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Abstract. Modern procedure of asset return forecasting rely upon
asset volatility measurement. Integrated volatility is an intrinsic
value of the volatility which can be non-parametrically estimated
with high frequency data. Using intra-day observations integrated
volatility usually estimated by realized volatility. However, un-
der quite general assumptions this estimator is biased (Barndorff-
Nielsen Shephard, 2002a, Meddahi, 2002a). Moreover, the point
estimator of integrated volatility do not allow for measuring volatil-
ity risks. More accurate measure of integrated volatility is a con-
fidence interval based on inference theory. Asymptotic and boot-
strap approaches are two main concepts for confidence interval
constructing. It was shown by Goncalves and Meddahi (2009) that
application of wild and i.i.d bootstrap for realized volatility may
achieve more accurate confidence intervals for integrated volatil-
ity than asymptotic theory based on CLT for realized volatility
(Barndorff-Nielsen and Shephard, 2002a, 2002b). In this paper we
extend the work of Goncalves and Meddahi (2009) suggesting to
use the block bootstrap and GARCH residual based bootstrap ap-
proaches. Using Monte Carlo simulations technique we show that
block bootstrap is more accurate approach on a small frequency
data, more robust and valid.

1. Introduction

Asset return modeling with high frequency data in financial markets
become crucial in econometric study since this approach was consid-
ered by Andersen and Bollerslev (1997). The advantage of using this
type of data is the possibility to apply nonparametric estimation of the
volatility process. Using intra-day observation we can derive empirical
distribution of daily returns and get information about its moments.
More accurately, implementation of quadratic variation theory in as-
set return distribution modeling allowed to figure out representation of
asset return volatility.

In standard continuous-time models return volatility is usually rep-
resented by integrated volatility which is actually latent. It was shown
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that under certain strict assumptions realized volatility is quite accu-
rate and consistent measure of integrated volatility (Andersen, Boller-
slev, Diebold, and Labys 2001, henceforth ABDL). Unfortunately, the
presence of microstructure effects such as discreteness of prices, bid-ask
bounce, irregular trading etc. (ABDL 2000) and the presence of jumps,
drifts of asset prices and the leverage effect make realized volatility not
exactly perfect estimator in the real world (Meddahi 2002, Barndorff-
Nielsen and Shephard 2002a, 2002b).

The significant contribution in theory of realized volatility was made
by the introducing asymptotic theorems by Barndorff-Nielsen and Shep-
hard (2002) (henceforth BNS). In particular, authors presented the cen-
tral limit theorem (CLT) for realized volatility when the frequency of
observations is growing. This result allowed for constructing of confi-
dence intervals for integrated volatility under CLT assumptions. More-
over, CLT implies the asymptotic normality of realized volatility as an
estimator of integrated volatility. This fact does not contradict to bias
of the estimator. With weak assumptions of CLT, asymptotic the-
ory was widely used in constructing confidence intervals for integrated
volatility on the real data.

The next step in inference theory for integrated volatility was made
by Goncalves and Meddahi (2004) by the proposing bootstrap meth-
ods for realized volatility-like measures. The main result was improving
the existing asymptotic approximations which was published in 2009
(Goncalves and Meddahi, 2009). They proposed and analyzed two
bootstrap methods for realized volatility: an i.i.d. and a wild boot-
strap (WB). The i.i.d. bootstrap resampled intra-day returns from the
original set of returns. The method was motivated by the model in
which volatility is constant and consequently returns during the day
are i.i.d. The WB observations are generated by multiplying each orig-
inal intra-day return by an independent normally distributed random
variable. This approach was motivated by Wu (1986). Goncalves and
Meddahi (2009) showed the validity of these approaches under stochas-
tic volatility model.

The purpose of this paper is to extend the set of the bootstrap ap-
proaches for realized volatility in order to achieve improving the ex-
isting results and construct more accurate confidence intervals for in-
tegrated volatility when the frequency of observations is small. The
motivation to use moderate frequency is the exposition of the real data
to microstructure effects. The block bootstrap which was introduced
by Hall (Hall, 1995) seems to be an excellent approach for this pur-
pose since it preserves the time structure of the time series. The use of
block bootstrap was suggested by Goncalves and Meddahi as a possible
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extension of their work, however, as far as we know nothing is done.
Here we suggest an approach how to construct first-order asymptotic
valid block bootstrap. Moreover, we check the validity by the Monte
Carlo simulations technique with different frequencies. Considering
overlapping and non-overlapping bootstrap separately (Lahiri, 1999)
we compare block bootstrap with asymptotic inference, WB and i.i.d.
bootstrap. After all, we check these approaches for robustness under
the drift of the prices and the leverage effect.

Our results are the following. Under high frequency of the data
all approaches are approximately equivalent. Under low frequency as-
ymptotic confidence intervals and i.i.d bootstrap give slightly narrower
confidence interval, WB gives slightly wider confidence interval and
non-overlapping block bootstrap gives quite precise confidence inter-
val outperforming all of the approaches. Overlapping bootstrap out-
performs other approaches at the rather frequent data and it is more
robust then others.

We proceed as follows. In Section 2 we introduce the basic concepts
of realized and integrated volatility and the main results about them.
In Section 3 we introduce block bootstrap. In Section 4 we compare
results using Monte Carlo simulations technique and discuss them. In
Section 4 we discuss GARCH residual based bootstrap and further
research.

2. Basic concepts

In this paper we focus on a single liquid asset, which price St has
a continuous structure, defined by the following stochastic differential
equation:

d logSt = µtdt+ σtdWt, (1)

where µt is the drift term, which has finite variation, σt is a volatility
process such that

∫ t

0
σ2

udu <∞. We denote Wt as a standard Brownian
motion at the moment t. σt and µt are cadlag processes and σt is
assumed to be independent of Wt. We suppose that µt may depend on
σt and d logSt. We assume that time t is measured in units of one day.
According to the solution of stochastic differential equation (1) we can
define one-day continuously compounded return for the price process:

rt = logSt − logSt−1 =

∫ t

t−1

µudu+

∫ t

t−1

σudWu. (2)

Integrated volatility is an inherent natural measure of return vari-
ability and is defined by
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IVt =

∫ t

t−1

σ2
udu.

Consider a real number h such that 1/h is a positive integer number
and define r(h)

t−1+ih as the return over the period [t−1+(i−1)h; t−1+ih].
The realized volatility RVt(h) is

RVt(h) =

1/h∑
i=1

r
(h)2
t−1+ih.

According to quadratic variation theory, the consistency of the re-
alized volatility as an estimator of integrated volatility relies on in-
creasing number of high-frequency observations, or partition diameter
h→ 0 (BNS, 2002a). However, in real data microstructure effects such
as discreteness of prices, bid-ask bounce and irregular trading restrict
ultra-high-frequency, since it breaks down semi-martingale properties
of returns (Andreou and Ghysels, 2002). According to Andersen et
al. (2001b) it is optimal to use intra-day returns not over 30 minutes
frequency in order to mitigate microstructure effects. In this paper
we abstract from reality and eliminate this factor by considering clear
simulated processes. This allows us to consider any sensible frequency.
However, in any particular case we consider fixed frequency and there-
fore we have the measurement of the error term

Uh
t = RVt(h)− IVt.

The main properties of the noise term are well known and firstly was
considered by BNS (2002a) and Meddahi (2002a):

(a)The mean of Uh
t in general is non-zero when the drift µt is non-zero.

(b)Uh
t in general is heteroskedastic.

(c)Under leverage effect Uh
t is correlated with integrated volatility IVt.

The asymptotic properties of the error term was originally described
in CLT for realized volatility (BNS, 2002a). In particular, assuming
that drift and volatility processes are jointly independent of {Wu, u ≥
0}, we have the following asymptotic

√
h−1

RVt(h)− IVt√
2IQt

d−→ N (0, 1), (3)

where IQ denotes the integrated quarticity, which is defined by

IQt =

∫ t

t−1

σ4
udu.
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Note that this asymptotic result does not require any knowledge
about drift and diffusion processes and the asymptotic holds even the
fourth moment of the return does not exist. Also, the impact of the
leverage effect does not influence the above asymptotic property and
non-zero mean of the noise is not in contradiction with the asymptotic
result (3).

Using the theory of power variation we can derive realized quarticity,
which is a consistent estimator of integrated quarticity under the same
assumptions (BNS 2002a, 2004b, 2006) and defined by

RQt =
1

h

1

3

1/h∑
i=1

r
(h)4
t−1+ih. (4)

From privatization of the statistics (3) we can derive feasible CLT
and a construct feasible 95% asymptotic confidence interval for inte-
grated volatility

CIa
t = RVt ± 1.96

1√
h−1

√
2RQt. (5)

Goncalves and Meddahi (2004) proposed to use bootstrap for inte-
grated volatility inference. Due to asymptotic refinement property, the
bootstrap usually provide a more accurate approximation to the finite-
sample distribution of an estimator than its asymptotic distribution.
Under assumptions of zero drift µt = 0 and no leverage effect Goncalves
and Meddahi (2004) derive bootstrap valid statistics for WB and i.i.d
bootstrap and prove their first-order asymptotic validity.

The i.i.d. bootstrap was motivated by the model in which volatility is
constant and consequently returns during the day are i.i.d. Therefore,
this method resample intra-day returns from the original set of returns.

r∗t−1+ih ∼ i.i.d. from {rt−1+ih}.
To construct symmetric 95% percentile-t i.i.d. bootstrap interval for

integrated volatility

CIperc−t
t = RVt ± q∗0.95

1√
h−1

√
2RQt

we need to take the 95% quantile q∗0.95 from the distribution of∣∣∣∣∣
√
h−1(RV ∗

t −RVt)

u
(h)∗
t

∣∣∣∣∣ ,
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where

u
(h)∗2
t = h−1

1/h∑
i=1

r∗4t−1+ih −

 1/h∑
i=1

r∗2t−1+ih

2

.

The WB was motivated by the model in which volatility is stochastic.
The WB observations are generated by multiplying each original intra-
day return by an independent normally distributed random variable.

r∗t−1+ih = rt−1+ihηi, ηi ∼ i.i.d. N (0, 1).

To construct symmetric 95% bootstrap percentile-t interval for in-
tegrated volatility we need to take the 95% quantile q∗0.95 from the
distribution of ∣∣∣∣∣

√
h−1(RV ∗

t −RVt)√
2RQ∗

t

∣∣∣∣∣ .
Goncalves and Meddahi (2009) prove that bootstrap approximation

is better than asymptotic ones and demonstrate their robust properties
under non-zero drift and leverage effect. Moreover, they demonstrate
that i.i.d. bootstrap is useful even in a case of stochastic volatility.

3. Block bootstrap approach

In this section we extend proposed by Goncalves and Meddahi (2009)
results on block bootstrap approach for realized volatility. The issue of
the extensions is to preserve original returns structure during resam-
pling. The block bootstrap is a popular methods to improve accuracy
of bootstrap for time series data (Hall 1995). The main principle relies
upon dividing data on several blocks, which can maintain the origi-
nal structure of initial time series. Blocks may be overlapping and
non-overlapping (Lahiri 1999). If the sample size is T = h−1 and l
is the length of the block then for non-overlapping approach we will
divide data on T/l blocks. For overlapping approach we divide initial
data on T − l − 1 blocks, which block 1 is {r1, r2, ..., rl} and block
2 is {r2, r3, ..., rl+1}, ..., etc. The way to choose the length of blocks
was considered by Andrews (2004). Author demonstrated that good
asymptotic properties can be achieved if the length of blocks depends
on total sample size such that l(T ) → ∞ as T → ∞ and l(T )

T
→ 0.

Moreover, the length should be asymptotically equal T 1/3. We show
that in this work good asymptotic properties can be achieved assuming
the length of the blocks equal to floor of third root of the sample size.
Therefore, we assume that l = bT 1/3c.

We assume the simplified model without drift and leverage effect.
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d logSt = σtdWt,

Let {r∗ih,h : i = 1, ... 1
h
} be a bootstrap sample from the original set of

intra-day returns. Consider for example non-overlapping block boot-
strap. Therefore, non-overlapping blocks are

{rt−1+ih}l
i=0, {rt−1+ih}2l

i=l, ..., {rt−1+ih}1/h
i=1/h−l.

The bootstrap base is formed from randomly drawn blocks with re-
placement from collection of blocks until a bootstrap sample of length
T = h−1 is formed.

{r∗t−i+ih}
1/h
i=0 =

{
{rt−1+ih}lζk+l

i=lζk

}T/l

k=1
,

where ζk is a random number from {0, 1, 2, ..., T
l
− 1}. Bootstrapped

realized volatility is

RV ∗
t =

1/h∑
i=1

r∗2t−1+ih.

The block bootstrap 95% percentile interval is

CIperc
t = RVt ±Q∗

0.95,

with Q∗
0.95 the 95% percentile of the distribution of an unstudentized

bootstrap version of |
√
h−1(RVt − IVt) |. The block bootstrap 95%

percentile-t interval is

CIperc−t
t = RVt ± q∗0.95

1√
h−1

√
2RQt, (6)

with q∗0.95 the 95% percentile of the distribution of an studentized boot-
strap version of |

√
h−1(RVt − IVt) |.

Goncalves and Meddahi (2009) proved that for i.i.d bootstrap and
WB

sup
x∈R

∣∣∣∣∣P ∗

(√
h−1(RV ∗

t −RVt)

v
(h)∗
t

≤ x

)
− Φ(x)

∣∣∣∣∣→ 0, (7)

under conditions similar to CLT as h→ 0, where v(h)∗2
t = V ar∗(

√
h−1RV ∗

t ),
and Φ(x) = P (Z ≤ x) with Z ∼ N (0, 1). In this paper we assume that
this result holds for the block bootstrap.
Corollary 2.1

For the block bootstrap:
(i) E∗(RV ∗

t −RVt) = 0 for any h and t.
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(ii) Resampled variance of the bootstrapped statistic is

v
(h)∗2
t = V ar∗

(√
h−1RV ∗

t

)
= h−1

(
(RV

(1)
t )2 + (RV

(2)
t )2 + ...+ (RV

(T/l)
t )2

)
− (RVt)

2l,

where RV (k)
t denotes realized volatility in block k during the day t:

RV
(k)
t =

l∑
i=0

r2
t−1+kl+ih.

Note, if the length of the block is equal to one, then this approach
will be exactly the same as i.i.d. bootstrap and the first two moments
of the bootstrapped statistic will be equal. More formally, if l = 1 then

v
(h)∗2
t = V ar∗

(√
h−1RV ∗

t

)
= h−1

1/h∑
i=1

r4
t−1+ih −

 1/h∑
i=1

r2
t−1+ih

2

and

v
(h)∗2
t → 3

∫ t

t−1

σ4
udu−

(∫ t

t−1

σ2
udu

)2

6= 2

∫ t

t−1

σ4
udu as h→ 0.

As we can see, the variance of the bootstrapped statistic in general
does not converge to 2IQt = 2

∫ t

t−1
σ4

udu in probability. Therefore,
bootstrap percentile interval based on the quantiles of the distribution
of ∣∣∣√h−1(RV ∗

t −RVt)
∣∣∣

is not valid. However, we can define a bootstrap percentile-t interval
based on the quantiles of the distribution of∣∣∣∣∣

√
h−1(RV ∗

t −RVt)

u
(h)∗
t

∣∣∣∣∣ , (8)

where
u

(h)∗
t → v

(h)∗
t , as h→ 0.

If we define

u
(h)∗
t = h−1

(
(RV

(1)∗
t )2 + (RV

(2)∗
t )2 + ...+ (RV

(T/l)∗
t )2

)
− (RV ∗

t )2l

then bootstrap percentile-t interval based on the quantiles of the dis-
tribution of (8) will be valid since we assumed result (7).

Note, that all of the above is correct for overlapping bootstrap ap-
proach since the Corollary 2.1 is correct for overlapping one. Proof of
the Corollary 2.1 does not use non-overlapping property. Therefore,



BLOCK BOOTSTRAP FOR REALIZED VOLATILITY 9

these two approaches are equal in a first-order asymptotic. However,
their properties are not equal since distributions of (8) will have differ-
ent higher moments. We will consider them separately in the following
section.

4. Monte Carlo simulations

In this section we compare asymptotic theory for confidence intervals
of integrated volatility, WB and i.i.d bootstrap with proposed above
block bootstrap under the finite frequency. In order to achieve clear
results we follow the technique used in the paper of Goncalves and
Meddahi (2009). Using Monte Carlo simulations proposed by Ander-
sen, Bollerslev and Meddahi (2005) we simulate the following price
process

d logSt = µtdt+ σt

[
ρ1dW1t + ρ2dW2t +

√
1− ρ2

1 − ρ2
2dW3t

]
,

where W1t, W2t and W3t are three independent standard Brownian
motions. In order to achieve diversified presentation of the results we
consider four different classes of the volatility process σt.

The first one is a GARCH(1, 1) diffusion which was implemented by
Andersen and Bollerslev (1998):

dσ2
t = 0.035(0.636− σ2

t )dt+ 0.144σ2
t dW1t

The second is log-normal diffusion which was considered by Ander-
sen, Benzoni and Lund (2002):

d log σ2
t = −0.0136(0.8382 + log σ2

t )dt+ 0.1148dW1t

The third is two-factor affine diffusion which was considered by
Bollerslev and Zhou (2002):

σ2
t = σ2

1,t + σ2
2,t

dσ2
1,t = 0.5708(0.3257− σ2

1,t)dt+ 0.2286σ2
1,tdW1t

dσ2
2,t = 0.0757(0.1786− σ2

2,t)dt+ 0.1096σ2
2,tdW2t

The fourth is two-factor diffusion which was implemented by Cher-
nov at al. (2003), and Huang and Tauchen (2003):

σt = exp(−1.2 + 0.04σ2
1,t + 1.5σ2

2,t)

dσ2
1,t = −0.00137σ2

1,tdt+ dW1t

dσ2
2,t = −1.386σ2

2,tdt+ (1 + 0.25σ2
2,t)dW2t
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Our baseline model assume µ = 0 and ρ1 = ρ2 = 0. However, we
also check for robust property considering extension of the assumptions
which allows for drift and leverage effect. Following to Goncalves and
Meddahi (2009) we consider the following parameters. For one-factor
diffusion models we assume µ = 0.0314, ρ1 = −0.576 and ρ2 = 0.
For two-factor diffusion models we assume µ = 0.03, ρ1 = −0.03
and ρ2 = −0.03. Also we consider two-sided symmetric 95% confi-
dence percentile-t intervals. We use the normal distribution (CLT),
the i.i.d. bootstrap (iidB), WB and two types of block bootstrap, non-
overlapping (BB1) and overlapping (BB2), to compute critical values.
We make 10000 replications for four different sample sizes: 1/h = 1152,
288, 48 and 12, corresponding to “1.25-minute”, “5-minute”, “half-hour”,
and “2-hour” returns. Bootstrap intervals use 1000 bootstrap replica-
tions. Table 1 in Appendix A presents coverage rates for different
diffusion models and frequencies. Coverage rate less then 95% imply
degree of uncovering, i.e. this model construct too small confidence
intervals. Over-coverage property imply too wide confidence intervals.
As we can see, under high frequency of the data all approaches are
approximately equivalent. Under low frequency asymptotic confidence
intervals and i.i.d bootstrap give slightly narrow confidence interval,
WB gives slightly wide confidence interval and non-overlapping block
bootstrap gives quite precise confidence interval outperforming all of
the approaches. Overlapping bootstrap outperforms other approaches
at the rather frequent data and it is more robust then another.

5. Further research

Examples of the practical implementation of the bootstrap volatility
inference are measuring volatility risks and testing for jumps. Con-
struction one-sided confidence interval for integrated volatility may rep-
resent the upper bound for volatility which is an alternative to volatility
VaR. This measure may be sensible since volatility became tradable by
VIX volatility index options.

Another possible direction for extension of this research is imple-
mentation more robust bootstrap approaches such us GARCH boot-
strap for realized volatility (Goncalves and Kilian, 2004). This research
currently is under consideration. The simplified example of GARCH
bootstrap is considered bellow.
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Residual based bootstrap under conditional heteroskedas-
ticity. For simplicity we still have restricted model without drift and
leverage effect.

d logSt = σtdWt

The intrinsic property of the model is that returns are normally
distributed with zero-mean. Also we assume that intra-day returns
have heteroskedastic structure and follow {rt−1+ih}1/h

i=0 ∼ GARCH(1, 1)
model, which is given by

rt−1+ih = εt−1+ih,

εt−1+ih ∼ ψ
1/2
t−1+ihN (0, 1),

ψt−1+ih = β0 + β1ψt−1+(i−1)h + β2(εt−1+(i−1)h)
2.

Using maximum likelihood estimation we can estimate all parameters
of the model and derive volatility process {ψt−1+ih}1/h

i=0. Using volatility
process for intra-day returns we define bootstrap base:

{r∗t−1+ih}
1/h
i=0 ∼ N (0, ψt−1+ih).

From such resampling we can derive the first two moments of the
bootstrapped statistic:

Corollary 4.1
For the simplified residual based GARCH bootstrap:
(i) E∗(RV ∗

t −RVt) = 0 for any h and t.
(ii) Resampled variance of the bootstrapped statistic is

v
(h)∗2
t = V ar∗

(√
h−1RV ∗

t

)
= 2h−1

1/h∑
i=1

ψ2
t−1+ih

Resampled variance converge in probability to 6IQt which is not
equal to 2IQ. Therefore, bootstrap percentile interval based on the
quantiles of the distribution of∣∣∣√h−1(RV ∗

t −RVt)
∣∣∣

is not valid. However, if we make particular correction and take per-
centile interval based on the quantiles of the distribution of∣∣∣∣∣

√
h−1(RV ∗

t −RVt)√
3

∣∣∣∣∣
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it will be valid. A bootstrap percentile-t interval based on the quantiles
of the distribution of ∣∣∣∣∣

√
h−1(RV ∗

t −RVt)

u
(h)∗
t

∣∣∣∣∣ (9)

is valid, if
u

(h)∗
t → v

(h)∗
t .

If we define

u
(h)∗
t =

1/h∑
i=1

ψ2
t−1+ih,

then bootstrap percentile-t interval based on the quantiles of the dis-
tribution of (9) will be valid.

Note also that in sense of the first two moments of the bootstrapped
statistic the bootstrap under conditional heteroskedasticity is asymp-
totically equal to WB. However, this approach allows for wide extension
such as drift persistence, more complex structure of returns, reboot-
strapping volatility process on each estimation etc. It may be sensible
to use GARCH bootstrap instead of WB in order to preserve more
complicated structure of returns. The study, testing and extending
this approach is a subject of the future research.

6. Conclusion

In this paper we propose a new method for constructing confidence
interval for integrated volatility. It was shown that implementation
of the block bootstrap for realized volatility allows to achieve more
accurate inference for integrated volatility. Under low frequency non-
overlapping block bootstrap outperforms asymptotic theory and de-
scribed by Goncalves and Meddahi (2004) i.i.d bootstrap and wild boot-
strap. Moreover, overlapping bootstrap outperforms other approaches
at the rather frequent data and it is more robust then others. An-
other bootstrap approach, residual based bootstrap, allows for many
extensions which are the subject of forthcoming research. Another
interesting application of the realized volatility bootstrapping is non-
parametric testing of different hypothesis, for instance, test for jumps
in returns which were introduced by Andersen, Bollerslev and Diebold
(2004). These extension is considered to be a practical application of
this research.
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Appendix A: Tables and Figures

Table I: Coverage rates of nominal 95% confidence intervals for IV
No leverage and no drift Models with leverage and drift

1/h CLT iidB WB BB1 BB2 CLT iidB WB BB1 BB2
GARCH(1,1) diffusion

12 85.04 92.8 98.4 95.6 94.6 80.44 90.53 97.95 94.46 93.15
48 92.14 94.91 98.39 96.3 95.3 91.31 93.53 98.04 95.29 94.59
288 94.29 95.17 97.18 95.84 95.80 94.44 95.10 96.50 95.81 95.70
1152 94.51 94.88 95.37 95.33 95.22 94.82 95.03 96.14 95.30 95.47

Log-normal diffusion
12 84.61 93.38 98.36 96.16 94.48 80.99 94.37 98.77 96.92 95.34
48 91.7 94.88 98.57 95.89 95.3 93.58 96.26 98.97 96.95 96.15
288 94.4 95.31 97.01 96.02 95.43 93.85 95.06 97.23 95.47 95.33
1152 95.15 95.25 96.08 95.44 95.57 94.80 95.03 96.17 95.26 95.37

Two-factor Affine diffusion
12 83.36 92.02 97.74 95.38 94.02 80.27 90.57 98.45 93.52 92.69
48 90.91 94.73 97.88 95.43 94.69 92.34 94.38 98.13 95.14 94.67
288 94.11 95.22 97.58 96.12 95.78 94.35 95.21 96.67 95.05 95.35
1152 94.65 95.24 96.09 95.65 95.28 95.78 95.45 95.65 95.39 95.22

Two-factor diffusion
12 79.55 90.63 96.92 94.55 91.96 80.24 90.62 97.20 93.49 92.26
48 90.82 94.46 98.29 95.00 95.12 91.39 94.43 98.14 95.12 94.71
288 94.78 95.17 97.13 95.84 95.56 94.37 95.20 97.03 96.03 95.46
1152 95.10 95.37 95.61 95.16 94.97 95.72 95.00 95.83 95.49 95.38

Appendix B: proofs of results in Sections 2 and 4.

Proof of Corollary 2.1 (i) Due to discreet structure of the boot-
strapped realized volatility, we have:

E∗ (RV ∗
t −RVt) =

T/l∑
k=1

(
T

l

)−1
(

T∑
i=0

r2
t−1+ih

)
−RVt =

T∑
i=0

r2
t−1+ih−RVt = 0

for any h and t.
(ii) Define realized volatility in a block k:

RV
(k)
t =

l∑
i=0

r2
t−1+kl+ih.
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Then

v
(h)∗2
t = V ar∗

(√
h−1RV ∗

t

)
= h−1V ar∗

 T/l∑
i=1

RV
(i)∗
t

 = h−1

T/l∑
i=1

V ar∗
(
RV

(i)∗
t

)
= h−1T

l
V ar∗

(
RV

(i)∗
t

)
. (10)

Where
V ar∗

(
RV

(i)∗
t

)
= E∗

(
RV

(i)∗2
t

)
− E∗

(
RV

(i)∗
t

)2

=
(
(RV

(1)
t )2 + (RV

(2)
t )2 + ...+ (RV

(i)
t )2

)(T
l

)−1

− (RVt)
2

(
T

l

)−2

.

Substituting this into (10) we receive the desirable result.

Proof of Corollary 4.1 (i) The first moment is follows from zero-
mean returns process:

E(r2∗
t−1+hi) = ψt−1+hi = E(r2

t−1+hi).

Summing up all intra-day returns we receive the following:
E(RV ∗

t −RVt) = 0.

(ii) The second moment is:

v
(h)∗2
t = V ar∗

(√
h−1RV ∗

t

)
= h−1V ar∗

 1/h∑
i=1

r2∗
t−1+ih

 = h−1

1/h∑
i=1

V ar∗
(
r2∗
t−1+ih

)
.

Due to normality of the return distribution:

V ar∗
(
r2∗
t−1+ih

)
= E∗ (r4∗

t−1+ih

)
−
(
E∗ (r2∗

t−1+ih

))2
= 3

(
V ar∗(r∗t−1+ih)

)2 − (V ar∗(r∗t−1+ih)
)2

= 2
(
V ar∗(r∗t−1+ih)

)2
= 2 (ψt−1+ih)

2 .

Substituting this expression into the second moment we receive:

v
(h)∗2
t = 2h−1

1/h∑
i=1

ψ2
t−1+ih.
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