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Alexei Smolin ∗

2011

Abstract

When choosing how to act, a person may care about what actions the others choose
and may choose to conform by selecting an action preferred by the others. Such a phe-
nomenon is called normative conformity if the desire to go with the crowd stems from
reasons other than informational content of the others’ actions, for instance, from
morals, social norms, or internal preferences for similarity. I enrich the framework de-
veloped in Fischer & Huddart (2008) by allowing agents to have different preferences
over actions. I characterize optimal mechanisms in voluntary payments environments,
such as donations, contributions for public goods, and tips. I show that when the agents
have heterogeneous preferences with conformity the optimal contributions mechanism
restricts the range of acceptable payment amounts. In addition to a zero contribu-
tion required by voluntary setup the optimal mechanism sets either only one positive
payment level or a minimum acceptable payment depending on the distribution of
individual components of the preferences.

1 Introduction

Humans are social beings who like to pay attention to what others do. They also know that
others may pay attention to what they do. Buying cars or clothes, choosing a school or a
restaurant, and voting are examples of decisions that are likely to be influenced by decisions
of others. Conformity is a phenomenon of acting similarly to others when being observed or
when alone.

Wisdom of the crowd is one source for conformity. Indeed, in looking at decisions of others
a person may think that some of them are well informed. Thus, quite rationally, she would
be tempted to follow the choices of others in similar decision problems. This phenomenon

∗This study is my master thesis at New Economic School. I am grateful to the whole institution for
providing a wonderful environment for this research. I wish to especially thank my adviser Sergei Izmalkov
for his skillful and responsive guidance. Instructive discussions with him were always a great pleasure for
me.
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is called informational influence or informational conformity and was first documented by
psychologist Sherif (1936). In his experiment the participants had to estimate how much a
light dot moved. In fact, the dot didn’t move at all and its perceived motion was simply an
illusion due to autokinetic effect. Every person was subject to her unique rate of the effect.
Participants could revise their estimates observing the estimates of the others and eventually
they converged to the same estimate.

In economics, Banerjee (1992) and Bikhchandani, Hirshleifer & Welch (1992) brought at-
tention to informational influence by introducing the information cascades concept. In their
models agents receive some private information and act in sequence observing choices made
before them. From past choices agents may infer private information of the others which
may lead to herding behavior with most of agents ignoring their private information. The
convergence of actions in these models crucially depends on the discrete structure of possi-
ble choices. Experiments by Anderson & Holt (1997) confirm the existence of information
cascades and the literature on informational cascades and herding is quite vast by now.

The second source for conformity is normative influence, or normative conformity. Nor-
mative conformity can occur in the absence of any informational exchange and can come
from variety of sources. It may arise from internal unwillingness of an individual to deviate
from the actions of the others because of moral considerations, religion or social norms. Or
it may be driven by a threat of an external punishment for deviation. Asch (1955) explored
that phenomenon in attempt of a deep investigation of Sheriff’s study. He conducted a simi-
lar laboratory experiment with a more clear and easy question, in which subjects were asked
to determine which line out of the three presented matched the original one. Asch assumed
that conformity would be negligible in that case, but found out that on average people con-
formed one third of the time. Such behavior could hardly be driven by information concerns
because of the simplicity of the question. It supports the existence of normative conformity.

Jones (1984) introduced normative conformity in the economic literature. He concen-
trated on the analysis of workers’ attitudes in a group workplace environment, particularly
on the ”Hawthorne Puzzle”, the desire of workers to conform to each others actions. He built
a model with utility functions explicitly reflecting social preferences. This implied conformity
by construction and explained emergence of traditions in the overlapping generation model.
Importantly, social norms in the model were endogenous and derived from workers’ behavior
in equilibrium rather than being fixed ad hoc. Many subsequent approaches accepted this
idea.

Bernheim (1994) offered another view on conformity. In his model individuals care about
their status as well as an ”intrinsic” utility. Having heterogeneous statuses they are willing
to conform fully because any deviation may seriously impair their perceived status. It is a
signaling model but it represents, in fact, normative rather than informational conformity
as agents tend to be perceived having a ”normal” status. Unlike Jones, Bernheim sets
the norm exogenously as an average of possible statuses rather than deriving it from a
model. Brock & Durlauf (2001) presented a neat application of the model. They analyzed
aggregate behavioral outcomes in presence of social interaction effects but restrict most of
their attention to the case of homogeneous agents and binary choice set of possible actions.
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Recently, Fischer & Huddart (2008) considered a model with endogenous social norms
from the optimal contraction perspective. They treated normative conformity as given and
investigated its consequences. In the basic model agents’ preferences are two-fold. The first
part is conventional and reflects money payoffs. The second part refers to conformity and
represents unwillingness of a worker to deviate from both personal norm and endogenous
social norm. They analyzed how social norms may affect standard approach but obtained
the most results in an absolutely homogeneous case due to complexity of the problem. They
demonstrated that it can be optimal to split an organization in order to eliminate the mutual
conformity externalities between the agents involved in different tasks.

The crucial difference between modeling informational and normative conformity is tim-
ing. Informational conformity is modeled as a dynamic game because its essence is the
exchange of information among agents. One advantage of the normative conformity model-
ing is a possibility to consider a one-shot game instead of a dynamic one. The key feature
of normative conformity is the unwillingness to deviate, which can be captured in a static
game. This allows for richer models and possibly leads to more plausible results.

In this thesis I concentrate on the normative conformity in a voluntary payments setup.
Voluntary payments in my model mean non-obligatory payments which do not imply imme-
diate gains in the form of goods or services for donor. Proper examples are charity donations,
tips and voluntary public good contributions. Such transfers involve huge money resources.
According to Giving USA Foundation annual charity donations in the United States in-
creased from $20 bln in 1969 to $300 bln in 2009, and tipping estimates in the US food
industry alone amount to about $42 bln annually.

Conformity is important in the voluntary payments setting. Alpizar, Carlsson & Johansson-
Stenman (2008) conducted a natural field experiment at a national park in Costa Rica. When
donors were told that the typical contribution of others is $2 (a small contribution), the prob-
ability of a contribution increased and the conditional contribution decreased, compared with
providing no reference information. Providing a high reference level ($10) increased the con-
ditional contributions. This evidence corresponds to the results of my model.

The basic model is similar to one by Fischer & Huddart (2008). It has donor population of
heterogeneous agents, whose preference for donation comes from two sources: individualistic
component and social component. The former represents the amount of payment an agent
would like to pay apart from social concerns and varies among population. The latter reflects
social preferences and constitutes conformity. I look for optimal design in the environment,
that is I seek for the mechanism raising the largest possible fund.

While exploiting a similar model my research differs considerably from Fisher&Huddart’s
one. First, I apply a pure design approach in the voluntary setting while they concentrate
on wage/bonus schemes in contracting setting. Second, I analyze heterogeneous agents while
hey obtain most results in a homogeneous case.

I show in this thesis that optimal contribution mechanism restricts the possible range of
acceptable payments in two important general cases. In the first case, the distribution of
individual components of the preferences strictly increases, meaning that the population is
generous. Then in addition to a zero contribution required by voluntary setup the optimal
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mechanism sets only one positive payment level. In the second case, the distribution of the
components strictly decreases, meaning that the population is stingy. Then in addition to a
zero contribution the optimal mechanism sets a minimum acceptable payment.

In fact, many foundations use such mechanisms though often implicitly to not annoy its
donors. Minimal payment varies from $2 up to $20 for most charity donations and is often
justified by technical reasons. According to my research it may be the best way of fundraising
in a stingy population. Also, many organizations sell memorable items indirectly setting the
only acceptable payment amount. One example is Colorado State University which sells
university license plates for $100 per item. Probably most graduates purchase no more than
one license plate so $100 turns out to be the only acceptable payment amount. I show that
it may be the best way of fundraising in a generous population. Hence, results of my thesis
fit the evidence and explain variety of existing contribution schemes.

The paper proceeds as follows. In Section 2 I present the main model for behavior of
heterogeneous agents in the presence of conformity in a population. In Section 3 I apply
the model to a voluntary payments problem and find optimal mechanisms in the important
general cases. In Section 4 I apply the main model to an open voting problem and analyze
equilibrium behavior. Section 5 concludes.

2 The main model

The basic model is borrowed from Fischer & Huddart (2008), who studied the notion of con-
formity as compliance with social norms in a team from the optimal contraction perspective.
Fisher&Huddart’s model has a continuum of workers in a set I each of whom chooses her
level of efforts, action ai to maximize the utility function:

z(ai) ≡ wi + bih(ai)− f(ai −Ni) (1)

Ni ≡ (1− αi)Ai + αiSa, Sa ≡
∫

I
ai di

∫

I
di

(2)

Such utility function reflects a two-fold nature of preferences. The first part is conventional
and reflects money payoffs. Here wi is a flat wage and bi is a monetary bonus for each unit
of production h(ai). The second part refers to conformity and represents unwillingness of
a worker to deviate from both personal norm and endogenous social norm. Here f(a) is a
convex function with maximum at zero, so Ni is an ideal action for a worker in the absence
of bonuses. It depends on Ai, an individual norm, and Sa, social norm in the population.
The authors naturally assume this norm to be simply a population average action. Then α

is an exogenous rate of conformity varying between 0 and 1 that captures the fundamental
trade-off between individualism and conformity. Higher αi leads to less willingness to deviate
from a population average. When αi = 0, there is no conformity and the agent chooses her
individual norm. When α = 1, there is no individualism and the choice of the agent is driven
solely by the crowd. This model captures the essential idea of the conformity but seems to be
too complicated. Indeed, while Fisher&Huddart allow for heterogeneous individual norms
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and rate of conformity, they obtain the most results in the homogeneous case, Ai = A,
αi = α ∀ i ∈ I.

I want to capture the conformity idea in the simplest way applicable to voluntary pay-
ments problem, which implies heterogeneous donors. So there is a continuum of agents in
my main model, i-th agent having its personal norm Ai. These norms are the most prefer-
able actions for agents in the absence of conformity and represents all other concerns. The
set of the personal norms is normalized to [0, 1] with distribution function F (Ai) known
to everyone. This distribution represents a population attitude towards different possible
actions.

Preferences of every each agent constitute her utility function depending on her action
ai:

u(ai) = −(ai −Ni)
2 (3)

Ni ≡ (1− α)Ai + αEa

Here Ea signifies an average population action and is identical to Sa before. Note that
I assume a rate of conformity being the same among agents though keep personal norms
heterogeneous. Also assume that α < 1. These assumptions seem to be quite natural in the
setting. I consider the case with heterogeneous αi but the same A in appendix. The case of
dual heterogeneity is intractable and unnecessary for my analysis.

The game proceeds as a typical one-shot game. Each agent chooses independently her
action ai from the set of possible actions A, the same for every agent. Then the actions
are observed and payoffs are distributed. I consider a concept of a Nash equilibrium. It is
proper to consider just equilibria in pure strategies because in any case almost every agent
has a unique best response.

Let us get acquainted with the model and investigate the equilibrium behavior of the
agents with unrestricted A.

Theorem 1. If A = (−∞,+∞) then in the Nash eq’m Ea = EA, i.e. the average action in
the population coincides with the average personal norm.

Proof. F.O.C. to (3) :
ai = Ni = (1− α)Ai + αE(a) (4)

Applying population mean to the both sides of (5) and using the fact that α 6= 1 completes
the proof.

From (5) and Theorem 1 one can derive that in the Nash eq’m

a∗i = (1− α)Ai + αEA (5)

Note that it differs from simply condition (5) and constitutes an equilibrium behavior. Each
individual weighs her personal norm with the average personal norm in the population,
which fits common perception of conformity. At the same time conformity here changes just
a pattern of the actions but not their average. In the subsequent sections I show that this is
an artefact of the unrestricted A and is not true in the general case.
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For now, consider two examples:
1. Agents are homogeneous in their personal norm as considered by Fisher&Huddart.

Then Ai = const = A0 ∀ i and according to (6)

a∗i = A0 (6)

In this case conformity doesn’t change behavior of the agents in any way. Though the agents
don’t like to deviate from the crowd there is no reason to do that. Identity of the agents
kills any possible effects.

2. Personal norms are distributed uniformly on [0, 1] so

a∗i = (1− α)Ai + α
1

2
(7)

In that case conformity does change behavior of the agents. The chosen actions are uniformly
distributed on [α

2
, 1− α

2
] concentrating at the middle of the set of possible actions, compared

to the distribution of personal norms. Such behavior is demonstrated by the tendency friends
exhibit while walking together. Nobody likes to be aside, everyone tends to the middle.

3 Voluntary payments setting

Economic activity involves a lot of monetary transactions. Some of them are obligatory,
some are not. Voluntary payments in my model mean non-obligatory payments which do
not imply immediate gains in the form of goods or services for a donor. Proper examples
are charity donations, tips and voluntary public good contributions. Alpizar et al. (2008)
showed that conformity does influence donor’s behavior. Thus, one may apply the developed
framework to the setting with voluntary payments in attempt to analyze equilibrium behavior
and achieve certain goals.

My goal in the analysis is fundraising. First, billions of dollars annually circulate in the
industries with voluntary payments. Even a slight relative increase in the revenue leads to
considerable profit. Hence, it’s interesting to check whether current payment schemes are
optimal from a private firm perspective. Second, raising the most revenue may be a social
goal. For example, one may use the conformity to override a free-rider behavior in public
goods provision. Hence, the goal is appealing from policy implications perspective as well.

3.1 Mechanism design

I consider the following interpretation of the developed model in a voluntary payments
setting. Donor population consists of a continuum of agents having personal norms Ai

distributed on the interval [0,1] with the density function f(z). Each agent conforms at some
extent to the average payment in the population according to (3). A mechanism designer
has full information about the population (f(z), α) and offers some mechanism G. I do not
allow for monetary transfers among the agents in the mechanism and negative payments.
Importantly, as payments are voluntary each agent has an outside option of zero payment.
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The goal is to find an optimal mechanism, that is the mechanism raising the most revenue
on this population.

3.1.1 Revelation principle

Variety of every possible mechanisms is enormous and maximizing revenue on such a huge
class seems to be impracticable. My solution is a successive narrowing of attention. First, I
narrow my analysis to the class of direct incentive compatible mechanisms due to revelation
principle. Then I exclude classes of mechanisms which can not raise optimal revenue till the
maximization is analytically simple.

Lemma 1 (Revelation principle). For any mechanism G and its equilibrium EG:
(a) there exists a direct incentive compatible mechanism D, i.e. a mechanism where each

agent has strategies to report any of the types and reporting her true type is an equilibrium
ED.

(b) payoffs in the equilibria EG and ED are the same.

Proof. See, for example, Krishna (2002).

The agent’s type in this setting is her personal norm which is private information. Con-
sider any direct incentive compatible mechanism D. It is direct, so it is fully represented by
its payment function d(zi). This function defines payment of every agent according to his
called type. Every agent in the mechanism may call any type zi ∈ Z = [0, 1] due to (a) (I
conform to convenient mechanism design notation here). If agent i with her personal norm
Ai announces some type zi she gets the payoffs, depending on an average payment in the
population:

Ui(zi) = −(d(zi)− (1− α)Ai − α Ed)2

The direct mechanism D is also incentive compatible, so its payment function satisfies:

IC: Ai ∈ argmax
zi∈[0,1]

{−(d(zi)− (1− α)Ai − αEd)2} ∀Ai ∈ [0, 1] (8)

or equivalently ∀Ai ∈ [0, 1]























true , ∀zi : d(zi) = d(Ai)

(1− α)Ai + αEd ≤ d(zi) + d(Ai)

2
, ∀zi : d(zi) > d(Ai)

(1− α)Ai + αEd ≥ d(zi) + d(Ai)

2
, ∀zi : d(zi) < d(Ai)

(9)

Condition (8) restricts class of possible direct mechanisms. Another restriction stemming
from voluntariness is a zero payment as an outside option. It follows that an equilibrium
payoff of any agent must be no less than her payoff from zero payment:

IR: Ui(zi) = −(d(zi)− (1− α)Ai − αEd)2 ≥ −((1− α)Ai + αEd)2 ∀Ai ∈ [0, 1]
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or equivalently as Ed ≥ 0 ∀Ai ∈ [0, 1]

d(zi) ≤ 2((1− α)Ai + αEd) (10)

Denote this as a zero payment condition. Examination of condition (9) gives

Lemma 2. The payment function d(z) on [0, 1] in the direct incentive compatible mechanism
D is nondecreasing and piecewise continuous.

Proof. Assume the contrary. Consider two different agents i and j. Let Ai > Aj and
d(Ai) < d(Aj). D is incentive compatible, so (9) holds for Ai at zi = Aj and (9) holds for
Aj at zj = Ai:

(1− α)Ai + αEd ≤ d(Ai) + d(Aj)

2
≤ (1− α)Aj + αEd (11)

It follows that Ai ≤ Aj . Contradiction, d(z) is nondecreasing.
Then d(z) is piecewise continuous as any nondecreasing function defined on compact.

Further analysis of continuity points leads to

Lemma 3. If d(z) is the payment function in the direct incentive compatible mechanism D

then d(z) = (1− α)z + α Ed at every continuity point of increase.

Proof. Let Ai be the continuity point. Then the statement follows immediately from (11) as
Aj approaches continuity point Ai in turn from above and from below.

Note, that Lemma 3 doesn’t deal with constancy periods or break points of the payment
function. Analysis of constancy intervals doesn’t restrict the payment function because
criterion (9) degenerates in that case. Further investigation into break points gives

Lemma 4. If d(z) is the payment function of the direct incentive compatible mechanism D

then limǫ→0
d(z0+ǫ)+d(z0)−ǫ)

2
= (1− α)z + αEd and d(z0) is equal to either limǫ→0d(z0 + ǫ) or

limǫ→0 d(z0 − ǫ) at every point of discontinuity z0.

Proof. Due to piecewise continuity there exists ǫ0 such that for every 0 < ǫ < ǫ0
d(z0 + ǫ) > d(z0 − ǫ). Then the first part of the statement follows immediately from (11) as
Ai = z + ǫ and Aj = z − ǫ and ǫ approaches zero. The second part of the statement follows
from the contrary considering in addition limit of Ai = z0 and Aj = z0 − ǫ, or Ai = z0 and
Aj = z0 + ǫ

Note, that Lemma 3 follows from an extension of Lemma 4 to the continuity points of
increase.

So far I derived necessary conditions for payment function in a direct incentive compatible
mechanism. However, it’s easy to see that these conditions are sufficient as well. Really,
Lemmas 3 and 4 eliminate incentives of agents to deviate from truthful equilibrium to their
neighborhood. But as a payment function is nondecreasing due to Lemma 2, if an agent
does not want to deviate to her neighborhood she does not want to deviate any further as
well. It follows
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Theorem 2. Payment function d(z) represents some direct incentive compatible mechanism
if and only if d(z) is non-decreasing, at any point with non-constant neighborhood

lim
ǫ→0

d(z + ǫ) + d(z − ǫ)

2
= (1− α)z + αEd (12)

and at every point of discontinuity d(z) ∈ {limǫ→0 d(z + ǫ), limǫ→0 d(z − ǫ)}.

Theorem 2 with restriction (10) completely defines class of mechanisms corresponding to
any equilibrium in the voluntary payment setting. An example of a typical payment function
is presented in Figure 1.

0.2 0.4 0.6 0.8 1.0
z

0.5

1.0

1.5

dHzL

Figure 1: Example of payment function. α = 1
3
,Ed = 1

2
.
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Finally, we have the following maximization problem given personal norms distribution
f(z):

Ed ≡
∫ 1

0

d(z)f(z)dz → max
d(z)

(13)

IC: if d′(z) > 0 or z is a break point

lim
ǫ→0

d(z + ǫ) + d(z − ǫ)

2
= (1− α)z + αEd

if z is a break point

d(z) ∈ {limǫ→0 d(z + ǫ), limǫ→0 d(z − ǫ)}
IR: d(zi) ≤ 2((1− α)Ai + αEd)

Other: d(zi) ≥ 0

This has trivial solution if α ≥ 1
2
. In this case conformity becomes overwhelming, payment

function of kind d(z) = const = c0 satisfies restrictions and raises infinity revenue as c0
rockets up. One should not apply the model to that extreme because some of initial assump-
tions may be violated. Particulary, rate of conformity may fall when an average action of
the others becomes extremely high. Hence, I restrict my attention to the case of α < 1

2
but

even that narrower problem is too complicated. Further analysis calls for specific classes of
personal norms distribution f(z).

3.1.2 Uniform distribution of personal norms

In this section personal norms are distributed uniformly among population, i.e. Ai ∼ U [0, 1].
This case corresponds to neutral population without any special preferences to low or high
contributions. I show that this assumption greatly simplifies analysis and enable us to
find the vast class of optimal mechanisms which includes a binary choice scheme and a
scheme with a minimum acceptable payment. I approach the main theorem of the section
constructing the big classes of mechanisms with the same revenue and then optimizing among
these classes.

Lemma 5. If d(z) is a payment function of the direct incentive compatible mechanism D in
the uniform voluntary setting and d(z) has a positive slope somewhere, i.e. d(z) = (1−α)z+
αEd ∀z ∈ [z1, z2], then there exists revenue equivalent direct incentive compatible mechanism
D′ with its payment function d′(z):

d′(z) =



















d(z), ∀z 6∈ [z1, z2]

d(z1), ∀z ∈ [z1,
z1 + z2

2
]

d(z2), ∀z ∈ (
z1 + z2

2
, z2]

(14)
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Proof. It is sufficient to show, that the mechanism D′ with its payment function d′(z) is
incentive compatible and meets zero payment condition (10). Let’s prove that the strategy
profile with each individual telling her true type is equilibrium in D′. In fact,

(a) in that profile Ed′ = Ed due to uniformity of inner preferences
(b) as D is incentive compatible d(z) satisfies conditions of Theorem 2
(c) as D offers zero outside option d(z) satisfies (10)

Then it follows from (a) and (b) that d′(z) satisfies conditions of Theorem 2 as well, so D′

is incentive compatible. Furthermore, it follows from (b) and (c) that d(z′) satisfies (10) so
D′ offers zero outside option.

An illustration of the transformation in Lemma 5 is represented in the Figure 2.

Figure 2: Transformation presented in Lemma 5.

Consecutive iteration of Lemma 5 allows me to narrow the further analysis in the uniform case
to the class of direct incentive compatible mechanisms with a piecewise constant payment
function because it fully represents variety of possible revenues. I continue the narrowing in

Lemma 6. If d(z) is a piecewise constant payment function in the direct incentive compatible
mechanism D in the uniform voluntary setting and d(z) has two break points nearby, i.e.
∃ z1 < z2 :

d0 = lim
ǫ→0

d(z1 − ǫ) < lim
ǫ→0

d(z1 + ǫ) = d1 = lim
ǫ→0

d(z2 − ǫ) < lim
ǫ→0

d(z2 + ǫ) = d2

then there exists revenue equivalent direct incentive compatible mechanism D′ with zero out-
side option and a piecewise constant payment function d′(z):

d′(z) =



























d(z) , ∀z 6∈ [z1, z2]

d0 , ∀z ∈ [z1, z1 +
d2 − d1

2(1− α)
]

d2 , ∀z ∈ (z1 +
d2 − d1

2(1− α)
, z2]

(15)
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Proof. Logic here is the same as in the previous proof, though calculations are more involved.
In fact, as D is incentive compatible then due to Theorem 2
z2 = z1 +

d2−d0
2(1−α)

. Then in the truthful profile:

(a) Ed′ = Ed+ (d2 − d1)
d1−d0
2(1−α)

− (d1 − d0)
d2−d1
2(1−α)

= Ed.

(b) (1−α)(z1+
d2−d1
2(1−α)

)+α Ed′ =due to (a)= d2−d1
2

+(1−α)z1+α Ed =due to Theorem 2=
d2−d1

2
+ d1+d0

2
= d2+d0

2
.

Analysis of other points is straightforward. Thus d′(z) meets conditions of Theorem 2 so
is incentive compatible.

(c) 2
(

(1− α)(z1 +
d2−d1
2(1−α)

) + αEd′
)

=due to (b)= d2 + d0 ≥ d2.

Analysis of other points is straightforward. Thus d′(z) satisfies (10) so D′ offers zero
outside option.

An illustration of the Lemma 6 is represented in the Figure 3.

Figure 3: Transformation presented in Lemma 6.

Thus, iteration of Lemmas 5 and 6 restricts my attention to the direct mechanisms with two
levels of realized payments in equilibrium and no more than one break point.

Lemma 7. If d(z) is a payment function of the optimal two-level direct incentive compatible
mechanism D with zero outside option in the uniform setting and the break point z0 <

1
2
then

the first level is equal to zero:

d(z) =











0 , ∀ 0 ≤ z < z0

d1 , ∀ z0 < z ≤ 1

0 or d1 , if z = z0

(16)

Proof. Assume the contrary. Then as payments are non-negative

d(z) =











d0 > 0 , ∀ 0 ≤ z < z0

d1 , ∀ z0 < z ≤ 1

d0 or d1 , if z = z0
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Consider the transformation

d′(z) =







d′0 = d0 − ǫ , ∀ 0 ≤ z < z0

d′1 = d1 +
1− 2αz0

1− 2α(1− z0)
ǫ , ∀ z0 ≤ z ≤ 1

where ǫ > 0 is sufficiently small. See that the mechanism D′ with its payment function d′(z)
is incentive compatible with zero outside option. In fact, in the truthful profile

Ed′ = z0(d0 − ǫ) + (1− z0)

(

d1 +
1− 2αz0

1− 2α(1− z0)
ǫ

)

= d0z0 + (1− z0)d1 +
1− 2z0

1− 2α(1− z0)
ǫ

= Ed+
1− 2z0

1− 2α(1− z0)
ǫ

Then
d′
1
+d′

0

2
= 1

2
(d0 + d1 +

2α(1−2z0)
1−2α(1−z0)

ǫ) = using IC of D and Theorem 2 = (1− α)z0 + Ed′,

thus D′ is incentive compatible according to Theorem 2.
Moreover, d′0 = d0 + ǫ > 0 as ǫ is small enough and d′1 = 2 ((1− α)z0 + Ed′) − d′0 <

2 ((1− α)z0 + Ed′), so D′ satisfies (10) and offers zero outside option.
But Ed′ > Ed as z0 <

1
2
, so D is not optimal. Contradiction.

An illustration of the Lemma 7 is represented in the Figure 4.
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Figure 4: Transformation presented in Lemma 7.

Lemma 8. If d(z) is a payment function of the optimal two-level direct incentive compatible
mechanism D with zero outside option in the uniform setting and the break point z0 >

1
2
then

the first level is equal to 2αEd:

d(z) =











2αEd , ∀ 0 ≤ z < z0

d1 , ∀ z0 < z ≤ 1

2αEd or d1 , if z = z0

(17)
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Proof. Assume the contrary. Then due to (10)

d(z) =











d0 < 2αEd , ∀ 0 ≤ z < z0

d1 , ∀ z0 < z ≤ 1

d0 or d1 , if z = z0

Consider the transformation

d′(z) =







d′0 = d0 + ǫ , ∀ 0 ≤ z < z0

d′1 = d1 −
1− 2αz0

1− 2α(1− z0)
ǫ , ∀ z0 ≤ z ≤ 1

where ǫ > 0 is sufficiently small. The mechanism D′ is incentive compatible for the same
reason as in the proof of Lemma 7 and in the truthful profile

Ed′ = Ed− 1− 2z0
1− 2α(1− z0)

ǫ

Note that Ed′ > Ed as z0 > 1
2
. Thus, d′0 = d0 + ǫ < 2αEd′ as ǫ is small enough and

d′1 < d1 ≤ (1 − α)z0 + α Ed < (1 − α)z0 + αEd′, so D′ satisfies (10) and offers zero outside
option.
It follows that Ed′ > Ed and D is not optimal. Contradiction.
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An illustration of the Lemma 8 is represented in the Figure 5.
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Figure 5: Transformation presented in Lemma 8.

Obviously, if z0 = 1
2
one may obtain the same revenue by the mechanisms presented in

Lemmas 7 and 8 through the same transformations. So I can seek for the maximum possible
revenue and a corresponding optimal mechanism in the binary choice classes presented in
these Lemmas.
1.) An optimal mechanism in the class presented in Lemma 7 (d0 = 0, d1 > 0):

max
z0≥0

Ed

s.t. Ed = z0 ∗ 0 + 2(1− z0)((1− α)z0 + αEd)

The solution to this problem is

E d∗ =
(1− α)(1−

√
1− 2α)2

2α2
(18)

d∗1 =
1− α

α
(1−

√
1− 2α) (19)

1− z∗0 =
1−

√
1− 2α

2α
(20)

2.) An optimal mechanism in the class presented in Lemma 8 (d0 = 2αE d, d1 > d0):

max
z0≥0

Ed

s.t. Ed = z0d0 + (1− z0)d1

d0 = 2αE d

d1 + d0

2
= ((1− α)z0 + α Ed)

16



The solution to this problem is

E d∗ =
(1− α)(1−

√
1− 2α)2

2α2
(21)

d∗0 =
1− α

α
(1−

√
1− 2α)2 (22)

d∗1 =
1− α

α
(1−

√
1− 2α) (23)

1− z∗0 = 1− 1−
√
1− 2α

2α
(24)

Note, that maximum revenue raised is the same in both classes though corresponding mech-
anisms are different. Thus, both mechanisms are optimal. It’s easy to transform the latter
mechanism into the mechanism with minimum acceptable payment:

d(z) =















(1− α)(1−
√
1− 2α)2

α
, ∀ 0 ≤ z <

1− α−
√
1− 2α

α

(1− α)z +
(1− α)(1−

√
1− 2α)2

2α
, ∀ 1− α−

√
1− 2α

α
≤ z ≤ 1

Summarizing

Theorem 3. Maximum revenue in the presented voluntary payment model with uniformly
distributed inner preferences is equal to

π∗ =
(1− α)(1−

√
1− 2α)2

2α2
(25)

The class of optimal mechanisms is vast. It includes a binary choice mechanism with set of
acceptable payments {0; d∗ = 1−α

α
(1−

√
1− 2α)} and a minimum payment mechanism which

accept any payment not less than 1−α−
√
1−2α

α
.

I don’t specify the whole class of the optimal mechanisms because it is enormous. In
fact, one may obtain any optimal mechanism in the class by backward induction of Lemmas
5 and 6.
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Some examples of optimal payment functions are presented in the Figure 6.
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Figure 6: Optimal direct incentive compatible mechanisms in the uniform case
with α = 0.4 (Ed ≈ 0.57).
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The graphs of some optimal characteristics depending on rate of conformity in population:
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Figure 7: Acceptable payment maximizing
revenue depending on the rate of conformity
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Figure 8: Maximum revenue depending on
the rate of conformity
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Figure 9: Share of population who contribute depending on the rate of conformity

Note that both π and µ increase along with α. Maximal revenue π∗ is everywhere greater
than revenue with no restrictions πur = 1

2
and is twice as large as that amount when α

approaches 1
2
.

3.1.3 Arbitrary distribution of personal norms

In this section personal norms are distributed among a population according to an arbitrary
density function f(z). This general case is more complicated than the previous one and
demands for more sophisticated techniques. I need the generalization of the initial problem.
Consider an extension of voluntary payments setting when preferences of agent i correspond
to the following utility function

Ui(ai) = −(ai − (1− α)Ai − αX)2 (26)
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where X is a constant parameter and represents conformity reference point for population,
exogenous norm. I call it X-generalization of the voluntary payments setting or simply
X-setting. I refer to such agent behavior as to X-conformity.

That X-setting refers to the basic voluntary setting in the following sense. Given any
direct mechanism D with its payment function d(z) expected revenue Ed in the X-problem
is a function of X , πD(X). Then it follows straightforward from definition

Lemma 9. Expected revenue Ed in the basic voluntary payment problem satisfies the crite-
rion

Ed = πD(Ed) (27)

thus it is a fixed point of a revenue function πD(X) and every fixed point represents an
expected revenue in some voluntary payment equilibrium in the mechanism D.

Lemma 9 proves to be a powerful tool in the further analysis. Also I need

Lemma 10. Consider X-problem and any direct mechanism D with its payment function
d(z). Then an equilibrium payment of any agent

d∗i (X) = d(argmax
zi

(−(d(zi)− (1− α)Ai − αX)2)

and expected revenue πD(X) in that mechanism are non-decreasing in X and constrained
from above.

Proof. Assume the contrary. Then ∃X ′ > X that z∗′, z∗- corresponding equilibrium pay-
ments so











UiX(d(z
∗)) ≥ UiX(d(z

∗′))

UiX′(d(z∗′)) ≥ UiX′(d(z∗′))

d(z∗) > d(z∗′)

However, it follows from system above that











d(z∗′) + d(z∗)

2
≤ (1− α)Ai + αX

d(z∗′) + d(z∗)

2
≥ (1− α)Ai + αX ′

which contradicts the fact that X ′ > X . Thus d∗i (X) and consequently πD(X) are non-
decreasing. Observation that revenue function is constrained from above by d(1) as d(z) is
non-decreasing completes the proof.

An important corollary from the last two lemmas is

Lemma 11. If D is direct incentive compatible mechanism in the X0-problem and πD(X0) >
X0 then there exists X1 > X0 such that πD(X1) = X1. This point corresponds to an equi-
librium in the mechanism D with the revenue X1 > X0 in the main voluntary payment
setup.

20



X

ΠD’HX L

ΠDHX L

X1X0 X

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 10: Revenue increase in Lemma 14.

Proof. πD(X) is non-decreasing and constrained from above due to Lemma 10 so there exists
X1 > X0 such that πD′(X1) = X1. This is an equilibrium according to Lemma 9.

The proof is outlined in the Figure 10. Lemma 11 says that if one can increase the
revenue given exogenous norm then one can increase the revenue given endogenous norm by
the same direct mechanism. This Lemma constitutes a backbone for analysis in the section.
Further, I eliminate non-optimal mechanisms by constructing their transformations with
higher revenue.

Some general considerations:

Lemma 12. If D is an optimal incentive compatible mechanism in the main voluntary
payment setup with its payment function d(z) then d(1) ≥ (1− α) + αEd.

Proof. Assume the contrary. Then due to Theorem 2 ∃ z0 such that d(z0) = (1−α)z0+αEd

and d(z) = d(z0) ∀z ∈ [z0, 1]. Denote Ed = X0. Due to Lemma 9 πD(X0) = X0.
Consider the following transformation:

d′(z) =

{

d(z), ∀z ∈ [0, z0]

(1− α)z + αX0, ∀z ∈ (z0, 1]
(28)

Due to Theorem 2 direct mechanism D′ with payment function d′(z) is incentive compatible
in X0-problem. Obviously πD′(X0) > πD(X0) = X0. But then according to Lemma 11 there
is an equilibrium in D′ raising more revenue then X0 which contradicts optimality of D.
Contradiction.

Lemma 13. Consider the main voluntary payment setup with strictly monotone preference
function. Then if D is an optimal incentive compatible mechanism with its payment function
d(z) having exactly one break point z0 then there exists an optimal D′ with the corresponding
d′(z) having the same break point and being equal either 0 or 2αEd′ for all 0 ≤ z < z0. That
is at least one restriction on the mechanism D′ is bounding. Moreover, D′ = D if D is not
a two-level mechanism with a break point at the median of f(z).
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Proof. Assume the contrary. Denote Ed = X0. Due to Lemma 9 πD(X0) = X0. Consider
possible cases:

(a) ∃z1, z2 : d(z) = d(z1) = (1 − α)z1 + αEd ∀z ∈ [z1, z0), d(z) = d(z2) = (1 − α)z2 +
αEd ∀z ∈ (z0, z2], d(z) = (1− α)z + αEd ∀z in some semi-neighborhood of z1, z2

Consider the following transformation depending on sufficiently absolutely small ǫ:

d′(z, ǫ) =























d(z), ∀z 6∈ [z1 −
ǫ

1− α
, z2 +

ǫ

1− α
]

d(z1)− ǫ, ∀z ∈ [z1 −
ǫ

1− α
, z0]

d(z2) + ǫ, ∀z ∈ (z0, z2 +
ǫ

1− α
]

(29)

Due to Theorem 2 direct mechanism D′ with payment function d′(z) is incentive compatible
in X0-problem. See that

πD′(X0) = πD(X0) + ǫ

(
∫ z2

z0

f(z)dz −
∫ z0

z1

f(z)dz

)

+ o(ǫ)

= X0 + ǫ

(
∫ z2

z0

f(z)dz −
∫ z0

z1

f(z)dz

)

+ o(ǫ)

Note that D is incentive compatible and then due to Theorem 2 z0 − z1 = z2 − z0. Then
it follows from strict monotonicity that the linear term is non zero, so there exists ǫ either
positive and negative such that πD′(X0) > X0. But then according to Lemma 11 there is an
equilibrium in D′ raising more revenue then X0 which contradicts optimality of D.

(b) ∃z2 : d(z) = d(0)∀z ∈ [0, z0), d(z) = d(z2) = (1 − α)z2 + αEd ∀z ∈ (z0, z2], d(z) =
(1− α)z + αEd ∀z in some semi-neighborhood of z2

Consider the following transformation depending on absolutely small ǫ:

d′(z, ǫ) =



















d(z), ∀z 6∈ [0, z2 +
ǫ

1− α
]

d(0)− ǫ, ∀z ∈ [0, z0]

d(z2) + ǫ, ∀z ∈ (z0, z2 +
ǫ

1− α
]

(30)

Due to Theorem 2 direct mechanism D′ with payment function d′(z) is incentive compatible
in X0-problem. See that

πD′(X0) = πD(X0) + ǫ

(
∫ z2

z0

f(z)dz −
∫ z0

0

f(z)dz

)

+ o(ǫ)

= X0 + ǫ

(
∫ z2

z0

f(z)dz −
∫ z0

0

f(z)dz

)

+ o(ǫ)

and sign o(ǫ) = sign ǫ. So there exists ǫ such that πD′(X0) > X0. But then according to
Lemma 11 there is an equilibrium in D′ raising more revenue then X0 which contradicts
optimality of D.
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(c) ∃z1 : d(z) = d(z1) = (1−α)z1 +αEd∀z ∈ [z1, z0), d(z) = d(1) = (1−α)z2 +αEd ∀z ∈
(z0, 1], d(z) = (1− α)z + αEd ∀z in some semi-neighborhood of z1

Applying the similar to point (b) transformation of D one may obtain D′ with a higher
revenue which contradicts optimality of D.

(d) d(z) = d(0)∀z ∈ [0, z0), d(z) = d(1)∀z ∈ (z0, 1]
Consider the following transformation depending on sufficiently absolutely small ǫ:

d′(z, ǫ) =

{

d(0)− ǫ, ∀z ∈ [0, z0]

d(1) + ǫ, ∀z ∈ (z0, 1]
(31)

Due to Theorem 2 direct mechanism D′ with payment function d′(z) is incentive compatible
in X0-problem. See that

πD′(X0) = πD(X0) + ǫ

(
∫ 1

z0

f(z)dz −
∫ z0

0

f(z)dz

)

= X0 + ǫ

(
∫ 1

z0

f(z)dz −
∫ z0

0

f(z)dz

)

In general case the linear term is non zero so there exists ǫ either positive and negative such
that πD′(X0) > X0. But then according to Lemma 11 there is an equilibrium in D′ raising
more revenue then X0 which contradicts optimality of D. If the linear term is zero that is
if z0 – median, one can set the high enough to obtain d′(0) = 0 without any loss in the
revenue.

One couldn’t apply the transformations above only if the mechanism D is bounded by
restrictions. Note that the equalities d(z) = 2 ((1− α)z + αEd) and d(z) = 0 are satisfied in
the same time if mechanism is incentive compatible.

An illustration of the transformations used in the proof:
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(c)
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Figure 11: ǫ-transformations used in the proof of Lemma 13

3.1.4 Strictly increasing density function of personal norms

Consider the general setting with strictly increasing density function of personal norms. Such
distribution represents generous population as people like to contribute more.

Lemma 14. If D is an optimal incentive compatible mechanism in the main voluntary
payment setup with its payment function d(z) then d(z) is partially constant on every period
of increase of population density f(z).

Proof. Assume the contrary. Then due to Theorem 2 ∃ z0, ǫ0 > 0 such that for
z ∈ [z0 − ǫ0, z0 + ǫ0] holds

{

d(z) = (1− α)z + α Ed

f ′(z) > 0

Denote Ed = X0. Due to Lemma 9 πD(X0) = X0.
Consider the same transformation as in Lemma 5:

d′(z) =











d(z), ∀z 6∈ [z0 − ǫ0, z0 + ǫ0]

d(z0 − ǫ0), ∀z ∈ [z0 − ǫ0, z0]

d(z0 + ǫ0), ∀z ∈ (z0, z0 + ǫ0]

(32)

Due to Theorem 2 direct mechanism D′ with payment function d′(z) is incentive compatible
in X0-problem. Thus, as f ′(z) > 0 if z ∈ [z0 − ǫ0, z0 + ǫ0] it is easy to see that πD′(X0) >
πD(X0) = X0. But πD′(X) is non-decreasing and constrained from above due to Lemma 10
so there exists X1 > X0 such that πD′(X1) = X1. This point corresponds to the equilibrium
in the main voluntary payment setup with the greater revenue X1 due to Lemma 9. Then
the mechanism D is not optimal. Contradiction.

The pattern of the transformation used in the proof is already presented in the Figure 5.
Thus, optimal payment function is piecewise constant. Moreover,
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Lemma 15. If D is an optimal direct mechanism in the main voluntary payment setup with
strictly increasing population density function then the corresponding payment function has
exactly one break point, i.e. consists of two constant levels.

Proof. Assume the contrary. Let there be at least two break points nearby.
Denote Ed = X0. Consider the same transformation (15) as in Lemma 6:

d′(z) =



























d(z) , ∀z 6∈ [z1, z2]

d0 , ∀z ∈ [z1, z1 +
d2 − d1

2(1− α)
]

d2 , ∀z ∈ (z1 +
d2 − d1

2(1− α)
, z2]

(33)

I proved that mechanism D′ is incentive compatible in X0-problem and has the same rev-
enue as D when personal norms are uniformly distributed. Obviously, πD′(X0) > X0 when
population density function is strictly increasing as more people pay higher payment. But
then according to Lemma 11 there is an equilibrium in D′ raising more revenue then X0

which contradicts optimality of D.
Let there be no break points at all, d(z) = d0 = const. Then Ed = X0 = d0. But

IR constraint on the agent with type 0 demands d(z) ≤ αEd ⇔ d0 ≤ αd0 which means
Ed = d0 = 0 as α < 1

2
. That contradicts optimality of D.

Hence, the last option left is the optimal function with exactly one break point.

The main result of this section is

Theorem 4. Optimal revenue in the voluntary payment model with strictly increasing density
function f(z) of agents’ personal norms may be raised by the binary choice menu. In this
scheme each agent decides whether to pay the only acceptable payment or not to pay at
all. Then the acceptable payment, t, share of population paying nothing, s, raised optimal
revenue, π∗ satisfy:

1− F (s)− f(s)s− 2α(1− F (s))2 = 0 (34)

π∗ =
2s(1− α)(1− F (s))

1− 2α(1− F (s))
(35)

t = 2((1− α)s+ απ∗) (36)

This is the only optimal mechanism except degenerate case f(zmed)zmed =
1−α
2

Proof. An optimal mechanism has two levels due to Lemma 16. So a two-level mechanism
D with either d(0) = 0 or d(0) = 2αEd and optimally chosen break point raises the optimal
revenue according to Lemma 13.

Let’s prove that d(0) = 0. Assume the contrary. Then due to Theorem 2 ∃z0 :

d(z) =











2αEd, ∀z ∈ [0, z0)

2(1− α)z0, ∀z ∈ (z0, 1]

αEd or 2(1− α)z0, for z = z0

(37)
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Denote Ed = X0. Due to Lemma 9 πD(X0) = X0. Denote z′0 = z0 − α
1−α

X0. Consider the
following transformation (Fig. 12):

d′(z) =

{

0, ∀z ∈ [0, z′0]

2(1− α)z0, ∀z ∈ (z′0, 1]
(38)

D′ is incentive compatible in X0-problem due to Theorem 2. If f(z) were uniform πD′(X0) =
X0 as transformed areas are compensate each other (Fig. 12):

S1 = z′0 ∗ 2αX0 = z′02(1− α) ∗ (z0 − z′0) = (upper slope is 2(1− α)) = S2

Actual density function strictly increases so πD′(X0) > X0 and according to Lemma 11 there
is an equilibrium in D′ raising more revenue then X0. It contradicts optimality of D.

Hence, d(0) = 0 and the last optimization parameter left is a break point, z0. Binary
structure of d(z) leads to the following problem:

Ed =
2(1− F (z0))z0(1− α)

1− 2α(1− F (z0))
→ max

z0∈[0,1]

F.O.C. 1− F (z0)− f(z0)z0 − 2α(1− F (z0))
2 = 0

S.O.C.− 2(1− F (z0))
2

f(z0)(2− 4α(1− F (z0)))− z0f ′(z0)
< 0 ∀z0 ∈ [0, 1]

Optimal z0 is exactly the share of population paying nothing s. Then I derive the optimal
revenue and the only acceptable payment from the structure of d(z). According to the proof
this is the only optimal mechanism except the case when the optimal break point is the
median and Lemma 13 gives the whole bunch of optimal mechanisms. First order condition
is f(zmed)zmed =

1−α
2

in this case.
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Figure 12: Transformation in Theorem 4.

I show in the section that the optimal mechanism in the general voluntary payments
setting with a strictly increasing density function of personal norms is a binary choice menu.
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This scheme accepts the only level of donations. Implementation of the scheme may be
either explicit or implicit. Many organizations sell memorable items implicitly setting the
only acceptable payment. One example is Colorado State University which sells university
license plates by $100 per item. Probably most graduates buy no more than one license plate
so $100 turns out to be the only acceptable payment. One can easily come up with other
examples from a day-to-day life.

3.1.5 Strictly decreasing density function of personal norms

Consider the general setting with strictly decreasing density function of personal norms.
Such distribution represents stingy population as people like to contribute less.

I start analysis in this section with

Lemma 16. If D is an optimal direct mechanism in the main voluntary payment setup with
strictly decreasing preference density function then the corresponding payment function has
no more than one break point.

Proof. Assume the contrary. Denote Ed = X0. Due to Lemma 9 πD(X0) = X0. As d(z) has
two break points d(z) must intersect a line (1 − α)z + αX0 to satisfy Theorem 2 : ∃z0, z2 :
d(z) = d(0) ∀z ∈ [0, z0), d(z) = d(z2) = (1− α)z2 + αX0 ∀z ∈ (z0, z2], d(0) < d(z2).

It’s better to split the function further. Consider the following transformation depending
on small positive ǫ (Fig. 13):

d′(z, ǫ) =











d(z), ∀z 6∈ [z0 −
ǫ

2(1− α)
, z2 −

ǫ

2(1− α)
]

d(z2), ∀z ∈ [z0 −
ǫ

2(1− α)
, z2 −

ǫ

2(1− α)
]

(39)

D′ is incentive compatible in X0-problem as satisfies Theorem 2. If f(z) were uniform
πD′(X0) = X0 as transformed areas are compensate each other (Fig. 13):

S1 =
ǫ

2(1− α)
(d(z2)− d(0)− ǫ) = ǫ

d(z2)− d(0)− ǫ

2(1− α)
= (lower slope is (1− α)) = S2

As actual density function is strictly decreasing πD′(X0) > X0 and according to Lemma 11
there is an equilibrium in D′ raising more revenue than X0. It contradicts optimality of
D.

Lemma 17. If D is an optimal direct mechanism in the main voluntary payment setup with
strictly decreasing population density function then the corresponding payment function has
no break points.

Proof. Assume the contrary that is d(z) has exactly one break point, z0. Denote Ed = X0.
Due to Lemma 9 πD(X0) = X0. According to Lemma 13 d(0) is equal either 0 or 2αX0

(degenerate case can not be optimal because there would be optimal binary choice mechanism
having d′(0) = 0 which is proven not to be the case).
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S1

S2

Figure 13: Transformation in Lemma 16.

(a) d(0) = 0
d(1) ≥ (1− α) + αX0 = c(1) (against redundancy) according to Lemma 12.
If d(1) > (1− α) + αX0 = c(1) consider the transformation (Fig.):

d′(z) =















0, ∀z ∈ [0, z0 −
d(1)− c(1)

2(1− α)
]

c(1), ∀z ∈ (z0 −
d(1)− c(1)

2(1− α)
, 1]

(40)

D′ is incentive compatible in X0-problem as satisfies Theorem 2. If f(z) were uniform
πD′(X0) > X0:

S1 = c(1)
d(1)− c(1)

2(1− α)
> (d(1)− c(1))

2c(1)− d(1)

2(1− α)
= (d(1)− c(1))(1− z0) = S2

Actual density function is strictly decreasing which just enhances πD′(X0) > X0 and accord-
ing to Lemma 11 there is an equilibrium in D′ raising more revenue than X0. It contradicts
optimality of D.

If d(1) = (1−α)+αX0 = c(1) one may apply the same transformation ?? from previous
lemma and increase revenue. Contradiction.

(b) d(0) = 2αX0

Consider the following transformation (Fig. 17):

d′(z) =











d(z), ∀z ∈ [0,
α

1− α
X0]

c(z), ∀z ∈ (
α

1− α
X0, 1]

(41)

D′ is incentive compatible in X0-problem as satisfies Theorem 2. Obviously, πD′(X0) > X0

and according to Lemma 11 there is an equilibrium in D′ raising more revenue than X0. It
contradicts optimality of D.
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Figure 14: Transformations in Lemma 17

The main result of this section is

Theorem 5. The optimal mechanism in the voluntary payment model with strictly decreasing
density function f(z) of agents’ personal norms is implemented by scheme with minimum
payment. This scheme accepts any contribution not less than minimum threshold. Everybody
pays in the equilibrium. The minimum payment, t, share of population paying exactly t, s,
raised optimal revenue, π∗, is derived from:

(1− α(1 + F (s))) s = α

∫ 1

s

f(z)z dz (42)

π∗ =
1− α

α
s (43)

t = 2απ∗ (44)

Proof. Denote Ed = X0. It follows from the previous lemma that any optimal payment
function d(z) should be like that for some z1, z2 ∈ [0, 1]:

d(z) =











d(0), ∀z ∈ [0, z1]

c(z,X0), ∀z ∈ (z1, z2]

d(1), ∀z ∈ [z2, 1]

(45)

It is profitable to raise d(z). Consider the following transformation:

d(z) =











d(0), ∀z ∈ [0,
α

1− α
X0]

c(z,X0), ∀z ∈ (
α

1− α
X0, 1]

(46)

D′ is incentive compatible in X0-problem as satisfies Theorem 2. Except the case z1 =
α

1−α
X0, z2 = 1, πD′(X0) > X0 and according to Lemma 11 there is an equilibrium in D′

raising more revenue than X0. That would contradict optimality of D.
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Therefore, z1 = α
1−α

X0, z2 = 1 that is the only optimal mechanism in the setting is a
menu with minimum payment with everybody paying in the equilibrium.

X0 depends on d(z) and must be equal to the integrated profit. It is routine to prove
that this leads straightforward to formulas in the statement of the theorem.
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Figure 15: Transformation in Theorem 5.

I show in the section that the optimal mechanism in the general voluntary payments
setting with a strictly decreasing density function of personal norms is a minimum payment
scheme. This scheme accepts any contributions not less than some threshold. Implementa-
tion of the scheme may be either explicit or implicit. Commonly, minimum payment varies
from $2 up to $20 for any charity organizations though is often justified by technical reasons.
One can easily come up with other examples.
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3.2 Heterogeneity in rate of conformity (preliminary results)

This section contains preliminary results for another possible heterogeneity in behavior. As-
sume that rate of conformity is individual but personal norms are the same in the population.
This case seems to be rare in practice. However such analysis may be useful at least from
the methodology perspective. I find that the optimal mechanism in this setting with both
increasing and decreasing population density is a binary choice menu.

So, all agents have the only preferred payment A, but different rate of conformity α ∈ [0, 1]
with c.d.f. F [0, 1] and density function f [0, 1]. The main result in the case of decreasing
density function of agents’ personal norms is

Theorem 6. Optimal mechanism in the voluntary payment model with strictly decreasing
density function f(z) of agents’ personal norms is implemented by binary choice menu, i.e.
each agent decides whether to pay a possible payment or not to pay at all. The possible
payment is equal to 2A, everybody pays and π∗ = 2A as well.

The main result in the case of increasing density function of agents’ personal norms:

Theorem 7. Optimal mechanism in the voluntary payment model with strictly increasing
density function f(z) of agents’ conformity rate is implemented by binary choice menu, i.e.
each agent decides whether to pay a possible payment or not to pay at all. Then the possible
payment, t, share of population paying nothing, s, raised optimal revenue, π∗, is derived
from:

1 + F (s)(2F (s)− 3)− (1− s)f(s) = 0 (47)

π∗ =
2A(1− s)(1− F (s))

1− 2s(1− F (s))
(48)

t = 2((1− s)A+ sπ∗) (49)
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4 Open voting problem (preliminary results)

Another common example of normative conformity is voting, especially an open vote. People
often vote for the candidate not because they like and trust him but because they do not want
to deviate from the others votes, especially if a winner can take into account their voting
choice. I may easily apply the developed model in this setting because voting alternatives
are commonly arranged and ordered along one dimension. General politics may be arranged
from left-wing to right-wing, tax rates vary between zero and one etc. I analyze just an
equilibrium behavior in the simplest case of uniform preferences, though one may try to
generalize the model and apply mechanism design as well.

The game proceeds as follows. There are two candidates on public parliament meeting
willing to get as many votes as possible. They know that the personal norms, i.e. preferred
policies, are distributed uniformly among parliamentarians (Ai ∼ U [0, 1]) who conform at the
rate α < 1 according to the main model. On the first stage both candidates simultaneously
present their policy x and y from the possible set normalized to [0,1]. On the second stage
each parliamentarian votes for one of the candidates. I find all Subgame Perfect Nash
equilibria in pure strategies in this setting.

The equilibrium without conformity, α = 0, consists of candidates choosing x = y = 1
2

and the shares of votes for the both candidates being equal, which is consistent with the
standard voting model. I investigate the possibilities of other eq’a. First, consider the
situation with different proposed alternatives. Facing the alternatives x and y with y > x

without loss of generality on the second stage of the game each parliamentarian compares

ui(x) = (x−Ni)
2 vs ui(y) = (y −Ni)

2 (50)

Let µ be the share of the parliamentarians voting for y. Then E(a) = (1−µ)x+µy and (24)
due to (4) transforms to

((1− 2α(1− µ))x2 − 2α(1− 2µ)xy vs (1− 2αµ)y2 − 2(1− α)Ai(y − x) (51)

A voter minimizes her losses so if in (50) vs = “<” then the parliamentarian votes for the
first candidate, if vs = “>” then the parliamentarian votes for the second candidate, if vs =
“=” then a voter is indifferent between the alternatives.

Lemma 18. If the parliamentarian i votes for the candidate with higher policy in the eq’m
then every parliamentarian j with her preferred policy Aj > Ai vote for the same candidate.
If the parliamentarian i votes for the candidate with lower policy in the eq’m then every
parliamentarian j with her preferred policy Aj < Ai vote for the same candidate.

Proof. That follows immediately from (50), decision rule and the fact that Ai ≥ 0 and
α < 1

It follows that there can be two possible types of eq’m.
1. Unanimous voting (don’t mix it up with anonymous one).
In an unanimous voting all the parliamentarians vote for the same candidate.
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Lemma 19. The could be no unanimous voting in the equilibrium.

Proof. Assume the opposite. As the problem is symmetric without loss of generality y ≥ 1
2

and at least for x < y µ = 1 and (50) holds with ≥ ∀Ai therefore for Ai = 0 then

x2 − 2αxy − (1− 2α)y2 ≥ 0 ∀ x < y (52)

However at x∗ = αy (52) holds with an opposite sign strictly for all possible α. So there would
be considerable share of voters preferring x∗ and increasing with α according to Lemma 18.
Contradiction.

2. Mixing voting.
In this equilibrium each candidate wins some share of votes, 0 < µ < 1. According to

Lemma 18 there must be an indifferent between the alternatives voter with Ai = 1−µ. Then
from (50) using x 6= y

2µ(1− α+ αx− αy) = 2− 2α− x+ 2αx− y (53)

That equation corresponds to two possible cases.
First case.

1− α + αx− αy 6= 0 and µ =
2− 2α− x+ 2αx− y

2(1− α + αx− αy)
(54)

µ calls for an extra definition as it can not be beyond [0, 1] however that is not necessary so
far. One can see that µ → 1− x as y → x + 0 or µ → 1− y as x → y − 0. Let’s call this a
mimic strategy.

Second case.

1− α + αx− αy = 0 and 2− 2α− x+ 2αx− y = 0 (55)

One can obtain from the system that x = 1− 1
2α
, y = 1

2α
, which is consistent with condition

y > x. However, then no µ can be supported in the eq’m as each candidate has an incentive
to deviate to the mimic strategy in the first case. So there is no ambiguity with y 6= x case
and I obtain

Lemma 20. Given the position x of the candidate his rival may always capture almost all the
votes of the parliamentarians with preferred policy Ai from chosen side of the x i.e. Ai > x

or Ai < x.

Proof. That follows immediately from the applying the mimic strategy and uniqueness of
the µ in that case.

Then I apply the same reasoning as in case with no conformity and obtain that just one
possible eq’m in pure strategies survives with x = y = 1

2
and µ = 1

2
. There are no new eq’a

in pure strategies in this setting. However it doesn’t mean that the standard eq’m survives
either. In the eq’m there is no need for voters to deviate. Let’s investigate candidates
incentives for deviation. Any deviation leads to the first case of mixing voting so it would
be reasonable for a candidate if and only if in (54) ∃ y ∈ [1

2
, 1] : µ|x= 1

2

> 1
2
. Analysis of µ

depending on y given x = 1
2
gives the following graphs:
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Figure 16: Share for the second candidate de-
pending on her position given the position of
her rival being 1

2
and the rate of conformity

being 0.25
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Figure 17: Share for the second candidate de-
pending on her position given the position of
her rival being 1

2
and the rate of conformity

being 0.5
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Figure 18: Share for the second candidate depending on her position given the position of
her rival being 1

2
and the rate of conformity being 0.75

The vertical asymptotes are at y = 1
2
− 1−α

α
and at y = 1

2
+ 1−α

α
with µ being equal to

0 at these point analyzing (50) so it is quite clear that there is an incentive to deviate iff
1−α
α

< 1
2

⇔ α > 2
3
. As a result

Theorem 8. An equilibrium in pure strategies in the parliament voting game when α ≤ 2
3

is unique. In the equilibrium both candidates place the same median position and equally
divides votes. When conformity in the parliament is too high, α > 2

3
, this equilibrium must

be supported by proper beliefs.

This result seems to be intriguing. When the conformity becomes overwhelming a candi-
date may deviate from the regular equilibrium to the extreme policy if he thinks that crowd
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may support him. This may partly explain why unstable political situations often lead to
extreme policies. The unstable political situation may raise the rate of conformity in the
parliament as well as change candidate beliefs.

5 Conclusion

In the thesis I enrich the framework developed by Fischer & Huddart (2008) by allowing
agents to have different preferences over actions. I characterize optimal mechanisms in vol-
untary payments environments, such as donations, contributions for public goods, and tips.
I show that when the agents have heterogeneous preferences with conformity the optimal
contributions mechanism restricts the possible range of acceptable payments. In addition
to a zero contribution required by voluntary setup the optimal mechanism sets either only
one positive payment level or a minimum acceptable payment depending on the distribution
of individual components of the preferences. Importantly, maximum revenue raised by the
optimal mechanism may be much higher than revenue raised with no restrictions.

Although the main motivation of the research is a voluntary payments problem one may
apply the same modeling and results to other voluntary choice settings. The original payment
may refer to a rate of participation in social activities, condom usage or blood donations in the
society. Then the optimal mechanisms correspond to optimal social restrictions and depend
on society’s attitude. For example, consider participation in social activities. When society
is enthusiastic the policy offering the only acceptable rate of participation is optimal. The
government may call for voluntary city cleaning on one particular spring day to implement
the policy, one either participate or not. When society is lazy the policy offering the minimum
rate of participation is optimal. A minimum plan of social work in a voluntary organization
may implement such a policy.

Overall, this study supports the voluntary payment evidence and explains existing variety
of contribution schemes. It also constitutes a solid ground for future research on conformity
behavior.

35



References

Alpizar, F., Carlsson, F. & Johansson-Stenman, O. (2008), ‘Anonymity, reciprocity, and
conformity: Evidence from voluntary contributions to a national park in Costa Rica’,
Journal of Public Economics 92(5-6), 1047–1060.

Anderson, L. R. & Holt, C. A. (1997), ‘Information cascades in the laboratory’, American
Economic Review 87(5), 847–62.

Asch, S. E. (1955), ‘Opinions and social pressure’, Scientific American 193(5), 31–35.

Banerjee, A. V. (1992), ‘A simple model of herd behavior’, The Quarterly Journal of Eco-
nomics 107(3), 797–817.

Bernheim, B. D. (1994), ‘A theory of conformity’, Journal of Political Economy 102(5), 841–
77.

Bikhchandani, S., Hirshleifer, D. & Welch, I. (1992), ‘A theory of fads, fashion, custom, and
cultural change in informational cascades’, Journal of Political Economy 100(5), 992–
1026.

Brock, W. A. & Durlauf, S. N. (2001), ‘Discrete choice with social interactions’, Review of
Economic Studies 68(2), 235–60.

Fischer, P. & Huddart, S. (2008), ‘Optimal contracting with endogenous social norms’, Amer-
ican Economic Review 98(4), 1459–75.

Jones, S. R. (1984), The economics of conformism, Blackwell, Oxford.

Krishna, V. (2002), Auction Theory, Academic Press.

Sherif, M. (1936), The psychology of social norms, Harper’s, New York.

36


	Introduction
	The main model
	Voluntary payments setting
	Mechanism design
	Revelation principle
	Uniform distribution of personal norms
	Arbitrary distribution of personal norms
	Strictly increasing density function of personal norms
	Strictly decreasing density function of personal norms

	Heterogeneity in rate of conformity (preliminary results)

	Open voting problem (preliminary results)
	Conclusion

