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Abstract

The quantal response equilibrium (QRE) notion of McKelvey and Palfrey (1995) has recently

attracted considerable attention, due largely to its widely documented ability to rationalize

observed behavior in games played by experimental subjects. We show that this ability

to Þt the data, as typically measured in this literature, is uninformative. Without a priori

distributional assumptions, a QRE can match any distribution of behavior by each player in

any normal form game. We discuss approaches that might be taken to provide valid empirical

evaluation of the QRE and discuss its potential value as an approximating empirical structure.
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1 Introduction

The quantal response equilibrium (QRE) notion of McKelvey and Palfrey (1995) is a generaliza-

tion of Nash equilibrium that allows imperfect optimizing behavior while maintaining the internal

consistency of rational expectations. Roughly speaking, equilibrium is attained when each player

employs a (nondegenerate) mixture of pure strategies, each of which is �close� to being best a re-

sponse to the mixtures used by other players. The formal notion of �close� is based on realizations

of random perturbations to the payoffs associated with each pure strategy a player can follow.1

The QRE has intuitive appeal as a coherent formal solution concept allowing the possibilities

that (a) the speciÞed game imperfectly captures the true relation between strategies and payoffs,

and/or (b) players may fail to play best responses, especially when the cost of using a suboptimal

strategy is small. Much recent work also suggests that predictions of the QRE can match observed

behavior well in a variety of experimental settings. In particular, when parameters of distributions

of payoff perturbations are chosen so that the predicted distributions of outcomes Þt the data as

well as possible, the Þt is often very good. McKelvey and Palfrey�s original paper demonstrated

the ability of the QRE to explain departures from Nash equilibrium predictions in several games.

Since then, the success of the QRE in rationalizing observed behavior has been demonstrated in

a variety of experimental settings, including all-pay auctions (Anderson, Goeree and Holt (1998)),

Þrst-price auctions (Goeree, Holt and Palfrey (2002)), alternating-offers bargaining (Goeree and

Holt (2000)), coordination games (Anderson, Goeree and Holt, forthcoming), and the �traveler�s

dilemma� (Capra, Goeree, Gomez and Holt (1999), Goeree and Holt (2001)).2 As the quotation

below suggests, this success in explaining observed behavior has led many researchers in this area

to view the QRE as a new standard:3

Quantal response equilibrium (QRE), a statistical generalization of Nash, almost always

explains the direction of deviations from Nash and should replace Nash as the static

benchmark that other models are compared to. (Camerer, Ho and Chong, 2001)

Given this recent work and its apparent inßuence, it is natural to ask how informative the ability

of the QRE to Þt the data really is. This is the subject of this note.

In the following section we deÞne notation and review the deÞnition of a QRE. In section 3

we describe the way the QRE notion has been applied to experimental data and what researchers
1We review the formal deÞnition of a QRE in the following section. The literature has considered generalizations

to extensive form games (McKelvey and Palfrey, 1998) and games with continuous strategy spaces (e.g, Anderson,
Goeree and Holt, forthcoming). We restrict attention to normal form games for simplicity.

2Dufwenberg, Gneezy, Goeree and Nagel (2002) suggest that they Þnd an exception proving the rule, noting �Our
results are unusual in that we document a feature of the data that is impossible to reconcile with the [QRE].�

3See also, e.g., the provocatively titled paper of Goeree and Holt (1999b).
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have typically meant when they say that the QRE does a good job explaining observed behavior.

We then present our main result: in any normal form game, any distribution of play by each player

is consistent with a QRE. Any restriction on outcomes obtainable from a QRE comes only from

a priori restrictions on the distributions of payoff perturbations. Put differently, for any game

and any observed behavior, there is a distribution of payoff perturbations that will imply QRE

behavior that matches the observed behavior perfectly. Hence, an evaluation of the �Þt� of the

QRE is uninformative unless one has a priori knowledge restricting the class of distributions one

should consider. Examining Þt with distributional assumptions chosen for convenience enables an

evaluation only of the ßexibility of the parametric family chosen.

We want to emphasize that this is not a critique of the QRE itself, only a critique of the

approach taken to evaluate the predictive value of the QRE in much of the literature. This

naturally leads to the question of how one might evaluate the QRE without arbitrary distributional

assumptions as maintained hypotheses. This is one of two topics we take up brießy in a concluding

section. Examining comparative statics predictions offers one promising approach. Taking this

approach requires a different maintained assumption: that the distribution of payoff perturbations

is constant or changes in known (a priori) ways as a game changes or across different games

altogether. However, with such an assumption the QRE can provide testable restrictions. The

second issue we raise is the potential value of the QRE as an empirical model�one that exploits

the value of theory for providing relations between observables and the primitives of interest, but

in a way that may be more robust than standard approaches relying on an assumption of Nash

equilibrium.

2 Quantal Response Equilibrium

2.1 Model and DeÞnition

Here we review the deÞnition of a QRE, loosely following McKelvey and Palfrey (1995). We refer

readers to their paper for additional detail, including discussion of the relation of the QRE to other

solution concepts. Consider a Þnite n-person normal form game Γ. The set of pure strategies

available to player i is denoted by Si = {si1, . . . , siJi}, with S = ×iSi. Let ∆i denote the set of all
probability measures on Si, i.e., the set of all functions pi : Si → [0, 1] satisfying p (si) ≥ 0 ∀si ∈ Si
and

PJi
j=1 pi (sij) = 1. Let ∆ ≡ ×i∆i denote the set of probability measures on S, with elements

p = (p1, . . . , pn). For simplicity, let pij represent pi (sij).

Payoffs of Γ are given by functions ui(si, s−i) : Si ×j 6=i Sj → R. In the usual way, these

payoff functions can be extended to the probability domain by letting ui(p) =
P
s∈S p(s) ui(s).
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Hence, e.g., the argument sij of the payoff function ui(sij, �s−i) is reinterpreted as shorthand for a

probability measure in ∆i that places all mass on strategy sij. Finally, for every p−i ∈ ×j 6=i∆j
and p = (pi, p−i), deÞne ūij (p) = ui(sij , p−i) and ūi(p) = (ūi1(p), . . . , ūiJi(p)) .

The QRE is based on the introduction of payoff perturbations associated with each pure strategy

of each player. For player i let

�uij(p) = ūij(p) + )ij

where the vector of perturbations )i ≡ ()i1, . . . , )iJi) is drawn from a joint density fi ()i1, . . . , )iJi).

For all i and j, )ij is assumed to have the same mean, which may be normalized to zero. Each

player i is then assumed to use strategy sij if and only if

�uij(p) ≥ �uik(p) ∀k = 1, . . . , Ji.4 (1)

Given a vector u0i =
¡
u0i1, . . . , u0iJi

¢ ∈ RJi , let
Rij(u

0
i) =

©
)i ∈ RJi : u0ij + )ij ≥ u0ik + )ik ∀k = 1, . . . , Ji

ª
. (2)

Conditional on the distribution p−i characterizing the behavior of i�s opponents, Rij (ūi (p)) is the

set of realizations of the vector )i that would lead i to choose action j (ignoring ties, which occur

with probability zero).

Let

σij(u
0
i) =

Z
Rij(u0i)

fi()i) d)i

denote the probability of realizing a vector of perturbations in Rij(u0i) and let σi=(σi1, . . . , σiJi).

McKelvey and Palfrey (1995) call σi player i�s statistical best response function or quantal response

function. Given the �baseline� payoffs uj (·) ∀j, a distribution of play by i�s opponents, and a joint
distribution of i�s payoff perturbations, σi describes the probabilities with each of i�s strategies will

be chosen by i. A quantal response equilibrium is attained when the distribution of behavior of

all players is consistent with their statistical best response functions. More precisely, letting σ =

(σ1, . . . , σn) and ū = (ū1, . . . , ūn), a QRE is a Þxed point of the composite function σ ◦ ū : ∆→ ∆,

which maps joint distributions over all players� pure strategies into statistical best responses for all

players.

DeÞnition 1 A quantal response equilibrium (QRE) is any π ∈ ∆ such that for all i ∈ 1, . . . , n
and all j ∈ 1, . . . , Ji, πij = σij (ūi (π)).

4This rule is consistent with rational choice by i given the payoff function �uij if the following assumptions are
added: (1) #i and #j are independent for j 6= i; (2) the �baseline� payoff functions uj (sj , s−j) and densities fj are
common knowledge; and (3) the vector #i is i�s private information. As McKelvey and Palfrey (1995) show for
a particular distribution of perturbations, under these assumptions a QRE is a Bayesian Nash equilibrium of the
resulting perturbed game of incomplete information.
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There are several possible interpretations of the QRE notion. One need not take the payoff

perturbations literally. The idea that players use strategies that are only �close� to optimal has

natural appeal, and the QRE offers a coherent formalization of this idea�one that closes the model

of error-prone decisions with the assumption of rational expectations about opponents� behavior.

However, as McKelvey and Palfrey (1995) suggest, the payoff perturbations can have natural

economic interpretations as well.5 Each )ij could reßect the error made by player i in calculating

his expected utility from strategy j, due perhaps to unmodeled costs of information processing.6

Equilibrium then reßects the intuitive idea that players, while perhaps not always choosing payoff-

maximizing strategies, are at least more responsive to larger differences in payoffs; i.e., deviations

from optimizing behavior will be less likely when the costs of such deviations are large. Alternatively,

)ij might reßect unmodeled determinants of i�s utility from using strategy j. This interpretation

is appealing in many applications since a model can, of course, only approximate a real economic

environment. Furthermore, any true payoff function �ui(sij, p−i) can be represented as the sum

of an arbitrary baseline payoff ui(si, p−i) and a correction )ij(p−i) = �ui(sij, p−i)− ui(sij , p−i). If

the game underlying the baseline payoffs ui(sij , p−i) provides a good approximation to the truth,

representing )ij(p−i) by a random variable that does not depend p−i (as in the QRE) could provide

a useful approximation.

2.2 Application and Evaluation

Following McKelvey and Palfrey (1995), application of the QRE to data from experiments has

proceeded by Þrst specifying the joint densities fi (up to a Þnite-dimensional parameter) for all

players. In every application we are aware of, it has been assumed that )ij is independently and

identically distributed (iid) across all i and j. In most applications, it is assumed that each

)ij is an independent draw from an extreme value distribution, yielding the familiar logit choice

probabilities

pij =
eλūij(p)PJi
k=1 e

λūik(p)
. (3)

5See also Chen, Friedman and Thisse (1997) and the related discussion of random utility models in Manski (1977).
6There is, however, an issue if one wishes to view the behavioral assumption (1) as reßecting rational choice

conditional on misperceptions of payoffs. Player i must observe only �uij(p) for each pure strategy j, not the
individual components ūij (p) and #ij (otherwise he could just ignore #ij). However, i must know the distribution
p−i, and the correct anticipation of this equilibrium distribution requires the unnatural assumption that i know j�s
true payoffs �ujk (p) but not his own. In practice, however, p−i might be learned from experience. Chen, Friedman
and Thisse (1997) and Hofbauer and Sandholm (2002) explore this possibility for several classes of games.
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With p observable, the unknown parameter λ is then easily estimated by maximum-likelihood,7

i.e., λ is chosen so that the implied QRE behavior matches actual behavior as closely as possible.

Typically the ability of the QRE to rationalize the data is then assessed based on the match

between the observed probabilities on each pure strategy and those predicted by the QRE at the

estimated parameter value(s).8 In some cases particular moments of the strategy distributions

are compared; e.g., Goeree, Holt and Palfrey (2002) compare predicted and actual mean bids at

each valuation for their Þrst-price auction experiments. While formal testing is uncommon, visual

inspection of histograms usually suggests an extremely good Þt. Of course, since the QRE with a

degenerate distribution of perturbations reduces to a Nash equilibrium, the Þt must improve when

one adds the freedom to choose the best Þtting member of a parametric family like the extreme

value. In fact, however, the Þt is often greatly improved relative to Nash equilibrium. The

following excerpt from Fey, McKelvey and Palfrey (1996, p. 286�287), which relies on this type of

comparison in centipede games, is typical of the conclusions drawn from such an evaluation of Þt:

Among the models we evaluate, the Quantal Response Equilibrium model best explains

the data. It offers a better Þt than the Learning model and, as it is an equilibrium

model, is internally consistent. It also accounts for the pattern of increasing take

probabilities within a match. These facts lend strong support to the Quantal Response

Equilibrium model.

3 How Informative is Fit?

3.1 Result

One might naturally expect the QRE notion to impose considerable structure on the behavior

consistent with equilibrium. As Goeree, Holt and Palfrey (2002) have suggested, the QRE requires

a �consistency condition that the probabilities which determine expected utility. . .match the choice

probabilities. . . that result from probabilistic choice.� Put differently, only probabilities that form

a Þxed point of the composite mapping σ ◦ ū can form a QRE, and experience suggests that Þxed

points are special.

7 In the applications that have avoided the logit formulation, a power function speciÞcation has been used, but
the approach is the same. In the logit speciÞcation, 1/λ is proportional to the variance of the payoff perturbations,
with equilibrium behavior converging to a Nash equilibrium as λ→∞. In practice, estimates of λ often increase as
players gain experience with the game (see, e.g., McKelvey and Palfrey (1995) or Fey, McKelvey and Palfrey (1996),
although McKelvey, Palfrey and Weber (2000) Þnd weaker evidence for this).

8See, e.g., Anderson, Goeree and Holt (1998a, 1998b), Baye and Morgan (2002), Camerer, Ho and Chong (2001),
Capra et al (1999, 2002), Cason and Reynolds (2003), Fischbacher and Thoni (2002), Goeree and Holt (2000, 2001),
Goeree, Holt and Palfrey (2002), McKelvey and Palfrey (1995, 1998), McKelvey, Palfrey and Weber (2000).

5



However, the freedom to choose the joint densities fi to Þt the data gives considerable ßexibility

to the QRE, particularly if one is unwilling to assume a priori that all payoff perturbations are

iid. To see this, consider maintaining the assumption that perturbations are independent across

players but relaxing the assumption of iid perturbations across a player�s strategies in one of two

ways. Let

IJ = {joint pdfs for J independent, mean-zero random variables}
SJ = {joint pdfs for J mean-zero random variables with identical marginal distributions} .

Joint densities fi in the set IJi satisfy an assumption that the )ij are independent across j, but
need not imply identical marginal distributions across for each )ij. Joint densities fi in SJi allow
dependence of )ij and )ik, k 6= j, but require them to have the same marginal distribution. The

following result shows that when the assumption of iid perturbations is relaxed in either of these

ways, the QRE imposes no restriction on behavior. For any game and any distribution of observed

behavior on the interior of the Ji-dimensional simplex for each i, there exist densities from IJi ∀i,
as well as densities from SJi ∀i, any of which will enable the QRE to match the distribution of
behavior of each player perfectly.

Theorem 1 Take any Þnite n-player normal form game Γ with j = 1, . . . , Ji pure strategies for

each player i. For any p on the interior of ∆,

(i) there exist joint probability density functions fi ∈ IJi ∀i such that p forms a QRE of Γ.
(ii) there exist joint probability density functions fi ∈ SJi ∀i such that p forms a QRE of Γ.

Proof: Given p−i, the probability that player i plays action j in a QRE is given by

σij (ū (p)) = Pr {)ij ≥ )ik + ūik (p)− ūij (p) ∀k = 1, . . . , Ji} .

Noting that ūij (p) and ūik (p) depend only on p−i, let

Hjk
i (p−i) = ūik (p)− ūij (p) .

Part (i) [part (ii)] will then be proven if we can show that for each player i and any given

(pi1, . . . , piJi) ∈ (0, 1)Ji , a density fi ∈ IJi [fi ∈ SJi ] can be found that implies

Pr
n
)ij ≥ )ik +Hjk

i (p−i) ∀k = 1, . . . , Ji
o
= pij j = 1, . . . , Ji (4)

i.e., that the probabilities pij are in fact best responses given p−i.

(i) Suppose initially that all )ij are independent draws from two-point distributions such that

εij =

(
αj w.p. qj

− qj
1−qjαj w.p. 1− qj
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for some αj > 0 and qj ∈ (0, 1) to be determined below. By construction, each )ij has expectation
zero. The event

n
)ij ≥ )ik +Hjk

i (p−i)
o
occurs with probability

Ajk = qj qk 1
n
αj − αk > Hjk

i

o
(5)

+qj(1− qk) 1
½
αj +

qk
1− qkαk > H

jk
i

¾
+(1− qj)qk 1

½
− qj
1− qjαj − αk > H

jk
i

¾
+(1− qj)(1− qk) 1

½
− qj
1− qjαj +

qk
1− qkαk > H

jk
i

¾
where 1 {·} is the indicator function and we have suppressed the dependence of Hjk

i on p−i. Now

begin by Þxing αJi > 0 and qJi ∈ (0, 1) at arbitrary values. For any qJi−1 ∈ (0, 1) and all

sufficiently large αJi−1 we have

1
n
αJi−1 − αJi > H(Ji−1)Ji

i

o
= 1

1

½
αJi−1 +

qJi
1− qJi

αJi > H
(Ji−1)Ji
i

¾
= 1

1

½
− qJi−1
1− qJi−1

αJi−1 − αJi > H(Ji−1)Ji
i

¾
= 0

1

½
− qJi−1
1− qJi−1

αJi−1 +
qJi

1− qJi
αJi > H

(Ji−1)Ji
i

¾
= 0

so that

A(Ji−1)Ji = qJi−1qJi + qJi−1(1− qJi) = qJi−1.

Fix αJi−1 at one such value, α∗Ji−1. Because the matrix of elements H
jk
i ∀i, j is antisymmetric,

we then also have AJi(Ji−1) = 1 − qJi−1. Now consider selection of αJi−2. As before, for any

qJi−2 ∈ (0, 1), there exists sufficiently large αJi−2 such that

A(Ji−2)(Ji−1) = qJi−2

A(Ji−2)Ji = qJi−2

AJi(Ji−2) = 1− qJi−2
A(Ji−1)(Ji−2) = 1− qJi−2.

Fix αJi−2 at one such value α∗Ji−2. Proceeding in this fashion, given any qj ∈ (0, 1) ∀j, we can
choose each αj so that

Ajk =

(
qj if j < k

1− qk if j > k.
(6)
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This construction introduces a particular second-order stochastic dominance ordering of the random

variables εij . With this ordering, the eventn
)ij ≥ )ik +Hjk

i (p−i) ∀k = 1, . . . , Ji
o

is equivalent to the event {εij > 0, εik < 0 ∀k < j} when j < Ji, and to the event {εik < 0 ∀k < j}
when j = Ji (realizations of )ik for k > j do not matter). Because all )ij are independent, these

events have probability qj
Q
k<j(1− qk) for j < Ji and probability

Q
k<Ji

(1− qk) for j = Ji. So to
satisfy (4), for each j < Ji we set

qj =
pij

1−Pk<j pik

(recall that the values of each qj above were arbitrary and that qJi has been set to an arbitrary

value). Note that qj ∈ (0, 1) ∀j because pij ∈ (0, 1) ∀j and
PJi
j=1 pij = 1. Repeating this argument

for each player i then shows that we can construct distributions for each )ij that yield any desired

probabilities as a QRE if we ignore the fact that the deÞnition of a QRE assumed continuously

distributed perturbations.9 However, the mixtures of Dirac-delta functions used as densities here

can be replaced with mixtures of univariate normal densities (with small variances) to obtain the

same result. We show this in the appendix.10

(ii) Let ξ be uniformly distributed on [−κ, κ], for some κ > 0, to be chosen below. For j =

1, . . . , Ji deÞne

)ij =

(
ξ + δj if ξ + δj < κ

ξ + δj − 2κ if ξ + δj > κ
(7)

where each δj is a distinct value in the interval [0, 2κ] to be determined below. Each )ij is then

uniformly distributed on [−κ, κ]. Fix δJi at zero and, without loss of generality, impose δ1 > δ2 >
... > δJi . Now suppose for the moment that H

jk
i = 0 for all j and k. Then for each j

Pr{)ij > )ik, k = 1, ..., Ji} = δj−1 − δj
2κ

where we deÞne δ0 = 2κ. Setting these probabilities equal to the given values pi1, . . . , piJi , we

obtain a solution

δj =

Ã
1−

jX
k=1

pik

!
2κ j = 1, . . . , Ji − 1. (8)

9There are inÞnitely many other constructions since there are inÞnitely many ways to choose the parameters αj
(e.g., varying the starting value αJi in the proof, selecting different values of each α

∗
j , or introducing the second-order

stochastic dominance for any other ordering of the pure strategies).
10 It is intuitive that mixtures of normals could approximate the two-point distributions above arbitrarily well. The

appendix shows, however, that we can match the probabilities pij exactly.
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Figure 1: Example for part (i).

We now drop the assumption that each Hjk
i = 0. Note that when (8) holds, |)ij − )ik| ≥

2κ (minj=1,...,Ji pij) for all j 6= k.11 Hence, by choosing

κ >
maxk,j

¯̄̄
Hjk
i

¯̄̄
2minj=1,...,Ji pij

(8) still gives

Pr{)ij > )ik +Hjk
i : k = 1, ..., Ji} = pij ∀j 6= k.

Repeating this construction for every player completes the proof. ¤

Figure 1 illustrates the example used to prove part (i) for the case of a game with two pure

strategies. Here we have set q2 = 1/2. Realizations of ()i1, )i2) in the shaded region (i.e., (α1, α2)

or (α1,−α2)) lead to strategy si1 being chosen over si2. This occurs with probability q1, which we
are free to set equal to pi1. Probability (1− q1) is then put on the �balancing� point −α1q1

1−q1 to

make E [)i1] = 0.

Figure 2 illustrates the construction used for part (ii), again for the case Ji = 2. Here we have

used the notation ⊕ to represent addition on the circle running from −κ to κ. The bold arc of this
11When ξ + δi and ξ + δj both exceed κ or are both smaller than κ, this is immediate from (8). When ξ + δi

> κ > ξ + δj , |#i − #j | = |δj − δi + 2κ|, and the claim then follows from (8).
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ε

ε = ξ

i1

i2

κ − δ 1

1= ξ ⊕ δ

−κ  

Figure 2: Example for part (ii).

circle indicates the set of realizations of ξ that yield )i2 > )i1 (one such realization is shown). The

length of this arc (divided by 2κ) determines the probability of this event which, for sufficiently

large κ, is also the probability that si2 is chosen over si1.

3.2 Discussion

Theorem 1 shows that if the assumption of iid payoff perturbations is relaxed, any distribution of

behavior by each player is consistent with a QRE. Hence we pause to ask whether the assumption

of iid perturbations is a natural a priori restriction on economic grounds. Little that is concrete

can be said here given the ignorance of the true underlying structure that is implicit in representing

payoffs with random shocks. This leads us to be cautious about placing any a priori restriction

on the distribution of these shocks. Nonetheless, since the iid assumption does impose testable

restrictions on outcomes, we brießy consider the plausibility of iid perturbations.

As McKelvey and Palfrey (1995) have observed, the iid assumption has the intuitive implication

that better strategies (conditional on p−i) are played with higher probabilities (cf. Rosenthal

(1989)). However the plausibility of the iid assumption itself is not clear. The assumption of

identically distributed perturbations might be a natural starting point; however, if perturbations
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are taken to reßect players� misperceptions of true payoffs, it also seems natural that the variance

of the perturbation to ūij (p) might depend on the magnitude of ūij (p). The plausibility of

identically distributed perturbations is unclear to us if perturbations are viewed as corrections for

the economist�s misspeciÞcation of the game (due, e.g., to unmodeled costs/tastes for using different

strategies). However, this interpretation alone seems inconsistent with widely documented evidence

that behavior gets closer to Nash equilibrium as experimental subjects gain experience playing a

game (cf., e.g., McKelvey and Palfrey (1992) and the references in footnote 7).

The assumption of independent perturbations seems much more questionable. An implication

of independence that is unnatural for many games is that there is no sense in which payoffs from

�similar� strategies (like contributing $1 to a public good and contributing $1.10) are subject to

similar errors. Indeed, if the support of the iid perturbations is unbounded (as in the logit QRE),

with positive probability players sometimes perceive arbitrarily large differences in payoffs between

any pair of strategies, no matter how similar. Related to this, modifying a game by duplicating

one strategy of one player will change the �real� outcomes of the game, much as in McFadden�s

well-known �red bus/blue bus� example. In fact, the IIA property itself carries over to the logit

QRE. Such properties have, of course, long been a concern in the discrete choice literature, where

considerable effort has been directed at developing tractable random utility models that relax the

iid assumption. In the strategic context of the QRE, motivations for relaxing the iid assumption

are similar. Hence, we conclude that on economic grounds the iid assumption is a questionable a

priori restriction for many games.

4 Evaluating the Empirical Value of the QRE

The theorem above indicates that without an economic foundation for a priori restrictions on the

distribution of payoff perturbations (or, equivalently, directly on quantal response functions), the

widely documented ability of the QRE to Þt the data is uninformative. The common practice of

examining Þt using a particular speciÞcation of the QRE can reveal whether a particular parametric

family (e.g., the extreme value) is sufficiently ßexible to allow a good approximation of the data,

but can reveal nothing about the value of the QRE notion itself. This obviously does not mean

that the QRE is useless, nor even that it is without empirical content. However, it does raise several

questions that are the subject of this concluding section, which we hope will stimulate further work:

(1) Are there approaches for meaningful empirical evaluation of the QRE hypothesis?

(2) If so, what evidence do we have?

(3) If not, or if the evidence is not supportive, can the QRE be empirically useful nonetheless?

11



4.1 Comparative Statics

One possible approach for evaluating the predictive value of the QRE involves examining changes in

behavior as payoffs or other elements of a game change, i.e., testing comparative statics predictions.

It should immediately be emphasized that doing this requires maintaining an assumption that the

distributions of perturbations are Þxed (or change in known ways) as a game changes. If one is free

to choose a new distribution of perturbations for each game, Theorem 1 ensures that the QRE can

match behavior perfectly in every game. A maintained assumption of a Þxed distribution of pertur-

bations may be more difficult to justify in some applications than others. For example, contrary

to this assumption, in some applications one might expect errors made in assessing payoffs to have

variances that proportional to (or at least increasing in) the payoffs themselves. Alternatively,

variation in the complexity of games might suggest different distributions of �errors� for different

games. Without a clear economic foundation for the QRE perturbations,12 however, this question

is not easily resolved.

With this important caveat, comparative statics predictions offer falsiÞable restrictions of the

QRE that can be tested empirically. Little attention has been given to such testing thus far. While

many papers have examined the Þt of the QRE in different treatments (e.g., varying payoffs) or in

different games altogether, with few exceptions a new value of the distributional parameter(s) is

estimated each time, rendering the Þt in comparative statics uninformative. Two notable exceptions

are Capra, Goeree, Gomez and Holt (1999) and Goeree and Holt (1999) which demonstrate that

the QRE with a single distribution of perturbations can rationalize observed comparative statics

in the �traveller�s dilemma� game and a coordination game, respectively.

However, the suggestion that the QRE with a Þxed distribution of perturbations may have

good predictive power across a variety of experimental settings is not widely supported. First,

as pointed in footnote 7 above, the variance of the perturbations that rationalizes the data often

appears to decline over time. Capra, Goeree, Gomez and Holt (1999), for example, use only

data from the last three periods of their experimental treatments to estimate the error precision,

presumably for this reason. Second, even if one views the Þxed-distribution QRE as a theory

of �steady state� behavior, an examination of the experimental results suggests that in fact very

different distributions are estimated for different games. McKelvey and Palfrey (1995), for example,

estimated the logit model (recall (3)) separately for data from a number of different experiments

and obtained estimates of λ varying from 0.25 to 4.64. Wide ranges of estimates are obtained in

12Aside from analytical convenience, there is little justiÞcation offered in the literature for the a priori restriction
that payoff perturbations are independent and/or identically distributed or to belong to a particular parametric
family. An exception is the work of Anderson, Goeree, and Holt (1999), which develops a theoretical foundation for
the logit speciÞcation of the QRE as the limit of a noisy directional learning process.
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subsequent work as well (e.g., Fey, McKelvey and Palfrey (1996), McKelvey, Palfrey and Weber

(2000), Camerer, Ho and Chong (2002)). In a recent paper, Goeree and Holt (2002) formally

test and reject the hypothesis that the distribution of perturbations is constant across auctions

with different distributions of valuations. Considering a different type of comparative static,

Dufwenberg, Gneezy, Goeree and Nagel (2002) Þnd that changes in behavior observed when a price

ßoor is imposed in a pricing game cannot be explained by their QRE speciÞcation.

While the evidence thus far is mixed, evaluating comparative statics predictions of the QRE

(Þxing the perturbation distribution) has not actually been a focus of the literature, perhaps be-

cause the importance of this type of evaluation was not fully appreciated. Additional formal testing

is needed to better understand whether the QRE can predict outcomes for a range of games with

a Þxed distribution of payoff perturbations. Rejecting this hypothesis, of course, would not im-

ply a rejection of the QRE, since tests of comparative statics predictions will necessarily join the

QRE hypothesis with hypotheses about how the distribution of perturbations varies as the game

changes. It is also worth noting that even if comparative statics predictions of the QRE are for-

mally rejected, the QRE may nonetheless serve better for out-of-sample prediction than alternative

solution concepts. Investigating this possibility in games for which there is a clear motivation for

such out-of-sample prediction is another potentially useful direction for further research.13

4.2 QRE as an Empirical Structure

Consider for a moment the standard additive random utility model (ARUM)14 in which consumer

i�s utility from good j (with characteristics xj) is given by

uij = g(xj , β) + )ij

for some function g. This formulation is analogous to that of the QRE for a �one player game.�

Corollary 1 (i) Given any Þxed set of choices j = 1, . . . , J, any function g, and any parameter

vector β, there are no observed choice probabilities inconsistent with the additive random utility

model. (ii) the ARUM is nonparametrically unidentiÞed from individual choices from a Þxed choice

set.
13A testable restriction we have not mentioned is that with perturbations that are independent across players,

variation in strategies chosen should be independent across players as well. Of course, independent perturbations
are not required by the QRE and may be unnatural in some cases, particularly if we interpret payoff perturbations
as corrections for unmodeled elements of the game actually being played. Further, the independence restriction can
hold even if a particular speciÞcation of the QRE poorly captures actual behavior.
14See, e.g., Anderson, DePalma and Thisse (1992). This framework includes the standard multinomial logit and

probit as well as richer models like the nested logit (e.g., McFadden (1978), Cardell (1997)) or random coefficients pro-
bit/logit (e.g., Hausman and Wise (1978), Boyd and Mellman (1980), Cardell and Dunbar (1980), Berry, Levinshohn
and Pakes (1995)).
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Proof : Part (i) follows directly from the proof of Theorem 1, with the mean utility g (xj , β) playing

the role of the conditional (on p−i) mean payoff ūij (p) in the strategic setting. Part (ii) then follows,

since for every g(·, β) there is some joint distribution of the )ij ∀j leading to a perfect Þt.15 ¤

This corollary does not imply any critique of the extensive empirical literature using the

ARUM.16 Indeed, this is our point. Despite our results regarding empirical testing of the QRE,

the QRE may be useful in the same way that the ARUM is, i.e., as an empirical structure for

uncovering features of payoffs from Þeld data. Such a structure would exploit theory to obtain re-

lationships between observables and primitives of interest, but in a way that might be more robust

than standard structural approaches based on an assumption of Nash equilibrium.

Surprisingly, little attention has been given to this possibility.17 Examining the usefulness of

such an approach seems a natural and valuable direction for work in experimental economics. In

particular, estimates of payoff parameters obtained by interpreting observed behavior through the

QRE structure could be compared to the known true underlying parameters. As in the discrete

choice literature, one may Þnd that although models with iid shocks can have undesirable properties,

richer models analogous to, e.g., the nested logit or random coefficients probit/logit can be quite

useful. Note that the analog of variation in choice sets here (cf. footnote 16) is variation in the

underlying game�e.g., variation in payoffs, the strategies available, or the number of players. Just

as examining comparative statics is important to valid direct evaluation of the QRE, examination

of data from different games will be important if one is to obtain estimates through the QRE

structure that are not merely artifacts of a priori distributional assumptions.18 This is an area

we hope to explore in future work.

15Manski (1988) states a version of this result for the case of binary choice.
16We are not aware of attempts to evaluate the ARUM based on its ability to Þt the data. Part (ii), however,

does suggest that one should view with caution estimates of these models that do not exploit variation in choice
sets�variation in, e.g., which choices are available, the characteristics of different choices, or the prices of different
choices. Such variation is analogous to the variation in games necessary to test comparative statics predictions of the
QRE.
17Bajari (1999), Signorino (1999), Bajari and Hortaçsu (2001), Goeree, Holt and Palfrey (2002), and Seim (2002)

are the exceptions we are aware of. McKelvey and Palfrey (1995, p. 7) mention using the QRE for estimation, but
apparently only meant Þtting a parametric speciÞcation of the perturbation distribution to data.
18 In parametric empirical applications of the QRE, the scale of the perturbation distribution generally will not be

identiÞed (just as in discrete choice models). A single scale normalization imposed in estimation using data from
different games is analogous to the assumption of a Þxed perturbation distribution across games needed to provide a
meaningful evaluation of comparative statics predictions (cf. section 4.1).
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Appendix

Here we show that a variation on the example constructed in the proof of part (i) of Theorem 1

can deliver the same result with continuously distributed perturbations. We begin with the values

of αj constructed in the text. Now, however, let each )ij be drawn independently from a mixture of

two normal distributions, with mixing weights qj and (1− qj), means αj and qj
1−qjαj, and common

variance σ2. Letting φ denoting the standard normal density, the density of )ij is then

f (); qj , σ) = qj φ

µ
)− αj
|σ|

¶
+ (1− qj) φ

Ã
)− qj

1−qjαj
|σ|

!
.

The parameters σ and qj ∀j, will be determined below. Note that for any qj and σ > 0, )ij has

mean zero.

Given the values of Hjk
i and the distribution p−i, equation (2) deÞnes a region Rj ⊂ RJi of

realizations of the vector )i that would lead i to choose strategy j. For σ 6= 0 let

G(σ, q) =


G1(σ, q)

...

GJi−1(σ, q)

 =


p1 −
R
R1
f ()1; q1, σ) . . . f ()Ji ; qJi , σ) d)1 . . . d)Ji

...

pJi−1 −
R
RJi−1

f ()1; q1, σ) . . . f ()Ji ; qJi , σ) d)1 . . . d)Ji

 . (9)

For σ = 0, we let the normal densities collapse and deÞne

G (0, q) =



p1−q1
...

pj − qj
Q
k<j(1− qk)
...

pJi−1 − qJi−1
Q
k<Ji−1(1− qk)


. (10)

To match arbitrary probabilities (p1, . . . , pJi) in the interior of ∆ using the normal mixtures, we

will show that for small σ, we can choose q = (q1, . . . , qJi−1) to solve the system

G(σ, q) = 0Ji−1 (11)

where 0Ji−1 denotes a (Ji − 1)-vector of zeros.19 The example in the text showed that there is a

solution q0 to (11) when σ = 0. We show that for small σ > 0 there is still a solution. This follows

immediately from three lemmas.20

19Note that we use the identities pJi = 1 −Pj<Ji
pj and

R
RJi

f (#1; q1, σ) . . . f (#Ji ; qJi , σ) d#1 . . . d#Ji = 1 −P
j<Ji

R
Rj

f (#1; q1, σ) . . . f (#Ji ; qJi , σ) d#1 . . . d#Ji to obtain a (Ji − 1)× (Ji − 1) system.
20Lemmas 2 and 3 are related to standard implicit function theorems. Here, however, we are not interested in

ensuring existence of implicit functions, but only implicit solutions. Nor are are we interested in differentiability of
these solutions. Because of this we are able to prove the results under weaker assumptions; in particular, we make
no assumption about differentiability with respect to the parameter x. Proving Lemma 3, then, requires a different
approach from that taken to prove existence of a solution in standard multi-dimensional implicit function theorems.
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Lemma 1 i. G is continuous in a neighborhood of
¡
0, q0

¢
.

ii. The matrix of partial derivatives

OqG (0, q) =


∂
∂q1
G1(0, q) · · · ∂

∂qJi−1
G1(0, q)

...
. . .

...
∂
∂q1
GJi−1(0, q) · · · ∂

∂qJi−1
GJi−1(0, q)


is continuous in q .

iii.
¯̄
OqG

¡
0, q0

¢¯̄ 6= 0.
Proof. (i) Continuity follows from well known properties of normal random variables.

(ii) From (10),

∂Gj(0, q)

∂qi

¯̄̄̄
=


qj
Q
k<j,k 6=i(1− qk) i < j

−1 i = j = 1

−Qk<j(1− qk) i = j 6= 1
0 i > j.

(12)

Continuity in each q2 is immediate.

(iii) From (12), the matrix OqG
¡
0, q0

¢
is lower triangular with nonzero diagonal elements,

implying a nonzero determinant. ¤

Lemma 2 Consider any continuous function F (x, y) : X×Y → R, with X and Y open subsets

of Rm and R, respectively. Suppose that F
¡
x0, y0

¢
= 0 for some

¡
x0, y0

¢ ∈ X×Y and that
∂F(x0,y)

∂y

¯̄̄̄
y=y0

6= 0. Then there exists δ > 0 such that for all x ∈ Bδ
¡
x0
¢
there is some y (x) ∈ Y

such that F (x, y(x)) = 0.

Proof. Suppose that
∂F(x0,y)

∂y

¯̄̄̄
y=y0

> 0. Then for sufficiently small ) > 0,

F
¡
x0, y0 − )¢ < 0 < F ¡x0, y0 + )¢ .

By continuity, there exists δ > 0 such that for all x ∈ Bδ
¡
x0
¢
,

F
¡
x, y0 − )¢ < 0 < F ¡x, y0 + )¢ .

By continuity, then, there is some y (x) ∈ ¡y0 − ), y0 + )¢ satisfying F (x, y(x)) = 0. The argument
is analogous if

∂F(x0,y)
∂y

¯̄̄̄
y=y0

< 0. ¤
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Lemma 3 Consider any continuous function F (x, y) : X×Y→ RJ , with X and Y open subsets of
Rm and RJ , respectively. Suppose that F

¡
x0, y0

¢
= 0J for some

¡
x0, y0

¢ ∈ X×Y, ¯̄OyF ¡x0, y0¢¯̄ 6=
0, and that OyF

¡
x0, y

¢
is continuous in y ∈ B80

¡
y0
¢
for some )0 > 0. Then there exists δ > 0

such that for all x ∈ Bδ
¡
x0
¢
there is some y (x) ∈ Y such that F (x, y(x)) = 0.

Proof. The proof proceeds by induction. For J = 1, the result is given in Lemma 2. So suppose the

claim is true for J = k−1 and that the hypotheses above hold for J = k. Since ¯̄OyF ¡x0, y0¢¯̄ 6= 0,
there is some c ∈ {1, . . . , k} such that the minor Ok,cy F

¡
x0, y0

¢
obtained by dropping row k and

column c from OyF
¡
x0, y0

¢
is also nonsingular. Without loss of generality, let c = k. Now consider

the following (k − 1)× (k − 1) system in the variables y1, . . . , yk−1 :
F1(x, y1, . . . , yk−1, yk)

...

Fk−1(x, y1, . . . , yk−1, yk)

 =

0
...

0

 .
We know that for j = 1, . . . , k, Fj

¡
x0, y01, . . . , y

0
k−1, y

0
k

¢
= 0. Further, by the induction hypothesis

(replacing x with the pair (x, yk)) there is some δk > 0 such that for all (x, yk) ∈ Bδk
¡
x0, y0k

¢
there

exist yj (x, yk), j = 1, . . . , k − 1, which solve
Fj (x, y1 (x, yk) , . . . , yk−1 (x, yk) , yk) = 0 j = 1, . . . , k − 1. (13)

The proof will then be completed if we can show that for all x in a neighborhood Bδ
¡
x0
¢
there is

some yk such that (x, yk) ∈ Bδk
¡
x0, y0k

¢
and

Φ (x, yk) ≡ Fk (x, y1 (x, yk) , . . . , yk−1 (x, yk) , yk) = 0. (14)

Given the continuity of Fk and the fact that δ may be chosen arbitrarily small, this result will

follow from Lemma 2 if we can show that
∂Φ(x0,yk)

∂yk
is nonzero at yk = y0k. Differentiating (14) gives

∂Φ
¡
x0, yk

¢
∂yk

=
k−1X
j=1

∂

∂yj
Fk
¡
x0, y1

¡
x0, yk

¢
, . . . , yk−1

¡
x0, yk

¢
, yk
¢ ∂yj ¡x0, yk¢

∂yk
(15)

+
∂

∂yk
Fk
¡
x0, y1

¡
x0, yk

¢
, . . . , yk−1

¡
x0, yk

¢
, yk
¢

in a neighborhood of yk = y0k. Since OyF
¡
x0, y

¢
is continuous in y ∈ B80

¡
y0
¢
, a standard implicit

function theorem ensures that each yj
¡
x0, yk

¢
is differentiable with respect to yk in a neighborhood

of y0k, implying that the derivative in (15) exists. To see that it must be nonzero, note that we

may differentiate each side of (13) with respect to yk at yk = y0k to obtain

k−1X
2=1

∂

∂y2
Fj
¡
x0, y1

¡
x0, y0k

¢
, . . . , yk−1

¡
x0, y0k

¢
, y0k
¢ ∂y2 ¡x0, y0k¢

∂yk

+
∂

∂yk
Fj
¡
x0, y1

¡
x0, y0k

¢
, . . . , yk−1

¡
x0, y0k

¢
, y0k
¢
= 0 j = 1, ..., k − 1. (16)
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If
∂Φ(x0,yk)

∂yk
= 0 at yk = y0k, (15) and (16) would imply that we could express last column of the

matrix OyF
¡
x0, y0

¢
as linear combination of Þrst K − 1 columns, which is a contradiction. ¤
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