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1. Introduction.

An important economic tendency of the last 30 years was the development of markets for electricity and natural gas in several countries. The creation of a market includes forming of several private generating companies, and determination of the market mechanism for their interaction with consumers. In many existing wholesale markets, the most important part of this mechanism is a regular supply function or a double auction that determines the market price and the production volume for each company. Typically this auction is organized as a unique price  auction (though some studies show that Vickrey auction might be the more efficient form of the interaction, see  Vasin, Vasina (2005).

Creation of the market structure concerns the following problem. On one hand, in order to reduce the market power and prevent a large increase of the market price over the competitive equilibrium price, it seems reasonable to split the generation sector into many small companies. On the other hand, the scale effect and the reliability of the electricity supply (that is very important for Russia) require creation of sufficiently large generating companies. Thus an important question is what minimal degree of the splitting provides the sufficiently small deviation of the market price from the competitive equilibrium price.

Our previous study (Vasin and Vasina, 2005) shows that stable rational behavior of agents at the supply function auction corresponds to the Cournot equilibrium outcome. So the question about splitting implies the following theoretical problems.

The first one is evaluation of the Cournot price deviation from the Walrasian price under given market structure and available information on the parameters of the market. It is important to discuss the known indices of the market competitiveness (in particular, Concentration ratio and Herfindahl-Hircshman  index, see Hircshman, 1963, Tirole, 1997) in context of such evaluation. In Section 3 we obtain an estimate of deviation of the Cournot price from the Walrasian price depending on the demand elasticity and the share of the largest company in the market. We also discuss standard criteria of the market competitiveness related to Concentration ratio and Herfindahl-Hircshman index and show that they are too soft for the electricity market. We obtain the more strict conditions that provide a sufficiently small deviation of the market price from the Walrasian price.

Another important problem relates to the network structure of electricity and gas markets. Below we show that in context of the imperfect competition study, the losses under transmission are not so important since the loss coefficient usually does not exceed 0.1. However, transmission capacity constraints essentially influence the properties of the market in many cases. Our study (2005) shows that, even for the simplest network market with two nodes, there exist 5 possible variants of the Nash Equilibrium (
[image: image328.wmf] below), moreover, 3 
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 may coexist under some parameters. This makes the analysis of the market a complicated problem. Below we develop an approach to reduce the number of possible equilibria under consideration. We employ two ideas. First, we show that some equilibria are incompatible, and provide a simple rule that distinguishes one of three variants as a possible 
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 under given parameters of the market. Then we show that an equilibrium of any market with losses may be approximated by some equilibrium of the similar market without losses. Thus we reduce to 3 the number of possible variants of 
[image: image4.wmf]NE

 for a two-node market and show that at most two 
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 may coexist for a market without losses. We also give an example where two 
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 coexist, so in general it is impossible to improve the result. 

2. Survey of literature.

The problem of imperfect competition in the markets for homogeneous goods (gas, electricity etc) is widely discussed in the literature. For the empirical investigation see Sykes and Robinson (1987). The corresponding theoretical models consider a local market without network structure. Static one-period models (Baldick et al. (2000), Green (1992), Klemperer and Mayer (1989)) describe a sealed bid unique-price auction as a normal form game and characterize its Nash equilibria. The latter paper studies a model of competition via arbitrary supply functions set by producers. For a given demand function they show that for any price above the Walrasian one there exists the corresponding Nash equilibrium. Green and Newbery (1992) consider a symmetric duopoly with linear supply and demand functions and obtain the explicit expressions for computation of the Nash equilibrium. Baldick et al. (2000) generalize their result for an asymmetric oligopoly. Abolmasov and Kolodin (2002) and Dyakova (2003) apply this approach for a study of  the electricity markets in two Russian regions. They use affine approximations of the actual supply functions.

Let us note that the assumption on the affine structure of supply functions does not correspond neither to the actual cost structure of generating companies, nor to the rules of supply functions auctions. Typically every producer can make a bid corresponding to the non-decreasing step supply function. The project of the Russian wholesale electricity market permits up to 3 steps in a bid of one firm for each hour (see The Model of the Russian Wholesale Market).  The step structure of a bid approximately corresponds to the actual structure of variable costs of generating companies. Usually every such company owns several generators with limited capacities and approximately fixed marginal costs. The main part of these costs is the fuel costs.  

Our previous paper Vasin, Vasina (2005) studies properties of Nash equilibria for the supply function auction, where a bid is a non-decreasing step function. We start with investigation of the local market. We show that there exists a unique Nash equilibrium in the Cournot model for any non-increasing demand function with the non-decreasing demand elasticity under mild assumptions on the demand asymptotics as the price tends to infinity. We develop a descriptive method for computation of the Cournot outcome under any affine demand function and piece-wise constant marginal costs of producers. In the general case, we obtain an explicit upper estimate of the deviation of the Cournot outcome from the Walrasian outcome proceeding from the demand elasticity and the maximal share of one producer in the total supply at the Walrasian price.

Amir (1996) and Amir and Lambson (2000) study existence and uniqueness of the Nash equilibrium in the Cournot model for logconvex and logconcave inverse demand functions. (Note that 
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.) Thus, the first property is stronger than increasing of the demand elasticity while the second may hold or not hold in our case. A typical example of the demand function with increasing elasticity that does not meet the both properties is the demand for a necessary good with the low elasticity for low prices and the high elasticity for high prices, such that consumers prefer some substitute.

Vasin and Vasina (2005) consider also a model where the market price is determined from the balance of the demand and the actual supply of the sealed bid auction and producers set  arbitrary non-decreasing step supply functions as their strategies. We show that, besides the Cournot outcome, there exist other Nash equilibria. For any such equilibrium the cut price lies between the Walrasian price and the Cournot price. Vice versa, for any price between the Walrasian price and the Cournot price, there exists the corresponding equilibrium. However, we show that only the Nash equilibrium corresponding to the Cournot outcome is stable with respect to some adaptive dynamics of producers’ strategies under general conditions.

This result echoes Moreno and Ubeda (2002) who obtained a similar proposition for a two-stage model where at the first stage producers choose production capacities, and at the second stage they compete by setting the reservation prices. The difference is that in our model the Cournot type equilibrium always exists under fixed production capacities since the agents set the production volumes as well as the reservation prices.

Our results differ from Klemperer and Meyer (1989) who study competition with arbitrary supply functions reported by producers. Under similar conditions, they obtain an infinite set of Nash equilibria corresponding to all prices above the Walrasian price. Our constraint that permits only non-decreasing step functions is reasonable in context of studying electricity markets.  The step structure of the supply function is typical for generating companies and corresponds to the actual rules and the projects of the markets in different countries (see Hogan, 1998).

The second part of Vasin and Vasina (2005) considers a simple network market – the market with two nodes. As above, each local market is characterized by the demand function and the finite set of producers with non-decreasing marginal costs. For every producer his strategy is a reported supply function that determines his supply of the good depending on the price. The markets are connected by a transmitting line with fixed share of losses and transmission capacity. Under given strategies of producers, the network administrator first computes the cut prices for the separated markets. If the ratio of the prices is sufficiently close to one then transmission is unprofitable with account of the loss. In this case, the outcome is determined by the cut prices for the isolated markets. Otherwise the network administrator sets the flow to the market with the higher cut price (for instance market 2). This flow reduces the supply and increases the cut price at the market 1. Simultaneously it increases the supply and reduces the cut price at the market 2. If the transmitted volume does not exceed the transmission capacity, the network administrator determines this volume so that the ratio of the final cut prices corresponds to the loss coefficient. Otherwise, the administrator sets the volume to be equal to the transmission capacity. Thus, he acts as if perfectly competitive intermediaries transmit the good from one market to the other. It is easy to show that such strategy maximizes the total welfare if the reported supply functions correspond to the actual costs.

We consider Cournot competition model for this market. Our study shows that there exist three possible types of Nash equilibrium: 1) an equilibrium with zero flow between the markets and the ratio of the prices close to 1; such equilibrium is determined as if there are two separated markets; 2) an equilibrium with a positive flow and the ratio of the prices corresponding to the loss coefficient; 3) an equilibrium with a positive flow equal to the transmission capacity and the ratio of the prices exceeding  the loss coefficient.

Proceeding from the first order condition, we define local equilibria of each type and show how to compute them. Then we study under what conditions the local equilibrium is a real Nash equilibrium. For the market with constant marginal costs and affine demand functions, we determine the set of Nash equilibria depending on the parameters. One interesting finding is that, in the symmetric case with equal parameters of the local markets and a small loss coefficient, the local equilibrium corresponding to the isolated markets is not a Nash equilibrium, but there exist two asymmetric Nash equilibria with a positive flow of the good.

Then we consider a standard network auction  of supply functions (with unique nodal prices) and generalize the results obtained for the local auction: stable Nash equilibria correspond to the Cournot outcomes.

3. Evaluation of the market power and Cournot competition.

According to the previous results, the expected outcome of the unique-price supply function auction under rational behavior of agents corresponds to the Cournot equilibrium. Hence it is reasonable to consider  deviation of the Cournot price
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 from the Walrasian price 
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 as a measure of the market inefficiency related to the market power of the agents. Below we obtain  an estimate of this deviation depending on the demand elasticity and the share of the largest company in the market. We also discuss the known market indices with respect to analysis of the supply  function auction at the electricity market. 

Consider a market with a homogenous good and a finite set of producers 
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. Consumers’ behavior is characterized by the demand function 
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Recall basic definitions.
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Note. The theoretical supply function 
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 determines the (generally non-unique) optimal production volume of the firm 
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 under a given price 
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. Formally, it is a non-decreasing closed upper semi-continuous point-set mapping with convex values. A trivial result is that the unique Walrasian price exists under the specified assumptions on the demand function.

For a game 
[image: image34.wmf]>

Î

Î

=<

G

A

a

X

x

x

f

X

A

a

a

,

),

(

,

,

 with the set of players 
[image: image35.wmf]A

, the set 
[image: image36.wmf]a

X

 of strategies and the payoff function 
[image: image37.wmf]a

f

 for each player 
[image: image38.wmf]a

, strategy combination 
[image: image39.wmf])

,

(

*

*

A

a

x

x

a

Î

=

 is a Nash equilibrium (NE) if 
[image: image40.wmf])

||

(

)

(

*

*

a

a

a

x

x

f

x

f

³

 for any 
[image: image41.wmf]a

, 
[image: image42.wmf]a

a

X

x

Î

. Existence of NE for the models under consideration is established below.

Cournot competition. Consider a model of Cournot competition for the given market. Then a strategy of each producer 
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 The payoff function of producer 
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 Thus, the interaction in the Cournot model corresponds to the normal form game 
[image: image50.wmf]A

a

V

v

v

f

V

A

a

A

a

a

a

С

Î

Ä

Î

=

G

Î

],

,

0

[

),

(

],

,

0

[

,

r

r

, where 
[image: image51.wmf]]

,

0

[

a

V

 is a set of strategies 
[image: image52.wmf]A

a

Î

.

Combination 
[image: image53.wmf])

,

(

*

A

a

v

a

Î

 of production volumes is a Cournot equilibrium (CE) if it is a NE in the game 
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Then the F.O.C. for Nash equilibrium is 
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 is called a local Cournot equilibrium if it meets the necessary conditions (1), (2).

Let us define the Cournot supply function 
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Figure 1 shows a typical form of this function. The Cournot price 
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Our paper Vasin, Vasina (2005) provides the following estimate of the Cournot price deviation from the Walrasian price, proceeding from the demand elasticity 
[image: image81.wmf])

(

)

(

)

(

p

D

p

D

p

p

e

¢

=

 and the maximal share of one firm in the total production at the Walrasian equilibrium.

Proposition 1. Let 
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The given upper bound of deviation from the Walrasian price may be inconvenient for practical use since the shares of firms and the demand elasticity at the Walrasian price are typically unobservable, while the actual values under rational behavior of agents correspond to the Cournot outcome. Below we focus on the case where D(p) is linear in the practically important interval of prices.

Proposition 2. Let the maximal share of one firm in the total production at the Cournot equilibrium meet inequality 
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This estimate becomes a strict equality for a symmetric oligopoly with a fixed marginal cost 
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Proof. Consider a fixed profile 
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Note. Another interesting example that provides the same ratio between the Cournot and the Walrasian prices is where a large firm with the market share 
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. The lower bound for deviation of the Cournot price from the Walrasian price under given conditions is 0. Figure 2 provides the corresponding example.
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Now consider the following regulation problem. Assume that under transition to the deregulated market a state regulated monopoly that provided electricity for some region is splitted in 
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. Thus a standard assumption that the 20% barrier for the largest company provides a sufficiently competitive market (see, for instance, Dyakova, 2003) seems to fail in this case.

Now consider another popular measure of the market competitiveness – the Herfindahl-Hircshman index (Hirschman, 1963)
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This estimate becomes a strict equality in the case where a large firm with the market share 
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Under the symmetric oligopoly with the same HHI, the price deviation meets (3) as an equality.

Proof. Under the given HHI, the share of one firm in the total production does not exceed 
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Consider again the regulation problem. Now, the question is: how low should be the HHI in order to prevent the increase of the market price more than 50% of the cost? The US government agencies propose (see Report of Office of Economic, 2000) that 
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4. Network markets and the problem of multiple Cournot equilibria.

Consider two local markets connected by a transmitting line. Every local market 
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1. Each firm finds out its cost function.

2.  Simultaneously and independently each firm reports the auctioneer  its strategy.

3. For a given strategy combination nodal cut-off prices 
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a). The first-order conditions for the type a) outcome with prices
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to be a Cournot equilibrium are quite similar to the conditions (1), (2) for the local market:
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b). For the type b) outcome with
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Similarly, producers in the market 2 face the demand 
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c). Finally, if the capacity constraint is binding
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Thus, even in the simplest variant of the network market there exist 5 possible local equilibria. The following proposition shows that some of them are incompatible, and reduces the set of variants for examination.

Proposition 4. Under fixed parameters of the two-node market, only one local equilibrium of the types a) or c) may exist. More precisely, if the Cournot equilibrium prices 
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Proof. Consider a system that determines the prices for a local equilibrium of the type c) with the flow from 1 to 2:


[image: image209.wmf]å

+

=

1

)

(

)

(

1

1

1

1

A

a

c

Q

p

D

p

S

, 
[image: image210.wmf]å

-

=

2

)

(

)

(

2

2

2

2

A

a

c

Q

p

D

p

S

, 
[image: image211.wmf]1

2

p

p

l

>

.

(8)
Let 
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This result simplifies analysis of the market. However, our paper (2005) shows that a typical case is where three different local equilibria of the types a) and b) exist, some of them are true NE, the other are not stable with respect to the large change of the production volume by some agent. As the number of local markets in the network increases, the number of possible local equilibria of the network market grows with the exponentical rate. The problem of their careful computation and analysis for the actual markets seems to be hopeless.

This section aims to develop an alternative approach to analysis of such markets. Since the loss coefficients in the actual networks are usually less then 0.1, we show that NE of a market with the losses may be approximated by the NE of the similar market without losses and evaluate the error. Then we consider a problem of the Cournot equilibrium search and analysis for a network market without losses.

Below we study these issues for the market with affine demand functions and constant marginal costs. We also assume that capacity constraints in production are not binding. Formally we assume that 
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The market without losses corresponds to 
[image: image230.wmf]1

=

l

. According to the theorem on the derivative of an implicit function,


[image: image231.wmf](

)

(

)

(

)

(

)

2

1

2

2

2

1

1

*

1

2

*

1

2

2

2

1

2

2

1

*

1

1

1

*

1

2

1

1

)

(

)

(

)

(

)

(

2

d

d

A

d

d

A

p

D

p

d

A

c

p

d

d

d

p

A

c

p

d

d

dp

l

l

l

l

l

l

l

l

l

+

+

+

-

-

+

-

+

+

+

-

=

.

Thus 
[image: image232.wmf](

)

1

1

)

(

)

(

2

2

1

2

1

2

2

1

1

2

1

1

1

»

-

+

+

+

+

£

=

A

A

d

d

A

d

d

A

d

p

d

dp

l

l

 for 
[image: image233.wmf]2

1

d

d

=

; 
[image: image234.wmf]1

.

0

1

)

1

(

)

(

)

1

(

1

1

1

£

-

»

-

l

l

p

p

p

 under typical values of the loss coefficient.  

A similar evaluation holds for an equilibrium of the type c) with the binding transmission capacity constraint. However, an equilibrium of the type a) (with separated markets) does not exist under 
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 a local equilibrium of this type may exist and essentially differ from any equilibrium of the network market without losses. For instance, consider a symmetric oligopoly with equal parameters for the both local markets. Then the Cournot price for each separated local market is 
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However, the local equilibrium with separated markets is not a true Nash equilibrium under typical values of the electricity market parameters! Let us prove this proposition.

The conditions for the local equilibrium of the type a) take the form: 
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Condition (7) for existence of the local equilibrium and the conditions of its instability under the optimal deviation of agent 
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Let us show that condition (10) holds under typical parameters of an electricity market, so the local equilibrium of the type a) (with separated local markets) is not a true NE. Proceeding from (9),(10) it suffices to check the following inequality:
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Consider several typical values of the loss coefficient.

Proposition 5. For the loss coefficient 
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Proof immediately follows from inequality (11) and relations 
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Proceeding from the given results we expect that in a general case the analysis of Cournot equilibria for a network market may be reduced to the analysis of a similar market without losses. For a two-node market without losses, we may consider only local equilibria of the types b) and c), and there exist at most one equilibrium of each type. It would be nice to show that only one Cournot equilibrium exists in this market in a general case. The following example shows that, unfortunately, this is not true.

Consider conditions for local equilibria b) with the united market and c) with the binding constraint and a flow from market 2 to market 1. Let 
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First, let us show that these conditions are incompatible if 
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and similar values for the equilibrium b) are 
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where 
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Fig. 3. The inverse demand function under fixed strategies 
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The demand function in this case is
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the maximal profit for 
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As to the local equilibrium b), it may be unstable with respect to sufficiently large decrease of the production volume by some agent 
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The following proposition summarizes the results of our study.

Proposition 6. For the given two-node market, two Cournot equilibria exist if and only if the profit values determined by (10)-(13) meet inequalities 
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Consider the following example. Let 
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In particular, for any odd 
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 where two Cournot equilibria exist in the market.
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