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1. APPROXIMATELY OPTIMAL INSTRU-
MENT FOR MULTIPERIOD MOMENT CON-
DITIONS

1.1 Introduction

Many time series models appear in the form of conditional moment restrictions. They are usu-
ally estimated and tested by choosing instruments from the conditioning information set and
applying GMM (Hansen 1982). The set of possible instruments is typically infinite, which raises
a question of their optimal choice for the purpose of attaining higher efficiency of estimation.
When the moment function is a martingale difference with respect to the conditioning infor-
mation so that the moment restrictions are single-period and thus are serially uncorrelated,
the optimal instrument is an explicit function of certain conditional expectations, estimation of
which constitutes a feasible procedure. However, a variety of intertemporal macroeconomic and
financial models give rise to multiperiod conditional moment restrictions, the ones that are char-
acterized by the presence of serial correlation. The examples are numerous in the asset pricing
(e.g., Hansen and Singleton 1982, Ferson and Constantinides 1991, Hansen and Singleton 1996)
and forecasting (Hansen and Hodrick 1980, Mishkin 1990, Rich, Raymond and Butler 1992) liter-
atures. Other potential applications include problems with complex decision rules (Eichenbaum,
Hansen and Singleton 1988, West and Wilcox 1996) and with temporal aggregation (Grossman,
Melino and Shiller 1987, Hall 1988). The GMM procedure in these circumstances does not
change dramatically, but the optimality conditions become significantly more complicated. It
turns out, however, that in the special case of conditional homoskedasticity it is still possible to
derive an explicit expression for the optimal instrument, which is done in Hansen (1985).

In a general case when both serial correlation and conditional heteroskedasticity are in ef-
fect, Hansen (1985) and Hansen, Heaton and Ogaki (1988) presented a characterization of the
efficiency bound for GMM estimators that correspond to a given system of conditional moment
restrictions. Anatolyev (in press) gives a more algorithmic description of the optimal instrument.
He derives the form of the process followed by the optimal instrument which turns out to be a
recursion that generalizes Hansen’s formula (Hansen 1985, Lemma 5.7). The process followed
by the optimal instrument is parameterized by three auxiliary infinite-dimensional parameters.
Estimation of these would constitute the feasible procedure, if there were not the following ma-
jor difficulty: the laws of motion that govern the dynamics of these parameters are not explicit,
but instead solve a system of highly nonlinear functional equations. In rare circumstances, it
is possible to solve this system analytically, as in Heaton and Ogaki’s (1991) example, but it is
not typical.

In order to proceed, we take an approach where the three nonlinear equations are approxi-
mated, and the solutions of the approximated versions are used to construct the instrument. By
approximation we mean Taylor expansion around known counterparts that correspond to the
two special cases of no conditional heteroskedasticity and of no serial correlation. This proce-
dure results in different versions of the approximately optimal instrument according to different
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orders of Taylor expansion for the three equations that determine the auxiliary parameters. For
a simple design with quadratic heteroskedasticity we compute asymptotic variances of approxi-
mately optimal instrumental variables estimators, and determine preferable orders in the Taylor
expansion. On the other hand, we evaluate the losses due to the approximation error in the
Heaton–Ogaki example where it is possible to explicitly calculate them. These losses turn out
to be tiny showing that the proposed instrument is able to nearly attain the efficiency bound.

In constructing the instruments, we act as though the needed parametric forms of condi-
tional expectations are known. Since this knowledge is unlikely to be implied by the model,1

we conduct simulations on the feasible version of the proposed instrumental variables estimator
and its popular competitors, both when the parametric forms of auxiliary conditional expecta-
tions are conjectured correctly, and when they are misspecified. It turns out that under both
circumstances the feasible approximately optimal instrument has advantageous finite sample
properties.

The paper is organized as follows. Section 2 elaborates the case of a single two-period
conditional moment restriction (i.e. where the errors are first-order serially correlated). We
review the form of the optimal instrument, show how the approximations are taken, and calibrate
asymptotic properties in a pilot example. Section 3 presents a generalization to the multiple
equation case including careful computations of asymptotic gains and losses in the Heaton–Ogaki
example. Section 4 reports the results of simulation experiments. In section 5 we outline what
changes when the serial correlation is of higher order than the first, and conclude. The Appendix
contains tedious derivations and unwieldy details. We use Euclidean norm |A| =

√
% (A′A),

where % (·) is the spectral radius, for vectors and matrices. The n×n identity matrix is denoted
by In, the n× 1 vector of zeros – by 0n.

1.2 Theory: single equation case

1.2.1 Optimal instrument

We consider the model

f (β,xt) = et, (1.2.1)

where et is the error, xt is a vector of observable variables, β is a k × 1 vector of parameters
to be estimated, and f (β,xt) is a known up to β function which is possibly nonlinear in β. In
addition, we are given vector zt of observable basic instruments (as opposed to just instruments
that may be generated from the basic ones). Some of xt’s, along with their lags or functions,
may be among zt. We assume that (xt, zt) is strictly stationary and ergodic, and each involved
variable posseses finite fourth moment. Let us denote by =t the information embedded in zt
and all its history, i.e. =t ≡ σ(zt, zt−1, . . .), and use the shortcut notation Et[·] ≡ E[·|=t]. The
conditional moment restriction

Et [et] = 0 (1.2.2)

1If one does have precise knowledge on the forms of auxiliary conditional expectations not implied by the
model, this knowledge should be exploited on the level of the model’s formulation to expand the set of moment
restrictions. The trade-off between efficiency and robustness to auxiliary parametrizations is an intrinsic feature
of the optimal instrumental variables approach.
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implies that all measurable functions of the basic instrument and their lags are valid instruments.
Define the k × 1 vector

dt ≡ Et
[
∂f(β,xt)

∂β

]
, (1.2.3)

and let
ωt ≡ Et

[
e2
t

]
, γt ≡ Et [etet−1] (1.2.4)

be the conditional variance and conditional first-order autocovariance of the errors. We assume
the first-order conditional serial correlation structure of the error et, that is, Et[etet−j ] = 0 for
j > 1.

Under suitable conditions, the optimal instrumental variables estimator takes the form (Ana-
tolyev in press)

ζt = ζt−1φt + ρtδt, (1.2.5)

where the stationary ergodic =t-measurable processes, scalar φt, scalar almost surely positive
ρt, and k × 1 vector δt, satisfy the following stochastic system:

γt + φt
(
ωt + Et

[
φt+1γt+1

])
= 0, (1.2.6)

Et
[
1− ρt(ωt − ρt+1γ

2
t+1)

]
= 0, (1.2.7)

δt = dt + Et
[
φt+1δt+1

]
, (1.2.8)

E [log |φt|] < 0. (1.2.9)

The key relation is (1.2.5). It is a generalization of Hansen’s (1985) formula for the process
followed by the optimal instrument in a homoskedastic environment which we will see in the
next subsection. Here, in contrast to Hansen (1985), φt and ρt are time varying, and δt is a
generalized projection of the discounted sum of future dt-variables onto the space of instruments.
The conditions (1.2.6), (1.2.7) and (1.2.8) determine φt, ρt and δt, respectively, while (1.2.9)
rules out unstable solutions of the nonlinear equation (1.2.6). The nature of the derivative
parameters φt, δt and ρt suggests calling φt the discount process, δt – the forcing process, and
ρt – the weighting multiplier.

1.2.2 Approximately optimal instrument

Consider the following instrument which would be optimal if there were no conditional het-
eroskedasticity (Hansen 1985):

ζHt = ζHt−1θ +
1
σ2
Et

[ ∞∑
i=0

θidt+i

]
, (1.2.10)

where σ2 is a variance of the Wold innovation of et, and θ is a negative of its implied moving
average coefficient, i.e. et = wt+1 − θwt, σ2 = E[w2

t ]. In the heteroskedastic environment the
instrument ζHt is no longer optimal since it ignores conditional heteroskedasticity.2 Note that
the construction of ζHt may be viewed as approximation of φt, δt, ρt correspondingly by

φH = θ, δHt = Et

[ ∞∑
i=0

θidt+i

]
, ρH =

1
σ2
.

2An instrument of type (1.2.10) was used in empirical work, for example, by West and Wilcox (1996) in
homoskedastic environment and by Hansen and Singleton (1996) in both homo- and heteroskedastic environments.
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On the other hand, when the error is conditionally serially uncorrelated, the optimal instru-
ment is that of Chamberlain (1987):

ζCt =
dt
ωt
. (1.2.11)

In the conditionally serially correlated environment instrument ζCt is no longer optimal since it
ignores serial correlation. Note that construction of ζCt may be viewed as approximation of φt,
δt, ρt correspondingly by

φC = 0, δCt = dt, ρCt =
1
ωt
.

We want to find an approximate but explicit solution to (1.2.6)–(1.2.9) treating the instru-
ments (1.2.10) and (1.2.11) as benchmarks. On the one hand, the dynamic structure of the
optimal instrument (1.2.5), i.e. nonzeroness of φt and complicatedness of δt, may be attributed
to the presence of serial correlation. On the other hand, nonconstant weighting of δt by ρt is
due to the presence of conditional heteroskedasticity. Therefore, on the one hand, acknowledg-
ing the presence of conditional heteroskedasticity, we find approximate deviations of φt and δt
from φH and δHt driven by deviations of the parameters ωt and γt from their homoskedastic
counterparts ωH ≡ E[e2

t ] and γH ≡ E[etet−1]. On the other hand, acknowledging the presence
of serial correlation, we find approximate deviations of ρt from ρCt driven by deviations of the
parameter γt from its no serial correlation counterpart γC ≡ 0.

Recall that the discount process φt is determined from (1.2.6), which we rewrite as

Et
[
F
(
φt, φt+1, ωt, γt, γt+1

)]
= 0, (1.2.12)

where F (φt, φt+1, ωt, γt, γt+1) ≡ γt+φt
(
ωt + φt+1γt+1

)
. We linearize stochastic equation (1.2.12)

with respect to all arguments of F around the ”homoskedasticity point”H ≡
(
φH , φH , ωH , γH , γH

)
.

For any variable ut, define ∆ut ≡ ut − uH . Linearization yields the following linear equation for
φt:

Et


∂F

∂φt

∣∣∣∣
H

∆φt +
∂F

∂φt+1

∣∣∣∣
H

∆φt+1 +
∂F

∂ωt

∣∣∣∣
H

∆ωt +
∂F

∂γt

∣∣∣∣
H

∆γt

+
∂F

∂γt+1

∣∣∣∣
H

∆γt+1 +RFt+1

 = 0, (1.2.13)

where RFt+1 contains higher-order terms. Collecting linear terms together in equation (1.2.13)
and getting rid of higher-order ones, we end up with a linear stochastic difference equation with
respect to the first-order approximation φ

(1)
t for φt, with a unique stationary solution

φ
(1)
t = θ +

1
σ2

(
γt −

∞∑
i=0

θ2iEt
[
θωt+i + 2γt+i

])
. (1.2.14)

Note that by construction E[φ(1)
t ] = θ, i.e. φ(1)

t fluctuates around φH . We can go further and
consider the quadratic approximation to get a more refined solution for φt. Let us expand the
φt-equation in the Taylor series up to quadratic terms:

Et



∂F

∂φt

∣∣∣∣
H

∆φt +
∂F

∂φt+1

∣∣∣∣
H

∆φt+1 +
∂F

∂ωt

∣∣∣∣
H

∆ωt +
∂F

∂γt

∣∣∣∣
H

∆γt

+
∂F

∂γt+1

∣∣∣∣
H

∆γt+1

∂2F

∂φt∂φt+1

∣∣∣∣
H

∆φt∆φt+1 +
∂2F

∂φt∂ωt

∣∣∣∣
H

∆φt∆ωt

+
∂2F

∂φt∂γt+1

∣∣∣∣
H

∆φt∆γt+1 +
∂2F

∂φt+1∂γt+1

∣∣∣∣
H

∆φt+1∆γt+1 +RFt+1

 = 0, (1.2.15)
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where RFt+1 contain higher-order terms. Collecting the second-order terms together yields a
stochastic difference equation with respect to the second-order approximation φ

(2)
t for φt, with

a unique stationary solution

φ
(2)
t = φ

(1)
t +

1
θ

(
1
σ2

(
φ

(1)
t − θ

) (
γt + θσ2

)
+
∞∑
i=0

θ2iEt

[(
φ

(1)
t+i − θ

)2
])

. (1.2.16)

This kind of expansion may be continued further, if desired.
Now we consider the forcing process δt determined by (1.2.8). We approximate F (δt, δt+1, φt+1)

≡ −δt + dt + φt+1δt+1 around H =
(
δHt , δ

H
t+1, φ

H
)

to end up with a linear stochastic differ-
ence equation with respect to the first-order approximation δ(1)

t for δt, with a unique stationary
solution

δ
(1)
t = δHt +

∞∑
i=1

θi−1Et

[(
φ

(1)
t+i − θ

)
δHt+i

]
. (1.2.17)

Similarly, we expand the δt-equation up to quadratic terms to get

δ
(2)
t = δ

(1)
t +

∞∑
i=1

θi−1Et

[(
φ

(2)
t+i − φ

(1)
t+1

)
δHt+i + φ

(1)
t+i

(
δ

(1)
t+i − δ

H
t+i

)]
. (1.2.18)

This kind of expansion may be continued further, if desired.
Now we consider the weighting multiplier ρt determined by (1.2.7). We approximate F (ρt, ρt+1,

γt+1) ≡ 1− ρt
(
ωt − ρt+1γ

2
t+1

)
around C =

(
ρCt , ρ

C
t+1, 0

)
to find that

ρ
(1)
t =

1
ωt
, (1.2.19)

i.e. first-order approximation ρ(1)
t for ρt coincides with ρCt . The second-order approximation for

ρt is

ρ
(2)
t =

1
ωt

(
1 +

1
ωt
Et

[
γ2
t+1

ωt+1

])
. (1.2.20)

This kind of expansion may be continued further, if desired.
The approximately optimal instrument ζ(jkl)

t uses jth-order approximation for φt, kth-order
for δt, and lth-order for ρt, where by 0th order we mean φH , δHt and ρCt , respectively. The
approximately optimal instrument follows

ζ
(jkl)
t = ζ

(jkl)
t−1 φ

(j)
t + ρ

(l)
t δ

(k)
t . (1.2.21)

Since we will use proxies for φt, δt and ρt instead of the true processes to construct the
instrument, we have to ensure proper behavior of ζ(jkl)

t . This means two things. First, we require
stationarity: there must exist a unique stationary solution to (1.2.21) with approximated φt, δt
and ρt. Second, we need to ensure finiteness of fourth moments of the constructed instrument.
The former aim is easily attained: the conditions for existence of a unique stationary solution
to AR(1) structures like (1.2.21) are quite weak and verifiable (Brandt 1986). The latter aim is
much more challenging, due to time dependence of the ”AR coefficient” φ(j)

t , the absolute value
of which is not necessarily uniformly bounded by 1. Therefore, we deliberately simplify the task
at the expense of possible efficiency losses. The following general Lemma will be of great help
now and in the following section.
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Lemma 1 Suppose that k × s matrix process Ψt satisfies the recurrence relation

Ψt = Ψt−1At +Bt, (1.2.22)

where At is s× s and Bt is k × s matrix processes such that: (a) At and Bt are stationary and
ergodic; (b) esssup |At| < 1; (c) E[|Bt|4] <∞. Then there exists stationary ergodic solution Ψt

of (1.2.22) such that E[|Ψt|4] <∞. This solution can be represented as

Ψt =
∞∑
i=0

Bt−i

i∏
j=0

At−j (1.2.23)

with the right-hand side converging absolutely almost surely.

To force |φ(j)
t | to be bounded from above by 1, we use the following trimming scheme. Fix a

generic small positive number εφ, like 10−2, say. Define the trimming operator ”−” by

φ− = min {1− εφ,max {−1 + εφ, φ}} .

That is, ”−” trims large |φ| by setting φ > 1 − εφ to 1 − εφ, φ < −1 + εφ to −1 + εφ. Then
instead of (1.2.21) we can use the following recursion:

ζ
(jkl)
t = ζ

(jkl)
t−1 (φ(j)

t )− + ρ
(l)
t δ

(k)
t . (1.2.24)

starting from, say, ζ(jkl)
0 = 0. Then esssup(φ(j)

t )− < 1 and E[|ρ(l)
t δ

(k)
t |4] ≤ E[|δ(k)

t |4] esssup |ρ(l)
t |

<∞ if δ(k)
t has finite fourth moments and ρ(l)

t is bounded below, so the prerequisites of Lemma
1 are satisfied. Of course, the efficiency of the instrument ζ(jkl)

t depends on the trimming
parameter εφ. It is wise to set it to a small number to distort φ(j)

t the least.

1.2.3 Asymptotic Comparisons

We will use the following data generating mechanism for the demonstration of the technique
and calibration of asymptotic gains.

yt = βzt + et, et = wt+1 − θwt, =t = σ (zt, zt−1, . . .) ;

wt = νt

√
1− λ+ λ (1− ϕ2) z2

t , νt ∼ IID N (0, 1);

zt = ϕzt−1 + ηt, ηt|=t ∼ N (0, 1).

Here θ ∈ (−1, 1), ϕ ∈ (0, 1), and λ ∈ [0, 1). The basic instrument is zt. The object of estimation
is β. The parameters are (all constants κ·· may be found in the Appendix):

ωt = κω1 + κω2z
2
t ,

γt = κγ1 + κγ2z
2
t ,

dt = zt.

The zeroth-order approximation to the parameters is

φ
(0)
t = θ,

δ
(0)
t = κδ1zt,

ρ
(0)
t =

1
κω1 + κω2z2

t

.
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The first-order approximation to the parameters is

φ
(1)
t = κφ1 + κφ2z

2
t ,

δ
(1)
t = κδ2zt + κδ3z

3
t ,

ρ
(1)
t =

1
κω1 + κω2z2

t

.

The second-order approximation to the parameters is

φ
(2)
t = κφ3 + κφ4z

2
t + κφ5z

4
t ,

δ
(2)
t = κδ3zt + κδ4z

3
t + κδ5z

5
t ,

ρ
(2)
t =

κρ1 + κρ2z
2
t + κρ3 (zt)(

κω1 + κω2z2
t

)2 .

One can see that both φ(1)
t and φ(2)

t are polynomials in the basic instrument zt with unbounded
support. This points at the importance of using the trimming device ”−”.

The additional instruments that we use in comparisons are: the basic instrument zt implied
by the OLS estimator (column ”OLS” in the table below) and the West–Wong–Anatolyev in-
strument z∗t (West, Wong and Anatolyev 2002) (column ”GMM”, see the Appendix for details
of computations). The latter instrument is optimal in the class of linear combinations of the
present and past basic instruments, and thus attains the efficiency bound in the class of GMM
estimators that use as instruments lags of the basic instrument. The next column belongs to
the approximately optimal instrument ζ(101)

t , the one that uses approximations φ(1)
t , δ

(0)
t and

ρ
(1)
t . This version turns out to be a reasonable compromise between an instrument’s complexity

and efficiency gains in this pilot example. The next three columns belong to approximately
optimal instruments where one of the parameters is higher-order approximated compared to
ζ

(101)
t , that is, either φ(2)

t is used in place of φ(1)
t , or δ(1)

t in place of δ(0)
t , or ρ(2)

t in place of ρ(1)
t .

For the first two estimators the asymptotic variances are computed using closed-form formulae,
for the approximately optimal IV estimators – by simulations, with sample sizes of at least 108

observations.

θ OLS GMM ζ
(101)
t ζ

(201)
t ζ

(111)
t ζ

(102)
t

−0.9 3.503 3.047 2.318 – 2.309 2.307

−0.5 2.063 1.922 1.632 1.795 1.635 1.632

−0.1 1.103 1.097 1.029 1.032 1.029 1.029

0.1 0.803 0.797 0.769 0.772 0.769 0.769

0.5 0.563 0.422 0.392 0.540 0.393 0.392

0.9 0.803 0.347 0.271 – 0.271 0.270

The table presents limited but typical evidence on relative asymptotic performance of the con-
sidered estimators and corresponds to the case of moderate heteroskedasticity (λ = 0.5) and
moderate persistence in the basic instrument (ϕ = 0.5). The degree of serial correlation θ is set
to be ±0.1, ±0.5, ±0.9. In judging the applicability potential of various approximately optimal
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instruments, we are guided by asymptotic efficiency gains, on the one hand, and by complexity of
their forms, on the other hand. The latter factor is very important since when a more complex
approximations tends to yield slight efficiency gains, these gains are not likely to be realized
when a feasible estimator is developed.

A quick look at the table reveals significant asymptotic efficiency gains from the use of the
approximately optimal instrument ζ(101)

t relative to asymptotic efficiency provided by the class
of GMM estimators, especially when the serial correlation is strong. Often switching from the
linearly optimal instrument to the nonlinear approximately optimal instrument provides more
efficiency gains than switching from the basic instrument to the instrument optimal in the
entire linear class of instruments. The numbers reveal restrictedness of the space of instruments
that are linear in lags of the basic instrument and a promise of the taken approach. In many
unreported experiments the same pattern emerges, and in no case we obtained efficiency losses
for the instrument ζ(101)

t (which cannot be excluded in principle).
As far as higher-order approximations are concerned, the use of φ(2)

t in place of φ(1)
t tends to

decrease efficiency. Taking into account the difficulty of its derivation, it seems better to forget
about its exploitation. The use of δ(1)

t in place of δ(0)
t is able to provide further slight efficiency

gains (as well as slight efficiency losses), but its form and its derivation are far too complex.
The use of ρ(2)

t in place of ρ(1)
t has similar effects, and although it never shows efficiency losses,

the potential gains seem too small to justify its complexity and computational costs, although
one may think of its exploitation in problems with strong serial correlation.

1.3 Theory: multiple equations case

1.3.1 Optimal instrument

In the multiple equation case, the conditional moment restriction is

Et [et] = 0, (1.3.25)

and et is s× 1, where s > 1. Define k × s matrix

Dt ≡ Et
[
∂f(β,xt)

∂β

]
. (1.3.26)

and s× s matrices
Ωt ≡ Et[ete′t], Γt ≡ Et[et−1e′t], (1.3.27)

the conditional variance and conditional first-order autocovariance of the error vector. We again
assume away higher-order conditional serial correlation in the error et, i.e. let Et[ete′t−j ]
= O for j > 1.

Under suitable conditions, the optimal instrumental variables estimator takes the form (Ana-
tolyev in press)

Ξt = Ξt−1Φt + ∆tPt, (1.3.28)

where the stationary ergodic =t-measurable processes, s× s matrix Φt, s× s symmetric almost
surely positive definite matrix Pt, and k × s matrix ∆t, satisfy the following system:

Γt + Φt(Ωt + Et[Φt+1Γ′t+1]) = 0, (1.3.29)
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Et[Is − Pt(Ωt − Γt+1Pt+1Γ′t+1]) = 0, (1.3.30)

∆t = Dt + Et[∆t+1Φ′t+1], (1.3.31)

λ(Φ) ≡ lim
T→∞

1
T

log |ΦTΦT−1 · · ·Φ2Φ1| < 0. (1.3.32)

In the single equation case of the previous section, negativity of the top Lyapounov exponent
λ(Φ) is equivalent to negativity of E [log |Φt|] . In the multiple equation case, the condition
E [log |Φt|] < 0 is too strong, because the inequality in |ΦT · · ·Φ1| ≤ |ΦT | · · · |Φ1| may not be
tight. For instance, the norm of the companion matrix Φ of a stationary ARMA process is
bigger than unity, even though lim

T→∞

∣∣ΦT
∣∣ = 0. The following Lemma may be found useful.

Lemma 2 (Bougerol and Picard 1992) Let At be a stationary ergodic matrix process with finite
E [max (0, log |At|)] such that almost surely

lim
T→∞

|ATAT−1 · · ·A2A1| = 0.

Then λ(A) < 0.

Thus, when Φt has a triangular structure, it is sufficient to verify that E[log |λmax(Φt)|] < 0,
where λmax is maximal diagonal element (which is the same as maximal eigenvalue). Alterna-
tively, one may impose existence of matrix process St such that E[log |StΦtS

−1
t |] < 0. For more

on these issues, see Pötscher and Prucha (1997, p.70 and footnote 25).

1.3.2 Approximately optimal instrument

The parameter values under homoskedasticity are given by ΓH = −ΣΘ′, ΩH = Σ + ΘΣΘ′,
where Θ and Σ are determined from the Wold decomposition of et: et = wt+1 − Θwt and
Σ ≡ E[wtw′t]. The zeroth-order approximation Φ(0)

t = ΦH is the one that satisfies the matrix
quadratic equation (

ΦH
)2

ΘΣ− ΦH
(
Σ + ΘΣΘ′

)
+ ΣΘ′ = 0. (1.3.33)

Note that the unstable solution is trivially Θ−1, but the stable one is not Θ. Let representation
et = wt+1 − Θwt be invertible, i.e. all s eigenvalues πi, i = 1, . . . , s, of Θ lie strictly inside
the unit circle of the complex plane.3 Construct s × s matrices Π ≡ diag (π1, . . . , πs) and
Ψ ≡ (x1, . . . , xs), where each column xi is a solution of the following system of s equations:[

π2
iΣΘ′ − πi

(
Σ + ΘΣΘ′

)
+ ΘΣ

]
xi = 0.

Then the stable solution of (1.3.33) is ΦH =
(
Ψ−1ΠΨ

)′. This follows, for example, from appli-
cation of Theorems 3 and 4 of Uhlig (1995).

A linear expansion yields the following difference equation for Φ1
t with a stationary solution

Φ(1)
t = ΦH −

∞∑
i=0

(
ΦH
)i
Et

[
ΦHΩt+i + Γt+i +

(
ΦH
)2

Γ′t+i+1

]
(ΘΣ)′ −1ΦH

(
ΘΣ (ΘΣ)′ −1ΦH

)i
.

3Some of these eigenvalues may well be complex. However, even then the resulting solution ΦO will be real-
valued. See Uhlig (1995).
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The k × s matrix ∆t solves (1.3.31), with the zeroth-order approximation given by

∆(0)
t = ∆H

t =
∞∑
i=0

Et

[
Dt+i

(
ΦH ′)i] .

For Pt the first-order approximation is

P(1)
t = Ω−1

t .

The approximately optimal instrument Ξ(101)
t follows

Ξ(101)
t = Ξ(jkl)

t−1 (Φ(1)
t )− + ∆(0)

t P(1)
t .

For matrices, we generalize the trimming device ”−” in the following way. Take an arbitrary
nonsingular s× s matrix A. The basic structure of A is decomposition A = P∆Q′, where P and
Q are each orthonormal s× s matrices, i.e. P ′P = PP ′ = Q′Q = QQ′ = Is, and ∆ is a diagonal
matrix with strictly positive elements on the diagonal ordered in descending order (Green and
Carroll 1976, section 5.7). This decomposition always exists. Observe that the L2 norm of A
is |A| =

√
% (A′A), where % (·) is the spectral radius, and A′A = Q∆P ′P∆Q′ = Q∆2Q′. But

this is the eigenstructure of symmetric positive definite matrix A′A, with matrix ∆2 containing
s real positive eigenvalues of A′A. If any of these exceed 1, we can deflate them to lie within[
0, (1− ε)2

]
in the same way we do trimming in the scalar case. By doing so we automatically

force |A| to be bounded from above by 1− ε. Thus, for matrix A the trimming algorithm goes as
follows: (1) Compute A′A and find its eigenstructure which yields the matrix of eigenvalues ∆2

and the matrix Q of eigenvectors. (2) Find the square root ∆ of ∆2. (3) Compute the implied
matrix P by P = AQ∆−1. (4) Trim the diagonal entries of matrix ∆ using operator ”−”, and
construct the trimmed A as A− = P∆−Q′.

1.3.3 Heaton–Ogaki example

Optimal instrument

Heaton and Ogaki (1991) present an econometric example where it is possible to obtain an exact
closed form expression for the efficiency bound. Naturally, in this case it is also possible to write
out the explicit solution for parameters of the optimal instrument, which we do below. Unfor-
tunately, in order to accomplish either goal, one has to assume Gaussianity of the fundamental
process. This fact nullifies this example’s practical significance.

Let wt be a Gaussian q × 1 vector white noise which is homoskedastic conditionally on
its past history, and ut be a two-period ahead forecast error with the Wold representation
ut = ν ′0wt + ν ′1wt−1, where ν0 and ν1 are q × 1 vector constants. Observable at time t is
q × 1 vector xt, so the space of instruments is =t = σ(xt, xt−1, . . .). Let ut be linked to xt
via ut =

(
1 β 0′q−2

)
xt, where β is a scalar parameter of interest. The rational expectations

hypothesis imposes the restriction
Et [ut+2] = 0.

Under the assumptions made, the error in this equation is conditionally homoskedastic. There
is conditional heteroskedasticity in another restriction, the one that is a conditional analog of
Working’s (1960) result on temporal aggregation:

Et [ut+2 (ρut+2 − ut+1)] = 0,
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where ρ ≡ ν′0ν1

ν′0ν0+ν′1ν1
= 1

4 . The disturbance vector of the two equation system is

et =
(

ut+2

ut+2 (ρut+2 − ut+1)

)
.

The observational equation for xt is xt = Hyt, where the law of motion of the p× 1 state vector
yt is

yt = Ayt−1 + Cwt,

where A is a stable p× p matrix, C is a p× q matrix, and H is a q× p matrix. These constants
should be consistent with

(
1 β 0′q−2

)
HC = ν ′0,

(
1 β 0′q−2

)
HAC = ν ′1,

(
1 β 0′q−2

)
HAiC = 0,

i ≥ 2. Then
Dt =

(
−hA2yt rd + (hA2yt)(ν ′1wt)

)
,

where h ≡
(
0 1 0′q−2

)
H, rd ≡ −h (AC%1 + C%0) , %0 ≡ 2ρν0 − ν1, %1 ≡ 2ρν1 − ν0.

The parameter Φt and the product ∆tPt are

Φt =
1

ξ11ξ12

(
−ξ12ξ21 0

(ξ22α
′
11 − ξ12α

′
21)wt − ξ12α

′
22wt−1 −ξ11ξ22

)
,

∆tPt =
(
r1yt + r2(ν ′1wt) r2

)
,

where constants ξij and αij are defined in equations (4)–(10) of Heaton and Ogaki (1991), and
the 1× p vector r1 and the scalar r2 are

r1 = − 1
ξ2
11
hA2

(
Ip + ξ21

ξ11
A
)−1

, r2 = 1
ξ2
12

(
1 + ξ22

ξ12

)−1 (
rd − ξ21

ξ11
r1C%1

)
.

Note that E [max (0, log |∆tPt|)] <∞ and E [max (0, log |Φt|)] <∞ are satisfied due to normality
of wt, and λ(Φ) < 0 because Φt has a triangular structure with diagonal elements that are less
than unity in absolute value (see remarks in section 1.3.1). Finally, E[|Ξt|4] < ∞ due to
normality of wt.

Approximately optimal instrument

Now we derive the approximation for the optimal instrument. The heteroskedasticity parameters
are:

Ωt = (ν ′0ν0 + ν ′1ν1)
(

1 −ν ′1wt
−ν ′1wt %2 + (ν ′1wt)

2

)
,

Γt = (ν ′0ν1)
(

1 −ν ′1wt
%′1wt − ν ′1wt−1 −2ρ%2 − ν ′1wt (%′1wt − ν ′1wt−1)

)
,

where %2 ≡ ν ′0ν0 − ρν ′0ν1. Consequently,

ΩH = (ν ′0ν0 + ν ′1ν1)
(

1 0
0 (ν ′0ν0 + ν ′1ν1)(1− ρ2)

)
, ΓH = (ν ′0ν1)

(
1 0
0 (ν ′0ν1)(2ρ2 − 1)

)
.

Since both ΩH and ΓH are diagonal, ΦH is too and is equal to Θ ≡ diag(θ1, θ2), which is
defined together with Σ via Θ = −ΓHΣ−1 and I2 + Θ2 = ΩHΣ−1. Then one may find θ1 and θ2

from equations
θ1

1 + θ2
1

= −ρ, θ2

1 + θ2
2

= ρ2 1− 2ρ2

1− ρ2
,

THEORY: MULTIPLE EQUATIONS CASE 15



subject to |θ1| < 1 (⇒ θ1 = − ξ21
ξ11

) and |θ2| < 1. The parameters of the approximately optimal
instrument have the following forms:

Φ(1)
t = Θ−

[
ΘΩt + Γt + Θ2ν ′0ν1

(
1 −ν ′1wt
0 (ν ′0ν1)(2ρ2 − 1)

)]
Σ−1,

∆(0)
t =

(
ξ2

11r1yt
rd + θ2hA

2Cν1

1− θ2
+ (hA2yt)(ν ′1wt)

)
,

P(1)
t =

ρ

%2ν ′0ν1

(
%2 + (ν ′1wt)

2 ν ′1wt
ν ′1wt 1

)
.

Asymptotic Comparisons

To calibrate asymptotic losses of the approximately optimal IV estimator relative to the optimal
IV estimator, let xt = (zt zt−1)′ , ν0 = 1, ν1 = 2 −

√
3, so that ut = zt + βzt−1 = wt + ν1wt−1,

and

yt =

 zt
zt−1

wt

 , A =

 −β 0 ν1

1 0 0
0 0 0

 , C =

 1
0
1

 , H =
(

1 0 0
0 1 0

)
, h ≡ (0 1 0) .

The following table presents asymptotic variances of some IV estimators for several values of
β. The ”truly optimal” IV estimator is most efficient, and significantly beats the optimal IV
estimator that ignores the second equation (”first equation optimal”), especially when β is close
to ν1. The ”homoskedasticity optimal” instrument that would be optimal if there were no
conditional heteroskedasticity captures much of the efficiency gains. However, the proposed
”approximately optimal” instrument captures further an overwhelming part of the efficiency
gains provided by the optimal instrument.

β −0.8 −0.3 0 0.3 0.8

Truly optimal 0.360 0.910 1.000 0.910 0.360

Approximately optimal 0.363 0.917 1.012 0.923 0.371

Homoskedasticity optimal 0.399 1.070 1.313 1.235 0.430

First equation optimal 0.466 3.293 13.93 749.4 0.786

Thus, the efficiency losses arising from the approximation error turn out to be tiny, and show
that the proposed instrument is able to nearly attain the efficiency bound.
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1.4 Simulation Evidence

1.4.1 Model and data generating mechanism

In order to get a feel for the finite sample properties of a feasible version of the proposed
estimator, we set up the following econometric model:

yt = α+ βxt + et, (1.4.34)

where (α β)′ is the vector of parameters to be estimated. The numerical value of this vector is
set to (0 0)′. The data are generated according to:

et = wt+1 − θwt, wt|=t ∼ N
(
0, σ2

t

)
,

xt = E [xt|=t] + ηxt, ηxt ∼ IID N (0, 1) ,
zt = 1 + ϕ(zt−1 − 1) + ηzt, ηzt ∼ IID N (0, 1) .

Apart from the constant, the basic instrument is scalar zt. We set the auxiliary parameter values
as follows. The parameter of the disturbance is θ runs through −0.8, −0.5, −0.3, 0.3, 0.5, 0.8.
The value of ϕ is set to 0.3. The skedastic function is set to

σ2
t = (zt + zt−1)2 , (1.4.35)

and the conditional expectation of the right hand variable given the instrument history – to

E [xt|=t] = 1 + zt + zt−1. (1.4.36)

The econometrician uses the information that σ2
t is quadratic, and E [xt|=t] is linear, in zt

and zt−1. However, we also investigate the behavior of the proposed estimator when the true
mechanism driving heteroskedasticity or the form of the conditional expectation of the right
hand variable given the instrument history is not the one assumed by the econometrician. We
explore the following five variations of the DGP.

(1) ”Absolute value misspecification”: the conditional variance is proportional to the presumed
conditional standard deviation: σ2

t = 3.12 · |zt + zt−1| .

(2) ”Exponential misspecification”: the conditional variance is proportional to an exponent of
the presumed conditional standard deviation: σ2

t = 0.22 · exp(zt + zt−1).

(3) ”Inverse misspecification”: the conditional variance is inversely proportional to the pre-
sumed conditional variance: σ2

t = 21.5/(1 + (zt + zt−1)2).

(4) ”Projection misspecification”: the right hand variable includes one more historical value
of the basic instrument: E [xt|=t] = 1 + zt + zt−1 + zt−2.

(5) ”Nonlinear misspecification”: the right hand variable includes an additional quadratic
term: E [xt|=t] = 1 + zt + z2

t + zt−1.

In (1)–(3), the constants are tuned so that the empirical variance of wt evaluated from 5
million observations is the same as in (1.4.35).
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1.4.2 Estimators and details of their construction

In this subsection, we present simulation evidence on the behavior of the proposed estimator
together with that of some frequently used competitors. The latter are:

(1) The simple IV estimator β̂IV with (1 zt)
′ as a just-identifying instrument for (1 xt)

′ .
The use of this ”naive” estimator may be attributed to a researcher who wants to avoid
complications arising from overidentification.

(2) The two-stage least squares estimator β̂2SLS with (1 zt zt−1)′ as an overidentifying instru-
ment. This would probably be the most intensively used estimator in this context, in spite
of the presence of heteroskedasticity.

(3) The feasible β̂ζH that would be a feasible optimal IV estimator in the absence of het-
eroskedasticity. This estimator has been previously known and used in the literature (see
footnote 2).

(4) The approximately optimal IV estimator β̂ζ(101) , corresponding to feasible instrument

ζ̂
(101)

t .

Other possible competing estimators could be conventional optimal GMM estimators with
instruments that contain finite number of lags of zt. There is sufficient evidence, however, that
these suffer a number of small sample deficiencies, mainly due to the need to estimate the
efficient weighting matrix. Therefore we do not consider such estimators here. For their detailed
consideration in conditionally heteroskedastic environments, see Tauchen (1986) and West, Wong
and Anatolyev (2002).

Now we give details of construction of ζ̂
(101)

t . Suppose the basic instrument zt is fitted to
an autoregressive model of order 2 (note that this is higher than the true order). Then ut ≡
(zt zt−1 1)′ has the following law of motion:

ut+1 = Guuut + ηu,t+1, (1.4.37)

for 3×3 companion matrix Guu and 3×1 noise vector ηut. The law of motion of the right-hand-
side variable xt is

xt = Gxuut + ηxt, (1.4.38)

for 1 × 3 matrix Gxu and scalar noise ηxt. Note that due to (1.4.38) dt = Gduut, where Gdu
is 2 × 3. The zeroth-order parameters are: φH = θ, δ

(0)
t = δHt = Gδuut, ρH = σ−2, where

Gδu ≡ Gdu (I3 − θGuu)−1 .
Let vt ≡

(
z2
t ztzt−1 z

2
t−1 1

)′
. The quadratic heteroskedasticity is such that Et[w2

t ] and
Et[η2

zt+1] are linear forms in vt and ut. For what follows we need to obtain the law of mo-
tion of vt. Note that =t-nonmesurable components of vt+1 are z2

t+1 and zt+1zt. It is not hard to
see that Et[z2

t+1] and Et[zt+1zt] are linear forms in vt and ut. As a result, we can represent vt
as

vt+1 = Gvvvt +Gvuut + ηv,t+1, (1.4.39)

where Gvv is 4×4, Gvu is 4×3, and ηv,t+1 is 4×1 with Et
[
ηv,t+1

]
= 0. It is also straightforward

to see that ωt and γt are linear forms in vt and ut as well:

ωt = g′ωvvt + g′ωuut, γt ≡ g′γvvt + g′γuut,
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where gωv, gωu, gγv and gγu are functions of gwv, gwu, gυv, gυu, Gvv, Gvu, Guu and θ. In con-
structing the feasible estimator, we presume that the researcher is unaware of the true structure
of skedastic function, except that it is quadratic in zt and zt−1. Therefore, the researcher has to
estimate gγv, gγu, gωv and gωu directly from regressions of e2

t and etet−1 on vt and ut :

e2
t = g′ωvvt + g′ωuut + ηω,t+1, etet−1 = g′γvvt + g′γuut + ηγ,t+1. (1.4.40)

Straightforward computation shows (see the Appendix) that φ(1)
t = g′φvvt + g′φuut, where

g′φv ≡ θe′4 −
1
σ2

{(
θg′ωv + 2g′γv

) (
I4 − θ2Gvv

)−1 − g′γv
}
,

g′φu ≡ −
1
σ2

{(
θ2
(
θg′ωv + 2g′γv

) (
I4 − θ2Gvv

)−2
Gvu + θg′ωu + 2g′γu

) (
I3 − θ2Guu

)−1 − g′γu
}
.

The two feasible approximately optimal instruments are formed via

ζ̂
H

t = ζ̂
H

t−1θ̂ +
Ĝδuut
σ̂2 (1.4.41)

and

ζ̂
(101)

t = ζ̂
(101)

t−1

[
ĝ′φvvt + ĝ′φuut

]− +
Ĝδuut

max(ĝ′ωvvt + ĝ′ωuut, εω)
. (1.4.42)

The trimming parameters are set at: εφ = 10−2, εω = 1
5 σ̂

2
e. In addition, if the sample average

of ĝ′φvvt + ĝ′φuut exceeds 1 in absolute value, we classify the circumstances as unfavorable and

substitute ζ̂
H

t in place of ζ̂
(101)

t . To recapitulate, the algorithm consists of the following steps.

(1) Obtain consistent preliminary estimates of (α β)′ by 2SLS. Call the residuals êt and obtain
the sample variance σ̂2

e and first-order autocovariance σ̂e,1. Compute the estimates σ̂2 and
θ̂ of the implied σ2 and θ.

(2) Estimate the law of motion (1.4.37) of ut by OLS and construct Ĝuu. Estimate the projec-
tion (1.4.38) of regressors xt on the space of instruments by OLS, construct Ĝxu, Ĝδu and
fitted d̂t. Estimate the law of motion (1.4.39) of vt by OLS, obtain estimates of nontrivial
entries in Gvv and Gvu and construct Ĝvv and Ĝvu. Estimate the projections (1.4.40) of
êtêt−1 and ê2

t on the space of instruments by OLS, obtain ĝγv, ĝγu, ĝωv, and ĝωu. Construct
ĝφv, ĝφu, Ĝδu.

(3) Initialize ζ̂
H

0 = 0 or ζ̂
(101)

0 = 0 and construct a series for the feasible approximately optimal
instrument by (1.4.41) or (1.4.42). Estimate (α β)′ by applying the just-identifying IV

estimator with instrument ζ̂
H

t or ζ̂
(101)

t .

1.4.3 Results

We set the sample size T to 300 and 900. Table 1 compares sample standard errors of the
four estimators (sample means and medians are practically zero for all estimators). It is clear
that most of the time the asymptotic gains evaluated earlier are realized in finite samples as

well. The last column shows a fraction of cases when the substitution of ζ̂
(101)

t by ζ̂
H

t in adverse
circumstances takes place. The fraction abruptly increases when the serial correlation is stronger,
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and not always larger T eliminates this effect. Considering the efficiency gains provided by
the instrument ζ̂

H

t relative to traditional IV estimators and further efficiency gains provided

by the instrument ζ̂
(101)

t relative to ζ̂
H

t , one may say that the former exploits well the serial
correlation structure of the problem, while the latter takes further advantage of conditional
heteroskedasticity. This ”division of labor” is more pronounced for smaller |θ| when the strength
of heteroskedasticity is greater relative to that of serial correlation. For larger |θ| the instrument

ζ̂
(101)

t captures the overwhelming share of efficiency gains.
Table 2 contains results on the five misspecified DGPs with θ = 0.5 in the format of Table

1. The proposed instrument ζ̂
(101)

t still delivers efficiency gains comparable to those in Table
1, especially when the misspecified heteroskedasticity is strong. The misspecification in the
conditional expectation of the right hand variable may or may not spoil the performance of the
approximately optimal instrument depending on the type of that misspecification. Again, as for
the correctly specified model, the sample size T does not play a central role.

1.5 Conclusion

For general two-period conditional moment restrictions, both single and multiple equation, char-
acterized by the presence of conditional heteroskedasticity, we show how to construct approxi-
mately optimal instruments, the ones that approximately satisfy the system of optimality con-
ditions, evaluate the asymptotic properties of corresponding instrumental variables estimators,
and verify their finite sample behavior. We concentrate on the first order serial correlation since
such problems are met most frequently among potential applications. For example, among these
are CAPM models with habit formation or durability (Ferson and Constantinides 1991), over-
lapping data from forecasting surveys (Rich, Raymond and Butler 1992) or data contaminated
by temporal aggregation (Hall 1988).

The applications with conditional moment restrictions that have higher than the first order
of serial correlation are less frequent, and in addition the likelihood that a researcher will want
to exploit the idea of optimal instruments diminishes. However, in such cases the approximation
technique is absolutely the same as detailed above, with a tendency to become increasingly more
complicated as the serial correlation order grows. The reason of this increasing complicatedness
lies in a more unwieldy structure of the system defining the process that the optimal instrument
follows (Anatolyev in press). Let p denote the order of serial correlation, then there are p + 1
processes indexing the conditional heteroskedasticity: Et[ete′t], Et[et−1e′t], · · · , Et[et−pe′t], and
the optimal instrument Ξt has the following recursion structure:

Ξt = Ξt−1Φ1,t + Ξt−2Φ2,t + · · ·+ Ξt−pΦp,t + ∆tPt,

where Φ1,t, Φ2,t, · · · , Φp,t, ∆t, Pt are auxiliary time varying parameters. The analog of the
equation (1.3.29) is a polynomial of order p+2 with respect to the conditional heteroskedasticity
parameters and the p processes Φ1,t, Φ2,t, · · · , Φp,t sought for. The analogs of (1.3.30) and
(1.3.31) are more involved as well.

There are of course limitations of the approach presented in this paper. First, it is an intrinsic
trade-off between efficiency and robustness to auxiliary parametrizations, the general feature of
the optimal instrumental variables approach. Second, it is a trade-off between efficiency and a
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cost of constructing the instrument resulting from its complicatedness. Third, although the ap-
proximation error was found to be small in the situations that were considered, it may potentially
be larger or smaller, and we are unable to clearly rank the approximately optimal instrument
among other instruments in terms of asymptotic efficiency. Last, a theoretical econometrician
may be dissatisfied by the undertaken approximation as a sacrifice of achieving the instrumen-
tal variables efficiency bound. Another approach that does not invoke approximations lies in
an attempt to estimate the auxiliary processes directly from the system that defines them by
designing a contractive iterative scheme, and estimating the auxiliary conditional expectations
nonparametrically.

1.6 Appendix

1.6.1 Proof of Lemma 1

An extension of Theorem 1 of Brandt (1986) for matrix-valued At, Bt and Ψt gives existence of
a stationary ergodic solution Ψt of (1.2.22) and its representation (1.2.23) with the right-hand
side converging absolutely almost surely, if −∞ ≤ E [log |At|] < 0 and E [max (0, log |Ψt|)] <∞.
But both conditions are satisfied by the assumptions of Lemma 1: E [log |At|] < E[log 1] = 0
and E [max (0, log |Bt|)] ≤ E [|Bt|] ≤ E[|Bt|4]

1
4 < ∞. Next, there exists 0 ≤ a < 1 such that

esssup |At| ≤ a. Then from (1.2.22) we get by the triangular inequality applied in the L4(Pr)
space and stationarity, that E[|Ψt|4]

1
4 = E[|Ψt−1At + Bt|4]

1
4 ≤ aE[|Ψt|4]

1
4 + E[|Bt|4]

1
4 , from

which it follows that E[|Ψt|4] ≤ (1− a)−4E[|Bt|4] <∞. �

1.6.2 Constants

The constants in various approximations of parameters of the optimal instrument in the pilot
example are:

κω1 = 1 + θ2 − λ
(
ϕ2 + θ2

)
, κω2 = λ

(
1− ϕ2

) (
ϕ2 + θ2

)
,

κγ1 = −θ (1− λ) , κγ2 = −λθ
(
1− ϕ2

)
,

κφ1 = θ

{
1−

λ
(
1− ϕ2

) (
1− θ2

)
1− ϕ2θ2

}
, κφ2 =

λθ
(
1− ϕ2

)2 (1− θ2
)

1− ϕ2θ2 ,

κφ3 = λκφ1 +
1

1− θ2

{
κ2
φ1

θ
+

2θκφ1κφ2

1− ϕ2θ2 +
3θ
(
1 + ϕ2θ2

)
κ2
φ2(

1− ϕ2θ2
) (

1− ϕ4θ2
)} ,

κφ4 = λκφ2 +
1
θ

{
κφ1κγ2 +

2κφ1κφ2

1− ϕ2θ2 +
6ϕ2θ2κ2

φ2(
1− ϕ2θ2

) (
1− ϕ4θ2

)} ,
κφ5 =

κφ2

θ

{
κγ2 +

κφ2

1− ϕ4θ2

}
,

κδ1 =
1

1− ϕθ
, κδ2 = κδ1 + ϕκ2

δ1

{
κφ1 +

3κφ2

1− ϕ3θ

}
, κδ3 =

ϕ3κφ2κδ1
1− ϕ3θ

,
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κδ4 = κδ3 +
ϕ3

1− ϕ3θ

{
κφ1κδ2 + κφ4κδ1 +

10 (κφ2κδ2 + κδ1κφ5)
1− ϕ5θ

}
,

κδ5 =
ϕ5 (κφ2κδ2 + κδ1κφ5)

1− ϕ5θ
,

κρ1 = κω1 −
κ2
γ2

κω2

{
1− κω1

κω2
+

2κγ1

κγ2

}
, κρ2 = κω2 −

ϕ2κ2
γ2

κω2
,

κρ3 (x) = −
(
κγ1 −

κω1κγ2

κω2

)2√ π

2κω1κω2
· <
(
w

(
− ϕ√

2
x+ i

√
κω1

2κω2

))
,

where < (·) is an operator of removing the imaginary part of a complex number, and w (·) is the

error function: w (x) ≡ e−x2

(
1 + 2i√

π

x∫
0

e−t
2
dt

)
=
∞∑
n=0

(ix)n

Γ(n2 +1) (see Gautschi 1974).

1.6.3 Linear IV bound

We find the efficiency bound for linear IV estimators by explicitly deriving the instrument
optimal in the linear class (West, Wong and Anatolyev 2002). Let the optimal instrument be

z∗t =
∞∑
i=0

giηt−i and let τ ≡ E[η4
t ]− 1. The optimality condition is

∀k ≥ 0 E
[
ηt−kzt

]
= E

[
ηt−kz

∗
t e

2
t

]
+ E

[
ηt−k−1z

∗
t etet−1

]
+ E

[
ηt−kz

∗
t−1etet−1

]
. (1.6.43)

The left hand side in (1.6.43) is ϕk. Calculate the three terms on the right hand side using

Et[e2
t ] = κω1 + κω2z

2
t , Et[etet−1] = κγ1 + κγ2z

2
t , z

∗
t =

∞∑
i=0

giηt−i and zt =
∞∑
i=0

ϕiηt−i:

E
[
ηt−kz

∗
t e

2
t

]
= E

ηt−k ( ∞∑
i=0

giηt−i

)κω1 + κω2

(
∞∑
j=0

ϕjηt−j

)2


=
(
κω1 + κω2

(
1

1−ϕ2 + ϕ2kτ
))

gk + 2ϕkκω2

∞∑
i=0,i6=k

ϕigi,

E
[
ηt−k−1z

∗
t etet−1

]
= E

ηt−k−1

( ∞∑
i=0

giηt−i

)κγ1 + κγ2

(
∞∑
j=0

ϕjηt−j

)2


=
(
κγ1 + κγ2

(
1

1−ϕ2 + ϕ2(k+1)τ
))

gk+1 + 2ϕk+1κγ2

∞∑
i=0,i6=k+1

ϕigi,

E
[
ηt−kz

∗
t−1etet−1

]
= E

ηt−k ( ∞∑
i=1

gi−1ηt−i

)κγ1 + κγ2

(
∞∑
j=0

ϕjηt−j

)2


=


(
κγ1 + κγ2

(
1

1−ϕ2 + ϕ2kτ
))

gk−1 + 2ϕk+1κγ2

∞∑
i=0,i6=k−1

ϕigi, k > 0,

2ϕκγ2

∞∑
i=0

ϕigi, k = 0.

Therefore the system (1.6.43) can be written in a matrix form

Ψ = SG,
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where Ψ ≡


1
ϕ
...
ϕk

...

 , G ≡


g0

g1
...
gk
...

 , S ≡


S0,0 S0,1 · · · S0,k · · ·
S1,0 S1,1 · · · S1,k · · ·

...
...

. . .
...

Sk,0 Sk,1 · · · Sk,k · · ·
...

...
...

. . .

 , and

Sk,k = κω1 + κω2

(
1

1−ϕ2 + ϕ2kτ
)

+ 4ϕ2k+1κγ2, k ≥ 0,

Sk,k−1 = κγ1 + κγ2

(
1

1−ϕ2 + ϕ2kτ
)

+ 2ϕ2k−1 (κω2 + ϕκγ2) , k ≥ 1,

Sk,k+1 = κγ1 + κγ2

(
1

1−ϕ2 + ϕ2(k+1)τ
)

+ 2ϕ2k+1 (κω2 + ϕκγ2) , k ≥ 0,

Sk,j = 2ϕj+k (κω2 + 2ϕκγ2) , k ≥ 0, j < k − 1 or j > k + 1.

The optimal instrument then is characterized by the vector of weights G = S−1Ψ, and the
efficiency bound is

Vz∗ =
(
Ψ′S−1Ψ

)−1
.

1.6.4 Derivation of auxiliary processes used in simulations

Observe that
Et[ut+i] = Giuuut

and

Et[vt+i] = Givvvt +
i−1∑
j=0

Gi−j−1
vv GvuEt[ut+i] = Givvvt +

 i−1∑
j=0

Gi−j−1
vv GvuG

i
uu

ut.

But
∞∑
i=1

θ2i

[
i−1∑
j=0

Gi−j−1
vv GvuG

i
uu

]
=
∞∑
k=1

∞∑
i=k

θ2i
k−1∑
j=0

Gi−j−1
vv GvuG

j
uu =

∞∑
k=1

k−1∑
j=0

[ ∞∑
i=k

θ2iGi−j−1
vv

]
GvuG

j
uu

=
∞∑
k=1

k−1∑
j=0

(
I4 − θ2Gvv

)−1
θ2kGk−j−1

vv GvuG
j
uu =

(
I4 − θ2Gvv

)−1 ∞∑
i=1

[ ∞∑
k=i

θ2kGk−ivv

]
GvuG

i−1
uu

=
(
I4 − θ2Gvv

)−1 ∞∑
i=1

θ2i
(
I4 − θ2Gvv

)−1
GvuG

i−1
uu = θ2

(
I4 − θ2Gvv

)−2
Gvu

(
I3 − θ2Guu

)−1
.

Therefore,

∞∑
i=0

θ2iEt[vt+i] =
∞∑
i=0

θ2iGivvvt +
∞∑
i=1

θ2i

 i−1∑
j=0

Gi−j−1
vv GvuG

i
uu

ut

=
(
I4 − θ2Gvv

)−1 vt + θ2
(
I4 − θ2Gvv

)−2
Gvu

(
I3 − θ2Guu

)−1 ut.

Also,
∞∑
i=0

θ2iEt[ut+i] =
∞∑
i=0

θ2iGiuuut =
(
I3 − θ2Guu

)−1 ut.

Hence, φ(1)
t = g′φvvt + g′φuut, as in the text.
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Table 1. Sample statistics for β̂IV , β̂2SLS , β̂ζH and β̂ζ(101) , from simulations.

DGP Standard deviation, ×10−2 %%
θ T β̂IV β̂2SLS β̂ζH β̂ζ(101) (101)→ H

(1) (2) (3) (4) (5) (6) (7)
0.8 300 12.36 7.22 5.79 5.45 63%

900 7.01 4.10 3.22 3.08 79%
0.5 300 11.78 7.16 6.60 5.75 18%

900 6.71 4.09 3.74 3.09 8%
0.3 300 12.20 8.09 7.87 6.16 < 1%

900 6.97 4.64 4.52 3.35 � 1%
−0.3 300 16.41 13.31 13.10 9.62 < 1%

900 9.49 7.72 7.60 5.29 � 1%
−0.5 300 18.45 15.43 14.84 11.76 14%

900 10.68 8.96 8.59 6.41 7%
−0.8 300 21.81 18.74 17.25 15.40 57%

900 12.64 10.88 9.91 9.29 76%

The data generating mechanism is yt = α + βxt + et, α = β = 0, et = wt+1 − θwt, wt|=t ∼
N
(
0, σ2

t

)
, xt = E [xt|=t]+ηxt, where =t ≡ σ(zt, zt−1, . . .), zt = 1+ϕ(zt−1−1)+ηzt, (ηxt, ηzt) ∼

IID N (0, I2), σ2
t = (zt + zt−1)2, E [xt|=t] = 1 + zt + zt−1. The number of repetitions is 100,000.

For each set of parameters and each sample size columns 3–6 present sample standard errors for
the following IV estimators: the just-identifying IV estimator β̂IV that uses (1 zt)

′ as a vector
of instruments; the two-stage least squares estimator β̂2SLS that uses (1 zt zt−1)′ as a vector of
instruments; the feasible estimator β̂ζH that would be a feasible optimal IV estimator in the

absence of heteroskedasticity, and the feasible proposed estimator β̂ζ(101) . Column 7 indicates

how frequently β̂ζ(101) was subtituted by β̂ζH .

BIBLIOGRAPHY 27



Table 2. Sample statistics for β̂IV , β̂2SLS , β̂ζH and β̂ζ(101) , from simulations, under
misspecification.

Type of Standard deviation, ×10−2 %%
misspecification T β̂IV β̂2SLS β̂ζH β̂ζ(101) (101)→ H

(1) (2) (3) (4) (5) (6) (7)
Absolute value 300 11.35 7.08 6.56 6.55 7%

900 6.47 4.06 3.72 3.59 < 1%
Exponential 300 13.16 7.26 6.77 5.98 39%

900 7.59 4.19 3.81 3.38 41%
Inverse 300 11.11 7.07 6.55 5.59 5%

900 6.31 4.04 3.71 3.02 < 1%
Projection 300 11.13 6.22 4.83 4.25 18%

900 6.31 3.55 2.74 2.28 8%
Nonlinear 300 4.59 3.78 3.34 3.31 18%

900 2.64 2.18 1.91 1.81 8%

The data generating mechanism is given in the notes to Table 1, with θ = 0.5, except that now
σ2
t = 3.12·|zt + zt−1| in the ”absolute value” case, or σ2

t = .22·exp(zt+zt−1) in the ”exponential”
case, or σ2

t = 21.5/(1 + (zt + zt−1)2)) in the ”inverse” case, or E [xt|=t] = 1 + zt + zt−1 + zt−2 in
the ”projection” case, or E [xt|=t] = 1 + zt + z2

t + zt−1 in the ”nonlinear” case. The number of
repetitions is 100,000. For the estimators compared and the meaning of numbers see the notes
to Table 1.
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2. EMPIRICAL LIKELIHOOD, GMM, SERIAL
CORRELATION, AND ASYMPTOTIC BIAS

2.1 Introduction

In recent years, one step estimators called ”generalized empirical likelihood” (GEL) estimators
(Smith 1997, 1998) begin to gain attention as theoretically attractive alternatives to GMM.
These estimators are based on information theoretical considerations and include the empirical
likelihood (Owen 1991, Qin and Lawless 1994, Imbens 1997) and exponential tilting (Kitamura
and Stutzer 1997) estimators, together with an entire class of minimizers of certain divergence
criteria (Imbens, Spady and Johnson 1998), continuously updating GMM (Hansen, Heaton and
Yaron 1996), and other members. It has been established that the first order asymptotic proper-
ties of GEL estimators are identical to those of GMM estimators (Smith 1997, 1998). Moreover,
it turns out that GEL estimators have certain advantages related to second order asymptotic
properties and thus are expected to have better finite sample behavior. In particular, Newey
and Smith (2000, 2001) find that in a cross sectional context the GEL estimators do not have
some components of the second order bias that are characteristic of GMM estimators resulting
from estimating the optimal linear combination of moment conditions at the preliminary step.
The empirical likelihood (EL) estimator is the most distinctive in this respect in that its bias
is the smallest, and moreover, its bias corrected version is second order asymptotically efficient.
One more striking fact is that in an instrumental variables regression the bias of GEL estimators
does not, in contrast to that of GMM estimators, grow with the number of instruments. This
property makes the class of (appropriately modified) GEL estimators especially attractive in
numerous stationary time series models typically estimated by GMM, with wide possibilities of
selecting instruments.

In this paper, we consider stationary time series models where the moment function is seri-
ally correlated of known order, directing attention toward the conditional models of multistep
prediction, examples of which are numerous in the asset pricing (e.g., Hansen and Singleton
1982, Ferson and Constantinides 1991, Hansen and Singleton 1996) and forecasting (Hansen
and Hodrick 1980, Mishkin 1990, Rich, Raymond and Butler 1992) literatures. In such sit-
uations certain modifications of the baseline EL estimator are required to attain asymptotic
efficiency (Imbens 1997, Smith 1997, 1998). Three possibilities are proposed in the literature.
According to one approach (Imbens 1997), the inefficient EL estimator is adjusted by removing
the asymptotic covariance between the estimator and the auxiliary parameter. This makes the
estimator a multistep one, which nullifies its attractiveness. The other two modifications both
based on temporal weighting of the moment function are different in that they produce one
step final estimators. The moment function may be temporally added up inside the first order
conditions (Back and Brown 1990, Imbens 1997), which gives rise to the modification of the EL
estimator we call ”CEL” (from ”corrected EL”). Alternatively, the moment function may be
smoothed with the use of a kernel function from the outset (Kitamura 1997, Smith 1997), which
gives rise to the modification we call ”SEL” (from ”smoothed EL”). We present a more detailed
description of these two modifications in section 2 of this paper, concentrating on the empirical
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likelihood estimator because its second order properties are more promising than those of other
GEL estimators in the cross-sectional context.

The CEL version is much simpler in realization in practice in that it does not require kernel
weighting, while the SEL version does, with unpleasant concerns about a choice of the bandwidth.
However, as our subsequent analysis shows, the CEL estimator exhibits less preferable second
order asymptotic properties. In section 3, we make the analysis of the second order bias of the
CEL and SEL estimators, together with that of the two-step GMM estimator, for time series
models where the moment function is serially correlated of known order. It turns out that
although in some special cases the biases of the two EL estimators are equal, in general the
CEL estimator has more bias components than the SEL estimator. Moreover, one of the bias
components of the SEL estimator may be further removed by a judicious choice of the kernel
smoother. In addition, in contrast to the SEL estimator, the bias of the CEL estimator has a
component which may grow with the number of instruments, the property shared by the GMM
estimator. Thus, despite its greater convenience in use, the CEL estimator is expected to be
more biased in finite samples than the SEL. We also obtain a striking side result that smoothing
the moment function tends to reduce the asymptotic bias even when the moment function is
not serially correlated and smoothing is not necessary.

In section 4 we run a Monte Carlo experiment where we analyze the behavior of various
estimators in estimation of the AR coefficient of an ARMA model, and, in particular, confirm
our findings related to asymptotic bias. We compare the performance of the traditional GMM
with empirical likelihood based CEL and SEL. Consistent with our analytical results, the SEL
estimator exhibits smallest bias, and, despite a slightly bigger variance, dominates the other
estimators in terms of MSE. In contrast, the GMM and CEL estimators are rather biased,
especially for many instruments. We analyze the impact of the choice of kernel smoother and
bandwidth for the SEL estimator, as well as observe the influence of the serial correlation order.
It turns out that the truncated kernel works more predictably, often overperforming other kernels
both in terms of bias and variance, confirming our analytical results, and that the impact of
the choice of bandwidth is insignificant. We put special emphasis on selecting an instrumental
vector, and its impact on statistical properties of estimators. In practice, when running GMM,
the instruments are usually set to a couple or so observable variables dated most recently. We find
that because of better asymptotic bias properties of the SEL estimator, the bias–variance trade
off weakens so that the SEL estimator endures taking more lagged values into the instrumental
vector thus allowing utilization of more information.

Section 5 of the paper suggests directions for future research. The appendix contains proofs
and derivations of the second order asymptotic bias for the estimators under investigation.

2.2 Serial correlation consistent GMM and EL estimators

Suppose we have the following system of unconditional moment restrictions:

E [m (wt, θ)] = 0, (2.2.1)

where wt is an observable random vector on which data from t = 1 to t = T are available, θ is
k× 1 vector of parameters to be estimated, and mt ≡ m (wt, θ) is `× 1 moment function, ` > k.
We make the following assumptions about data generation.
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Assumption 1 The sequence wt is strictly stationary and strongly mixing with mixing coeffi-
cients αj satisfying

∑∞
j=1 j

2α
1−1/ν
j <∞ for some ν > 1.

In particular, it follows that αj = o
(
j−3ν/(ν−1)

)
. Such tight rate of decay for the mixing

coefficients and integrability conditions of assumption 3(c) below are needed in the second or-
der asymptotic analysis. The following assumption imposes serial correlation structure on the
moment function.

Assumption 2 The moment function is serially correlated of known order q > 1, i.e. E
[
mtm

′
t−s
]

= 0 if |s| > q and E
[
mtm

′
t−q
]
6= 0.

Such structure does not imply that the moment function is p-dependent for some p > q.
Denote mθt = ∂m (wt, θ) /∂θ′, and let hats or bars over functions refer to them evaluated at
appropriate estimates. Let ||A|| denote the norm

√
tr (A′A) for any matrix A. We impose the

following regularity conditions:

Assumption 3

(a) θ ∈ int (Θ), where Θ ⊆ Rk is compact;

(b) m (wt, θ) is a Borel measurable function for all θ ∈ Θ and is continuously differentiable in
the first argument for all θ ∈ Θ for all wt in its support;

(c) E
[
||mt||6ν

]
<∞ and E

[
supθ∈Θ ||mθt||4ν

]
are finite for ν of assumption 1.

Let

ζT =
1√
T

T∑
t=1

mt,

and define the matrices

Q = E [mθt] , V =
q∑

s=−q
E
[
mtm

′
t−s
]
,

Σ =
(
Q′V −1Q

)−1
, Ξ = ΣQ′V −1, Ω = V −1 − V −1QΞ.

Generalized method of moments (GMM) estimator Let the first step preliminary (and
possibly inefficient) estimator θ̄ is used to form the efficient weight matrix1

Ŵ =

(
1
T

T∑
t=1

m̄tm̄
σ′
t

)−1

with p lim Ŵ = V −1. The two-step GMM estimator θ̂GMM solves the optimization problem

min
θ∈Θ

(
1
T

T∑
t=1

m (wt, θ)

)′(
1
T

T∑
t=1

m̄tm̄
σ′
t

)−1(
1
T

T∑
t=1

m (wt, θ)

)
. (2.2.2)

1It is well known that the Hansen–Hodrick estimator of the variance is not necessarily positive definite. When
it is not, the researcher is likely to discard the estimate and switch to another form of the HAC estimator (for
example, Newey–West). This may well affect the second order bias of the GMM estimate since the probability

of getting a non-positive definite weight matrix is O
(

1/
√
T
)

which is the order of the second order bias. We

ignore this effect since it makes the asymptotic bias considerations even less favorable for the GMM which we will
criticize anyway on this basis in the next section.
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Other variants of efficient GMM iterate the weighting matrix one more time or until convergence.
The first order asymptotics of efficient GMM estimators is (Hansen 1982)

√
T
(
θ̂GMM − θ

)
A= −ΞζT . (2.2.3)

The second order asymptotic bias will depend on the first order asymptotic variance of θ̄.
Let Ŵ denote the weight matrix used on the preliminary step, and let W = p lim Ŵ and
Ξ̄ = (Q′WQ)−1Q′W. For instance, if Ŵ = I, then Ξ̄ = (Q′Q)−1Q′; if θ̄ is asymptotically
efficient, then Ξ̄ = Ξ.

Empirical likelihood (EL) estimator The baseline empirical likelihood estimator θ̂EL to-
gether with the `× 1 vector of additional parameters λ̂EL solves the optimization problem

min
θ

sup
λ: 1+λ′mt>0

T∑
t=1

log
(
1 + λ′mt

)
. (2.2.4)

The FOCs for θ̂EL and λ̂EL of the optimization problem (2.2.4) are

0 =
1
T

T∑
t=1

m̂t

1 + λ̂
′
ELm̂t

, (2.2.5)

0 =
1
T

T∑
t=1

m̂′θtλ̂EL

1 + λ̂
′
ELm̂t

. (2.2.6)

The solution is generally inefficient when serial correlation in mt is present. As stated in the
introduction, to construct an efficient estimator when the order of the serial correlation is known,
three approaches are found in the literature. One leads to a multistep estimator, the other two
lead to one-step estimators and are both based on temporal weighting of the moment function.

Adjusted empirical likelihood (AEL) estimator Imbens (1997) proposed to adjust for
asymptotic correlation between θ̂EL and λ̂EL to attain asymptotic efficiency:

θ̂AEL = θ̂EL − ÂCov(θ̂EL, λ̂EL)
[
ÂV ar(λ̂EL)

]−1
λ̂EL,

where ÂV ar(λ̂EL) and ÂCov(θ̂EL, λ̂EL) are consistent estimates of the blocks of the asymptotic
variance matrix of (θ̂

′
EL, λ̂

′
EL)′. This approach is straightforward in implementation, but it results

in a multistep estimator losing attractiveness of the whole EL spproach. Therefore, we will not
analyze this estimator any further.

Corrected empirical likelihood (CEL) estimator This approach (Back and Brown 1990,
Imbens 1997) suggests summing the moment function over 2q + 1 periods in the denominators
of the FOC (2.2.5)–(2.2.6). Define mσ

t =
∑q

s=−qmt−s and mσ
θt =

∑q
s=−qmθ,t−s. The FOCs are

modified in the following way2:

0 =
1
T

T∑
t=1

m̂t

1 + λ̂
′
CELm̂

σ
t

(2.2.7)

0 =
1
T

T∑
t=1

m̂′θtλ̂CEL

1 + λ̂
′
CELm̂

σ
t

(2.2.8)

2Our convention is that if an index of some component of a summand is beyond the sample limits, the entire
summand is dropped.
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We will refer to the solution θ̂CEL of this system as the CEL estimator. This approach to
modifying the moment function is convenient since the order of serial correlation q is known, so
there is no problem of selecting a truncation laglength. One serious drawback of this modification
is that the system (2.2.7)–(2.2.8) does not correspond to an optimization problem like (2.2.5)–
(2.2.6). In sections 3 and in simulations we discover a relatively large second order asymptotic
bias of θ̂CEL compared to the alternative estimator θ̂SEL (see below).

The first order asymptotics of the CEL estimator is
√
T
(
θ̂CEL − θ

)
A= −ΞζT ,

√
T λ̂CEL

A= ΩζT , (2.2.9)

and θ̂ and λ̂ are first order asymptotically independent (Imbens 1997).

Smoothed empirical likelihood (SEL) estimator This approach (Kitamura 1997, Smith
1997, 1998, 2000) suggests smoothing the moment function from the outset. Let us choose a
kernel with the following properties:

Assumption 4 The kernel function k(x) satisfies:

(a) k(x) : [−b,+b]→ [−1,+1] for some finite b;

(b) k(x) = k(−x) for all x ∈ [−b,+b];

(c) k(x) is continuous at 0 and at all but a finite number of points;

(d)
∫ +b
−b k(x)dx = 1.

A variety of popular kernels satisfy assumption 4: truncated, Bartlett, Parzen, Tukey–
Hanning. Let us denote

ρ2 =
∫ +b

−b
k(x)2dx, ρ3 =

∫ +b

−b
k(x)3dx.

Define the system of weights κ(s) = δ−1
T k

(
δ−1
T s
)
, where δT is the bandwidth parameter tending

to infinity more slowly than the sample size. To derive the results related to asymptotic bias we
require even slower rate:

Assumption 5 δT →∞ and δT = o
(
T

1
5

)
as T →∞.

The moment function is smoothed with the system of weights κ(s). Define

mκ
t =

rT∑
s=−rT

κ(s)mt−s and mκ
θt =

rT∑
s=−rT

κ(s)mθ,t−s,

where rT = bδT bc . The FOCs are modified in the following way:

0 =
1
T

T∑
t=1

m̂κ
t

1 + λ̂
′
SELm̂

κ
t

(2.2.10)

0 =
1
T

T∑
t=1

m̂κ′
θtλ̂SEL

1 + λ̂
′
SELm̂

κ
t

(2.2.11)
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We will refer to the solution θ̂SEL of this system as the SEL estimator. The following two kernels
associated with the original kernel k(x) play an important role in the subsequent asymptotic
analysis of θ̂SEL. The first one connected with the first order asymptotics is the induced kernel
(Smith 1998) proportional to the self-convolution of k(x):

k∗(x) = ρ−1
2

∫ +b

−b
k (x+ y) k (y) dy,

so that k∗(0) = 1. The corresponding system of weights κ∗(s) = δ−1
T k∗

(
δ−1
T s
)

is such that

δT
T

T∑
t=1

2rT∑
s=−2rT

κ∗(s)mtm
′
t−s

is a consistent and positive definite estimator of V (Smith 1998). The second associated kernel
connected with the second order asymptotics is proportional to the double self-convolution of
k(x)

k∗∗ (y, z) = ρ−1
3

∫ +b

−b
k(x)k(x+ y)k(x+ z)dx.

It is called the bispectral estimating kernel (Rosenblatt and Van Ness 1965), and is symmetric,
continuous in both arguments at (0, 0) and normalized so that k∗∗ (0, 0) = 1. The bispectral
estimating kernel plays an important role in estimation of bispectra in the spectral analysis.
Here it is needed for consistent estimation of third moments of the moment function.

The approach under discussion to modifying the moment function is less convenient than
the previous one since generally there does not exist a kernel κ(s) whose corresponding induced
kernel κ∗(s) is flat over −q, · · · , q. The can be easily seen by noting that κ∗(0) ∝

∑rT
s=−rT κ(s)2,

κ∗(1) ∝
∑rT−1

s=−rT κ(s+ 1)κ(s), and due to the Cauchy–Schwartz inequality,

rT−1∑
s=−rT

κ(s+ 1)κ(s) ≤

(
rT−1∑
s=−rT

κ(s)2

) 1
2
(

rT−1∑
s=−rT

κ(s+ 1)2

) 1
2

<

rT∑
s=−rT

κ(s)2.

Even when k(x) has unbounded support, the equality can occur only with flat k(x) which is
impossible. Therefore, one cannot take advantage of the special correlation structure of the
problem, and instead is forced to act as if the correlation structure was of unknown form. On
the positive side, the system (2.2.10)–(2.2.11) does correspond to an optimization problem

min
θ

sup
λ: 1+λ′mκt >0

T∑
t=1

log
(
1 + λ′mκ

t

)
. (2.2.12)

In addition, in sections 3 and 4 we discover a relatively small second order asymptotic bias of
θ̂SEL compared to that of θ̂CEL. The asymptotic bias considerations also provide an extra guide,
in addition to usual ones, to selecting the kernel k(x).

The first-order asymptotics of the SEL estimator is

√
T
(
θ̂SEL − θ

)
A= −ΞζT , ρ2

√
Tδ−1

T λ̂SEL
A= ΩζT , (2.2.13)

and θ̂ and λ̂ are first-order asymptotically independent (e.g., Smith 2000). To be more precise,
we have
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Lemma 3 Under assumptions 1–4,
√
T
(
θ̂SEL − θ

)
= −ΞζT + Op

(√
δT
T

)
, ρ2

√
Tδ−1

T λ̂SEL =

ΩζT +Op

(√
δT
T

)
, and E

[√
T
(
θ̂SEL − θ

)′
ρ2δ
−1
T

√
T λ̂SEL

]
= Op

(√
δT
T

)
.

2.3 Second order asymptotic bias of GMM and EL estimators

The analysis of second order bias is important. On the one hand, it allows one to evaluate how
big it is, and discriminate between alternative first order asymptotically equivalent estimators.
On the other hand, its knowledge permits one to construct analytical bias correction, as a
convenient alternative to computationally involved bootstrap (Efron and Tibshirani 1993) and
jackknife (Angrist, Imbens and Krueger 1999) bias corrections.

As argued by Rothenberg (1984), the expectation of the higher order term in the expansion
of an estimator of interest can be viewed as an approximate value of the bias of the estimate
in a finite sample, even when the corresponding order moments do not exist. In the Appendix
we derive the second order asymptotic biases of the GMM, CEL and SEL estimators when
assumptions 1–5 hold. Denote the jth column of the identity matrix by ej . The second order
bias of θ̂GMM is (omitting the order factor 1/T )

BGMM = Ξ
+∞∑
s=−∞

E
[
mtm

σ′
t Ωmt−s

]
− Σ

+∞∑
s=−∞

E
[
m′θtΩmt−s

]
+Ξ

k∑
j=1

E

[
∂mtm

σ′
t

∂θj
ΩV Ξ̄′ej

]
(2.3.14)

+Ξ

 +∞∑
s=−∞

E [mθtΞmt−s]− E

 k∑
j=1

∂mθt

∂θj

Σ
2
ej

 .

Note that if the first step estimator θ̄ comes from the efficient GMM (for example, if the weighting
matrix is iterated one more time or until convergence), then Ξ̄ = Ξ, ΩV Ξ̄′ = 0, and the third
term vanishes. From now on we will presume that θ̄ is efficient.

The second order bias of θ̂CEL is (omitting the order factor 1/T )

BCEL = Ξ
∑
|s|>q

E
[
mtm

σ′
t Ωmt−s

]
− Σ

∑
|s|>q

E
[
m′θtΩmt−s

]
(2.3.15)

+Ξ

 +∞∑
s=−∞

E [mθtΞmt−s]− E

 k∑
j=1

∂mθt

∂θj

Σ
2
ej

 .

The second order bias of θ̂SEL is (omitting the order factor 1/T )

BSEL =
(

1− ρ3

ρ2
2

)
Ξ

+∞∑
s1=−∞

+∞∑
s2=−∞

E
[
mtm

′
t−s1Ωmt−s2

]
(2.3.16)

+Ξ

 +∞∑
s=−∞

E [mθtΞmt−s]− E

 k∑
j=1

∂mθt

∂θj

Σ
2
ej

 .
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There are two common terms in the three formulas which are present even under exact
identification. Apart from those, the biases of θ̂GMM and θ̂CEL involve third moments of the
moment function and covariances of the score and the moment function. There are ”more”
(summation for all lags and leads vs. summation for lags and leads separated by more than q
periods) such terms of both types in θ̂GMM than in θ̂CEL. Since usually leading terms (i.e. that
correspond to small |s|) are larger than the tails of infinite sums, this means that the first two
terms in BGMM are likely to much exceed thos in BCEL. The bias of θ̂SEL has even ”more”
(double summation for all lags and leads vs. one finite summation and one infinite) terms
resulting from third moments. However, the double sum is multiplied by the factor

(
1− ρ3ρ

−2
2

)
which depends only on the choice of the kernel and may be manipulated with. In addition,
the bias of θ̂SEL does not have a component associated with covariances of the score and the
moment function. Thus, in situations with a nontrivial dependence the bias of θ̂GMM is likely
to exceed the bias of θ̂CEL, which is likely to exceed the bias of θ̂SEL. This is confirmed in our
simulations reported in the next section. Below, we analyze the formulas (2.3.14)–(2.3.16) more
thoroughly.

Observation 1: order factors All expressions (2.3.14)–(2.3.16) figure into the bias of
associated estimates of θ with the factor 1/T. This may seem surpising for the SEL estimator,
as smoothing may be expected to slow down the convergence rate. Nonetheless, even though
the smoothing does affect factors of the higher order expansion for λ̂SEL, it does not for θ̂SEL.

Observation 2: exact identification When the system of moment conditions is exactly
identifying, Ω is zero and thus

BGMM = BCEL = BSEL = Ξ

 +∞∑
s=−∞

E [mθtΞmt−s]− E

 k∑
j=1

∂mθt

∂θj

Σ
2
ej

 .

Observation 3: kernel smoother The first term in BSEL may be removed by a judicious
choice of the kernel function that satisfies ρ3ρ

−2
2 = 1. For the truncated kernel

k(x) =
1
2
, |x| ≤ 1, (2.3.17)

we have ρ2 = 1
2 , ρ3 = 1

4 , so the condition ρ3ρ
−2
2 = 1 is satisfied. For the Bartlett kernel

k(x) = 1− |x|, |x| ≤ 1, (2.3.18)

we have ρ2 = 2
3 , ρ3 = 1

2 , so the condition ρ3ρ
−2
2 = 1 is violated. For the Parzen kernel

k(x) =
{

1− 6x2 + 6|x|3, |x| ≤ 1
2 ,

2 (1− |x|)3 1
2 ≤ |x| ≤ 1,

(2.3.19)

we have ρ2 = 151
280 , ρ3 = 1979

4480 , so the condition ρ3ρ
−2
2 = 1 is violated. For the Tukey–Hanning

kernel

k(x) =
1 + cos(πx)

2
, |x| ≤ 1, (2.3.20)

we have ρ2 = 3
4 , ρ3 = 5

8 , so the condition ρ3ρ
−2
2 = 1 is violated. If fact, if only positive kernels

are considered, the only kernel that satisfies ρ3ρ
−2
2 = 1 is (2.3.17) due to the Cauchy–Schwartz
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inequality
(∫
k(x)2dx

)2 ≤ ∫ k(x)dx ·
∫
k(x)3dx. It is this smoother that was originally proposed

in Kitamura (1997) and Kitamura and Stutzer (1997), although the motivation was simplicity.
Not necessarily removing the term under consideration is good. Instead, it can be set to a

target value to offset other bias components, although hitting the target does not seem plausible
in practice. Typically the difference |1 − ρ3ρ

−2
2 | is pretty small (it equals 1

8 for the Bartlett
kernel, 23663

45602 ≈ .52 for the Parzen kernel, 1
9 for the Tukey–Hanning kernel).

Observation 4: scale parameter Suppose the moment restrictions identify only an ad-
ditive scale parameter. Then mθt is constant, ∂mθt/∂θj is zero and

BCEL = Ξ
∑
|s|>q

E
[
mtm

σ′
t Ωmt−s

]
,

BSEL =
(

1− ρ3

ρ2
2

)
Ξ

+∞∑
s1=−∞

+∞∑
s2=−∞

E
[
mtm

′
t−s1Ωmt−s2

]
.

In this situation BSEL may be set to zero by choosing a kernel for which ρ3ρ
−2
2 = 1, while BCEL

is not necessarily zero.

Observation 5: number of moment restrictions Newey and Smith (2000) establish
that in cross sectional models estimated by instrumental variables, the GMM type estimators
have a bias component that grows linearly with the number of instruments. This component
corresponds to the second term in the formula for BCEL which is absent from the bias for the
EL estimator in the IID context and from BSEL. It follows that the bias of the CEL estimator,
in contrast to that of the SEL estimator, may grow with the number of moment restrictions.

Observation 6: moment function is q-dependent If wt is q-dependent (i.e., wt and
wt−s are independent for any s > q), we have E [mtm

σ′
t Ωmt−s] = 0 when |s| > 2q, E [mθtΞmt−s] =

0 and E [m′θtΩmt−s] = 0 when |s| > q, so

BGMM = B + Ξ
∑
|s|≤2q

E
[
mtm

σ′
t Ωmt−s

]
− Σ

∑
|s|≤q

E
[
m′θtΩmt−s

]
,

BCEL = B + Ξ
∑

q<|s|≤2q

E
[
mtm

σ′
t Ωmt−s

]
,

BSEL = B +
(

1− ρ3

ρ2
2

)
Ξ
∑
|s1|≤2q

∑
|s2|≤2q

E
[
mtm

′
t−s1Ωmt−s2

]
,

where

B = Ξ

E [mθtΞmσ
t ]− E

 k∑
j=1

∂mθt

∂θj

Σ
2
ej

 .

There are more summands representing the third moments of the modent condition in the
formula for BSEL than in those for BCEL and BGMM , but they all can be eliminated by the
use of the truncated kernel. The formula for BGMM even in this situation includes covariances
between the score and the moment functions, which are now absent from BCEL.
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Observation 7: moment function is martingale difference Suppose that wt has a
martingale difference structure relative to own past, but is not IID across time. In this case the
CEL estimator is the same as the baseline EL estimator, while the SEL estimator still employs
kernel smoothing while it is not necessary. Then, if the truncated kernel is used for the SEL, we
have

BCEL = BSEL + Ξ
∑
s 6=0

E
[
mtm

σ′
t Ωmt−s

]
− Σ

∑
s 6=0

E
[
m′θtΩmt−s

]
,

BSEL = Ξ

 +∞∑
s=−∞

E [mθtΞmt−s]− E

 k∑
j=1

∂mθt

∂θj

Σ
2
ej

 .

The two infinite sums in BCEL are still present, while BSEL does not contain them. Thus we
observe a striking fact that smoothing the moment function when smoothing is not necessary
tends to reduce the bias!

Observation 8: IID sampling If wt is IID, E [mtm
σ′
t Ωmt−s] = 0, E [mθtΞmt−s] = 0 and

E [m′θtΩmt−s] = 0 when s 6= 0, so

BGMM = BCEL + ΞE
[
mtm

′
tΩmt

]
− ΣE

[
m′θtΩmt−s

]
,

BCEL = Ξ

E [mθtΞmt]− E

 k∑
j=1

∂mθt

∂θj

Σ
2
ej

 ,

BSEL = BCEL +
(
1− ρ3ρ

−2
2

)
ΞE

[
mtm

′
tΩmt

]
.

The additional component in BSEL is due to smoothing when there is no need to smooth.
Everything else coincides with formulae in Newey and Smith (2000).

2.4 Simulation evidence

2.4.1 Model and estimators

Previous simulation studies of EL type estimators occurred in Gospodinov (2002) who used the
baseline EL estimator in models with martingale difference errors, and in Gregory, Lamarche
and Smith (2002) who used the SEL estimator and found that it possessed higher bias than the
GMM estimator. The latter finding is surprising as it is at variance with the theoretical and
simulation results of the present paper.

We run simulations for the ARMA(1,1) model with GARCH(1,1) innovations. The primary
reason for choosing such a model is convenience. Firstly, the right hand side variable is en-
dogenous and correlated with the disturbance. Secondly, suitable lags of the right hand side
variable can be used as instruments, as is often done in practice. Third, it is easy to set ARMA
and GARCH parameters so that the time series behavior mimics that of many series found in
practice. On the other hand, the empirically non-relevant assumption of an ARMA model, that
the Wold innovation is a martingale difference relative to past data, is never exploited by the
estimators we consider.
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The model is
yt = µ+ αyt−1 + εt + θεt−1 (2.4.21)

εt = σtηt, ηt ∼ IID N (0, 1),

σ2
t = (1− γ1 − γ2) + γ1ε

2
t−1 + γ2σ

2
t−1, (2.4.22)

The object of interest is α, which is estimated with several moment condition based methods.
The moment condition is formed after choosing the vector of instruments

zt = (1 yt−2 · · · yt−1−`)
′

as
m (yt yt−1 yt−2 · · · yt−1−`, µ, α) = zt (yt − µ− αyt−1) .

In addition, some experiments are done with the following modification that allows higher-order
serial correlation structure:

yt = µ+ αyt−p + (1 + θL)pεt, (2.4.23)

where p is 1 through 6. The vector of instruments is

zt = (1 yt−p−1 · · · yt−p−`)′ ,

and the right hand side variable in (2.4.23) is put to yt−p in order not to reduce the relevance of
the instruments as p increases. To approximately match the time series properties of the variable
yt to real data, we set α = 0.5, θ = −0.8, γ1 = 0.1, γ2 = 0.8, which implies the unconditional
kurtosis equal 3.35.

The simulation experiments are performed in Gauss. Each experiment involves 5, 000 Monte
Carlo repetitions for sample sizes of 300 and 900. The estimators we compare are: efficient
GMM, CEL and SEL. In computing the SEL estimates we use the truncated, Bartlett, Parzen
and Tukey–Hanning kernels (2.3.17)–(2.3.20) and investigate the influence of the bandwidth rT
choice. When selecting the instrumental vectors, we set ` to 1 through 8 for T = 300, and to 1
through 10 for T = 900. The performance of the estimators is evaluated through comparison of
the means and root mean squared errors of the trimmed (see the following subsection) arrays of
simulated estimates.

2.4.2 Details of simulation and estimation

In each repetition we discard 1, 000 ”presampling” values that start from y−999 = 1, σ2
−999 = 1,

ε−999 = η−999. For the GMM estimates we use the following formulae. Let Y be the matrix of
regressands yt, X be the matrix of regressors xt = (1 yt−1)′ , and Z be the matrix of instruments
zt, then

(µ̂2SLS α̂2SLS)′ =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′Y

and
(µ̂GMM α̂GMM )′ =

(
X ′ZŴZ ′X

)−1
X ′ZŴZ ′Y

with the weight matrix Ŵ =
(
Q̂0 + Q̂1 + Q̂−1

)−1
, where Q̂0 =

∑T
t=`+2 ztz

′
tê

2
t , Q̂1 = Q̂′−1 =∑T

t=`+3 ztz
′
t−1êtêt−1, êt = yt − µ̂2SLS − α̂2SLSyt−1, if it is positive definite, and Ŵ = Q̂−1

0
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otherwise. To find CEL and SEL estimates we solve respectively the nonlinear systems (2.2.7)–
(2.2.8) where t runs from ` + 4 to T − 1 and (2.2.10)–(2.2.11) where t runs from ` + 3 + rT to
T −rT , using the EqnSolve subroutine from the library EqnSolve.src. If EqnSolve fails to find
the solution we set α̂CEL = α̂GMM or α̂SEL = α̂GMM , whichever applicable (the percentage of
such failures is very low).

For smaller T a certain proportion of estimates lie outside of [−1, 1], so some trimming scheme
is called for. According to one scheme, estimates are corrected by trimming near the boundaries
of the permissible region, which leads to pile-ups of estimates that give wrong impression of
estimate distributions. Another scheme used in the literature eliminates tails by cutting off
certain percentages of extreme observations. We use a slightly different procedure: we exclude
the estimators that lie outside of [−1, 1], which is natural to do in the context of a stationary
autoregressive model. In any case, the percentage of trimmings is very low (almost zero when
T = 900).

2.4.3 Results

The following first four comments are based on Figure 1, the other two – on Figures 2 and 3.
Figure 1 depict the mean and RMSE of trimmed GMM, CEL, and SEL (with the truncated
kernel and lag truncation parameter rT equal 3) estimates against the number of instruments
in the instrumental vector.

Traditional vs EL-based estimates The GMM estimator tends to be less volatile than
the CEL and SEL, at least for smaller sample sizes, but the difference in bias between the GMM
and SEL is much more pronounced, which is however not true when the GMM and CEL are
compared. As a result, the SEL estimator has a much smaller MSE than the GMM or CEL,
provided that the number of instruments is large enough.

Central tendencies Consider the bias properties of the estimators represented by plots
of the mean (TM) of trimmed estimates. The bias of the GMM estimator is big, and clearly
increases rapidly when the number of instruments rises. In contrast, the bias of the SEL esti-
mator does not have this drawback, exhibiting only slight increases. The CEL estimator lies in
between, the rise in bias being somewhet slower than that of GMM, but very pronounced. This
is a consequence of the presence of the last term in BCEL (see observation 5 in section 3).

Variance and MSE The favorable bias properties directly pass over to the MSE, and a
preferable estimator in terms of bias is usually preferable in terms of MSE, even though it may
be more volatile. In many cases the SEL estimator has greater variance than the GMM, but
thanks to its small bias the SEL estimator is always better in terms of MSE for ` big enough.
In fact, the TRMSE plots for the SEL tend to lie below those for the other estimators. For
the CEL estimator, in contrast, a small advantage in bias over the GMM is not a large enough
compensation for the variance gain.

Optimal utilization of instruments The plots of TRMSE against the number of in-
struments are U-shaped for all estimators reflecting the tradeoff between bias and variance. A
noticeable feature of the SEL estimator resulting from the bias behavior is that the TRMSE is
practically constant over a range of values of `. For example, equal TRMSEs result from setting
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` to 6 through 8 for T = 300, and to 7 through 10 for T = 900. The other estimators tend to
have a unique minimizer of the TRMSE. This minimizer is typically smaller than the optimal
range of values for the SEL estimator. This means that with the SEL it is possible to exploit
more information in the history of the process, without worrying about the exact location of the
optimal ` and fearing of overshooting it.

Kernel and bandwidth for SEL Figure 2 depict the mean and RMSE of trimmed SEL
estimates against the bandwidth rT for the truncated, Bartlett, Parzen and Tukey–Hanning
kernels (note that the Bartlett/Parzen/Tukey–Hanning kernel and rT = 1 yield the baseline
EL estimator), with the minimal number of instruments ` yielding superior results according to
previous evidence. It is easily seen that in bigger samples the statistical properties of estimates
are very close for different kernels, provided that the bandwidth is big enough. The truncated
kernel yields uniformly less biased estimates that the other kernels as our theory predicts. With
the truncated kernel, for T = 300 the bias is less pronounced the smaller the bandwidth, and
for T = 900 it is quite insensitive to the bandwidth choice. The ”optimal” value of rT with the
use of the truncated kernel equals 3 for both sample sizes.

Higher order serial correlation Figure 3 depicts the mean and RMSE of trimmed SEL
estimates against the order p of the MA part in (2.4.23) for several bandwidths rT for the
truncated kernel (which showed to advantage before), for the medium sample size T = 300 with
the number of instruments ` equal 6, an ”optimal” number according to previous evidence. It
is easily seen that when the order of serial correlation exceeds one, the statistical properties of
the SEL estimator become even less sensitive to a choice of the bandwidth.

2.5 Conclusion

In this paper we focus attention on precision of estimates and do not consider hypothesis testing.
Intuitively, favorable properties of the SEL estimator should carry over to the size properties
of the overidentification and other tests. This, together with an analysis of power properties,
deserves close attention. Another direction of research is analysis of stationary time series models
with serial correlation of infinite or unknown order. The SEL estimator will be the same, but
the CEL estimator will have to be adapted to this feature. Intuitively, the SEL estimator will
still have more favorable finite sample properties.

An obvious interesting extension is the analysis of even higher order terms in the stochastic
expansions of the estimators similar to what Newey and Smith (2001) do in the cross-sectional
context. This will require much more tedious computations but in reward will yield the expres-
sions for the higher order asymptotic variance and, as applied to the SEL, allow one to pin down
the optimal rate of convergence of the bandwidth and rules of choosing it in practice, in the
same manner as in Andrews (1991).

Finally, other members of the GEL class may be also considered. We conjecture that corre-
spondingly modified GEL estimators will inherit the bias properties of the modified EL estima-
tors. At the same time, some new features may arise since the bias of GEL estimators generally
involves more components than that of the EL estimator.
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2.6 Appendix

Let

∆∂m =
1√
T

T∑
t=1

(mθt −Q) , ∆mm =
1√
T

T∑
t=1

(
mtm

σ′
t − V

)
.

2.6.1 Preliminary lemmas

Lemma 4 If xt is mean zero strictly stationary and strong mixing process with mixing coeffi-
cients αj , and E

[
|xt|3ν

]
<∞ for some ν > 1, then for i, j > 0

|E [xtxt+j ]| ≤ 8α1−1/ν
j

(
E
[
|xt|2ν

])1/ν
and

|E [xtxt+ixt+j ]| ≤ 8α1−1/ν
max{i,j}

(
E
[
|xt|3ν

])1/ν
.

P roof. The mixing inequality (Hall and Heyde 1980, Corollary A.2) together with Hölder’s
inequality implies the result.

Lemma 5 Under assumptions 1–3, the following is true:

(a) E [∆∂mΞζT ] =
∑+∞

s=−∞E [mθtΞmt−s] + o (1)

(b) E [∆′∂mΩζT ] =
∑+∞

s=−∞E [m′θtΩmt−s] + o (1)

(c) E [∆mmΩζT ] =
∑+∞

s=−∞E [mtm
σ′
t Ωmt−s] + o (1)

(d) E
[
ΞζT (ΞζT )′

]
= Σ + o (1)

(e) E
[
ΩζT (ΞζT )′

]
= o (1)

(f) E
[
ΩζT

(
Ξ̄ζT

)′] = ΩV Ξ̄′ + o (1)

(g) E
[
ΩζT (ΩζT )′

]
= Ω + o (1)

P roof. (a)

E [∆∂mΞζT ] = T−1E

[
T∑
t=1

mθtΞ
T∑
τ=1

mτ

]
= T−1

T∑
t=1

T∑
τ=1

E [mθtΞmτ ] =

=
T−1∑

s=−(T−1)

(
1− |s|

T

)
E [mθtΞmt−s] =

+∞∑
s=−∞

E [mθtΞmt−s] + o (1)

by the Toeplitz lemma. Other results can be obtained in a similar way, noting that ΞV Ξ′ = Σ,
ΩV Ξ′ = 0 and ΩV Ω′ = Ω.
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Lemma 6 Under assumptions 1–4,
1√
T

T∑
t=1

mκ
t = ζT + ΨT , where ΨT = Op

(√
δT
T

)
and

E [ΨT ] = 0.

P roof. Using the symmetry of κ(s),

T∑
t=1

mκ
t =

T−2rT∑
t=1+2rT

mt + (m2rT +mT−2rT−1)
rT−1∑
s=−rT

κ(s) + · · ·+ (m1 +mT )κ(rT ),

so

√
TΨT =

T∑
t=1

mκ
t −

T∑
t=1

mt = (m2rT +mT−2rT−1)κ(rT )

+ (m2rT +mT−2rT−1) (κ(rT ) + κ(rT − 1)) + · · ·+ (m1 +mT )
rT∑

s=−rT+1

κ(s),

with E
[√

TΨT

]
= 0 and V

[√
TΨT

]
= Op (δT ) because the number of variances and covariances

is at most proportional to rT .

Lemma 7 Under assumptions 1–5, the following is true:

(a)
1√
T

T∑
t=1

(mκ
θt −Q) = ∆∂m +Op

(
δT√
T

)

(b)
1
T

T∑
t=1

∂mκ
θt

∂θj
= E

[
∂mθt

∂θj

]
+Op

(
δT
T

+
1√
T

)

(c)
1
T

T∑
t=1

mκ
tm

κ′
t = ρ2δ

−1
T V +Op

(
δ2
T

T

)
and

E

[
δT√
T

T∑
t=1

mκ
tm

κ′
t ΩζT

]
= ρ2

+∞∑
u=−∞

+∞∑
v=−∞

E
[
mtm

′
t−uΩmt−v

]
+O

(
δ2
T

T

)

(d)
1
T

T∑
t=1

(mκ
θtm

κ
it +mκ

tm
κ
θit) = ρ2δ

−1
T

+∞∑
u=−∞

E [mθtmi,t−u +mtmθi,t−u] +Op

(
δ2
T

T

)
and

1
T

T∑
t=1

(mκ′
θtm

κ
it +mκ′

θteim
κ′
t ) = ρ2δ

−1
T

+∞∑
u=−∞

E
[
m′θtmi,t−u +m′θteim

′
t−u
]

+Op

(
δ2
T

T

)
,

where i = 1, · · · , `

(e)
1
T

T∑
t=1

mκ
itm

κ
tm

κ′
t = ρ3δ

−2
T

+∞∑
u=−∞

+∞∑
v=−∞

E
[
mitmt−um

′
t−v
]

+Op

(
δ3
T

T

)

P roof.
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(a)

T∑
t=1

mκ
θt =

T−2rT∑
t=1+2rT

mθt + (mθ,2rT +mθ,T−2rT−1)
rT−1∑
s=−rT

κ(s) + · · ·+ (mθ,1 +mθ,T )κ(rT ),

so ∥∥∥∥∥
T∑
t=1

mκ
θt −

T∑
t=1

mθt

∥∥∥∥∥ ≤ 2rT ‖mθt‖+ (2rT + 1) · 2 ‖mθt‖
rT∑

s=−rT

|κ(s)| = Op (δT ) .

(b) Similarly to (a),
T∑
t=1

∂mκ
θt

∂θj
=

T∑
t=1

∂mθt

∂θj
+Op (δT ) .

But by the Law of Large Numbers and Central Limit Theorem for α-mixing sequences,

1
T

T∑
t=1

∂mθt

∂θj
= E

[
∂mθt

∂θj

]
+Op

(
1√
T

)
.

The desired result follows.

(c)

T∑
t=1

mκ
tm

κ′
t =

T∑
t=1

rT∑
s=−rT

κ(s)mt−s

rT∑
v=−rT

κ(v)m′t−v

=
T∑
t=1

(∑
s

∑
v

κ(s)mt−sκ(v)m′t−v

)
+Op

(
δ2
T

)
=

T∑
t=1

(∑
s

∑
u

κ(s)κ(s+ u)mtm
′
t−u

)
+Op

(
δ2
T

)
= ρ2

T∑
t=1

∑
u

κ∗(u)mtm
′
t−u +Op

(
δ2
T

)
.

Lemma 4 and assumption 1 imply that
∑

u |u|2
∥∥E [mtm

′
t−u
]∥∥ <∞. Let the characteristic

exponent (Parzen 1957) of k∗(x) be %, then

δT
T

T∑
t=1

∑
u

κ∗(u)mtm
′
t−u = V +

 Op

(
δ−%T +

√
δT /T

)
if % ≤ 2

op
(
δ−2
T

)
+Op

(√
δT /T

)
if % > 2

(Parzen 1957, theorem 5), so the first statement holds. Using lemma 4 and assumption 1,

E

[
ρ−1

2

T∑
t=1

mκ
tm

κ′
t

T∑
t=1

mit

]
=
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= E

[(
T∑
t=1

∑
u

κ∗(u)mtm
′
t−u +Op

(
δTm1m

′
1 + δ2

Tm1m
′
1+rT

)) T∑
t=1

mit

]

=
∑
u

E

[
T∑
t=1

κ∗(u)mtm
′
t−u

T∑
t=1

mit

]
+O

δT T∑
j=1

α
1−1/ν
j + δ2

T

rTα1−1/ν
rT

+
T∑

j=2rT

α
1−1/ν
j


=
∑
u

E

[
T∑
t=1

(
κ∗(u)mtm

′
t−umit +

∑
s

κ∗(u)mtm
′
t−umi,t−s

)]
+O

(
δ2
T

)
+O (δT ) .

Lemma 4 and assumption 1 imply that
∑+∞

u=−∞
∑+∞

v=−∞E
[
mtm

′
t−umi,t−v

]
< ∞. Then,

since
δT
T

∑
u

E

[
T∑
t=1

(
κ∗(u)mtm

′
t−umit +

∑
s

κ∗(u)mtm
′
t−umi,t−s

)]

=
+∞∑

u=−∞

+∞∑
v=−∞

E
[
mtm

′
t−umi,t−v

]
+ o (1) ,

the desired result follows.

(d) Similarly to (c).

(e) For any combination of indices i, j, l = 1, · · · , k we have

T∑
t=1

mκ
itm

κ
jtm

κ
lt =

T∑
t=1

rT∑
s=−rT

κ(s)mi,t−s

rT∑
s2=−rT

κ(s1)mj,t−s1

rT∑
s2=−rT

κ(s2)ml,t−s2

=
T∑
t=1

∑
s

∑
u

∑
w

κ(s)mi,t−sκ(u)mj,t−uκ(w)ml,t−w +Op
(
δ3
T

)
=

T∑
t=1

∑
s

∑
u

∑
v

κ(s)κ(s+ u)κ(s+ v)mitmj,t−uml,t−v +Op
(
δ3
T

)
= ρ3

T∑
t=1

∑
u

∑
v

κ∗∗(u, v)mitmj,t−uml,t−v +Op
(
δ3
T

)
,

where κ∗∗(u, v) = δ−2
T k∗∗

(
δ−1
T u, δ−1

T v
)
. Lemma 4 and assumption 1 imply that∑

u

∑
v (|u|+ |v|)

∥∥E [mitmt−um
′
t−v
]∥∥ <∞. Since the order % of k∗∗(x) is at least 1,

δ2
T

T

T∑
t=1

∑
u

∑
v

κ∗∗(u, v)mitmt−um
′
t−v =

+∞∑
u=−∞

+∞∑
v=−∞

E
[
mitmt−um

′
t−v
]
+Op

(
δ−1
T + δT /

√
T
)

(Rosenblatt and Van Ness 1965, theorems 4–5), and the desired result follows.

Proof of lemma 3. Using lemmas 6 and 7, we have the expansion of the FOC (2.2.10)–
(2.2.11) to the order Op

(
1/
√
T
)

Op

(
1√
T

)
= ζT + ΨT +Q

√
T
(
θ̂ − θ

)
− V ρ2δ

−1
T

√
T λ̂,

Op

(
1√
T

)
= Q′ρ2δ

−1
T

√
T λ̂,
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where the order terms follow from the higher order expansions in appendix 2.6.4, and the indexes
of estimates are dropped. Premultiplying the first equation by Q′V −1, adding the second and
expressing out

√
T
(
θ̂ − θ

)
and ρ2δ

−1
T

√
T λ̂, we get the first two results. By taking the expectation

of the product and noting that ΞV Ω = 0, we also get the third result:

E

[√
T
(
θ̂ − θ

)′
ρ2δ
−1
T

√
T λ̂

]
= −E

[
ΞζT ζ

′
TΩ
]

+Op

(√
δT
T

)
= Op

(√
δT
T

)
.

2.6.2 Second order asymptotic bias of GMM estimator

The first order asymptotics for the first step (possibly inefficient) estimator θ̄ is
√
T
(
θ̄ − θ

)
= −Ξ̄ζT + op (1) .

The second step GMM θ̂ has FOC(
1
T

∑
m̂θt

)′( 1
T

∑
m̄tm̄

σ′
t

)−1 1√
T

∑
m̂t = 0.

The first order asymptotics for θ̂ is
√
T
(
θ̂ − θ

)
= −ΞζT + op (1) .

The FOC has the expansion

0 =

 1
T

∑
mθt +

1√
T

k∑
j=1

1
T

∑ ∂mθt

∂θj

√
T
(
θ̂j − θj

)
+ op

(
1√
T

)′ ×
×

 1
T

∑
mtm

σ′
t +

1√
T

k∑
j=1

1
T

∑ ∂mtm
σ′
t

∂θj

√
T
(
θ̄j − θj

)
+ op

(
1√
T

)−1

×

×
(

1√
T

∑
mt +

1
T

∑
mθt

√
T
(
θ̂ − θ

)
+

1
2
√
T

k∑
j=1

1
T

∑ ∂mθt

∂θj

√
T
(
θ̂j − θj

)√
T
(
θ̂ − θ

)
+ op

(
1√
T

)
or

0 =

Q+
1√
T

∆∂m −
k∑
j=1

E

[
∂mθt

∂θj

]
e′jΞζT

+ op

(
1√
T

)′ V −1

×

I − 1√
T

∆mm −
k∑
j=1

E

[
∂mtm

σ′
t

∂θj

]
e′jΞ̄ζT

V −1 + op

(
1√
T

)
×

ζT +Q
√
T
(
θ̂ − θ

)
+

1√
T

−∆∂mΞζT +
1
2

k∑
j=1

E

[
∂mθt

∂θj

]
ΞζTΞζT ej

+ op

(
1√
T

)

46 EMPIRICAL LIKELIHOOD, GMM, SERIAL CORRELATION, AND ASYMPTOTIC BIAS



or

op

(
1√
T

)
= Q′V −1

(
ζT +Q

√
T
(
θ̂ − θ

))
− 1√

T
Q′V −1∆∂mΞζT +

1√
T

∆′∂mΩζT

− 1√
T
Q′V −1∆mmΩζT

+
1

2
√
T
Q′V −1

k∑
j=1

E

[
∂mθt

∂θj

]
ΞζTΞζT ej

− 1√
T

k∑
j=1

E

[
∂mθt

∂θj

]
ΩζT e

′
jΞζT

− 1√
T
Q′V −1

k∑
j=1

E

[
∂mtm

σ′
t

∂θj

]
ΩζT e

′
jΞ̄ζT .

Premultiplying by −Σ, expressing out
√
T
(
θ̂ − θ

)
, we find using lemma 5 that the components

of the second order bias are (omitting the order factor of 1/T ) are

Bm∂m = Ξ
+∞∑
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E [mθtΞmt−s]− Σ
+∞∑
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E
[
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]
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E
[
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t Ωmt−s

]
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Σ
2
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]
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k∑
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E

[
∂mtm
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t

∂θj
ΩV Ξ̄′ej

]
Summing up all components of the bias delivers (2.3.14).

2.6.3 Second order asymptotic bias of CEL estimator

The derivatives of the summands in the FOC (2.2.7)–(2.2.8) are:

∂
m

1 + λ′mσ

∂θ′
=

mθ

1 + λ′mσ
−

m · λ′mσ
θ(

1 + λ′mσ
)2 , ∂

m
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∂λ′
= − mmσ′(

1 + λ′mσ
)2 ,

∂
m′θλ

1 + λ′mσ

∂θj
=

∂m′θ
∂θj

1 + λ′mσ
λ−

m′θλ · λ
′∂m

σ

∂θj(
1 + λ′mσ

)2 , ∂
m′θλ

1 + λ′mσ

∂λ′
=

m′θ
1 + λ′mσ

−
m′θλ ·mσ′(
1 + λ′mσ

)2 .
Then we have the following expansion of the FOC:

op

(
1
T

)
=

1
T

T∑
t=1

mt +
1
T

T∑
t=1

mθt ·
(
θ̂ − θ

)
− 1
T

T∑
t=1

mtm
σ′
t · λ̂
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+
1
2

k∑
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1
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−
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1
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where ei denotes the ith column of the identity matrix.
Substituting (2.2.9) into the above expansion and using first order asymptotic independence

of θ̂ and λ̂, we have
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(
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)
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Premultiplying the first equation by Q′V −1, summing up the equations, and expressing out the√
T
(
θ̂ − θ

)
, we get

√
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)
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(
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.

Now we will compute various components of the second-order bias (omitting the order factor
of 1/T ) using lemma 5:

Bmmm = Bias

[
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]
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since

∑̀
i=1

E
[
mσ
itmtm

σ′
t

]
E
[
Ωmtm

σ′
t Ωei

]
=

∑̀
i=1

E
[
mσ
itmtm

σ′
t

]
ΩV Ωei

= E

[
mtm

σ′
t Ω

∑̀
i=1

mσ
itei

]
= E

[
mtm

σ′
t Ωmσ

t

]
.

Next,
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Finally,
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Summing up all components of the bias delivers (2.3.15).
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2.6.4 Second order asymptotic bias of SEL estimator

The derivatives of the summands in the FOC (2.2.10)–(2.2.11) are:

∂
mκ

1 + λ′mκ
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Then we have the expansion
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or, due to lemmas 6, 7(a)–(c), and 3,
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Premultiplying the first equation by Q′∂mV
−1, adding the second equation, expressing out
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, and computing the components of the second-order bias, we get (omitting the

order factor of 1/T ) using lemmas 5, 6 and 7(c),
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Expectations of the terms involving the interactions between
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√
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tribute, due to the third result in lemma 3, the bias of order Op
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)
, i.e. of smaller order.

Summing up all components of the bias delivers (2.3.16).
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3. BOOTSTRAP INFERENCE IN MULTI-
PERIOD PREDICTION PROBLEMS

3.1 Introduction

For linear prediction models a popular method of estimation and inference is OLS with stan-
dard errors corrected for serial correlation and sometimes conditional heteroskedasticity.1 The
correction is usually that of Hansen and Hodrick (1980), Newey and West (1987), or a modifica-
tion of these. It has been noticed more than once that asymptotic approximation works poorly
in typically available samples. For example, Mishkin (1990b) finds via simulations that cor-
recting for conditional heteroskedasticity can appreciably distort inference even when the data
are conditionally heteroskedastic. Thus, it is important to find more reliable tools of inference
specifically for this class of models. A natural candidate for this is the bootstrap (Efron 1979).
In this paper, we investigate the performance of various bootstrap resampling schemes in a sys-
tematic way with the help of Monte-Carlo simulations, with the forecasting horizon set equal to
2. Some bootstrap algorithms in the context of serially correlated errors have been explored in
the literature. For example, for long-run regressions Mark (1995) uses parametric and nonpara-
metric residual bootstrap under the null of no predictability to bias-adjust the OLS estimates
and to test the null, and notices severe size distortions in the asymptotic t-tests compared to the
bootstrap t-tests. Bose (1990) studies residual bootstrap in moving average models; Gospodinov
(2002) uses the grid bootstrap of Hansen (1999a) working with the ML estimator in an MA(1)
model with the MA root close to unity. Both Bose and Gospodinov, however, are interested in
inference about moving average coefficients. We are instead concerned with the inference about
coefficients in the conditional mean while serial correlation in the error is treated as a nuisance
feature.

Although a multiperiod prediction model may not necessarily be linear and also may involve
exogenous variables, we use a linear model without exogenous variables to isolate distortions
caused by the serial correlation structure of the error term. We set the slope parameter equal
to zero, which corresponds to the null hypothesis of no forecasting ability. The effects of nonlin-
earities and persistence on the bootstrap performance are extensively discussed in Kilian (1998,
1999). We tune the parameters of the Data Generating Process (DGP) so that the regression
error is conditionally homo- or heteroskedastic, with innovations that are serially independent
or only serially uncorrelated but dependent. This allows us to study the impact of prediction
error structure on bootstrap performance. As a measure of performance, we use rejection rates
for one-sided and symmetric two-sided tests of the null of zero value for the slope parameter
from bootstrapping the t-ratio, which is an asymptotically pivotal statistic.

Regarding the covariance matrix estimator, the structure of the model imposes zeroness
on the autocovariances beyond the lag corresponding to the prediction horizon, so a natural

1See, for example, Hansen and Hodrick (1980), Huizinga and Mishkin (1984), Blake, Beenstock and Brasse
(1986), Frankel and Froot (1987), Fama and French (1988), Mishkin (1990a), Lewis (1990), Estrella and Hardou-
velis (1991), De Bondt and Bange (1992), Chinn and Frankel (1994), Debelle and Lamont (1997), Lettau and
Ludvigson (2001).
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estimator is that of Hansen and Hodrick (1980), although many studies employ the Newey
and West (1987) estimator for the sake of its positive definiteness. Our simulations indicate
that the use of the Hansen–Hodrick estimator with a simple correction in case of its negativity
provides a much more precise rejection rates than the use of the Newey–West estimator, to say
nothing about a need to choose a truncation parameter in the latter case. Inoue and Shintani
(2001) consider performance of the block bootstrap (Carlstein 1986, Künsch 1989) when a HAC
variance matrix is used. Thanks to the a priori known autocorrelation structure of the moment
condition in our problem we can use a simpler estimator that is a function of sample averages,
which is known from the bootstrap literature to provide more precise rejection rates. When
employing the block bootstrap we can use correction factors described in Hall and Horowitz
(1996) and Andrews (2002) extended to the case where the sample size is not a multiple of the
block length. The correction factors are meant to correct for independence between blocks in
bootstrap samples which is absent in the original sample.

Beside the block bootstrap, we consider the residual bootstrap (Bose 1988) and the wild
bootstrap (Wu 1986). The residual bootstrap is ideal when the Wold innovation in the error
is a serially independent sequence, but we explore how critical this condition is when the error
does not have that ideal property. The wild bootstrap is expected to help in the case of a
conditionally on the history heteroskedastic error term. The block bootstrap is robust to the
presence or absence of such properties, but it invokes selection of an additional parameter. Our
simulation evidence shows that the residual bootstrap performs well even in situations where
the non-IID structure of Wold innovations in the error term is expected to contaminate the
inference. Small distortions caused by the presence of a strong conditional heteroskedasticity
are partly removed by the wild bootstrap. The use of either variation of the block bootstrap,
while being able to provide more precise rejection rates, is more problematic due to the need
to select a block length, exacerbated by the fact that plug-in rules for the optimal block length
suggested in the literature do not work well in practice. Thus, a higher degree of asymptotic
refinement delivered by residual based algorithms in comparison with that of block algorithms
(see Andrews 2002) may be said to dominate a somewhat faulty applicability of the residual
based resampling schemes in the multiperiod prediction context. In addition, the use of the block
bootstrap with correction factors is computationally far more intensive than that of alternative
schemes.

The rest of the paper is organized as follows. Section 2 characterizes the model and estimators
used, section 3 – three data generating mechanisms. Section 4 describes the residual, wild and
block bootstrap algorithms in relation to the model used. In section 5 simulation results are
reported and discussed. Section 6 concludes.

3.2 Model and estimator

The working model is that of two-step-ahead linear prediction:

yt+2 = α+ βyt + et+2, Et [et+2] = 0, (3.2.1)

where Et [·] ≡ E [·|σ (yt, yt−1, . . .)] . The true values of α and β are set to zero in all DGPs. The
zero value of β allows us not to be distracted by an autoregression bias that is often blamed for
unsatisfactory bootstrap performance (Kilian 1998, 1999, Berkowitz and Kilian 2000). We vary
properties of the DGP by varying features of the error term et+2.
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The estimator we concentrate on is the OLS estimator of β:

β̂ =
∑T−2

t=1 yt+2(yt − ȳ)∑T−2
t=1 (yt − ȳ)2

, (3.2.2)

where ȳ = 1
T−2

∑T−2
t=1 yt. The OLS estimator of α is α̂ = 1

T−2

∑T−2
t=1 yt+2− β̂ȳ. The residuals are

computed as ê1 = y1− α̂− β̂ȳ, ê2 = y2− α̂− β̂ȳ, êt = yt− α̂− β̂yt−2, t = 3, · · · , T . The estimate
of the asymptotic variance is set to

V̂ =

(
T−2∑
t=1

~yt~y
′
t

)−1(T−2∑
t=1

~yt~y
′
t (êt+2)2 (3.2.3)

+
T−3∑
t=1

(
~yt+1~y

′
t + ~yt~y

′
t+1

)
êt+2êt+3

)(
T−2∑
t=1

~yt~y
′
t

)−1

,

where ~yt = (1 yt)′ (we omit scalar factors like T since they are immaterial for the bootstrap).
Whenever the (2, 2) component is needed and it is negative, V̂ is modified by excluding the
covariance terms in the middle term of (3.2.3).

3.3 Data-generating processes

We consider the following types of structure of the error et in the DGP: a moving average with IID
innovations; conditionally homoskedastic with uncorrelated but not independent innovations;
conditionally heteroskedastic with an ARCH-type skedastic function. In all DGPs, we make the
error unconditionally leptokurtic, with the degree of leptokurtocity falling into a range that is
typical for financial data (Stambaugh 1993).

The simplest structure of the error occurs when it is a moving average with independent
innovations. We will call this DGP IID :

et+2 = wt+2 − θwt+1, wt+2 ∼ IID
√
.6t(5). (3.3.4)

The distributional specification of the innovation (scaled Student’s with 5 degrees of freedom)
implies the unconditional kurtosis of et equal κ = 9 − 12θ2/(1 + θ2)2. In our experiments, κ
varies from 6.0 to 8.1.

Another structure of the error implies exactly the same autocovariance function as DGP IID,
but the innovations are not independent. We will call this DGP UC :

et+2 = ut+2 − sgn(θ)ut+1 + vt+2, (3.3.5)
ut+2 ∼ IID

√
.6|θ|t(5), vt+2 ∼ IID

√
.6(1− |θ|)t(5),

and ut+2 and vt+2 are independent. The variance parameters of the disturbances ut+1 and vt+1

are set so that the variance and first-order autocovariance of et are the same in DGPs IID
and UC. The principal difference between error structures in (3.3.4) and (3.3.5) is that the Wold
innovation in (3.3.4) is an IID sequence (a structure that is ideal for the residual bootstrap), while
in (3.3.5) the innovation is a serially uncorrelated, but not independent, sequence2 (a structure

2Note that if the two disturbances were normal, the Wold innovations would be serially independent.
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that may potentially invalidate the residual bootstrap). The distributional specification implies
the unconditional kurtosis of et equal κ = 9−6(4|θ|(1−|θ|)2−θ2)/(1+θ2)2. In our experiments,
κ varies from 6.5 to 10.5.

Finally, we explore a conditionally heteroskedastic structure of the error which we will call
this DGP HS :

et+2 = µt+1 + ζt+2

√
ωt, µt+1 = δ (µt − et+1) , ζt+2 ∼ IID N (0, 1), (3.3.6)

where 0 < δ < 1 and the auxiliary process ωt may be specified in a variety of ways. It is easy
to see that Et[µt+1] = 0 and thus Et[et+2] = 0. The conditional autocovariance structure of
et+2 is: Et[e2

t+2] = ωt + δ2ωt−1, Et[et+2et+1] = −δωt−1. Since we design this DGP to explore
only the impact of conditional heteroskedasticity, we set δ to be time invariant, so that the
Wold innovation of et+2 is a martingale difference relative to the history. This, along with
the presence of conditional heteroskedasticity, distinguishes DGP HS from DGP UC. We make
ωt time-varying in the ARCH(1) spirit: ωt = 1 − αω(1 + δ2) + αωe

2
t , where 0 < αω < 1. Then

E[e2
t+2] = 1+δ2, E[et+2et+1] = −δ, so the implied moving-average coefficient is θ = δ. The fourth

moment of et exists if 3α2
ω(1 + αωδ

2) < (1 − 3α2
ωδ

4)(1 − αωδ2), and the implied unconditional
kurtosis of et is

κ = 3
(1− αω − αωδ2)(1 + αω − αωδ2)(1 + αωδ

2)
(1− 3α2

ωδ
4)(1− αωδ2)− 3α2

ω(1 + αωδ
2)

.

For a given value of θ (and thus δ), we put αω to be such that the unconditional kurtosis is
κ = 15.

3.4 Bootstrap Methods

3.4.1 Residual bootstrap

In the residual bootstrap (RB) one resamples the Wold innovation in the error treated as an
IID process (Bose 1990, Kreiss and Franke 1992). Denote by ε the innovation, then et+2 =
εt+2 − θεt+1. The innovation is indeed IID under DGP (3.3.4), but it is not under DGP (3.3.5)
or (3.3.6). It is important to know if the structure of uncorrelated non-IID Wold innovations,
on the one hand, or their conditionally heteroskedastic structure though with a martingale
difference property, on the other hand, may have a significant adverse impact on performance
of the residual bootstrap.

After the residuals êt, t = 1, · · · , T are computed, we restore estimates of the Wold innovations
ε̂t, t = 1, · · · , T in the following way. We compute an estimate of θ by the method of moments
imposing restrictions on a value of the correlation coefficient: θ̂ = −2ρ̂/(1 + (1 − 4ρ̂2)1/2),
where ρ̂ = min(.499,max(−.499, (

∑T−1
t=3 êtêt+1)/(

∑T−1
t=3 ê2

t ))). Then we calculate innovations:

ε̂t =
∑t−1

i=0 θ̂
i
êt−i, t = 1, · · · , T .

We then resample ε̂t from the original sample randomly, uniformly over t, with replacement.
Having obtained a bootstrap sample ε∗t , t = 1, · · · , T, we generate the e∗ and y∗ series recursively
as e∗1 = ε∗1, y∗1 = α̂+ β̂ȳ+e∗1, e∗2 = ε∗2− θ̂ε∗1, y∗2 = α̂+ β̂ȳ+e∗2, e

∗
t = ε∗t − θ̂ε∗t−1, y

∗
t = α̂+ β̂y∗t−2 +e∗t ,

t = 3, · · · , T. Using the bootstrap sample we obtain the bootstrap OLS estimator β̂
∗
, bootstrap

asymptotic variance estimate V̂ ∗ by (3.2.2) and (3.2.3) evaluated at the bootstrap sample, and

bootstrap t-statistic t∗β = (β̂
∗ − β̂)/s∗, where s∗ =

√
V̂ ∗2,2.
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3.4.2 Wild bootstrap

The wild bootstrap (WB) proposed by Wu (1986) helps to preserve the pattern of conditional
heteroskedasticity in bootstrap samples. In the context of an autoregression it was described in
Kreiss (1997) and applied, for instance, in Hafner and Herwartz (2000). We adapt the algorithm
to our MA(1) setting. The construction of a bootstrap sample is similar to that of residual
bootstrap, but instead of resampling the bootstrap innovations ε+

t , t = 1, · · · , T from the set
of estimated innovations ε̂t, t = 1, · · · , T , we obtain them by multiplying the latter by an IID
zero mean sequence ηt, t = 1, · · · , T having properties E[η2

t ] = E[η3
t ] = 1, i.e. ε+

t = ηtε̂t,
t = 1, · · · , T. Then we set e+

1 = ε+
1 , e+

2 = ε+
2 − θ̂ε

+
1 , e

+
t = ε+

t − θ̂ε
+
t−1, t = 3, · · · , T. A bootstrap

sample is generated recursively: y+
1 = α̂ + β̂ȳ + e+

1 , y+
2 = α̂ + β̂ȳ + e+

2 , y
+
t = α̂ + β̂y+

t−2 + e+
t ,

t = 3, · · · , T. From the bootstrap sample we obtain the bootstrap OLS estimator, bootstrap
asymptotic variance estimate and bootstrap t-statistic as in the residual bootstrap.

In our experiment, we use the following probability distribution for ηt: let (η1t, η2t) be
standard bivariate normal, then ηt = η1t/

√
2 + (η2

2t − 1)/2 (Mammen 1993).

3.4.3 Block bootstrap

The block bootstrap (BB) does not rely on a parametric structure of the error term. Instead,
it attempts to capture the true underlying DGP by resampling the original data in blocks.
We use both non-overlapping (NOL) (Hall 1985, Carilstein 1986) and overlapping (OL) (Hall
1985, Künsch 1989) versions of the BB. We correct the bootstrap t-statistics with the use of
correction factors (Hall and Horowitz 1996, Andrews 2002): t∗β = τβ

√
T (β̂

∗− β̂)/s∗, where τβ is
the correction factor. They are meant to correct for independence between blocks in bootstrap
samples which is absent in the original sample. We extend the formulae for the correction factors
given in Andrews (2002) to the case where the sample size is not a multiple of the block length.
There is some arbitrariness in how to form the last fragmentary block in a bootstrap sample. We
make the convention that a slightly lengthier bootstrap sample is drawn from the population
of only complete blocks from the original sample, and then it is cut at the end to have the
necessary length.

Let the block length be ` and denote b =
⌊
T−3
`

⌋
and B = T − 2 − `. We resample blocks

of length ` of row vectors ỹt = (yt yt+1 yt+2 yt+3), at each bootstrap repetition getting their
bootstrapped versions of the type ỹ∗t = (y∗t y

∗
t+1 y

∗
t+2 y

∗
t+3). Let % = (%1 %2) be the recentering

term to be defined shortly. The bootstrap OLS estimator of β is

β̂
∗

=
∑T−2

t=1 (y∗t+2y
∗
t + %2 − (y∗t+2 + %1)ȳ∗)∑T−2
t=1 (y∗t − ȳ∗)2

,

where ȳ∗ = 1
T−2

∑T−2
t=1 y∗t . The bootstrap OLS estimator of α is α̂∗ = 1

T−2

∑T−2
t=1 y∗t+2 +%1− β̂

∗
ȳ∗.

The bootstrap OLS residuals are obtained as usually. Denote ~y ∗t = (1 ỹ∗t ı1)′, ~y ∗t+1 = (1 ỹ∗t ı2)′,
ê ∗t+3 = ỹ∗t ı4 − α̂∗ − β̂

∗
ỹ∗t ı2, t = 1, · · · , T − 3, where ıi is ith unit vector. The bootstrap variance

estimator is computed as

V̂ ∗ =

(
T−2∑
t=1

~y ∗t ~y
∗′
t

)−1(T−2∑
t=1

(~y ∗′t ê
∗
t+2 + %)′(~y ∗′t ê

∗
t+2 + %)
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+
T−3∑
t=1

(~y ∗′t+1ê
∗
t+3 + %)′(~y ∗′t ê

∗
t+2 + %) + (~y ∗′t ê

∗
t+2 + %)′(~y ∗′t+1ê

∗
t+3 + %)

)(
T−2∑
t=1

~y ∗t ~y
∗′
t

)−1

.

A number of full blocks in the original sample is b for the NOL or B for the OL. The
bootstrap population consists of T − 3 pairs of observations (y1 y3), (y2 y3), · · · , (yT−3 yT−1).
The correction terms are3

% =
1

T − 2
1
b

b−1∑
i=0

T−2−b`∑
j=1

~y ′i`+j êi`+j+2

in the NOL case and

% =
1

T − 2
1
B

B−1∑
t=0

b∑̀
j=1

+
T−2−b`∑
j=1

 ~y ′t+j êt+j+2

in the OL case. The conditional (on the sample) variance of the asymptotic distribution of
β̂
∗ − β̂ is

Ṽ =

(
T−2∑
t=1

~yt~y
′
t

)−1

W̃

(
T−2∑
t=1

~yt~y
′
t

)−1

,

where

W̃ =
b−1∑
i=0

∑̀
j=1

∑̀
k=1

+
1
b

T−2−b`∑
j=1

T−2−b`∑
k=1

 (~y ′i`+j êi`+j+2 + %)′(~y ′i`+kêi`+k+2 + %)

in the NOL case, and

W̃ =
1
B

B−1∑
t=0

b∑̀
j=1

∑̀
k=1

+
T−2−b`∑
j=1

T−2−b`∑
k=1

 (~y ′t+j êt+j+2 + %)′(~y ′t+kêt+k+2 + %)

in the OL case. The second terms in these formulae are related to conditional (on the sample)
variance for the appendix of a bootstrap sample beyond full b blocks. The correction factor is

formed as τβ =
√
V̂22/Ṽ22.

3.5 Simulation results

We evaluate rejection rates for 5% size tests on the basis of 10, 000 simulations. Thus, the
estimates will have a standard error of approximately

√
5% · (100%− 5%)/10, 000 ≈ 0.22%. In

any single simulation loop, 500 repetitions are used to form a bootstrap distribution and read
off bootstrap critical values. We generate a time series for yt of T + 1, 000 observations with
zero starting values using a DGP of interest and discard the first 1, 000 observations.

3The recentering for the non-overlapping blocks scheme is usually ignored in theory, and the sample is artificially
slightly truncated. We do not do that because we do not want the original sample size (and thus the estimates)
to depend on the block length.
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Table 1 contains the results for the residual and wild bootstrap schemes, table 2 – for the
NOL, table 3 – for the OL block bootstraps. We report actual rejection frequencies for symmetric
two-sided (marked as β 6= 0) and right (marked as β > 0) and left (marked as β < 0) one-sides
alternatives, i.e. Pr{|tβ| > q∗5%}, Pr{tβ > q∗5%} and Pr{tβ < q∗5%}, where q∗5% is an appropriate
bootstrap critical value corresponding to nominal size 5%. We run the residual bootstrap for all
three DGPs, the wild bootstrap – for the DGP HS, and both variations of the block bootstrap
– for the DGPs UC and HS. We choose to consider sample sizes 30, 60, 120, 240, and MA
coefficients ∓0.3, ∓0.8, ∓0.95. This allows us to study the impact of sample length and strength
of serial correlation. In unreported experiments we tried to use the Newey–West HAC variance
estimator, which led to more significant size distortions; therefore we here concentrate on the
Hansen–Hodrick estimator correcting for negative definiteness as described earlier.

One can notice immediately that overall actual rejection rates are much closer to nominal ones
than those frequently encountered in other bootstrap simulation studies. This is a consequence
of linearity of the model and absence of autoregressive persistence. For the largest sample size,
most of size distortions fall in the range from 0% to 1.5% for symmetric two-sided alternatives
and from 0% to 3% for one-sided ones. The DGP IID has an ideal error structure for the
residual bootstrap, hence the corresponding numbers can be considered as lower bounds for size
distortions for other DGPs and bootstrap algorithms. However, the results for the DGP UC
are nearly identical to those for the DGP IID. For the DGP HS they are but slightly worse,
meaning that the actual rejection rates deviate from the nominal sizes by 0÷2% when T = 240,
1÷ 2.5% when T = 120, 1÷ 3% when T = 60, and 1÷ 5% when T = 30 This implies a perhaps
surprising fact: serial uncorrelatedness seems to be a guarantee against big distortions in the
residual bootstrap. The serial independence is not necessary, but conditional homoskedasticity is
desirable (recall though that the conditional heteroskedasticity is rather strong in the DGP HS).
Further, we can analyze what fraction of distortions caused by conditional heteroskedasticity can
be corrected by the use of the wild bootstrap. It turns out that this correction is not substantial
for smaller sample sizes, but when T exceeds 100 the rejection rates nearly straighten out and
are close to nominal sizes.

In tables 2 and 3 we explore the performance of block bootstraps applied to the DGP UC
and DGP HS. We employ correction factors as described earlier; without their use rejection
rates (not reported) tend to worsen appreciably. The block bootstrap requires selection of the
block length, the optimal rate for which is ` ∼ T

1
3 for both symmetric two-sided and one-sided

alternatives (Andrews 2002). In spite of equality of optimal convergence rates, in practice we
find that the block length for one-sided alternatives should be maintained consistently at smaller
values than for symmetric two-sided alternatives. In tables 2 and 3 we show the results for those
block lengths that provide least size distortions and are thus different for various alternatives.
By felicitous selection of a block length one can quite successfully reduce the distortion to zero
(except for one-sided alternatives and small sample sizes). However, the distortion being zero
is essentially a compromise between a usual slight overrejection and an arbitrary underrejection
because of a high block length, and a priori there is no solid basis for deciding at which ` that
compromise is realized. It seems easier, however, to control the optimal block length and attain
lower size distortions for the non-overlapping BB than for the overlapping BB. This somewhat
contradicts the usual econometric practice which prefers the latter to the former, although this
practice was evolving when correction factors were not used.

For reference, we here give the optimal block sizes implied for our DGP by the automatic
rule derived by Hall and Horowitz (1993) and cited in Maddala and Kim (1998). The formulae
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are

` =
(

(1− θ)2

θ

)− 2
3

T
1
3 and ` =

(
(1− θ)2

θ

)− 2
3
(

3
2
T

) 1
3

for the NOL and OL block bootstraps, respectively. The automatic rule yields block sizes that
are very sensitive to the serial correlation parameter, sometimes are ridiculously small (so that
their use would break serial dependence in bootstrap samples) or unattainably big (so that the
entire sample is not sufficient for one block). We find in our simulations that block sizes close
to optimal do not vary that much with the strength of serial correlation.

To summarize, the residual bootstrap performs well even in situations where the non-IID
structure of the error is expected to contaminate the inference much more. Small distortions
caused by the presence of a strong conditional heteroskedasticity are partly removed by the wild
bootstrap, while the use of either variation of the block bootstrap is more problematic due to
the need to select a block length, exacerbated by the fact that plug-in rules for the optimal
block length suggested in the literature do not work well in practice. Thus, higher degree of
asymptotic refinement delivered by residual based algorithms in comparison with that of block
algorithms (see Andrews 2002) may be said to dominate a somewhat faulty applicability of the
residual based resampling schemes in the multiperiod prediction context. In addition, the use
of the block bootstrap with correction factors is computationally far more intensive than that
of alternative schemes.

3.6 Conclusion

We have studied the performance of the bootstrap inference in small samples in a short horizon
linear forecasting model. The residual bootstrap performs well even in situations where the non-
IID structure of Wold innovations is expected to contaminate the inference. Small distortions
caused by the presence of a strong conditional heteroskedasticity are partly removed by the wild
bootstrap, while the use of either variation of the block bootstrap is more problematic because
of the need to select a block length, and in addition computationally more intensive.

A promising area of future research is extending the nonparametric procedure of Hansen
(1999b) that incorporates the conditional moment restriction with the martingale difference
structure into the bootstrap algorithm, to the problems with multiperiod restrictions. This
procedure would be most robust to the dependence structure of innovations.
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β≠0 β>0 β<0 β≠0 β>0 β<0 β≠0 β>0 β<0 β≠0 β>0 β<0
T θ
30 -0.95 6.8 6.7 8.6 6.7 6.5 8.1 8.5 7.8 9.8 7.5 6.2 9.2

-0.8 7.0 6.4 8.2 6.6 6.7 8.0 7.8 7.3 9.3 7.6 6.7 9.3
-0.3 6.1 6.3 7.8 6.0 6.8 7.8 6.3 7.8 7.7 6.7 7.2 7.9
0.3 5.4 6.3 6.2 5.1 6.3 6.3 6.4 7.3 6.7 6.5 6.5 7.3
0.8 5.9 6.5 6.5 5.7 6.6 6.3 6.7 6.5 7.9 6.4 5.2 8.1
0.95 5.4 6.0 6.6 5.1 6.3 5.8 7.1 7.0 7.8 6.6 5.7 7.7

60 -0.95 6.2 6.1 6.4 5.7 6.4 6.3 7.3 6.4 8.1 6.5 5.3 7.3
-0.8 5.9 6.1 6.6 5.9 6.0 6.6 7.2 7.2 7.5 6.3 5.9 7.2
-0.3 5.3 6.0 6.7 5.2 6.1 6.4 6.0 6.7 6.7 5.4 5.7 6.2
0.3 4.9 5.8 6.0 5.1 6.0 5.5 5.8 6.2 6.0 5.8 6.0 6.0
0.8 5.4 5.7 6.0 5.4 5.6 5.5 6.4 5.7 6.9 5.6 4.8 6.1
0.95 5.3 5.8 5.4 5.6 6.2 5.3 7.2 6.0 7.8 5.5 5.1 6.4

120 -0.95 5.3 5.9 5.5 5.5 5.7 6.0 6.9 6.8 7.3 5.8 4.9 6.5
-0.8 5.7 5.5 5.7 5.2 5.5 5.7 6.9 6.6 7.0 5.3 5.2 5.8
-0.3 5.4 5.8 6.3 5.2 5.5 5.5 5.9 6.7 5.9 5.3 5.6 5.6
0.3 5.5 5.5 5.1 5.6 5.7 5.2 5.5 5.4 5.8 5.2 5.0 5.3
0.8 5.2 5.6 5.4 5.5 5.4 5.6 6.6 5.4 6.8 5.3 4.5 5.9
0.95 5.3 5.3 5.2 5.3 5.3 5.5 6.8 5.9 6.7 5.6 4.6 6.2

240 -0.95 4.8 5.3 5.4 5.4 5.4 5.6 6.5 6.0 6.1 4.8 4.6 5.2
-0.8 5.2 5.3 5.1 5.6 5.6 5.9 6.2 5.8 6.0 5.6 4.7 6.0
-0.3 5.3 5.4 5.3 5.3 5.1 5.5 5.6 6.1 5.5 5.0 5.0 5.3
0.3 5.1 5.0 5.3 5.2 5.4 5.2 5.8 5.6 5.8 5.5 5.5 5.3
0.8 5.1 5.5 5.0 5.1 5.3 5.2 6.2 5.0 6.5 5.3 4.4 6.1
0.95 5.7 5.5 5.6 5.4 5.3 5.6 6.5 4.8 6.9 5.2 5.0 5.4

Table 1

Ha
Wild bootstrap

DGP HSDGP HS

Residual bootstrap

DGP IID DGP UC



l β≠0 l β>0 l β<0 l β≠0 l β>0 l β<0
T θ
30 -0.95 4 6.6 3 4.5 3 12.1 4 6.2 3 4.1 3 11.9

5 6.4 4 9.8 4 13.6 5 6.4 4 10.1 4 13.9
-0.8 4 6.1 3 4.8 3 11.9 4 6.2 3 3.9 3 12.2

5 6.3 4 9.7 4 12.7 5 6.4 4 10.4 4 13.2
-0.3 4 5.6 3 5.0 3 11.2 4 5.3 3 5.2 3 10.1

5 5.2 4 9.5 4 12.1 5 5.1 4 9.8 4 11.2
0.3 4 5.0 3 6.5 3 8.6 4 5.1 3 6.0 3 8.7

5 5.1 4 9.8 4 10.7 5 5.7 4 10.1 4 10.5
0.8 4 5.5 3 6.4 3 9.4 4 5.8 3 6.0 3 9.7

5 5.7 4 10.4 4 11.6 5 6.0 4 10.1 4 12.4
0.95 4 5.5 3 6.8 3 9.0 4 6.1 3 5.6 3 9.6

5 6.0 4 10.3 4 11.4 5 5.9 4 10.2 4 13.0
60 -0.95 4 5.7 4 5.3 4 8.6 4 5.7 4 5.0 4 9.3

6 5.5 5 6.1 5 8.4 6 5.4 5 6.2 5 9.4
-0.8 4 6.1 4 5.3 4 9.0 4 6.1 4 5.2 4 9.2

6 5.2 5 6.5 5 9.4 6 5.3 5 5.6 5 8.6
-0.3 4 5.2 4 5.6 4 8.1 4 5.0 4 5.3 4 8.1

6 4.9 5 6.5 5 8.5 6 4.5 5 6.3 5 8.2
0.3 4 5.2 4 5.8 4 7.8 4 4.7 4 5.8 4 6.7

6 5.0 5 6.7 5 7.8 6 4.2 5 6.9 5 7.8
0.8 4 5.1 4 6.1 4 7.4 4 5.3 4 5.8 4 8.1

6 5.1 5 6.4 5 8.1 6 5.1 5 6.2 5 8.9
0.95 4 5.0 4 6.2 4 7.0 4 5.1 4 5.4 4 8.0

6 5.2 5 7.4 5 8.2 6 5.3 5 7.0 5 8.4
120 -0.95 5 5.4 5 5.2 5 7.3 5 5.7 5 5.3 5 8.3

7 5.1 6 5.3 6 7.4 7 4.5 6 5.5 6 8.6
-0.8 5 5.1 5 4.8 5 7.2 5 5.0 5 5.1 5 7.6

7 5.0 6 5.4 6 7.1 7 4.8 6 5.6 6 7.9
-0.3 5 5.0 5 5.4 5 6.6 5 5.0 5 5.6 5 7.0

7 4.6 6 5.6 6 7.0 7 4.5 6 5.5 6 7.0
0.3 5 4.7 5 5.4 5 6.3 5 4.8 5 5.7 5 6.8

7 4.9 6 5.9 6 6.8 7 4.6 6 6.0 6 6.1
0.8 5 5.2 5 5.6 5 6.8 5 5.3 5 5.4 5 7.7

7 4.9 6 5.8 6 6.6 7 4.2 6 5.6 6 7.5
0.95 5 5.0 5 5.8 5 6.7 5 5.1 5 5.6 5 7.8

7 5.0 6 6.0 6 7.2 7 5.1 6 5.9 6 7.8
240 -0.95 6 5.0 5 5.0 5 7.0 6 5.1 5 5.1 5 7.2

8 5.3 6 5.0 6 6.7 8 4.8 6 5.4 6 7.7
-0.8 6 5.2 5 4.8 5 6.7 6 5.0 5 4.8 5 7.3

8 5.1 6 5.0 6 6.7 8 4.7 6 5.2 6 7.2
-0.3 6 4.8 5 5.0 5 6.4 6 4.5 5 5.2 5 6.4

8 4.9 6 5.2 6 6.3 8 4.7 6 5.3 6 6.4
0.3 6 5.0 5 5.1 5 6.0 6 4.6 5 5.2 5 6.2

8 4.7 6 5.6 6 5.6 8 4.8 6 5.2 6 6.3
0.8 6 5.1 5 5.2 5 6.4 6 4.6 5 5.2 5 6.5

8 5.0 6 5.7 6 5.8 8 4.8 6 5.3 6 6.9
0.95 6 4.9 5 5.4 5 5.8 6 4.8 5 5.1 5 7.1

8 5.1 6 5.2 6 6.6 8 4.4 6 5.3 6 7.3

DGP UC

Table 2

DGP HS

Nonoverlapping block bootstrap
Ha



l β≠0 l β>0 l β<0 l β≠0 l β>0 l β<0
T θ
30 -0.95 4 6.4 3 8.0 3 14.6 4 6.0 3 9.4 3 15.0

5 5.7 4 10.8 4 14.7 5 5.8 4 11.1 4 15.8
-0.8 4 5.8 3 8.3 3 14.2 4 5.8 3 8.9 3 15.5

5 5.9 4 10.8 4 13.9 5 6.0 4 11.6 4 15.7
-0.3 4 5.7 3 9.3 3 14.2 4 5.0 3 8.9 3 13.3

5 5.7 4 11.7 4 14.2 5 4.8 4 11.5 4 13.8
0.3 4 5.6 3 9.7 3 11.2 4 5.0 3 10.4 3 10.9

5 5.1 4 11.7 4 12.6 5 4.6 4 12.2 4 12.8
0.8 4 5.5 3 10.0 3 11.7 4 5.6 3 10.0 3 12.3

5 5.4 4 11.5 4 13.3 5 5.4 4 11.4 4 14.0
0.95 4 5.3 3 9.5 3 11.7 4 5.2 3 9.9 3 13.2

5 5.3 4 11.8 4 13.3 5 5.2 4 11.4 4 14.2
60 -0.95 4 5.8 3 5.9 3 10.4 4 5.4 3 6.0 3 10.7

5 5.5 4 6.9 4 10.9 5 5.4 4 7.5 4 11.3
-0.8 4 5.2 3 5.8 3 10.6 4 5.4 3 6.0 3 10.7

5 5.0 4 7.0 4 10.5 5 5.3 4 7.3 4 10.6
-0.3 4 5.1 3 5.9 3 9.7 4 4.3 3 6.0 3 8.9

5 4.3 4 7.5 4 10.3 5 4.4 4 7.4 4 9.6
0.3 4 4.2 3 6.9 3 8.1 4 3.9 3 7.0 3 8.1

5 4.5 4 7.5 4 8.4 5 4.5 4 7.5 4 8.4
0.8 4 4.7 3 7.2 3 8.5 4 4.6 3 6.9 3 9.1

5 4.6 4 7.3 4 9.2 5 4.8 4 7.0 4 9.2
0.95 4 4.8 3 7.3 3 8.9 4 4.9 3 6.7 3 9.9

5 4.8 4 8.2 4 8.8 5 5.1 4 7.1 4 10.3
120 -0.95 5 5.0 4 5.6 4 7.7 5 5.3 4 5.7 4 9.2

6 4.9 5 6.1 5 8.4 6 5.2 5 6.0 5 9.5
-0.8 5 4.7 4 5.5 4 8.3 5 5.2 4 5.6 4 8.7

6 5.1 5 6.2 5 8.0 6 4.8 5 5.9 5 8.8
-0.3 5 4.6 4 5.7 4 7.3 5 4.2 4 5.7 4 8.0

6 4.3 5 6.6 5 7.6 6 4.0 5 6.3 5 7.7
0.3 5 4.2 4 6.3 4 6.8 5 4.1 4 6.3 4 7.1

6 4.5 5 6.2 5 7.3 6 4.2 5 6.4 5 7.5
0.8 5 4.3 4 6.2 4 7.3 5 4.1 4 6.0 4 8.4

6 4.8 5 6.4 5 7.6 6 4.5 5 6.4 5 7.8
0.95 5 4.9 4 6.3 4 7.0 5 5.0 4 6.4 4 8.1

6 4.6 5 7.0 5 7.7 6 4.2 5 6.7 5 8.7
240 -0.95 6 5.0 5 5.4 5 7.5 6 4.7 5 5.3 5 7.8

7 4.5 6 6.0 6 6.6 7 4.6 6 5.7 6 8.1
-0.8 6 4.9 5 5.3 5 7.2 6 4.9 5 5.3 5 7.9

7 5.0 6 5.5 6 7.3 7 5.1 6 5.5 6 7.6
-0.3 6 4.7 5 5.3 5 6.3 6 4.2 5 5.5 5 6.8

7 5.1 6 5.9 6 6.4 7 4.5 6 6.0 6 6.3
0.3 6 4.8 5 5.4 5 6.2 6 4.2 5 6.0 5 6.2

7 4.5 6 5.8 6 6.3 7 4.5 6 5.7 6 6.2
0.8 6 4.5 5 5.9 5 6.5 6 4.8 5 5.8 5 7.3

7 4.6 6 6.0 6 6.1 7 4.5 6 5.8 6 7.5
0.95 6 4.7 5 5.9 5 6.1 6 4.5 5 5.5 5 7.5

7 4.7 6 6.1 6 6.7 7 4.5 6 5.8 6 7.9

DGP UC

Table 3

DGP HS

Overlapping block bootstrap
Ha



Trimmed Mean (TM)

Trimmed Root Mean Squared Error (TRMSE)

for T = 300 (left) and T = 900 (right)

Figure 1. Simulated statistics against the number of instruments l,
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for SEL with T = 300, l = 6 (left) and T = 900, l = 7 (right)

Figure 2. Simulated statistics against the lag truncation parameter rT,

Trimmed Mean (TM)

Trimmed Root Mean Squared Error (TRMSE)

0.47

0.48

0.49

0.5

1 2 3 4

0.16

0.21

1 2 3 4

0.49

0.5

0.51

1 2 3 4

0.07

0.12

1 2 3 4

Truncated Bartlett

Parzen Tukey--Hanning



for SEL and truncated kernel with T = 300, l = 6

Trimmed Root Mean Squared Error (TRMSE)

Trimmed Mean (TM)

Figure 3. Simulated statistics against the MA order p ,
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