally feasible in very high dimensions. All goodness-

of-fit tests are passed and indicate the usefulness of the new methodology, however they

do not distinguish a single method as the best one.

The main advantage of the new sequential approach is that it makes the huge problem

of dynamic modeling of the joint distributions of a number of stocks’ log-returns feasible

in practice. Although, there are a lot of optimization problems to solve while using the

new method, each of them has fixed number of parameters across all dimensions, and

hence, their estimation becomes computationally feasible for vast dimensional cases and

makes it possible to use all advantages of modeling the whole stochastic behavior of the

group of a number of stocks.
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5D t-copula New method: t-based New method: Clayton-based
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Table 13: Trivariate conditional distributions comparison: GE, MCD, MSFT
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5D t-copula New method: t-based New method: Clayton-based
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Table 14: Trivariate conditional distributions comparison: GE, MCD, KO
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5D t-copula New method: t-based New method: Clayton-based
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Table 15: Trivariate conditional distributions comparison: GE, MCD, PG
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5D t-copula New method: t-based New method: Clayton-based
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Table 16: Trivariate conditional distributions comparison: GE, MSFT, KO
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5D t-copula New method: t-based New method: Clayton-based
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Table 17: Trivariate conditional distributions comparison: GE, MSFT, PG
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5D t-copula New method: t-based New method: Clayton-based
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Table 18: Trivariate conditional distributions comparison: GE, KO, PG
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5D t-copula New method: t-based New method: Clayton-based
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Table 19: Trivariate conditional distributions comparison: MCD, MSFT, KO
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5D t-copula New method: t-based New method: Clayton-based
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Table 20: Trivariate conditional distributions comparison: MCD, MSFT, PG
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5D t-copula New method: t-based New method: Clayton-based
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Table 21: Trivariate conditional distributions comparison: MCD, KO, PG
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5D t-copula New method: t-based New method: Clayton-based
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Table 22: Trivariate conditional distributions comparison: MSFT, KO, PG
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5D t-copula New method: t-based New method: Clayton-based
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PASSED: 85.4%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, KO

PASSED: 62.9%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, KO

PASSED: 5.9%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, MSFT

PASSED: 94.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, KO

PASSED: 95.0%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, KO

PASSED: 74.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, KO

PASSED: 9.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, MSFT

PASSED: 93.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, KO

PASSED: 65.0%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, KO

PASSED: 75.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, KO

PASSED: 28.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, MSFT

PASSED: 80.3%  

 

 
Empirical CDF
True CDF

Table 23: Four-dimensional conditional distributions comparison: GE, MCD, MSFT, KO
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5D t-copula New method: t-based New method: Clayton-based

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, PG

PASSED: 84.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, PG

PASSED: 75.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, PG

PASSED: 25.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, MSFT

PASSED: 60.8%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, PG

PASSED: 71.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, PG

PASSED: 32.0%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, PG

PASSED: 59.3%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, MSFT

PASSED: 82.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, PG

PASSED: 16.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, PG

PASSED: 80.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, PG

PASSED: 44.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, MSFT

PASSED: 87.4%  

 

 
Empirical CDF
True CDF

Table 24: Four-dimensional conditional distributions comparison: GE, MCD, MSFT, PG
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5D t-copula New method: t-based New method: Clayton-based

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, KO, PG

PASSED: 92.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, KO, PG

PASSED: 62.8%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, PG

PASSED: 68.0%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, KO

PASSED: 74.1%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, KO, PG

PASSED: 87.3%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, KO, PG

PASSED: 74.4%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, PG

PASSED: 99.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, KO

PASSED: 88.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, KO, PG

PASSED: 75.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, KO, PG

PASSED: 88.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, PG

PASSED: 37.1%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, KO

PASSED: 86.9%  

 

 
Empirical CDF
True CDF

Table 25: Four-dimensional conditional distributions comparison: GE, MCD, KO, PG
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5D t-copula New method: t-based New method: Clayton-based

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MSFT, KO, PG

PASSED: 98.8%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, KO, PG

PASSED: 25.8%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MSFT, PG

PASSED: 87.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MSFT, KO

PASSED: 26.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MSFT, KO, PG

PASSED: 78.0%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, KO, PG

PASSED: 12.8%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MSFT, PG

PASSED: 97.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MSFT, KO

PASSED: 95.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MSFT, KO, PG

PASSED: 36.3%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, KO, PG

PASSED: 11.3%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MSFT, PG

PASSED: 79.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MSFT, KO

PASSED: 56.1%  

 

 
Empirical CDF
True CDF

Table 26: Four-dimensional conditional distributions comparison: GE, MSFT, KO, PG
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5D t-copula New method: t-based New method: Clayton-based

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | MSFT, KO, PG

PASSED: 84.9%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | MCD, KO, PG

PASSED: 19.3%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | MCD, MSFT, PG

PASSED: 87.6%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | MCD, MSFT, KO

PASSED: 96.5%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | MSFT, KO, PG

PASSED: 84.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | MCD, KO, PG

PASSED: 29.9%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | MCD, MSFT, PG

PASSED: 96.3%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | MCD, MSFT, KO

PASSED: 99.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | MSFT, KO, PG

PASSED: 64.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | MCD, KO, PG

PASSED: 27.4%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | MCD, MSFT, PG

PASSED: 86.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | MCD, MSFT, KO

PASSED: 95.6%  

 

 
Empirical CDF
True CDF

Table 27: Four-dimensional conditional distributions comparison: MCD, MSFT, KO, PG
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5D t-copula New method: t-based New method: Clayton-based

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, KO, PG

PASSED: 80.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, KO, PG

PASSED: 42.9%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, KO, PG

PASSED: 15.0%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, MSFT, PG

PASSED: 97.8%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, MSFT, KO

PASSED: 62.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, KO, PG

PASSED: 86.9%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, KO, PG

PASSED: 48.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, KO, PG

PASSED: 8.9%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, MSFT, PG

PASSED: 98.2%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, MSFT, KO

PASSED: 81.1%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: GE | MCD, MSFT, KO, PG

PASSED: 19.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MCD | GE, MSFT, KO, PG

PASSED: 73.3%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: MSFT | GE, MCD, KO, PG

PASSED: 25.0%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: KO | GE, MCD, MSFT, PG

PASSED: 33.7%  

 

 
Empirical CDF
True CDF

0 0.2 0.4 0.6 0.8 1
0

0.5

1
KS test: PG | GE, MCD, MSFT, KO

PASSED: 85.3%  

 

 
Empirical CDF
True CDF

Table 28: Five-dimensional conditional distributions comparison: GE, MCD, MSFT, KO, PG
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