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Abstract

Applied researchers routinely construct dynamic time-series models for describing evo-

lution and making forecasts. We investigate the trade-off between the model complexity

and model performance using real financial data in order to determine what a reasonable

compromise is, by analyzing the dependence of various model performance measures on

the presence or absence of certain features in the model. The model features include

mean persistence, volatility clustering, leverage effects, time-varying risk premia, heavy

tails and skewness. The types of data we consider are individual stock prices, stock market

indices, and exchange rates. We represent the results as panel regressions of performance

measures on dummy variables representing model features, and as frequencies of events

that inclusion of a feature improves or worsens a particular performance measure. Some

of the results are expectable, but some are quite surprising.
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1 Introduction

Applied researchers routinely construct dynamic time-series models for describing evolu-

tion and making forecasts of series of interest. In doing this, a researcher is guided, on

the one hand, by a need to incorporate certain stylized features of data into the model,

and on the other hand, by how successfully the model fits the data in- and out-of-sample.

Some model classes are specifically designed to take into account such stylized facts. Ex-

amples are augmenting an ARCH equation by an asymmetric term to take into account

the leverage effect, and modeling the standardized innovations as non-normal in order to

capture actual fat-tailedness of data distributions. At the same time, a model can be

deemed successful only if it passes a battery of diagnostic and other tests, and eventually

is judged by how it fits the data, both in-sample and in forecasting exercises.

In this paper, we investigate this trade-off between the model complexity and model

performance using real financial data. To this end, we run a battery of estimation and

forecasting exercises on various types of data to answer questions like: for such and such

model performance measure, what are the critical features that should be incorporated

in the model? how quickly does the performance improve as such and such features

are incorporated in the model? what is a reasonable compromise between the model

complexity and its performance for such and such type of data?

We try to shed light on these issues by looking at the dependence of various model

performance measures on the presence or absence of certain features in the model. We

represent the results in several forms. First, we run panel regressions of these measures

on dummy variables representing model features, also including fixed individual effects

to control for heterogeneity of different series of a certain type of data. The coefficients

in such panel regression, together with their significance, indicate which model features

are more and which are less important for a particular performance measure. Second, we
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report percentages of cases where inclusion of a feature improves or worsens a particular

performance measure. Last, we describe which models are most successful for some of

performance measures.

The types of data we consider are individual stock prices, stock market indices, and

exchange rates, popular in the empirical finance literature. We experiment with 20 indi-

vidual stocks that are included in the S&P100 index, 12 stock indices from major world

stock exchanges, and 9 major foreign currencies. The data are weekly, and extend for

20–30 years totaling to approximately 800–1,600 observations, the last third of which are

used for forecasting exercises, and the other two thirds for estimation. We present the

results separately for each data type. The model features we consider allow for mean

persistence, volatility clustering, leverage effects, time-varying risk premia, heavy tails,

and skewness.

The results overall indicate that the tendencies in the model complexity–performance

trade-off are quite different across the three types of data, but are quite uniform across

different series of the same type. Some patterns can be expected, but some are surprising.

As can be expected, it is easier to pin down an appropriate model if a performance

measure is an in-sample one than if it is an out-of-sample one. For most performance

measures concerning the mean, the presence of an AR or MA terms in the model is a

main determinant of performance, even though coefficients belonging to these terms are

statistically insignificant. On the contrary, for most performance measures concerning the

variance, the presence of a GARCH equation in the model, and sometimes the presence

of a heavy-tailed conditional distribution, are main determinants.

The paper is organized as follows. Section 2 describes our technology of constructing

dynamic models. The description of the data is given in Section 3. Section 4 lists criteria

used for judgement about model performance. The results are reported and analyzed in

Section 5.
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2 Dynamic models

We consider models where each feature f from a set of F features to be described shortly

is either present or not. Some of the features may be present only if other features are,

hence there are fewer than 2F dynamic models in total. Any model has the following

structure:

yt = µt + et,

where µt is (roughly) the mean, and et is (roughly) the error term. By default, µt = µ̄, a

constant, and et = εt, a martingale difference (relative to past data) innovation. Let

εt =
√
σ2
tηt, ηt ∼ i.i.d. D (0, 1, τ) ,

where σ2
t is the conditional variance, ηt is the standardized innovation, D is the conditional

distribution, τ is the vector of parameters of this distribution other than the mean and

variance. By default, σ2
t = ω, a constant, and D (0, 1, τ) is standard normal so that there

is no τ .

The set of model features f contains, feature names appearing in parentheses:

(AR) Autoregressive component in µt (may be in effect only when there is no feature

MA). When this feature is present, µt = µ̄+ φyt−1.

(MA) Moving average component in et (may be in effect only when there is no feature

AR). When this feature is present, et = εt − θεt−1.

(GARCH) ARCH effect in εt. When this feature is present, σ2
t = ω + αε2

t−1 + βσ2
t−1.

(GJR) Asymmetry in σ2
t (may be in effect only when there is feature GARCH). When this

feature is present, σ2
t in addition contains γε2

t−1I [εt−1 < 0].

(ArchM) ARCH-in-mean term in µt (may be in effect only when there is feature GARCH).

When this feature is present, µt in addition contains δσ2
t .
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(Stud) Conditional fat-tailedness of ηt. When this feature is present, D (0, 1, τ) is Student

with τ = ν, where ν is the number of degrees of freedom.

(Skew) Conditional skewness of ηt (may be in effect only when there is feature Stud).

When this feature is present, D (0, 1, τ) is skewed Student with τ = (ν, λ)′ , where

λ measures the degree of skewness.

Thus, in total there are F = 7 features resulting in 45 dynamic models. The features

we have included are, in our view, most important and popular in building a dynamic

model for financial data that would serve general purposes of fitting the data and mak-

ing short-run forecasts. At the same time we have not included those features that

would serve more specific purposes, such as long memory in mean and/or variance, which

would be clearly important for long-run forecasting, or nonlinear mean models of a regime

switching type, which would be more relevant for capturing business cycle phenomena in

macroeconomic data. We also do not cross the line beyond which the model becomes

overly complicated and not widespread at the moment, like models with time-varying

conditional skewness or conditional kurtosis.

The choice of a particular way to represent each feature when there is a variety of

choices is made in favor of a simple and empirically popular model. For example, we

have chosen the variance form for the ARCH-in-mean term, as, for example, in Lanne

and Saikkonen (2004), and from a few variations of introducing asymmetric effects into

the news impact curve we have selected the Glosten, Jagannathan and Runkle (1993)

form. Next, among the fat-tailed distributions we have preferred Student’s t-distribution

as introduced in the GARCH context by Bollerslev (1987). Finally, from a few available

skewed distributions that imply fat tails we have selected the skewed Student distribution

(see, for example, Hansen, 1994) which is simpler in use than, for example, Exponential

Generalized Beta of the second kind as in Wang, Fawson, Barrett and McDonald (2001),
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or the z-distribution as in Lanne and Saikkonen (2004). The orders of autoregressive,

moving average and GARCH structures are set to low values thanks to the use of weekly

data.

The method of estimation of all models is the method of conditional maximum like-

lihood. For simpler models, this reduces to simpler procedures, like OLS for an autore-

gressive model without ARCH effects.

3 Data

We use three types of financial data that are typically fitted with dynamic models: stock

market indices from developed markets, individual stock prices from the New York Stock

Exchange, and exchange rates of currencies from industrialized countries versus the US

dollar. The data are weekly (Wednesdays) and cover twenty to thirty years thus amounting

to about 800–1,600 observations. Each of the three types of data is represented by about

a dozen of series that are routinely used in empirical time series studies. The raw data

are converted into the form of returns by taking log differences.

Individual stock returns are represented by 20 stocks that were included in the S&P100

index in 2001 and have been traded since 1971. The symbols of these stocks are: AA, AEP,

DD, DIS, EK, GE, GM, HON, IBM, IP, JNJ, KO, MCD, MMM, MRK, PG, S, T, UTX,

XOM, and the data are taken from Yahoo! R© Finance at http://finance.yahoo.com.

The sample period is 01.01.1971–12.31.2000, with data on 10.21.1987, 10.28.1987, 11.04.1987

removed to avoid the influence of the 1987 stock market crash. This totals to 1548 obser-

vations in each series.

Exchange rates returns are represented by 9 currencies: BEF, CAD, CHF, DEM, FRF,

GBP, ITL, JPY, SEK. The data are taken from the University of British Columbia’s

Pacific c© Exchange Rate Service at http://fx.sauder.ubc.ca. The sample period is
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01.02.1974–12.27.2000, totaling to 1390 observations in each series. The beginning of the

sample period is chosen so as not to overlap with periods of fixed exchange rates.

The data for stock market index returns are represented by 12 indices, not all of

which come from different markets. These samples are more heterogeneous across series;

see the description in Table 1. The data are taken from Economy.com FreeLunch R©

at http://www.economy.com/freelunch except that FTSE and DJI are taken from

Yahoo! R© Finance, and CRSP is taken from the University of Chicago Center for Re-

search in Security Prices (CRSP R©). For all stock return indices, data on 10.21.1987,

10.28.1987, 11.04.1987 were also removed.

4 Performance criteria

We judge the model performance by two sorts of criteria: in-sample and out-of-sample.

The sample of yt for t = 1, · · · , T is divided into the estimation and prediction parts, the

former running from 1 to R, the latter running from R + 1 to R + P (≡ T ).

The in-sample criteria we employ are:

• Quality of fit criteria: the Ljung–Box statistics of order 10 applied to residuals ε̂t

(LB) and squared standardized residuals η̂2
t (LB2). Recall that the critical values for

χ2(10) variable are: 15.99, 18.31 and 23.21 for 10%, 5% and 1% significance levels,

respectively (for the sake of uniformity across models, we do not make a degrees of

freedom adjustment for parameter estimation).

• Remaining non-linearity: the BDS test statistic (Brock, Dechert, Scheinkman and

LeBaron, 1996) applied to standardized residuals η̂t with the additional parameter

5 (BDS). The details of constructing the BDS test are contained, for example, in

Hsieh (1989). Recall that the BDS statistic is asymptotically normal under the null
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of IID series, and it is most natural to use BDS test as one-sided. Hence, the critical

values are: 1.28, 1.64 and 2.33 for 10%, 5% and 1% significance levels, respectively.

• Model selection criteria: we report results of using the Bayesian (BIC) information

criterion (Schwarz, 1978).

• Stability criteria: Nyblom statistics for stability of individual coefficients and for

entire model (Nyblom, 1987; Hansen, 1994). Let lt (θ) be the loglikelihood for one

observation, θ̂ be the ML estimate, K – number of parameters in the model. Then

ModNyb =
1

R

R∑
t=1

S ′tV̂
−1St,

IndNyb = max
k=1,...,K

(
1

R

R∑
t=1

S2
kt

V̂kk

)
,

where

V̂ =
1

R

R∑
t=1

∂lt(θ̂)

∂θ

∂lt(θ̂)
′

∂θ
, St =

t∑
i=1

∂li(θ̂)

∂θ
.

Unfortunately, the critical values for these tests depend on the parameter dimen-

sion which makes formal comparison across models of different degree of parsimony

difficult.

When making forecasts, we use parameter values estimated only once from the data

from 1 to R. Let ŷt|t−1 denote a forecast of yt made at t − 1. The out-of-sample criteria

we employ are:

• Mean forecasting criteria: the mean squared and mean absolute prediction errors

MSPE =
1

P

R+P∑
t=R+1

(
yt − ŷt|t−1

)2
,

MAPE =
1

P

R+P∑
t=R+1

∣∣yt − ŷt|t−1

∣∣ .

7



• Sign forecasting criteria: the proportion of times the sign is correctly predicted

SIGN =
1

P

R+P∑
t=R+1

1
[
ytŷt|t−1 > 0

]
.

• Volatility forecasting criteria: the mean squared prediction error for volatility (we

use the abbreviation VSPE so that it is easily distinguished from the MSPE). Let

ŷt|t−1 denote a forecast of yt made at t − 1, and σ̂2
t|t−1 be a model-based volatility

estimate. Then

V SPE =
1

P

R+P∑
t=R+1

(
(yt − ŷt|t−1)2 − σ̂2

t|t−1

)2
.

5 Results

For each series, we run maximum likelihood estimation of all 45 models over the estimation

period, construct (fixed scheme) forecasts over the forecasting period, and compute values

of performance measures.

To sift out the tendencies in a huge amount of output information, we aggregate the

results in the following way which is reminiscent of the response surface methodology

where linear regressions are used to make extrapolations. For every single performance

measure and type of data, we regress its values on dummy variables representing the seven

model features, also including individual effects pertaining to different series. That is, we

run linear panel data regressions with fixed “series effects”, but we do that separately for

indexes, individual stocks and exchange rates because of a much greater heterogeneity

across data types than across series of the same type. The output of interest is composed

of regression coefficients and their significance showing a sign and impact of each model

feature. A reader should keep in mind, however, that such regressions are not strictly

in line with the panel data analysis because the statistics are evaluated over the same

samples or different samples of the same sample period, so the actual regression error
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structure is not as ideal as is assumed in error component models. In addition, we docu-

ment percentages of cases where inclusion of a feature improves or worsens a particular

performance measure; we call these percentages “progress direction”.

The results of panel data regressions together with progress direction numbers are

presented in Table 2, where we have boldfaced the coefficients whose t-ratios are greater

than 1.6 in absolute value, and the percentages that are either do not exceed 15% or do

not fall short of 85%. We regard the boldfaced numbers as deserving attention most, and

corresponding features as most critical ones. Graphical illustrations for selected series are

provides in Figures 1–6. The models in figures are arranged by worsening performance

from top to bottom. Below, we comment on general tendencies revealed by the numerical

results, for each of performance measure separately.

LB The principal factor that plays a role for the LB characteristic is the presence of

mean filtering, either of autoregressive or moving average type, while other features cannot

seriously influence LB values. Interestingly, the AR or MA parameters (φ or θ), if present,

may not be significant even at 10%.

LB2 Most radically the LB2 characteristic is influenced by the presence of volatility fil-

tering by GARCH, and is absolutely insensitive to the presence of other features. The

presence of pure GARCH alone is able to reduce LB2 values from significant at 1% to

insignificant at 10%. The GARCH parameters (α and β) are highly significant (an ex-

ception sometimes occurs in the presence of GJR when γ pulls significance away from

β).

BDS The BDS statistic is able to point at no neglected nonlinearity after volatility

filtering by GARCH, and it is rather insensitive to the presence of other features. However,

even in the absence of a GARCH part BDS may not help detect nonlinearity. The presence
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of mean filtering and allowance for conditional thick tails may sometimes improves the

BDS statistic.

BIC According to BIC, more parsimonious models containing one to two, rarely three

features, are best, provided they contain a GARCH equation, while models not containing

GARCH specifications are evident outsiders. Another important factor that significantly

improves fit is the Stud feature that allows for conditionally heavy tails. For individual

stocks, most often the best model is GARCH with conditional Student distribution (7

times out of 20), next comes conditionally normal GARCH with leverage (3 times). The

latter model is best most often for stock indices (3 times out of 12). For exchange rates,

almost always the best model is GARCH with conditional Student distribution (8 times

out of 9).

Nyblom An unambiguously positive impact on the stability criteria makes the presence

of the GARCH equation in the model. Another important factors are the heavy-tailedness

and asymmetry in the conditional distribution, as well as the asymmetry in the variance

equation, but these features tend to worsen the stability indicators.

MSPE and MAPE Confirming common wisdom, there is a general tendency that more

parsimonious models tend to predict the mean more successfully. Further patterns are not

very clear and are different for different types of data. On the whole, the MSPE and MAPE

criteria are in consensus most of the time, but the two do not tend to agree on which models

are best and which are worst. For individual stocks, the presence of ArchM is harmful

for predicting the mean, while the presence of AR or MA filters has a favorable impact

in most cases, even though corresponding coefficients are rarely significant. For stock

indices, the presence of a thick-tailed conditional distribution worsens mean prediction,

but allowing for skewness acts in the opposite direction, and the net effect on mean
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prediction is favorable. For exchange rates, the decisive and favorable factor happens to

be heavy-tailed conditional distribution, and, perhaps surprisingly, mean filtering tends

to worsen mean predictability.

SIGN For individual stocks and stock indices, it is easy to exceed the coin toss sign

prediction of 50% using a model that is not among best; with best models one can

achieve 59% for some stocks (XOM) and 62% for indices (CRSP and NYA). In contrast,

it is much harder to predict signs of exchange rate movements; even with best models one

cannot exceed 50% appreciably. There is no clear-cut pattern of which features impact

SIGN most, but mean filtering seems to have greatest effect, negative in case of stocks or

indices, and positive in case of exchange rates.

VSPE In volatility predictions, the presence of GARCH is important, if not decisive.

Strangely, however, that the GARCH factor has a favorable impact in case of individual

stocks or stock indices, but an adverse impact in case of exchange rates.

Overall, we observe quite appreciable difference in performance of the same dynamic

models when they are fit to exchange rates compared to when they are fit to stock returns

and indexes. A possible explanation is that the behavior of exchange rates may not be

temporally stable during long periods.
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Series Description Sample period Sample size

Stock index returns

DJI Dow Jones 30 industrials index 01.04.1971–12.26.2000 1562

SPX Standard and Poor’s 500 index 01.06.1971–12.27.2000 1562

NASD Nasdaq composite index 02.10.1971–12.27.2000 1557

NYA NYSE composite index 01.06.1971–12.27.2000 1562

CRSP CRSP value-weighted index 01.03.1968–12.31.1997 1525

FTSE UK FTSE-100 index 04.02.1984–11.22.2004 1076

CAC France CAC-40 index 12.30.1987–11.17.2004 882

DAX Germany DAX index 11.28.1990–11.17.2004 730

NIKKEI Japan Nikkei-225 index 01.04.1984–11.17.2004 1087

TSE Canada TSE-300 composite index 08.15.1984–11.17.2004 1055

HSI Hong Kong Hang Seng index 12.31.1986–11.17.2004 931

STI Singapore Straits Times index 01.06.1988–11.17.2004 881

Table 1. Description of data on stock indices.

Note: returns on 10.21.1987, 10.28.1987, 11.04.1987 were removed.



LB LB2 BDS BIC ModNyb IndNyb MSPE MAPE SIGN VSPE

×100 ×102 ×10-1 ×10-2 ×10-1 ×10-1 ×101 ×10-2 ×10-3 ×105

Stud -0.042 0.008 -0.132 -1.613 2.591 0.738 0.053 0.773 0.730 -1.048
Skew -0.009 0.001 -0.010 0.448 2.453 0.594 -0.003 -0.465 -0.349 0.122
AR -3.501 0.004 -0.128 0.373 1.343 0.159 -0.371 -2.455 -1.814 -0.520
MA -3.528 0.003 -0.128 0.367 1.415 0.179 -0.416 -2.583 -2.421 -0.552

ArchM -0.234 0.003 0.000 0.537 1.038 -0.203 1.256 8.248 -1.474 1.934
GARCH 0.143 -1.087 -8.135 -3.057 -3.715 -7.715 -0.147 -1.663 -0.253 -4.190

GJR 0.000 0.007 -0.025 0.163 2.625 0.570 0.278 2.790 0.032 0.117

Stud 55% 55% 65% 95% 5% 30% 50% 50% 55% 65%
Skew 55% 35% 65% 5% 0% 35% 65% 70% 35% 50%
AR 80% 50% 75% 15% 0% 35% 80% 60% 40% 65%
MA 85% 50% 75% 15% 0% 35% 85% 60% 45% 60%

ArchM 55% 35% 50% 0% 20% 65% 35% 25% 30% 40%
GARCH 20% 100% 100% 90% 70% 95% 60% 65% 50% 100%

GJR 65% 50% 60% 30% 5% 35% 35% 30% 60% 50%

×100 ×102 ×100 ×10-2 ×10-1 ×10-1 ×100 ×10-2 ×10-3 ×105

Stud 0.141 -0.010 -0.039 -1.880 4.729 2.189 2.314 0.133 -0.014 0.125
Skew -0.039 0.000 0.010 -0.068 2.090 -0.024 -3.329 -2.184 0.759 -0.487
AR -4.939 -0.003 -0.019 0.473 1.309 -0.075 0.186 2.267 -5.080 -0.885
MA -4.434 -0.002 -0.018 0.501 1.321 -0.071 0.348 2.074 -6.071 -0.806

ArchM 0.024 0.002 0.002 0.780 1.519 0.060 3.000 2.946 -2.111 -0.351
GARCH -0.060 -1.265 -1.240 -6.104 -0.694 -4.685 1.125 -0.584 2.044 -3.496

GJR -0.131 -0.004 -0.042 0.105 2.430 -0.153 0.196 1.749 -2.314 -0.966

Stud 25% 50% 67% 75% 8% 17% 25% 67% 50% 25%
Skew 83% 58% 42% 50% 8% 67% 92% 92% 50% 75%
AR 75% 75% 75% 8% 8% 83% 58% 42% 50% 67%
MA 75% 75% 75% 8% 8% 83% 58% 58% 25% 58%

ArchM 67% 25% 58% 0% 17% 33% 42% 33% 42% 67%
GARCH 58% 100% 100% 100% 33% 92% 50% 50% 50% 75%

GJR 33% 58% 92% 50% 0% 42% 58% 50% 42% 92%

×100 ×101 ×100 ×10-2 ×100 ×100 ×100 ×10-2 ×10-2 ×104

Stud -0.467 -0.499 -0.311 -7.334 1.703 1.109 -1.491 -3.988 0.296 2.416
Skew 0.045 0.005 0.004 0.456 0.335 0.043 0.268 1.641 -0.379 0.209
AR -4.167 0.070 -0.033 0.251 0.278 0.047 1.326 1.325 1.281 0.071
MA -3.907 0.063 -0.028 0.317 0.287 0.037 1.062 1.236 1.110 0.008

ArchM 0.069 -0.022 0.005 0.648 0.163 -0.008 1.009 1.896 0.048 0.155
GARCH 0.101 -6.823 -1.934 -7.235 -0.958 -1.977 0.588 1.582 -0.505 3.945

GJR -0.097 -0.072 0.003 0.546 0.328 0.035 -0.149 -0.678 0.144 0.793

Stud 67% 44% 89% 100% 0% 0% 100% 100% 78% 22%
Skew 11% 11% 67% 22% 0% 44% 22% 11% 22% 33%
AR 89% 11% 100% 11% 11% 22% 11% 33% 78% 33%
MA 89% 11% 100% 11% 11% 22% 11% 44% 78% 33%

ArchM 44% 78% 11% 0% 0% 78% 33% 33% 67% 33%
GARCH 22% 100% 100% 100% 67% 100% 0% 0% 44% 33%

GJR 67% 78% 33% 0% 0% 33% 67% 67% 78% 11%

 Panel regression: exchange rates

Progress direction: exchange rates

Table 2. Results of panel regressions and progress direction numbers.

 Panel regression: stock indices

Progress direction: stock indices

 Panel regression: individual stocks

Progress direction: individual stocks

Out-of-sampleIn-sampleFeatures


