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Abstract

The quadratic loss function is prevailing in econometrics due to its convenience and tractabil-

ity. Its use, however, often contradicts the reality where economic agents put different weights

to overprediction and underprediction. The existing econometric literature on asymmetric

loss does not divert radically from the analysis under quadratic loss, hence the progress in

this part of econometric theory is not impressive. In this paper we take the linear-exponential

(LinEx) loss function and demonstrate that by turning from conventional econometric con-

cepts specific to the quadratic loss function, to analogs dictated by the LinEx, one may go

much further in constructing optimal predictions than by sticking to conventional concepts.

A parametric regression turns out to be conveniently represented in a multiplicative, rather

than additive, form, which is a consequence of the exponential PML interpretation of the

optimal LinEx loss. We introduce the notion of a LinEx-volatility, a counterpart to the

conditional variance under quadratic loss. Among other things, we also consider nonpara-

metric kernel estimation under the LinEx loss, and derive some asymptotic results. The

methodology is illustrated using the series of US interest rates, stock market returns and

GNP growth.
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1 Introduction

The quadratic loss function is prevailing in econometrics by the virtue of its convenience

and tractability. Its use, however, often contradicts the reality where economic agents put

different weights to overprediction and underprediction (e.g., Stockman 1987, Tversky and

Khaneman 1991, West, Edison and Cho 1993). There exists limited literature on economet-

ric analysis under asymmetric loss. Newey and Powell (1987) carefully analyze estimation

and testing under asymmetric least squares. Christoffersen and Diebold (1997) compare

optimal, conventional, and intermediate predictors under asymmetric loss, and propose an

approximation to the optimal predictor. Christoffersen and Diebold (1996) suggest using a

piecewise-linear approximation to the loss function to arrive at another approximate solution

of the prediction problem. Weiss (1996) suggests yet other alternative approximations to

optimal forecasts. Patton and Timmermann (2003) construct a general theory of optimal

forecasts under asymmetric loss, and derive some interesting properties of them. Elliott and

Timmermann (2003) characterize the weights of optimal combinations of forecasts in the

context of an asymmetric loss. Batchelor and Peel (1998) show that conventional tests for

rational expectations yield biased results when agents are guided by asymmetric loss, and

Elliott, Komunjer and Timmermann (2003a, 2003b) estimate a parametrization of an asym-

metric loss function from the data basing on the rationality condition. The given references

nearly exhaust the research on econometrics under (differentiable) asymmetric loss.

A tractable example of an asymmetric loss is the linear exponential (LinEx) function. It

has the form

L(u) = exp (αu)− αu− 1, (1)

where the known parameter α indexes the degree of asymmetry. When α > 0, the loss is

nearly exponential for positive errors, and nearly linear for negative errors; thus the loss is

smaller for overprediction than for underprediction. The LinEx loss function was initially

introduced by Varian (1974), and estimation under LinEx loss was studied to some extent by

Zellner (1986). Subsequently, due to its tractability, the LinEx loss became a workhorse in the

literature on asymmetric loss. Christoffersen and Diebold (1997) used LinEx as an example

of asymmetric loss for comparison of optimal and conventional predictors. Batchelor and Peel

(1998) developed a valid test for unbiasedness of forecasts under LinEx loss. Hwang, Knight

and Satchell (2001) derived optimal forecasts for some conventional volatility models under

LinEx loss, and Knight, Satchell and Wang (2002) modified the value-at-risk methodology to

the case of LinEx loss. Patton and Timmermann (2003) used as an example the LinEx loss

coupled with the Markov Switching DGP to derive some interesting properties of optimal
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forecasts under asymmetric loss.

Under LinEx loss, the optimal predictor of y given x is (e.g., Zellner (1986))

g(x) = α−1 logE [exp (αy) |x] . (2)

Starting from this point, one often observes the following scenario in the literature on predic-

tion under asymmetric loss. Some familiar model and DGP are taken (e.g., conditionally nor-

mal with conditional variance following a certain volatility process as in Weiss (1996), Hwang,

Knight and Satchell (2001), or a simple Markov Switching DGP as in Patton and Timmer-

mann (2003)), the optimal predictor under LinEx loss is developed, and the discrepancies

between the optimal and conditional mean predictors and between the respective loss values

are analyzed. The following trivial example may help illustrate this strategy. Let the truth

be yt ∼ IIDN(0, σ2), so the LS-true mean model is yt = εt, εt ∼ WN. Then the LS-best fore-

cast is ŷt+1|t = 0, and the MSE loss is E [ε2
t ] = σ2, the LINEX loss is E [exp (αεt)− αεt − 1] =

exp (α2σ2/2) − 1. The LinEx-true mean model is exp (αyt) = exp (α2σ2/2) + et, et ∼ WN.

The LinEx-best forecast is ŷt+1|t = α−1 logE [exp (αyt+1)] = ασ2/2, the forecast error in

terms of yt is ut+1 = εt+1 − ασ2/2, the MSE loss is E
[
u2
t+1

]
= σ2 + (ασ2/2)

2
, and the

LINEX loss is E [exp (αut+1)− αut+1 − 1] = α2σ2/2. This value is strictly smaller than the

LINEX loss under LS forecasting.

The outlined strategy, however,

(a) leads at best to a rather involved analytic solution for the optimal predictor (e.g.,

Hwang, Knight and Satchell 2001), or an approximation to it, with cumbersome com-

putations including simulation methods (e.g., Christoffersen and Diebold 1996, 1997);

(b) leads to results that are specific to a particular DGP, which should be parameterized

up to the form of conditional density (e.g., Patton and Timmermann 2003, Hwang,

Knight and Satchell 2001);

(c) in an autoregressive context, does not allow one to handle multiperiod predictions as

“easily” as one-period ones (e.g., Christoffersen and Diebold 1996, Hwang, Knight and

Satchell 2001).

These limitations discourage use by applied researchers of econometrics based on asymp-

totic loss.

It is recognized in the literature that consideration of alternative to quadratic loss func-

tions requires reappraisal of some habitual notions. Granger (1969) and Christoffersen and
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Diebold (1997) demonstrate unconditional and conditional biasedness of LinEx-optimal fore-

casts; Weiss (1996) stresses that “... for many non-quadratic forecast CFs [cost functions],

the mean of the forecast errors is expected to be non-zero... A researcher who cannot say

that this is a reasonable outcome should be probably not be using such a CF.” (p. 540).

Batchelor and Peel (1998) show that conventional rationality tests yield misleading results

when facing the LinEx loss. However, such reappraisal have not gone much farther. As the

aforecited literature attests, conventional notions of conditional mean and variance of origi-

nal series still prevail in the analysis, together with the habitual attachment to unbiasedness,

conditional normality and other concepts specific to the symmetric quadratic loss.

In this paper, we propose more drastic changes to the analysis by changing the principles of

modeling. We introduce a notion of a LinEx-regression, which is free of the aforementioned

shortcomings, and rests on explicit modeling of the main ingredient in (2), namely, the

conditional mean of the transformed series, E [exp (αy) |x]. In brief, we consider convenient

modeling the conditional mean of exp (αy) directly, which obviously differs from habitual

modeling of the conditional mean and (possibly) variance of y. A parametric regression

turns out to be conveniently represented in a multiplicative, rather than additive, form,

a consequence of the exponential PML interpretation of the optimal LinEx loss. We also

consider nonparametric kernel estimation of optimal predictors, and derive some asymptotic

results. In the autoregressive time series context, we introduce the notion of a LinEx-

volatility, a counterpart to the conditional variance under quadratic loss, and show how one-

and multi-step prediction can be performed.

Throughout, we illustrate the methodology with the experiments with autoregressive

models using the following data.

1. T-bill returns: the differenced 3-Month Treasury Bill, secondary market rate. Fre-

quency: weekly. Date range: January 1954 to December 2003, totaling to 2605 returns.

The first 1000 are used in modeling, the rest – for forecasting exercises. Source: Board

of Governors of the Federal Reserve System. The parameter α equals 3.

2. S&P500 returns: the differenced logarithm of the S&P500 index. Frequency: weekly.

Date range: January 1950 to May 2003, totaling to 2783 returns. The first 1000 are

used in modeling, the rest – for forecasting exercises. Source: finance.yahoo.com.

The parameter α equals 30.

3. GNP growth: the differenced logarithm of seasonally adjusted annual US GNP in $bln.

Frequency: quarterly. Date Range: Q1 1959 to Q3 2003. Source: U.S. Department of

Commerce, Bureau of Economic Analysis. The parameter α equals 3.
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Figure 1 presents scatterplots of each of these series, say yt, and of their LinEx-transforma-

tions, exp (αyt) , against the lagged value yt−1. The plots clearly illustrate the idea that the

LinEx-optimal predictor puts higher weights on positive errors than on negative, because

the LinEx-transformation inflates the former so that they have greater influence upon the

predictor when transformed errors are averaged.

The rest of the paper is organized as follows. Section 2 describes nonparametric estimation

under LinEx loss using kernel methods. We then turn in Section 3 to parametric modeling,

and consider a convenient family of models implicit in the LinEx loss. In Section 4 we

introduce the notion of LinEx-volatility, a counterpart to the conditional variance in the case

of quadratic loss. Section 5 contains discussions of one- and multi-period-ahead forecasting.

Section 6 concludes.

2 Nonparametric LinEx-regression

In the absence of a parametric model, the optimal predictor may be evaluated nonparamet-

rically. Suppose we want to modify the Nadaraya–Watson kernel estimator to the case of

the LinEx loss. The locally constant predictor ĝ(x) at x solves the following problem of

minimization of the average kernel-weighted LinEx loss:

ĝ(x) = arg min
β0

n−1

n∑
t=1

L (yt − β0)K

(
∆ (xt, x)

b

)
= arg min

β0

n−1

n∑
t=1

(
exp (αyt)

exp (αβ0)
+ αβ0

)
K

(
∆ (xt, x)

b

)
,

where K (·) is a kernel function, b is a bandwidth, ∆ (·, ·) is some distance measure. The

closed-form solution is

ĝ(x) = α−1 log

n∑
t=1

exp (αyt)K

(
∆ (xt, x)

b

)
n∑
t=1

K

(
∆ (xt, x)

b

) ,

i.e., the LinEx-transformation of the Nadaraya–Watson estimator of

h(x) ≡ E [exp (αy) |x] .

This makes sense, as we are looking for a locally constant estimator. There is choice to be

made, however, what to take as a distance ∆ (xt, x) between xt and x even in the scalar

regressor case – the difference between them, or the difference between the transformations,

exp (αxt) and exp (αx) . It appears that the former way is more reasonable as the initial
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observations tend to be more evenly spaced than the transformed ones (see Figure 1). A

generalization to the nearest neighbors regression is straightforward, once the distance mea-

sure is decided upon.

Suppose now that we want to arrive at the locally linear estimator. The locally linear

predictor ĝ(x) at x solves the following problem of minimization of the average kernel-

weighted LinEx loss:(
ĝ(x)

ĝ′(x)

)
= arg min

β0,β1

n−1

n∑
t=1

L (yt − β0 − β1 (xt − x))K

(
∆ (xt, x)

b

)
= arg min

β0,β1

n−1

n∑
t=1

(
exp (αyt)

exp (α (β0 + β1 (xt − x)))
+ α (β0 + β1 (xt − x))

)
K

(
∆ (xt, x)

b

)
,

which does not have a closed-form solution. Hence, the optimal predictor should be found

using numerical optimization techniques. Note that the objective function is strictly convex

with respect to the parameters, so the solution is clearly unique and can easily be obtained

numerically.

Asymptotic results on such estimators can be obtained from the statistical literature on

the so-called local quasi-likelihood estimation, see, for example, Staniswalis (1989) and Fan,

Heckman and Wand (1995). In particular, we have

Proposition 1 Let the kernel K be a symmetric density with support [−1, 1], the density

f(x) be continuously differentiable, the function g(x) be three times continuously differen-

tiable, the conditional variance var (exp (αyt) |x) be twice continuously differentiable. Let x

be isolated from boundaries of the support, and var (exp (αyt) |x) be nonzero. Then under

IID sampling,

√
nb

(
var (exp (αyt) |x)

α2h(x)2f(x)
RK

)−1/2(
ĝ(x)− g(x)− b2 B(x)

αh(x)
σ2
K

)
d→ N(0, 1),

where RK ≡
∫
K(u)2du, σ2

K ≡
∫
u2K(u)du, and B(x) ≡ h′′(x)/2+h′(x)f ′(x)/f(x) when the

Nadaraya–Watson estimator is used, and B(x) ≡ h′′(x)/2 when the locally linear estimator

is used.

As one can see, such asymptotic results are very similar to those obtained under usual LS

loss. The difference reveals itself in two instances: first, the “dependent variable” is exp (αyt)

rather than yt due to the LinEx-transformation, and second, additional divisors αh(x) and

(αh(x))2 are present in the bias and variance due to the “anti-LinEx-transformation”. In

fact, the above result for the Nadaraya–Watson estimator follows straightforwardly from
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asymptotics under LS loss, the closed-form formula for ĝ(x), and the delta method. Analo-

gous results can be established for optimal bandwidths. While under LS loss the objective

function yielding optimal bandwidths is taken to be the (integrated) mean squared error, it

is more reasonable under LinEx loss that the objective function be the (integrated) LINEX

value. It is interesting that both criteria result in the same expression for the optimal

bandwidth.

Corollary 1 The optimal bandwidth rate in the sense of minimizing the asymptotic inte-

grated LINEX loss or the asymptotic integrated MSE is

bopt =

(
RK

4σ4
K

∫
var (exp (αyt) |x)h(x)−2f(x)−1w(x)dx∫

B(x)2h(x)−2w(x)dx

)1/5

n−1/5,

where w(x) is chosen weight function.

Heuristically, the reason of this invariance is the fact that

E [L(N(µ, ω))] = exp

(
αµ +

1

2
α2ω

)
− αµ− 1

≈ 1 +

(
αµ +

1

2
α2ω

)
+

1

2

(
αµ +

1

2
α2ω

)2

− αµ− 1

≈ 1

2
α2
(
µ2 + ω

)
,

as other terms are asymptotically negligible when µ2 and ω tend to zero in a balanced way.

Asymptotic results are likely to also hold in time series contexts when data are stationary

and mixing, as they do under LS loss (Robinson 1983).

Figure 2 depicts curves of Nadaraya–Watson LS- and LinEx-autoregression of first order,

for T-bill returns (α = 3) and S&P500 returns (α = 30), with n = 1000 observations, and

bandwidths 0.06 and 0.012. One can clearly see that the fitted LinEx-regression values lie

uniformly above those for the LS-regression, which is consistent with the results of Christof-

fersen and Diebold (1997). The non-constant spread between the two curves supports the

presence of conditional heteroskedasticity (for more on this, see section 4). Figure 3 depicts

curves of local linear LS- and LinEx-autoregression of first order, for the same two series

using the same bandwidths. The co (constrained optimization) Gauss package was used for

minimization; for starting values we used OLS estimates.

Table 1 contains loss values under both loss functions. As expected, all four 2×2 matrices

of loss values are “diagonal”, i.e. minimal loss values in columns are attained on the main

diagonal where the loss function matches the regression type.
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3 Parametric estimation and inference

The object of intermediate interest is h(x) ≡ E [exp (αy) |x] . One may specify the LinEx-

regression

E [exp (αy) |x] = h(x, β)

for some known up to β function h (·, ·) , and explore what the LinEx loss suggests as an

estimator of β (recall that the LS loss implies the OLS estimate). Observe that the minimal

LinEx loss is

L (y − g(x)) = exp (α (y − g(x)))− α (y − g(x))− 1

= exp
(
α
(
y − α−1 log h(x, β)

))
− α

(
y − α−1 log h(x, β)

)
− 1

= A(y) +
exp (αy)

h(x, β)
+ log h(x, β),

where A(y) does not depend on β. The sample mean loss is

n−1

n∑
t=1

L (yt − g(xt)) = n−1

n∑
t=1

A(yt) + n−1

n∑
t=1

(
exp (αyt)

h(xt, β)
+ log h(xt, β)

)
,

Now note that the sample mean loss is, up to a term independent of β, the minus conditional

loglikelihood of a conditionally exponential random variable exp (αy) with parameter h(x, β)

(which translates to −yt distributed as extreme value with parameters 0 and α−1h(xt, β)−1

conditionally on x). This implies that rather than using the usual decomposition of the

dependent variable into a sum of regression function and regression error, the model is more

convenient to handle in the multiplicative form

exp (αy) = h(x, β) · η, (3)

where η is the multiplicative LinEx-regression error, a random variable having the mean 1

conditionally on x. The natural distribution implied by the LinEx loss for η is standard

exponential, similar to how the natural distribution for the additive LS-regression error

implied by the LS loss is centered normal. The use of the standard exponential distribution

implicit in the LinEx loss makes the LinEx estimate of β, β̂LE, consistent and asymptotically

normal even if the true distribution of η is different. This is because the standard exponential

distribution belongs to the linear exponential family and the LinEx estimation is in fact the

exponential Pseudo-Maximum Likelihood (PML) estimation, which was considered in the

context of random sampling by Gourieroux, Monfort and Trognon (1984). Hence, we have

8



Proposition 2 Let β ∈ int (B), where B ⊆ R
k, and h(x, β) be Borel measurable for all

β∈ B and twice continuously differentiable in β for all β∈ B for all x in its support. Then

under IID sampling,

β̂LE
p→ β

and
√
n
(
β̂LE − β

)
d→ N (0, VLE) ,

where

VLE = E

[
hβ(x, β)hβ(x, β)′

h(x, β)2

]−1

E

[
(η − 1)2 hβ(x, β)hβ(x, β)′

h(x, β)2

]
E

[
hβ(x, β)hβ(x, β)′

h(x, β)2

]−1

.

When η is conditionally on x homoskedastic, the asymptotic variance simplifies to

VLE = E

[
hβ(x, β)hβ(x, β)′

h(x, β)2

]−1

var (η) .

Evidently, the estimates β̂LE should be obtained by numerical optimization even when

a linear or exp-linear model is postulated for h(x, β). The asymptotic variance may be

consistently estimated in a straightforward way:

V̂LE = n

(
n∑
t=1

hβ(xt, β̂LE)hβ(xt, β̂LE)′

h(xt, β̂LE)2

)−1 n∑
t=1

(
exp (αyt)

h(xt, β̂LE)
− 1

)2
hβ(xt, β̂LE)hβ(xt, β̂LE)′

h(xt, β̂LE)2

×

(
n∑
t=1

hβ(xt, β̂LE)hβ(xt, β̂LE)′

h(xt, β̂LE)2

)−1

.

In the time series autoregressive context, the autoregressive version of (3) has the form

exp (αyt) = htηt, (4)

where ht = ht(β) is a function of past realizations of yt and the finite-dimensional parameter

β. This equation is reminiscent of an ACD (Autoregressive Conditional Durations) model of

Engle and Russell (1998), with the variable yt being α−1 times the logarithm of intertrade

durations1. The literature on econometrics of ultra-high frequency finance can be useful

to parametrize the evolution of ht and conditional distribution of ηt. An up-to-date survey

of parameterizations of the ACD model is contained in Hautsch (2002). The classic is

the ACD(q, p) (Engle and Russell 1998) specification; modifications and extensions include

1As a by-product, we obtain the following interpretation of the estimation of ACD models: the estimation

is carried out to minimize the LinEx loss with α = 1 for log durations.
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AACD(q, p) (Additive ACD, Hautsch 2002), and two LACD(q, p) (Bauwens and Giot 2000)

specifications that after change of variables result in the following equations:

ht = ω +

p∑
j=1

φj exp (αyt−j) +

q∑
j=1

ψjht−j, (5)

ht = ω +

p∑
j=1

χjηt−j +

q∑
j=1

ψjht−j (6)

log ht = ω + α

p∑
j=1

φjyt−j +

q∑
j=1

ψj log ht−j, (7)

log ht = ω +

p∑
j=1

χjηt−j +

q∑
j=1

ψj log ht−j. (8)

The LACD specification seems more logical to use given our exponential transformation of

the original variable. In addition, the ACD and AACD models require unpleasant parameter

constraints to guarantee positiveness of ht, while the LACD models do not. Empirically,

ceteris paribus, the LACD equation (8) seems to better fit typical duration data (Bauwens

and Giot 2000). An analog of the previous proposition when yt is dependent follows from

Engle (2000, Theorem 1).

Table 3 presents the PML estimation results based on the exponential distribution im-

plicit in the LinEx loss function. For all three series, the lagged values of ht or log ht are

insignificant so that the order q equals 0. The order of the other part equals 1 for the T-bill

and S&P500 returns (with the first lag often being non-significant or marginally significant

in the case of S&P500), and 2 for the GNP growth. The additive ACD model fits better the

T-bill returns, the usual ACD model – the S&P500 returns, and the LACD1 model – the

GNP growth.

The PML estimates are not asymptotically efficient if the true distribution of ηt is not

exponential (recall that this exponentiality is equivalent to −yt being distributed as extreme

value with parameters 0 and α−1h(xt, β)−1 conditionally on x, which may not hold in the

data, just like conditional normality may not hold under LS loss). In this case it is possible to

increase efficiency of estimation of β by using ML estimation basing on the true distribution.

It is natural to consider distributions that encompass the standard exponential, such as

Weibull (Engle and Russell 1998), Generalized Gamma (Tsay 2002) and Burr (Grammig

and Maurer 2000) distributions. Here we try the Weibull distribution whose density is

normalized to have the expectation of unity:

f (ε; ς) =
ς

χς
ες−1 exp

(
−
(
ε

χ

)ς)
, χ = Γ

(
1 + ς−1

)−1
, ς > 0
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For the three series, Table 4 contain the results. The parameter ς varies from 2.5 to 3.1

showing significant departures from the exponential distribution, to which corresponds the

value ς = 1.

4 LinEx-volatility

In this section we introduce a notion of volatility specific for the LinEx loss. Note that

the conventional conditional volatility measure, vart−1(yt), is poorly suited in the context of

asymmetric loss as it neglects differences between positive and negative deviations from the

optimal predictor, and the conditional mean is a non-optimal predictor in the LinEx context.

A switch to vart−1(exp (αyt)) is also poorly motivated. A proper volatility notion should not

only be tied to the degree of mismatch between the variable of interest and its predictor,

but also this measure, together with the predictor, should be dictated by the adopted loss

function. In the LS case, the expected loss function MSE = E
[
(yt − Et−1yt)

2] dictates the

following LS-volatility measure, a conditional contribution of t’s observation to the MSE,

σ2
t = Et−1

[
(yt − Et−1yt)

2] = vart−1(yt).

Similarly, in the LinEx case, the expected loss function under LinEx-optimal prediction,

LINEX = E
[
exp

(
α
(
yt − α−1 logEt−1 [exp (αyt)]

))
− α

(
yt − α−1 logEt−1 [exp (αyt)]

)
− 1
]

= E [exp (αyt) /Et−1 [exp (αyt)]]− αE
[(
yt − α−1 logEt−1 [exp (αyt)]

)]
− 1

= −αE
[(
yt − α−1 logEt−1 [exp (αyt)]

)]
dictates the LinEx-volatility measure, a conditional contribution of t’s observation to the

LINEX,

δ2
t = −αEt−1

[(
yt − α−1 logEt−1 [exp (αyt)]

)]
,

which is interpreted as a measure of discrepancy between the variable of interest, yt, and

its optimal predictor in the sense of LinEx loss. In particular, in the simple case when yt

follows a conditionally heteroskedastic normal LS-autoregression,

yt = Et−1 [yt] + εt, εt|It−1 ∼ N(0, σ2
t ),

we have

δ2
t =

α2

2
σ2
t ,

so that the LinEx-volatility δ2
t is proportional to the conventional LS-volatility σ2

t . In a more

interesting cases, this correspondence breaks down.
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An even more appealing representation of the LinEx-volatility is

δ2
t = −Et−1

[
log

exp (αyt)

Et−1 [exp (αyt)]

]
,

which clearly has a positive sign by the conditional Jensen inequality (except that δ2
t = 0

when yt is perfectly predictable at t− 1). Using the multiplicative representation (3) of the

LinEx-regression, we have

δ2
t = −Et−1 [log ηt] ,

where ηt is the multiplicative error. When ηt is distributed independently from the past of

yt, the LinEx-volatility measure is a constant.

Figure 4 depicts curves of nonparametric regressions of (yt − ĝ(yt))
2 and − log η̂t, where

ĝ(yt) and η̂t are obtained nonparametrically (see Section 2), on yt−1, which give an idea

of the LS- and LinEx-volatility dependence, for T-bills and S&P500 returns, with n =

1000 observations and bandwidths 0.06 and 0.012 (The LS-volatility measure is inflated by

8 and 200 times, respectively, to make the units comparable). One can clearly see that

there is significant LS-heteroskedasticity in both series, and the LinEx-volatility also greatly

depends on the history. There is much less comovement between the two volatility measures,

however, unlike there was one between the two nonparametric regressions. Note that the

spread between the nonparametric Nadaraya–Watson LS- and LinEx-regressions is roughly

proportional to the LS-volatility pretty closely, which is again in line with the result of

Christoffersen and Diebold (1997), assuming little departures from conditional normality.

Let us turn to parametric inference. In the previous section the parameter ς of the Weibull

distribution was assumed constant, so that the series ηt was IID. This results in the LinEx-

volatility function being constant. To explore the opposite possibility, we parameterize the

parameter ς as some function of the past (cf. ARCH-type parameterizations of conditional

variance under quadratic loss). In particular, we try the following LinEx-analogs of GARCH

processes:

ς−1
t =

(
ς0 +

p∑
j=1

ς1,jηt−p

)−1

+

q∑
j=1

ς2,jς
−1
t−j,

ς−1
t =

(
ς0 +

p∑
j=1

ς1,j log ηt−j

)−1

+

q∑
j=1

ς2,jς
−1
t−j,

We name such models ARCD(q, p) and ARCD-l(q, p) (autoregressive conditional density),

following Hansen (1994) who analogously parameterized additional density parameters (such

as degrees of freedom of the Student’s t distribution) in the GARCH-t framework. The reason

for postulating the dynamics of ς−1
t rather than of ς t is the following. From the properties
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of the Weibull distribution it follows that − log ηt is distributed, conditionally on the past of

yt, as extreme value with parameters log Γ
(
1 + ς−1

t

)
and ς−1

t having the conditional mean of

log Γ
(
1 + ς−1

t

)
+ γς−1

t ,

where γ ≈ .5772 is Euler’s constant. The conditional mean is nearly linear in ς−1
t , hence it

is natural to parametrize its evolution in a form close to linear. Of course, other parameter-

izations are also possible.

The results for the S&P500 return series are contained in Table 5. The GNP growth series

does not exhibit time-varying LinEx-volatility, which is also understandable from the view-

point of the quadratic loss analysis; the T-bill return exhibits rather weak LinEx-volatility

clustering. Figure 5 depicts the evolution of δ2
t for the S&P500 series basing on the Weibull–

ACD(0, 0)–ARCD(1, 1) model, which attains the largest loglikelihood value. The clustering

in this variable is apparent.

5 Prediction under LinEx-modeling

In this section we show that the outlined methodology with linear LinEx regressions allows

one to easily make one- and multiperiod forecasts (almost) just like in the case of quadratic

loss. Recall that the h-step-ahead LinEx-optimal predictor of y is

ŷt+h|t = α−1 logEt
[
ht+hηt+h

]
.

However, Et
[
ht+hηt+h

]
= Et

[
Et+h−1

[
ht+hηt+h

]]
= Et

[
ht+hEt+h−1

[
ηt+h

]]
= Et [ht+h] , as

Et+h−1

[
ηt+h

]
= 1. Now, if the dynamic model for ht+h linear, for example in (5)–(6), the

LinEx-optimal point forecast may be expressed as a function of consistently estimable (with

no distributional assumptions placed on ηt) parameters. For example, in the ACD(0,1) case,

the point forecast is ŷt+h|t = α−1 log
(
ω(1− φh1)/(1− φ1) + φh1 exp (αyt)

)
; in the AACD(0,1)

case, ŷt+h|t = α−1 log
(
ω(1− χh1)/(1− χ1) + χh1 exp (αyt) /ht

)
.

Note that multiperiod point predictions in the linear model are handled as “easily” as

one-period ones, and no knowledge of the form of conditional density is needed; only that

the conditional mean is correctly specified suffices (or, in other words, that the conditional

mean of the multiplicative regression errors is unity). Recall a similar situation in linear

autoregressive models under quadratic loss where one also needs to know that the conditional

mean is correctly specified (or, in other words, that the conditional mean of the additive

regression errors is zero), and no knowledge of the form of conditional density is needed.

Table 6 presents results of one-step-ahead prediction of the T-bill returns and S&P500

returns using the rolling scheme and two estimation methods: parametric, based on the

13



AR(1) LS-autoregression and ACD(0, 1) LinEx-autoregression, and nonparametric based on

the Nadaraya–Watson first order autoregression. The rolling window width is R = 1, 000;

the number of out-of-sample predictions are P = 1605 in the T-bills case and P = 1783

in the S&P500 case. for both series and for both methods, the LinEx-optimal prediction

outperforms the LS-optimal prediction in terms of the LINEX loss, and vice versa. Note that

sometimes nonparametric methods can outperform simple parametric ones if the smoothing

parameter is tuned carefully. It is worth mentioning that other parametric ACD specifica-

tions and nonparametric prediction based on the local linear regression fare worse.

The interval predictions can be computed if the from of conditional distribution if known.

For example, if the natural exponential conditional distribution if assumed for exp (αyt)

(recall again that this is equivalent to−yt being distributed as extreme value with parameters

0 and α−1h(xt, β)−1 conditionally on x), then the symmetric one-step-ahead interval forecast

for yt+1 with significance level q is[
α−1 log ht + α−1 log log

2

2− q
, α−1 log ht + α−1 log log

2

q

]
.

Many-step-ahead interval forecasts, one-step-ahead interval forecasts in case of unknown

conditional distribution, as well as point forecasts with nonlinear mean dynamics may be

computed using Monte–Carlo methods and bootstrapping in standard ways (see, e.g., Franses

and van Dijk, 2000, pp. 117–125).

6 Conclusion

In this paper we took the linear-exponential loss function and demonstrated that by turning

from conventional econometric concepts specific to the quadratic loss function, to analogs

dictated by this loss function, one may go much further in constructing optimal predictions

than the literature does by sticking to conventional concepts. The outlined theory touches

upon only basics of the LinEx-counterpart of traditional LS-based econometrics, and when

developed further, may become a convenient tool when a problem at hand requires consid-

eration of asymmetric loss.

The tractability of the LinEx example hinges on the exponential PML interpretation of the

LinEx loss, and many conclusions are actually derived from already existing results. Future

research will show if such rethinking may be helpful with other examples of asymmetric loss

functions and whether a general theory can be constructed.
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Series T-bills S&P500

MSE LINEX MSE LINEX

Nadaraya–Watson estimator

LS-regression 0.012713 1.0730 0.00023788 1.1524

LinEx-regression 0.013106 1.0709 0.00024977 1.1456

Local linear estimator

LS-regression 0.012550 1.0722 0.00023508 1.1512

LinEx-regression 0.013034 1.0700 0.00025139 1.1448

Table 1. Loss values from nonparametric kernel estimation.
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ACD AACD LACD1 LACD2

T-bill returns

ω
0.7834

(0.0522)

0.7726

(0.0467)

0.0700

(0.0120)

−0.1971

(0.0500)

φ1

0.2756

(0.0501)

0.2485

(0.0479)

χ1

0.3081

(0.0472)

0.2699

(0.0494)

LINEX −1.0728 −1.0725 −1.0734 −1.0727

S&P500 return

ω
1.0941

(0.0541)

1.0968

(0.0516)

0.1543

(0.0171)

0.0954

(0.0422)

φ1

0.0635

(0.0391)

0.0267

(0.0502)

χ1

0.0715

(0.0430)

0.0597

(0.0340)

LINEX −1.1551 −1.1551 −1.1555 −1.1551

GNP growth

ω
0.9215

(0.1636)

0.9166

(0.1949)

0.3023

(0.0549)

0.1138

(0.1075)

φ1

0.3009

(0.0960)

0.3093

(0.0939)

φ2

0.1776

(0.0736)

0.1844

(0.0842)

χ1

0.4997

(0.1742)

0.2635

(0.0869)

χ2

0.3411

(0.0989)

0.1818

(0.0504)

LINEX −1.5593 −1.5602 −1.5593 −1.5603

Table 3. Results of fitting the conditional exponential distribution.
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Weibull AACD Weibull ACD Weibull LACD1

T-bill returns S&P500 returns GNP growth

ω
0.7811

(0.0464)

1.1692

(0.0193)

0.3067

(0.0762)

φ1

0.3007

(0.1390)

φ2

0.1642

(0.1102)

χ1

0.2859

(0.0455)

ς
2.555

(0.2000)

2.0708

(0.0870)

3.0701

(0.3214)

LL −0.5052 −0.7975 −0.8239

Table 4. Results of fitting the conditional Weibull distribution.

Weibull ACD(0,0)–ARCD Weibull ACD(0,0)—ARCD-l

ω
1.1692

(0.0193)

1.1792

(0.0198)

1.1505

(0.0155)

1.1692

(0.0193)

1.1759

(0.0180)

1.1543

(0.0163)

ς0

2.0708

(0.0870)

1.7199

(0.1650)

−1.2618

(0.9570)

2.0708

(0.0870)

2.2733

(0.0833)

7.820

(2.409)

ς1

0.4191

(0.1744)

22.23

(8.60)

0.5890

(0.1177)

3.278

(1.013)

ς2

0.8576

(0.0494)

0.6788

(0.0964)

LL −0.7975 −0.7805 −0.6969 −0.7975 −0.7584 −0.7203

Table 5. Results of fitting the conditional Weibull distribution with time-varying

parameter to the S&P500 returns.
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Series

LS loss LinEx loss

Model MSE LINEX MSE LINEX

T-bill returns

AR(1)/ACD(0, 1) 0.05523 0.4802 0.07884 0.3490

NW, b = 0.3 0.04658 0.8910 0.05836 0.5687

NW, b = 0.5 0.05326 0.5920 0.06971 0.3237

S&P500 returns

AR(1)/ACD(0, 1) 0.0004911 0.2609 0.0005315 0.2318

NW, b = 0.3 0.0004913 0.2598 0.0005320 0.2320

NW, b = 0.5 0.0004912 0.2598 0.0005317 0.2318

Table 6. Forecasting quality measures in the prediction exercise.
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Figure 1. Scatter diagrams of raw and transformed series.
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Figure 2. Nadaraya—Watson LS- and LinEx-regressions.

Figure 3. Local linear LS- and LinEx-regressions.
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Figure 4. Nadaraya—Watson estimates of LS- and LinEx-volatility functions
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Figure 5. LinEx-volatility evolution for the S&P500 return series, from the Weibull model.
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