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While the predictability of excess stock returns is detected by traditional predictive 

regressions as statistically small, the direction-of-change and volatility of returns exhibit a 
substantially larger degree of dependence over time. We capitalize on this observation and 
decompose the returns into a product of sign and absolute value components whose joint 
distribution is obtained by combining a multiplicative error model for absolute values, a dynamic 
binary choice model for signs, and a copula for their interaction. Our decomposition model is able 
to incorporate important nonlinearities in excess return dynamics that cannot be captured in the 
standard predictive regression setup. The empirical analysis of US stock return data shows 
statistically and economically significant forecasting gains of the decomposition model over the 
conventional predictive regression. 
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1 Introduction

It is now widely believed that excess stock returns exhibit a certain degree of predictability over

time (Cochrane, 2005). For instance, valuation (dividend-price and earnings-price) ratios (Fama

and French, 1988; Campbell and Shiller, 1988) and yields on short- and long-term Treasury and

corporate bonds (Campbell, 1987) appear to possess statistically small but economically meaning-

ful predictive power at short horizons that can be exploited for timing the market and active asset

allocation (Campbell and Thompson, 2007). Given the great practical importance of predictability

of excess stock returns, there is a growing recent literature in search of new variables with incre-

mental predictive power such as share of equity issues in total new equity and debt issues (Baker

and Wurgler, 2000), consumption-wealth ratio (Lettau and Ludvingson, 2001), relative valuations

of high- and low-beta stocks (Polk, Thompson and Vuolteenaho, 2006) etc. In this paper, we take

an alternative approach to predicting excess returns: instead of trying to identify better predic-

tors, we look for better ways of using these predictors. We accomplish this by modeling individual

multiplicative components of excess stock returns and combining the components�information to

recover the conditional expectation of the original variable of interest.

To �x ideas, suppose that we are interested in predicting excess stock returns based on past

data and let rt denote the excess return at period t. The return can be factored as

rt = jrtj sign(rt);

which is called �an intriguing decomposition�in Christo¤ersen and Diebold (2006). The conditional

mean of rt is then given by

Et�1 (rt) = Et�1 (jrtj sign(rt)) ;

where Et�1 (:) denotes the expectation taken with respect to the available information up to time

t� 1: Our aim is to model the joint distribution of absolute values jrtj and signs sign(rt) in order

to pin down the conditional expectation Et�1 (rt) : The approach we adopt to achieve this involves

joint usage of a multiplicative error model for absolute values, a dynamic binary choice model for

signs, and a copula for their interaction. We expect this detour to be successful for the following

reasons.

First, the joint modeling of the multiplicative components is able to incorporate important

hidden nonlinearities in excess return dynamics that cannot be captured in the standard predictive
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regression setup. In fact, we argue that a conventional predictive regression lacks predictive power

when the data are generated by our decomposition model. Second, the absolute values and signs

exhibit a substantial degree of dependence over time while the predictability of returns seems to

be statistically small as detected by conventional tools. Indeed, volatility (as measured by absolute

values of returns) persistence and predictability has been extensively studied and documented in

the literature (e.g., Andersen et al., 2006). As far as signs are concerned, Christo¤ersen and Diebold

(2006), Hong and Chung (2003) and Linton and Whang (2007) �nd convincing evidence of sign

predictability of US stock returns for di¤erent data frequencies. Christo¤ersen and Diebold (2006)

reconcile the standard �nding of weak conditional mean predictability with possibly strong sign

and volatility dependence.

Note that the joint predictive distribution of absolute values and signs provides a more gen-

eral inference procedure than modeling directly the conditional expectation of returns as in the

predictive regression literature. Studying the dependence between the sign and absolute value

components over time is interesting in its own right and can be used for various other purposes.

For example, the joint modeling would allow the researcher to explore trading strategies and eval-

uate their pro�tability (Satchell and Timmermann, 1996; Qi, 1999; Anatolyev and Gerko, 2005).

In our empirical analysis of US stock return data we perform a similar portfolio allocation ex-

ercise, where an investment strategy requires information only about the predicted direction of

returns. Another interesting aspect of the bivariate analysis is an important conclusion that in

spite of a large unconditional correlation between the multiplicative components, they appear to

be conditionally very weakly dependent.

The rest of the paper is organized as follows. Section 2 introduces our return decomposition,

discusses the marginal density speci�cations and construction of the joint predictive density of sign

and absolute value components, and demonstrates how mean predictions can be generated. Section

3 contains the empirical analysis of predictability of US excess returns using Campbell and Yogo�s

(2006) data set. The �rst two subsections describe the data and report the main �ndings from

the commonly used linear predictive regression. Sections 3.3 and 3.4 present the results from the

joint modeling and provides some in-sample and out-of-sample statistical comparisons with the

benchmark predictive regression. Section 3.5 evaluates the performance of di¤erent models in the

context of a portfolio allocation exercise, and Section 3.6 reports some simulation evidence about
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the inability of the linear regression to detect predictability when the data are generated by the

decomposition model. Section 4 concludes.

2 Methodological Framework

2.1 Decomposition and its motivation

The key identity that lies in the heart of our technique is the return decomposition

rt = c+ jrt � cj sign(rt � c) = c+ jrt � cj (2I [rt > c]� 1) ; (1)

where I [:] is the indicator function and c is an arbitrary constant. Our decomposition model will

be based on the joint dynamic modeling of the two ingredients entering (1), the absolute values

jrt � cj and indicators I [rt > c] (or, equivalently, signs sign(rt � c) related linearly to indicators).

In case the interest lies in the mean prediction of returns, one can infer from (1) that

Et�1 (rt) = c� Et�1 (jrt � cj) + 2Et�1 (jrt � cjI [rt > c]) ;

and the decomposition model can be used to generate optimal predictions of returns because it

allows to deduce, among other things, the conditional mean of jrt � cj and conditional expected

cross-product of jrt�cj and I [rt > c] (for details, see subsection 2.4). In a di¤erent context, Rydberg

and Shephard (2003) use a decomposition similar to (1) to model the dynamics of the trade-by-

trade price movements. The potential usefulness of decomposition (1) is also stressed in Granger

(1998) and Anatolyev and Gerko (2005).

Recall that c is an arbitrary constant. Although our empirical analysis only considers the

leading case c = 0, we develop the theory for arbitrary c for greater generality. The choice of c is

dictated primarily by the application at hand. In the context of �nancial returns, Christo¤ersen and

Diebold (2006) analyze the case when c = 0 while Hong and Chung (2003) and Linton and Whang

(2007) use threshold values for c that are multiples of the standard deviation of rt or quantiles of

the marginal distribution of rt. The non-zero thresholds may re�ect the presence of transaction

costs and capture possible di¤erent dynamics of small, large positive and large negative returns

(Chung and Hong, 2006). In macroeconomic applications, in particular modeling GDP growth

rates, c may be set to 0 if one is interested in recession/expansion analysis, or to 3%, for instance,

if one is interested in modeling and forecasting a potential output gap. Likewise, it seems natural

to set c to 2% if one considers modeling and forecasting in�ation.
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To provide further intuition and demonstrate the advantages of the decomposition model,

consider an example in which we try to predict excess returns rt with the lagged realized volatility

RVt�1. A linear predictive regression of rt on RVt�1; estimated on data from our empirical section,

gives an in-sample R2 = 0:39%. Now suppose that we employ a simple version of the decomposition

model where the same predictor is used linearly for absolute values, i.e. Et�1 (jrtj) = �jrj+�jrjRVt�1;

and for indicators in a linear probability model Prt�1 (rt > 0) = �I+�IRVt�1: Assume for simplicity

that the shocks in the two components are stochastically independent. Then, it is easy to see from

identity (1) that Et�1 (rt) = �r +�rRVt�1+ 
rRV
2
t�1 for certain constants �r; �r and 
r: Running

a linear predictive regression on both RVt�1 and RV 2t�1 yields a much better �t with R
2 = 0:72%.

Even a linear predictive regression on RV 2t�1 alone gives R
2 = 0:69%, which indicates that RV 2t�1 is a

much better predictor than RVt�1: This clearly suggests that the conventional predictive regression

may miss important nonlinearities that are easily captured by the decomposition model.

Alternatively, suppose that the true model for indicators is trivial, i.e. Prt�1 (rt > 0) = �I 6= 1
2 ,

and the components are conditionally independent. Then, using again identity (1), it is straight-

forward to see that any parameterization of expected absolute values Et�1 (jrtj) leads to the same

form of parameterization of the predictive regression Et�1 (rt). Augmenting the parameterization

for indicators and accounting for the dependence between the multiplicative components then au-

tomatically delivers an improvement in the prediction of rt by capturing hidden nonlinearities in

its dynamics.

While the model setup used in the above example is fairly simpli�ed (indeed, the regressor

RV 2t is quite easy to �nd), the arguments that favor the decomposition model naturally extend

to more complex settings. In particular, when the component models are quite involved and the

components themselves are conditionally dependent, we �nd some simulation evidence that the

standard linear regression framework has di¢ culties detecting any perceivable predictability as

judged by the conventional criteria (see subsection 3.6). The driving force behind the predictive

ability of the decomposition model is the predictability in the two components, documented in

previous studies. Note also that, unlike the example above, the models for absolute values and

indicators may in fact use di¤erent information variables.
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2.2 Marginal distributions

Consider �rst the model speci�cation for absolute returns. Since jrt� cj is a positively valued vari-

able, the dynamics of absolute returns is speci�ed using the multiplicative error modeling (MEM)

framework of Engle (2002)1

jrt � cj =  t�t;

where  t � Et�1 (jrt � cj) and �t is a positive multiplicative error with Et�1 (�t) = 1 and conditional

distribution D. The conditional expectation  t and conditional distribution D can be parameterized

following the suggestions in the MEM and ACD literatures (Engle and Russell, 1998; Engle, 2002).

A convenient dynamic speci�cation for  t is the logarithmic autoregressive conditional duration

(LACD) model of Bauwens and Giot (2000) whose main advantage, especially when (weakly)

exogenous predictors are present, is that no parameter restrictions are needed to enforce positivity

of Et�1 (jrt � cj). Possible candidates for D include exponential, Weibull, Burr and Generalized

Gamma distributions, and potentially the parameters of D may be parameterized as functions of

the past. In the empirical section, we use the constant parameter Weibull distribution as it turns

out that its �exibility is su¢ cient to provide adequate description of the conditional density of

absolute excess returns. Let us denote the vector of shape parameters of D by &.

The conditional expectation  t is parameterized as

ln t = !r + �r ln t�1 + 
r ln jrt�1 � cj+ �rI [rt�j > c] + x0t�1�r: (2)

If only the �rst three terms on the right-hand side of (2) are included, the structure of the model

is analogous to the LACD model of Bauwens and Giot (2000) and log GARCH model of Geweke

(1986) where the persistence of the process is measured by the parameter j
r + �rj. We also

allow for regime-speci�c mean volatility depending on whether rt�j > c or rt�j � c:2 Finally, the

term x0t�1�r accounts for the possibility that macroeconomic predictors such as valuation ratios

and interest rates variables may have an e¤ect on volatility dynamics proxied by jrt � cj: In what

follows, we refer to model (2) as the volatility model.

1The leading application of the MEM approach in the econometrics literature is that to durations between suc-
cessive transactions in a high frequency �nancial market (Engle and Russel, 1998). There are other occasional
applications of the MEM approach. Engle (2002) illustrates the MEM methodology using exchange rate realized
volatilities. Chou (2005) models a high/low range of asset prices in the MEM framework.

2We also interacted ln t�1 and ln jrt�1�cj terms with I [rt�j > c] but the estimated coe¢ cients on these variables
were statistically insigni�cant.
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Now we turn our attention to the dynamic speci�cation of the indicator I [rt > c] : The condi-

tional distribution of I [rt > c] ; given past information, is necessarily Bernoulli B (pt) with probabil-

ity mass function fI[rt>c] (v) = pvt (1� pt)
1�v, v 2 f0; 1g; where pt denotes the conditional �success

probability�Prt�1(rt > c) = Et�1 (I [rt > c]).

If the data are generated by rt = �t+�t"t, where �t = Et�1(rt); �2t = vart�1(rt) and "t is a ho-

moskedastic martingale di¤erence with unit variance and distribution function F"(:); Christo¤ersen

and Diebold (2006) show that

Pr t�1(rt > c) = 1� F"
�
c� �t
�t

�
:

This expression suggests that time-varying volatility can generate sign predictability as long as

c��t 6= 0: Furthermore, Christo¤ersen et al. (2006) derive a Gram�Charlier expansion of F"(:) and

show that Prt�1(rt > c) depend on the third and fourth conditional cumulants of the standardized

errors "t. As a result, sign predictability would arise from time variability in second and higher-order

moments. We use these insights and parameterize pt using the dynamic logit model

pt =
exp (�t)

1 + exp (�t)

with

�t = !s + �sI [rt�1 > c] + y0t�1�s; (3)

where the set of predictors yt�1 includes macroeconomic variables (valuation ratios and interest

rates) as well as realized measures such as realized variance (RV ), bipower variation (BPV ),

realized third (RS) and fourth (RK) moments of returns as suggested above.3 We include both

RV and BPV as proxies for the unobserved volatility process since the former is an estimator of

integrated variance plus a jump component while the latter is una¤ected by the presence of jumps

(Barndor¤-Nielsen and Shephard, 2004). In what follows, we refer to model (2) as the direction

model.4

Of course, in other applications of the decomposition method, di¤erent speci�cations for  t; D

and pt are possibly necessary, depending on the empirical context.

3We experimented with some �exible nonlinear speci�cations of �t in order to capture the possible interaction
between volatility and higher-order moments (Christo¤ersen et al., 2006) but the nonlinear terms did not deliver
incremental predictive power and are omitted from the �nal speci�cation.

4de Jong and Woutersen (2005) provide conditions for the consistency and asymptotic normality of the parameters
estimates in dynamic binary choice models.
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2.3 Joint distribution using copulas

This section discusses the construction of the bivariate conditional distribution of Rt � (jrt �

cj; I [rt > c])0 whose domain is R+�f0; 1g: Up to now we have dealt with the marginals5 of the two

components �
jrt � cj
I [rt > c]

�
�
�
D( t)
B(pt)

�
;

with marginal PDF/PMFs �
fjrt�cj (u)

fI[rt>c] (v)

�
=

�
fD(uj t)

pvt (1� pt)
1�v

�
;

and marginal CDF/CMFs �
Fjrt�cj (u)

FI[rt>c] (v)

�
=

�
FD(uj t)

1� pt (1� v)

�
:

If the two marginals were normal, a reasonable thing to do would be to postulate bivariate

normality. If the two were exponential, a reasonable parameterization would be joint exponentiality.

However, even though the literature documents a number of bivariate distributions with marginals

from di¤erent families (e.g., Marshall and Olkin, 1985), it does not suggest a bivariate distribution

whose marginals are Bernoulli and, say, exponential. Therefore, we use the copula theory to

generate the joint distribution from the speci�ed marginals. For introduction to copulas, see Nelson

(1999) and Trivedi and Zimmer (2005), among others. Let FRt (u; v) and fRt (u; v) denote the joint

CDF/CMF and joint density/mass of Rt, respectively: Then,

FRt (u; v) = C
�
Fjrt�cj (u) ; FI[rt>c] (v)

�
;

where C(w1; w2) is a copula, a bivariate CDF on [0; 1]� [0; 1].

The unusual feature of the copula in our case is the continuity of one marginal and the discrete-

ness of the other. The typical case in bivariate modeling are two continuous marginals (for example,

Patton, 2006) and much more rarely two discrete marginals (Cameron et al., 2004). Because the

�rst component is continuously distributed while the second component is a discrete binary random

variable, the joint density/mass function can be obtained as a partial derivative with respect to the

continuous entry and a �nite di¤erence with respect to the binary entry:

fRt (u; v) =
@FRt (u; v)

@w1
� @FRt (u; v � 1)

@w1
:

5For brevity we use the terms �marginal distribution�, �joint distribution�and the like, although a more correct
terminology would be �conditional marginal distribution�, �conditional joint distribution�, etc., where the quali�er
�conditional�refers to conditioning on the past.
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Theorem. The joint density/mass function fRt (u; v) can be represented as

fRt (u; v) = fD(uj t)%t
�
FD(uj t)

�v �
1� %t

�
FD(uj t)

��1�v
; (4)

where

%t (z) = 1�
@C (z; 1� pt)

@w1
:

Proof. Di¤erentiation of FRt (u; v) yields

fRt (u; v) = fjrt�cj (u)

"
@C
�
FD(uj t); FI[rt>c] (v)

�
@w1

�
@C
�
FD(uj t); FI[rt>c] (v � 1)

�
@w1

#
:

Note that @C (w1; 1) =@w1 = 1 and @C (w1; 0) =@w1 = 0 due to the copula properties C (w1; 1) = w1

and C (w1; 0) = 0 for all w1 2 [0; 1]. Then the expression in the square brackets when evaluated at

v = 0 is equal to
@C
�
FD(uj t); 1� pt

�
@w1

;

while when evaluated at v = 1 it is equal to

1�
@C
�
FD(uj t); 1� pt

�
@w1

:

Now the conclusion easily follows.

The representation (4) for the joint density/mass function has the form of a product of the

marginal density of jrt � cj and the �deformed� Bernoulli mass of I [rt > c]. The �deformed�

Bernoulli success probability parameter %t
�
FD(uj t)

�
does not, in general, equal to the success

probability parameter of the marginal distribution pt (equality holds in the case of conditional

independence between jrt � cj and I [rt > c]); it depends not only on pt; but also on FD(uj t);

inducing dependence between the marginals of jrt � cj and I [rt > c]. Interestingly, the form of

representation (4) does not depend on the marginal distribution of jrt � cj; although the joint

density/mass function itself does.

Below we list three choices of copulas that will be used in the empirical section. The literature

contains other examples (Trivedi and Zimmer, 2005). Let us denote the vector of copula parameters

by �; usually � is one-dimensional and indexes dependence between the two marginals.
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Frank copula. The Frank copula is

C(w1; w2) = �
1

�
log

�
1 +

(e��w1 � 1) (e��w2 � 1)
e�� � 1

�
;

where � 2 [�1;+1] and � < 0 (� > 0) implies negative (positive) dependence. The joint

density/mass function is given in (4) with

%t (z) =
1

1� 1�e��(1�pt)
1�e�pt e�(1�z)

:

Note that �! 0 implies independence between the marginals and %t ! pt:

Clayton copula. The Clayton copula is

C(w1; w2) =
�
w��1 + w��2 � 1

�� 1
� ;

where � > 0. The joint density/mass is as (4) with

%t (z) = 1�
�
1 +

(1� pt)�� � 1
z��

�� 1
�
�1

:

Note that � ! +0 implies independence between the marginals and %t ! pt: Also note that this

copula permits only positive dependence between the marginals, which should not be restrictive

for our application.

Farlie�Gumbel�Morgenstern copula. The Farlie�Gumbel�Morgenstern (FGM) copula is

C(w1; w2) = w1w2 (1 + � (1� w1) (1� w2)) ;

where � 2 [�1;+1] and � < 0 (� > 0) implies negative (positive) dependence. Note that this

copula is useful only when the dependence between the marginals is modest, which again turns out

not to be restrictive for our application. The joint density/mass is as (4) with

%t (z) = 1� (1� pt) (1 + �pt (1� 2z)) :

Finally, � = 0 implies independence between the marginals and %t = pt:

Once all the three ingredients of the joint distribution of Rt; i.e. the volatility model, the

direction model, and the copula, are speci�ed, the vector (!r; �r; 
r; �r; �
0
r; &

0; !s; �s; �
0
s; &

0; �0)0 can
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be estimated by maximum likelihood. From (4), the sample log-likelihood function to be maximized

is given by

TX
t=1

�
I [rt > c] ln %t

�
FD(jrt � cjj t)

�
+ (1� I [rt > c]) ln

�
1� %t

�
FD(jrt � cjj t)

��	
+

TX
t=1

ln fD(jrt � cjj t):

2.4 Conditional mean prediction in decomposition model

In many cases, the interest lies in the mean prediction of returns that can be expressed as

Et�1 (rt) = c+ Et�1 (jrt � cj (2I [rt > c]� 1))

= c� Et�1 (jrt � cj) + 2Et�1 (jrt � cjI [rt > c]) :

Hence, the prediction of returns at time t is given by

brt = c� b t + 2b�t; (5)

where  t is the conditional expectation of jrt � cj; �t is the conditional expected cross-product of

jrt � cj and I [rt > c] ; and b t and b�t are feasible analogs of  t and �t.
If jrt � cj and I(rt > c) happen to be conditionally independent, then

�t = Et�1 (jrt � cj)Et�1 (I [rt > c]) =  tpt;

so

Et�1 (rt) = c+ (2pt � 1) t;

and the returns can be predicted by

brt = c+ (2bpt � 1) b t; (6)

where bpt denotes the predicted value of pt: Note that one may ignore the dependence and use
forecasts constructed as (6) even under conditional dependence between the components, but such

forecasts will not be optimal. However, as it happens in our empirical illustration, if this conditional

dependence is weak, the feasible forecasts (6) may well dominate the feasible optimal forecasts (5).

In the rest of this subsection, we discuss a technical subtlety of computing the conditional

expected cross-product �t = Et�1 (jrt � cjI [rt > c]) in the general case of conditional dependence.
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The conditional distributions of I [rt > c] given jrt � cj is

f1[rt>c] jjrt�cj (vju) =
fRt (u; v)

fjrt�cj (v)
= %t

�
FD(uj t)

�v �
1� %t

�
FD(uj t)

��1�v
:

Then, the conditional expectation function of I [rt > c] given jrt � cj is

Et�1 (I [rt > c] j jrt � cj) = %t
�
FD( jrt � cj j t)

�
;

and the expectation of the cross-product is given by

�t = Et�1 (jrt � cjI [rt > c]) =

Z +1

0
ufD(uj t)%t

�
FD(uj t)

�
du: (7)

In general, the integral (7) cannot be computed analytically (even in the simple case when fD(uj t)

is exponential), but can be easily evaluated numerically, keeping in mind that the domain of inte-

gration is in�nite. Note that the change of variables z = FD(uj t) yields

�t =

Z 1

0
QD(z)%t(z)dz; (8)

where QD(z) is a quantile function of the distribution D. Hence, the returns can be predicted by

(5), where b�t is obtained by numerically evaluating integral (8) with a �tted quantile function and
�tted function %t(z): In the empirical section, we apply the Gauss�Chebyshev quadrature formulas

(Judd, 1998, section 7.2) to evaluate (8).

3 Empirical Analysis

3.1 Data

In our empirical study, we use Campbell and Yogo�s (2006) data set that covers the period January

1952 �December 2002 at monthly frequency.6 While monthly observations for the period 1927�

2002 are also available, we consider the subsample 1952�2002 for which the data, especially the

interest rate variables after the Federal Reserve-Treasury Accord in 1951, are more reliable. This

also roughly corresponds to the period that is most extensively studied in the empirical studies on

predictability of stock returns.

The excess stock returns and dividend-price ratio (dp) are constructed from the NYSE/AMEX

value-weighted index and one-month T-bill rate from the Center for Research in Security Prices

(CRSP) database. The earnings-price ratio (ep) is computed from S&P500 data and Moody�s Aaa

6We would like to thank Moto Yogo for making the data available on his website.
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corporate bond yield data are used to obtain the yield spread (irs). We also use the three-month

T-bill rate (ir3) from CRSP as a predictor variable. The dividend-price and earnings-price ratios

are in logs.

The realized measures of second and higher-order moments of stock returns are constructed

from daily data on the NYSE/AMEX value-weighted index from CRSP. Let m be the number of

daily observations per month and ert;j denote the demeaned daily log stock return for day j in
period t. Then, the realized variance RVt (Andersen and Bollerslev, 1998; Andersen et al., 2006),

bipower variation BPVt (Barndor¤-Nielsen and Shephard, 2004), realized third moment RSt and

realized fourth moment RKt for period t are computed as

RVt =

mX
s=1

er2t;s;
BPVt =

�

2

m

m� 1

m�1X
s=1

jert;sj jert;s+1j ;
RSt =

mX
s=1

er3t;s;
RKt =

mX
s=1

er4t;s:
3.2 Predictive regressions for excess returns

In this section, we present some empirical evidence on conditional mean predictability of excess

stock returns from a linear predictive regression model estimated by OLS. In addition to the

macroeconomic predictors that are commonly used in the literature, we follow Guo (2006) and

include a proxy for stock market volatility (RV ) as a predictor of future returns. We also attempted

to match exactly the information variables that we use later in the decomposition model but the

inclusion of the other realized measures generated large outliers in the predicted returns that

deteriorated signi�cantly the predictive ability of the linear model.

It is now well known that if the predictor variables are highly persistent, which is the case with

the four macroeconomic predictors dp, ep, ir3 and irs, the coe¢ cients in the predictive regression

are biased (Stambaugh, 1999) and their limiting distribution is non-standard (Elliott and Stock,

1994) when the innovations of the predictor variable are correlated with returns. For example,

Campbell and Yogo (2006) report that these correlations are �0:967 and �0:982 for dividend-price
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and earnings-price ratios while the innovations of the three-month T-bill rate and the long-short

interest rate spread are only weakly correlated with returns (correlation coe¢ cients of �0:07).

A number of recent papers propose inference procedures that take these data characteristics into

account when evaluating the predictive power of the di¤erent regressors (Campbell and Yogo, 2006;

Torous and Valkanov, 2000; Torous, Valkanov and Yan, 2004; among others).

Table 1 reports some regression statistics when all the predictors are included in the regression.

As argued above, the distribution theory for the t-statistics of the dividend-price and earnings-price

ratios is non-standard whereas the t-statistics for the interest rates variables and realized volatility

can be roughly compared to the standard normal critical values due to their near-zero correlation

with the returns innovations and low persistence, respectively. The results in the last two columns

of Table 1 suggest some in-sample predictability with a value of the LR test statistic for joint

signi�cance of 27:8 and an R2 of 4:45%. Even though the value of the R2 coe¢ cient is statistically

small, Campbell and Thompson (2007) argue that it can still be economically meaningful when

compared to the squared Sharpe ratio. Also, while some of the predictors (realized volatility, 3-

month rate and earning-price ratio) do not appear statistically signi�cant, they help to improve

the out-of-sample predictability of the model as will be seen in the out-of-sample forecasting and

the portfolio management exercises presented below.

3.3 Decomposition model for excess returns

Before we present the results from the decomposition model, we provide some details regarding

the selected speci�cation and estimation procedure. We postulate D to be Weibull with shape

parameter & > 0 (the exponential distribution corresponds to the special case & = 1),

FD(uj t) = 1� exp
�
�
�
 �1t �

�
1 + &�1

�
u
�&�

;

fD (uj t) =  �&t &�
�
1 + &�1

�&
u&�1 exp

�
�
�
 �1t �

�
1 + &�1

�
u
�&�

;

where � (�) is the gamma function. Then, the sample log-likelihood function is

TX
t=1

fI [rt > c] ln %t (1� exp (��t)) + (1� I [rt > c]) ln (1� %t (1� exp (��t)))g

+
TX
t=1

fln(&)� ln jrt � cj � �t + ln �tg ;

where �t =
�
 �1t jrt � cj�

�
1 + &�1

��&
.
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The results from the return decomposition model are reported for the case c = 0. Note that even

though the results pertaining to the direction and volatility speci�cations are discussed separately,

all estimates are obtained from maximizing the sample log-likelihood of the full decomposition

model with Clayton copula.7

Table 2 presents the estimation results from the direction model. Several observations regarding

the estimated dynamic logit speci�cation are in order. First, the persistence in the indicator variable

over time is relatively weak once we control for other factors such as macroeconomic predictors and

realized high-order moments of returns. The estimated signs of the macroeconomic predictors are

the same as in the linear predictive regression but the combined e¤ect of the two realized volatility

measures, RV and BPV , on the direction of the market is positive. The realized measures of the

higher moments of returns do not appear to have a statistically signi�cant e¤ect on the direction

of excess returns although they still turn out to be important in the out-of-sample exercise below.

Table 3 reports the results from the volatility model. The adequacy of the Weibull speci�cation

is tested using the excess dispersion and Pearson�s goodness-of-�t tests. The excess dispersion test

compares the residual variance to the estimated variance of a random variable distributed according

to the normalized Weibull distribution:

ED =
p
T

(b�t � 1)2 � b�2�q�
(b�t � 1)2 � b�2��2 ;

where b�2� = � �1 + 2b&�1� =� �1 +b&�1�2 � 1, hats denote estimated values, and bars denote sample
averages. Under the null of correct Weibull speci�cation, ED is distributed as a standard nor-

mal random variable. The Pearson goodness-of-�t test (e.g., Kendall and Stuart, 1973, chapter

30) compares the multinomial distribution induced by standardized residuals and that implied by

the normalized Weibull density. We set the number of equiprobable classes to 20; so the null dis-

tribution of the Pearson statistic is bounded between �218 and �
2
19 because of the presence of an

additional shape parameter (Kendall and Stuart, 1973, sect. 30.11�30.19), under the null of correct

distributional speci�cation.

The high persistence in absolute returns that is evident from our results is well documented in

the literature. The nonlinear term �rI [rt�j > c] suggests that positive returns correspond to low-

volatility periods and negative returns tend to occur in high volatility periods where the di¤erence
7The results in Table 4 suggest that the Clayton copula leads to most precise estimates of the dependence between

the components.
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in the average volatility of the two regimes is statistically signi�cant. The higher interest rates and

earnings-price ratio appear to increase volatility while higher dividend-price ratio and yield spread

tend to have the opposite e¤ect although none of these e¤ects is statistically signi�cant.

Table 3 also shows the statistically signi�cant departure of & from 1 implying exponentiality

of the density. On the other hand, further generalization of the density is not required because

neither the excess dispersion nor Pearson tests reject the null of Weibull density.

In order to visualize the outcome of our estimation procedure, Figures 1 and 2 plot the predicted

probabilities from the direction model and the actual and predicted absolute returns from the

volatility model. The predicted probabilities inherit the high persistence of volatility dynamics

and are clearly inversely related to volatility movements: negative predicted returns tend to be

associated with periods of high volatility and positive returns are predicted when volatility is low.

The predicted absolute returns appear to follow closely the dynamics of stock return volatility.

Now we consider the dependence between the two components �absolute values jrt � cj and

indicators I [rt > c] : The dependence between these components is expected to be positive and

big, and indeed, from the raw data, the estimated coe¢ cient of unconditional correlation between

them equals 0:768. Interestingly, though, after conditioning on the past, the two variables no

longer exhibit any dependence. The results for the Frank, Clayton and FGM copulas are reported

in Table 4 and show that the dependence parameter � is not signi�cantly di¤erent from zero in

any of the copula speci�cations. Insigni�cance aside, the point estimates are close to zero and

imply near independence. The insigni�cance of the dependence parameter is compatible with the

estimated conditional correlation between standardized residuals in the two submodels,  �1t jrt� cj

and p�1t I [rt > c] ; which is another indicator of dependence. These conditional correlations are

close to zero and are statistically insigni�cant. The result on conditional weak dependence, if

any, between the components is quite surprising: once the absolute values and indicators are

appropriately modeled conditionally on the past, the uncertainties left in both are statistically

unrelated to each other. Furthermore, the fact of (near) independence is somewhat relieving because

it facilitates the computation of the conditional mean of future returns: as discussed in section 2.4,

under conditional independence (or even conditional uncorrelatedness) between the components

there is no need to compute the most e¤ort-consuming ingredient, the numerical integral (7).

For illustration, however, we report later the results obtained when the conditional dependence is
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shut down, or equivalently, � is set to zero (ignoring dependence), and when no independence is

presumed using the estimated value of � from the full model (exploiting dependence).

Table 4 also reports the values of mean log-likelihood and pseudo-R2 goodness-of-�t measure.

The log-likelihood values for the di¤erent copula speci�cations are of similar magnitude with a slight

edge for the Clayton copula which holds also in terms of t-ratios of the dependence parameter. The

LR test for joint signi�cance of the predictor variables strongly rejects the null using the asymptotic

�2 approximation with 16 degrees of freedom. The pseudo-R2 goodness-of-�t measure is computed

as the squared correlation coe¢ cient between the actual and �tted excess returns from di¤erent

copula speci�cations. A rough comparison with the R2 from the predictive regression in Table 1

indicates an economically large improvement in the in-sample performance of the decomposition

model over the linear predictive regression.

Furthermore, an inspection of the �tted returns reveals some interesting di¤erences across

models. Figure 3 plots the in-sample predicted returns from our model and the predictive regression.

We see that the decomposition model is able to predict large volatility movements which is not the

case for the predictive regression model. Moreover, there are substantial di¤erences in the predicted

returns in the beginning of the sample and especially in the post-1990.

3.4 Out-of-sample forecasting results

While there is some consensus in the �nance literature on a certain degree of in-sample predictability

of excess returns (Cochrane, 2005), the evidence on out-of-sample predictability is mixed. Goyal

and Welch (2003, 2007) �nd that the commonly used predictive regressions would not help an

investor to pro�tably time the market. Campbell and Thompson (2007), however, show that the

out-of-sample predictive performance of the models is improved after imposing restrictions on the

sign of the estimated coe¢ cients and the equity premium forecast.

In our out-of-sample experiments, we compare the one-step ahead forecasting performance of

the decomposition model proposed in this paper, predictive regression and unconditional mean

(historical average) model. The forecasts are obtained from a rolling sample scheme with a �xed

sample size R = 360. The results are reported using an out-of-sample coe¢ cient of predictive

performance OS (Campbell and Thompson, 2007) computed as

OS = 1�
PT
j=T�R+1 @ (rj � brj)PT
j=T�R+1 @ (rj � rj)

;
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where @ (u) = u2 if it is based on squared errors and @ (u) = juj if it is based on absolute errors, brj
is the one-step forecast of rj from the conditional (decomposition or predictive regression) model

and rj denotes the unconditional mean of rj computed from the last R observations in the rolling

scheme. If the value of OS is equal to zero, the conditional model and the unconditional mean

predict equally well the next period excess return; if OS < 0; the unconditional mean performs

better; and if OS > 0; the conditional model dominates.

Figure 4 plots the one-step ahead forecasts of returns from the predictive regression and the

decomposition model with Clayton copula. As in the in-sample analysis, the predicted return series

reveal substantial di¤erences between the two models over time. The largest disagreement between

the forecasts from the two models occurs in the 1990�s when the linear regression completely misses

the bull market by predicting predominantly negative returns while our model is able to capture

the upward trend in the market and the increased volatility in the early 2000�s.

Table 5 presents the results from the out-of-sample forecast evaluation. As in Goyal and Welch

(2003, 2007) and Campbell and Thompson (2007), we �nd that the unconditional model based

on the historical average performs better out-of-sample than the conditional linear model and the

di¤erence in the relative forecasting performance is close to 5%.

The results from the decomposition model estimated with the three copulas are reported sep-

arately for the cases of ignoring dependence and exploiting dependence. In all speci�cations, our

model dominates the unconditional mean forecast with forecast gains of 1:33� 2:42% for absolute

errors and 1:80 � 2:64% for squared errors. Although these forecast gains do not seem statisti-

cally large, Campbell and Thompson (2007) argue that a 1% increase in the out-of-sample statistic

OS implies economically large increases in portfolio returns. This forecasting superiority over the

unconditional mean forecast is even further reinforced by the fact that our model is overly para-

meterized compared to the benchmark model.

The results from the decomposition model when ignoring and exploiting dependence reveal

little di¤erence although the speci�cation with � = 0 appears to dominate in the case with absolute

forecast errors and is outperformed by the full model in the case of squared losses. Interestingly,

the Clayton copula does not show best out-of-sample performance among the three copulas, even

though it fares best in-sample. Nonetheless, we will only report the �ndings using the Clayton

copula in the decomposition model in all empirical experiments in the remainder of the paper; the
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other two choices of copulas deliver similar results.

It is well documented that the performance of the predictive regression deteriorates in the

post-1990 period (Campbell and Yogo, 2006; Goyal and Welch, 2003; among others). To see if

the decomposition model su¤ers from a similar forecast breakdown, we report separately the latest

sample period January 1995 �December 2002. The OS statistics for this period are presented

in the bottom part of Table 5. The forecasts from the linear model are highly inaccurate as the

decreasing valuation ratios predict negative returns while the actual stock index continues to soar.

In contrast, the forecast performance of the decomposition model tends to be rather stable over

time even though it uses the same set of macroeconomic predictors.

To gain some intuition about the source of the forecasting improvements, we considered two

nested versions of our model: one that contains only the own dynamics of the indicator variable

and the absolute returns and a model that includes only macroeconomic predictors and realized

measures without any autoregressive structure (the results are not reported to preserve space). In-

terestingly, the forecasting gains of the full model appear to have been generated by the information

contained in the predictors and not in the dynamic behavior of the sign and volatility components.

While the pure dynamic model is outperformed by the structural speci�cation, it still dominates the

linear predictive regression and the deterioration in its forecasting performance appears to be due

to poor sign predictability that arises from the weak persistence in the indicator variable mentioned

above.

Test of predictive ability. To determine the statistical signi�cance of the di¤erences in the

out-of-sample performance of the decomposition model, predictive regression and historical aver-

age reported in Table 5, we adopt Giacomini and White�s (2006) conditional predictive ability

framework. Let Lit+1 and L
j
t+1 denote the loss functions (quadratic or absolute losses) of models

i and j (for example, the predictive regression and the decomposition model) correspondingly, at

time t + 1; and let 4Lt+1 = Lit � Ljt : Then, the null of equal predictive ability of two models can

be expressed as H0 : Et (4Lt+1) = 0 almost surely for all t = R; :::; T � 1:

For all q � 1 vectors ht that belong to the information set at time t, the null can be rewritten

as H0 : E (ht 4 Lt+1) = 0 and can be tested using the test statistic

Wi;j =

 
n�1=2

T�1X
t=R

ht 4 Lt+1

!0 b
�1n
 
n�1=2

T�1X
t=R

ht 4 Lt+1

!
;
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where b
n is a consistent estimator of limn!1 var
�
n�1=2

PT�1
t=R ht 4 Lt+1

�
and n = T �R�1: If R

is assumed �xed as n!1 and some weak regularity conditions are satis�ed (Giacomini and White,

2006), Wi;j !d �2q under the null of equal predictive ability. In our empirical application, b
n is a
HAC estimator of 
n and ht = (1;4Lt)0: The relative performance of the models over time can be

visualized by plotting the predicted loss di¤erences fh0tb
gT�1t=R ; where b
 are the OLS estimates from
a regression of 4Lt+1 on ht (Giacomini and White, 2006). Finally, model i is preferred to model

j if Ii;j = n�1
PT�1
t=R 1fh0tb
 > 0g < 0:5. That is, a value of Ii;j that is close to one indicates that

model j dominates model i; while a value close to zero gives preference for model i over model j.

Table 6 presents the values of theWi;j test of equal conditional predictive ability of two models

along with the corresponding p-values and the indicators Ii;j . The tests computed from the squared

errors do not reveal any statistically signi�cant di¤erences across models although the indicator

variable suggests that the decomposition model dominates both the historical average and predic-

tive regression and the historical average in turn outperforms the linear model. The test based

on the absolute errors, however, provides a convincing statistical evidence of superior predictive

performance of the decomposition model and historical average over the predictive regression. The

di¤erences between the decomposition model and historical average are not statistically signi�cant

although the indicator again suggests some out-of-sample superiority of the decomposition model.

Consistent with the results in Table 5, exploiting dependence between the two components is a bit

better in terms of squared forecast errors but a bit worse in terms of absolute losses.

Figure 5 plots the relative performance of the predictive regression and decomposition model

over time in terms of absolute forecast errors. Since all of the predicted absolute di¤erences are

positive, the decomposition model forecasts dominate uniformly the forecasts from the predictive

regression for the entire out-of-sample period. The largest gains in terms of forecast accuracy

appear to occur in the second part of the 1990�s.

Mincer�Zarnowitz regressions. Another convenient approach to evaluating forecasts from

competing models is the Mincer�Zarnowitz regression (Mincer and Zarnowitz, 1969). The Mincer�

Zarnowitz regression has the form

rt = a0 + a1brt + error;
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for t = R + 1; :::; T , where rt is the actual return and brt is the predicted return. Table 7 reports
the estimates and R2�s from the Mincer�Zarnowitz regressions for the di¤erent models along with

the Wald test of unbiasedness of the forecast H0 : a0 = 0; a1 = 1:

The Mincer�Zarnowitz regression results in Table 7 reveal some interesting features of the

forecasts from the competing models. Despite its relatively good performance in terms of symmetric

forecast errors, the historical average forecasts prove to be severely biased. The forecasts from the

predictive regressions also tend to be biased and the unbiasedness hypothesis is overwhelmingly

rejected. None of the copula speci�cations reject the null of a0 = 0 and a1 = 1 and their forecasts,

especially the forecasts from the decomposition model exploiting dependence, appear to possess

very appealing properties.

3.5 Economic signi�cance of return predictability: Pro�t-based evaluation

In order to assess the economic importance of our results, we use a pro�t rule for timing the market

based on forecasts from di¤erent models. More speci�cally, we evaluate the model forecasts in terms

of the pro�ts from a trading strategy for active portfolio allocation between stocks and bonds as

in Breen et al. (1989), Pesaran and Timmermann (1995), Guo (2006), among others. The trading

strategy consists of investing in stocks if the predicted excess return is positive or investing in bonds

if the predicted excess return is negative. Note that these investment strategies require information

only about the future direction (sign) of returns although the sign forecasts are obtained from

the estimation of the full model. The initial investment is $100 and the value of the portfolio is

recalculated and reinvested every period.

To make the pro�t exercise more realistic, we introduce proportional transaction costs of 0:25%

of the portfolio value when the investor rebalances the portfolio between stock and bonds (Guo,

2006). The pro�ts from this trading strategy are computed from actual stock return and risk-

free rate after accounting for transaction costs and are compared to the benchmark buy-and-hold

strategy.

We �rst illustrate graphically the performance over time of the portfolios constructed from the

decomposition model and predictive regression using in-sample predicted returns. The values of the

portfolios from our model, linear regression and buy-and-hold strategy are plotted in Figure 6. The

values of the portfolios at the end of the sample are $20; 747 for the buy-and-hold strategy, $52; 154
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from the trading strategy based on the predictive regression and $80; 430 from the decomposition-

based trading rule. The corresponding average annualized returns (standard deviations), after

accounting for transaction costs, are 11:00% (14:44%), 13:39% (11:67%) and 14:41% (12:36%),

respectively.

Now we turn our attention to the more realistic investment strategies based on out-of-sample

predictions. The setup is the same as in the previous section when the model is estimated from a

rolling sample of 360 observations and is used to produce 252 one-step ahead forecasts of excess

returns. Table 8 reports some summary statistics of the di¤erent trading strategies such as average

annualized return, standard deviation, Sharpe ratio and Jensen measure (alpha).

While the results in Table 8 are not as impressive as the in-sample exercise, they still provide

strong evidence for the economic relevance of our approach. It is worth stressing that the out-of-

sample period that we examine (January 1982 �December 2002) coincides with arguably one of

the greatest bull markets in history which explains the excellent performance of the buy-and-hold

strategy (average annualized return of 12:55%). It is also interesting to note that the historical

average forecasts give rise to a trading strategy that is equivalent to the buy-and-hold strategy

since all forecasts are positive.

Despite the favorable setup for the buy-and-hold strategy, the trading strategy based on the

decomposition model produces similar returns, 12:8% under independence and 11:53% with depen-

dence, but accompanied with a large reduction in the portfolio standard deviation from 14:96%

to 13:69% for the model under independence and to 12:75% for the full copula speci�cation. As

a result, the portfolio based on the independence speci�cation has a Sharpe ratio of 0:485 (versus

0:428 for the market portfolio) and 1:37% risk-adjusted return measured by the Jensen alpha. In

sharp contrast, the portfolio constructed from the linear predictive regression has a Sharpe ratio

of 0:330 (average annualized return 9:96% and standard deviation 12:02%) and a negative Jensen

alpha. As before, considering only the 1995�2002 period (results are not reported due to space

limitations) leads to a signi�cant deterioration of the statistics for the linear model whereas the

performance of the decomposition model is practically unchanged.
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3.6 Simulation experiment

In this section, we conduct a small simulation experiment that evaluates the performance of the

linear predictive regression when the data are generated from the multiplicative components model

analyzed in the paper. We do this for several reasons. First, it is interesting to see if this strategy can

replicate the empirical �ndings of relatively strong predictability in the individual sign and volatility

components of returns and the weak predictability of composite returns in a linear framework.

This can also help us gain intuition about the importance of the nonlinearities implicit in the

data generation process but not explicitly picked up by the linear predictive regression. Finally,

it is instructive to investigate the e¤ect of di¤erent degrees of dependence between the individual

components on detecting predictability in the linear speci�cation.

The simulation setup is the following. We generate 10,000 arti�cial samples from a DGP

calibrated to the decomposition model with Clayton copula which is estimated in our empirical

section, setting the predictor variables (we use only macroeconomic predictors) to their actual

values in the sample. For each arti�cial sample, we draw an IID series �t distributed scaled Weibull

and an IID series �t distributed standard uniform. The estimated volatility model is used to

generate the paths of conditional means of absolute returns  t; which is then transformed into a

series of absolute returns by jrtj =  t�t: The estimated direction model is used to obtain the process

�t; which is subsequently transformed into a series of conditional success probabilities pt: Next, we

compute the series of %t implied by the Clayton copula and Weibull distribution conditional on

the series of jrtj;  t and pt; and generate a series of binary outcomes I [rt > 0], each distributed

Bernoulli with success probability %t; by setting I [rt > 0] = I [�t < %t]. Finally, we construct a

sequence of simulated returns using rt = (2I [rt > 0]� 1) jrtj:

Figure 7 depicts the actual and �ve arbitrary simulated paths of cumulative returns. We plot

cumulative rather than raw returns in order to enhance the readability of the graph. Note that

the simulated returns are almost twice as volatile as actual returns which appears to be due to the

inclusion of a set of predictors of questionable statistical signi�cance. Apart from that, the actual

and simulated paths look quite similarly and the simulated paths do not exhibit unexpected (e.g.,

explosive) patterns.

Table 9 contains results from the linear predictive regression on simulated data generated

using di¤erent values of the dependence parameter �: The upper panel corresponds to the value
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of the copula parameter � estimated from the data that implies weak conditional dependence

between components, while the two lower panels correspond to tenfold and hundredfold values of

such � implying strong and very strong conditional dependence. In all three cases the average

unconditional component correlation is high and approximately matches the value 0:768 in the

data, but the average conditional component correlation increases substantially as � increases:

Two remarkable facts pertaining to the predictive regressions from Table 9 are worth stressing.

The �rst is that the average t-statistics and R2 in the upper panel are low with even smaller

values than we �nd in the data. This indicates that the linear predictive framework has di¢ culties

detecting the predictability in the components even for low degrees of dependence between the

components. Moreover, and somewhat surprisingly, the average t-statistics and R2 get even smaller

when the component dependence increases. This is perhaps due to the fact that the greater degree

of dependence between the components increases the nonlinearities implicit in the multiplicative

model and further obscures the relationship between the returns and the predictors in the linear

framework. Overall, these results suggest that the linear approximation is unable to capture the

predictive content of the multiplicative model.

4 Conclusion

This paper proposes a new method for analyzing the dynamics of excess returns by modeling

the joint distribution of their sign and absolute value multiplicative components using a dynamic

binary choice model for signs, a multiplicative error model for absolute values, and a copula for

their interaction. Our framework attempts to capitalize on the stronger degree of directional

and volatility predictability and judiciously exploit possible nonlinearities in the dynamics of the

two components. Furthermore, the paper develops copula modeling with one discrete and one

continuous marginal, which is new to the copula literature, and discusses computation of the

conditional mean predictor under conditional dependence of the two components.

Our empirical analysis of US excess stock returns for the period January 1952 �December

2002 delivers some interesting �ndings. In addition to the conventional statistical comparisons in-

and out-of-sample, we carry out a portfolio allocation exercise that evaluates the models in terms

of dollar pro�ts. The in-sample results show that our model dominates the standard predictive

regression and reveal some substantial di¤erences in �tted returns from these methods over the
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sample period, especially in the late 1990s. The estimation results for the decomposition model

tend to suggest that even though the sign and absolute value components exhibit substantial

unconditional correlation, they have an almost zero conditional correlation which is re�ected in a

conditional near-independence in the copula speci�cation.

In the out-of-sample analysis, we demonstrate that the forecasting improvements of the decom-

position model over the linear predictive regression are statistically signi�cant. While the historical

average also appears to outperform the predictive regression out-of-sample as in Goyal and Welch

(2003, 2006), the Mincer�Zarnowitz regressions show that the forecasts based on the unconditional

mean are severely biased. In contrast, the forecasts from the decomposition model cannot reject the

null of unbiasedness. Finally, the pro�t-based portfolio allocation exercise con�rms the economic

usefulness of our model by producing risk-adjusted returns well in excess of the returns from the

investment strategies based on the historical average (buy-and-hold) and the linear model.
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Table 1. Estimation results from the predictive regression.

t(dp) t(ep) t(ir3) t(irs) t(RV ) LR R2

2:16 �1:42 �1:47 3:29 �0:99 27:8 4:45%

Notes: t(z) denotes the t-statistic for the coe¢ cient on variable z; and dp, ep, ir3; irs and RV stand

for dividend-price ratio, earnings-price ratio, three-month T-bill rate, long-short yield spread and

realized volatility. The t-statistics are computed using heteroskedasticity-robust standard errors.

LR stands for a likelihood ratio test of joint signi�cance of all predictors; its null distribution is �25

whose 5% critical value is 11:1.

Table 2. Estimation results from the direction model.

!s �s �s(dp) �s(ep) �s(ir3) �s(irs) �s(RV ) �s(BPV ) �s(RS) �s(RK)

coe¤ 3:418 0:190 2:526 �1:779 �8:739 15:35 5:200 �3:012 �0:324 �0:116
s.e. 1:096 0:172 1:137 1:108 3:891 6:93 2:445 2:440 0:449 0:074

t-stat 3:12 1:10 2:22 �1:61 �2:24 2:21 2:13 �1:23 �0:72 �1:56

Notes: �s(z) denotes the coe¢ cient on variable z: See notes to Table 1 for the de�nition of variables,

and additionally BPV; RS and RK stand for bipower variation, realized third moment and realized

fourth moment. The estimates are obtained from the decomposition model with the Clayton copula.

Shown are estimates together with robust standard errors and t-statistics of the coe¢ cients in the

logit equation pt�1 = exp (�t) =(1 + exp (�t)); where �t is determined by (3).

31



Table 3. Estimation results from the volatility model.

!r �r 
r �r �r(dp) �r(ep) �r(ir3) �r(irs) & ED PT

coe¤ �0:504 0:808 0:035 �0:173 �0:077 0:065 0:348 �0:664 1:275 �0:08 19:96

s.e. 0:244 0:074 0:013 0:059 0:079 0:078 0:344 0:695 0:054

t-stat �2:07 10:9 2:69 �2:87 �0:98 0:83 1:01 �0:96 5:07

Notes: �s(z) denotes the coe¢ cient on variable z: See notes to Table 1 for the de�nition of variables.

The estimates are obtained from the decomposition model with the Clayton copula. Shown are

estimates together with robust standard errors and t-statistics of the coe¢ cients in the MEM

volatility equation jrt� cj =  t�t; where  t follows (2), and �t is distributed as normalized Weibull

with shape parameter &. The t-statistic in the column for & is computed for the restriction & = 1:

The excess dispersion statistic ED is distributed as standard normal with a (right-tail) 5% critical

value of 1:645 under the null of Weibull distribution. The Pearson test statistic PT compares the

discretized empirical and Weibull distribution using 20 cells, and its null distribution is bounded

between �218 and �
2
19 whose 5% critical values are 28:87 and 30:14.
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Table 4. Estimates and summary statistics from copula speci�cations.

unconditional dependence parameter � conditional LogL LR pseudo-R2

correlation coe¤ s.e. t-stat correlation
Frank copula 0:768 0:245 0:297 0:824 �0:026

(0:039)
1:8404 75:8 7:71%

Clayton copula 0:768 0:087 0:055 1:583 �0:027
(0:040)

1:8422 76:4 7:71%

FGM copula 0:768 0:123 0:149 0:825 �0:026
(0:039)

1:8405 75:9 7:71%

Notes: �Unconditional correlation�refers to the sample correlation coe¢ cients between jrt� cj and

I [rt > c] : �Conditional correlation�refers to the sample correlation coe¢ cients between  �1t jrt� cj

and p�1t I [rt > c] estimated from the decomposition model, with robust standard errors in parenthe-

ses. LogL denotes a sample mean loglikelihood value. LR stands for a likelihood ratio test of joint

signi�cance of all predictors; its null distribution is �216 whose 5% critical value is 26:3. Pseudo-R2

denotes squared correlation coe¢ cients between excess returns and their in-sample predictions.

Table 5. Results of the out-of sample forecasting experiment.

Linear model Ignoring dependence Exploiting dependence
Frank Clayton FGM Frank Clayton FGM

1982:01-2002:12
squared errors �4:62 2:06 1:92 1:80 2:64 2:50 2:56

absolute errors �4:81 2:42 2:21 2:21 1:54 1:33 1:40

1995:01-2002:12
squared errors �21:43 2:21 1:82 1:52 2:07 1:59 1:85

absolute errors �15:84 0:88 0:43 0:36 �0:86 �1:34 �1:21

Notes: Shown are values of the OS statistic (in %). The rolling scheme uses a sample of �xed size

R = 360: �Ignoring dependence�means that the decomposition model is estimated but predictions

are constructed under the presumption of conditional independence between signs and absolute

returns. �Exploiting dependence�means that the decomposition model is estimated and fully used

in constructing predictions by (5), including numerical integration.
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Table 6. Results of the test of predictive ability.

Linear model Ignoring dependence Exploiting dependence
Squared errors

Historical Average
1:519

(0:468)

[0:016]

0:423

(0:809)

[1:000]

0:846

(0:655)

[0:865]

Linear Model
2:395

(0:302)

[1:000]

3:294

(0:193)

[1:000]

Ignoring dependence
0:129

(0:937)

[0:761]

Absolute errors

Historical Average
3:425

(0:180)

[0:008]

1:106

(0:575)

[0:789]

1:027

(0:599)

[0:657]

Linear Model
6:751

(0:034)

[1:000]

6:928

(0:031)

[1:000]

Ignoring dependence
4:277

(0:118)

[0:458]

Notes: The top entries in each cell are the values of test statisticWi;j based on the loss di¤erences of

models i and j in row i and column j, respectively, whose null distribution is �22; the corresponding

p-values are in parentheses. The indicators Ii;j are placed in square brackets.

Table 7. Results of the Mincer�Zarnowitz regression.

Historical average Linear model Ignoring dependence Exploiting dependenceba0 0:046
(0:014)

0:005
(0:003)

0:000
(0:003)

0:003
(0:003)ba1 �11:72

(3:96)
0:208
(0:223)

0:630
(0:228)

0:721
(0:268)

p-value 0:002 0:001 0:180 0:450

R2 2:8% 0:4% 2:5% 2:4%

Notes: The Mincer�Zarnowitz regression is rt = a0+a1brt+error for t = R+1; :::; T:Heteroskedasticity-

robust standard errors are in parentheses. The last two rows report the p-value of the Wald test

for a0 = 0 and a1 = 1 and the regression R2.
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Table 8. Summary statistics of di¤erent trading strategies for the out-of-sample period January

1982 �December 2002.

Buy-and-hold Linear model Ignoring dependence Exploiting dependence
average return 12:55% 9:96% 12:80% 11:53%

standard deviation 14:96% 12:02% 13:69% 12:75%

Sharpe ratio 0:428 0:330 0:485 0:426

Jensen measure �0:27% 1:37% 0:88%

Table 9. Mean characterisics (with standard deviations) of predictive regressions run on simulated

samples.

t(dp) t(ep) t(ir3) t(irs) R2 UC CC

� = 0:087

mean 1:42 �1:07 �1:14 1:90 1:99% 0:761 0:042

s.d. 1:00 1:00 1:03 1:02 1:11% 0:012 0:041

� = 0:869

mean 1:13 �0:84 �0:91 1:76 1:60% 0:760 0:303

s.d. 0:96 0:96 1:00 0:98 0:99% 0:013 0:038

� = 8:692

mean 0:16 �0:06 �0:12 0:93 0:71% 0:801 0:667

s.d. 0:91 0:91 0:95 0:94 0:55% 0:015 0:030

Notes: Shown are mean t-statistics, R2, unconditional and conditional correlations, together with

their standard deviations (s.d.), from predictive regressions run on 10,000 arti�cial samples. See

notes to Table 1 for the meaning of t(:) and de�nitions of variables: The DGP is calibrated to

the decomposition model with Clayton copula. UC and CC denote unconditional and conditional,

respectively, correlation of the two components of simulated returns.
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Figure 1. Predicted probabilities from dynamic logit model.
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Figure 2. Actual and predicted absolute returns from volatility model.
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Figure 3. Predicted (in-sample) returns from decomposition model and predictive

regression.
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Figure 4. Predicted (out-of-sample) returns from decomposition model and predictive

regression.
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Figure 5. Predicted absolute loss differences between predictive regression and

decomposition model.
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Figure 6. Performance of portfolios constructed from different models.
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Figure 7. Actual (bold) and five simulated paths of cumulative returns calibrated to

estimated decomposition model.
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