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1. Introduction

The notion of market efficiency, broadly understood as impossibility of obtaining abnormal

returns, has been a subject of much discussion starting from the seminal paper by Fama (1970).

There are substantial difficulties in testing the hypothesis of market efficiency and despite the

vast amount of theoretical and empirical studies, decisive answer is yet to be found. The first

immediate difficulty is to define what can be considered as ”normal” return, i.e. to specify

the correct market model. But even after neglecting the possibility of time-varying risk premia

and ignoring all sorts of operational market inefficiencies, like transactions costs and infrequent

trading, when we are reduced to testing the constant expected returns property, it is still not

clear, how significant coefficients in regression-based tests can be transformed into profit. There

are a number of other caveats in the market efficiency testing, see Granger and Timmermann

(2002) for an excellent survey.

In the recent years there has been an increasing attention to the issue of the profitability

as opposed to a simple coefficient significance testing in the context of market efficiency, see

Pesaran and Timmermann (1995) for an analysis of the predictability of stock returns in the

context of its economic significance. The drawback of this approach is that the very fact that

some strategy was able to obtain an abnormal profit during a certain period of time does not

imply inefficiency, firstly because of potential data mining biases and secondly, due to difficulties

in testing the significance of these type of results.

The primary purpose of this thesis is to construct a formal forecast quality measurement tool

which in case of financial time series has a clear economic interpretation. This forecast quality

measure also allows us to construct a new test for the constant expected returns property.

In Section 2 we argue that the conventional measures, like MSPE are probably not the most

relevant in the context of financial time series. We introduce a simple trading strategy and

construct a new Hausman-type test in the spirit of Pesaran and Timmermann (1992) for the

constant expected returns property, which is based on the profitability of this trading strategy

over some ”flipping coin” portfolio.

In view of testing the constant expected returns property, we are interested in securing the

best performing model available, since it increases the power of our test. It is generally accepted

that various financial time series exhibit nonlinear patterns in their behavior. Abhyankar,

Copeland and Wong (1997) document numerous published results on nonlinearity testing in

financial data and it is noted that Brock-Dechert-Scheinkman(BDS) test almost invariably

rejects the null of i.i.d for the returns process. However, the question of whether it is possible
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to build an econometric model which is able to catch this nonlinearity to the extent of obtaining

good out of sample forecasts is yet unresolved. The bulk of the modelling attempts can be

roughly divided into two parts: parametric and non-parametric ones, each of which has its own

benefits and drawbacks. Parametric models usually enjoy a
√

n or even better convergence

rate but suffer from the possible misspecification. Non-parametric ones are free from the latter

disadvantage, but the rate of convergence is usually worse. In both cases most of the researchers

find that these models are unable to improve upon the simple out of sample forecast produced

from the usual assumption that financial data follows constant expected returns pattern.

The variety of the parametric methods employed in the literature is remarkable, but we men-

tion only some recent development: Aslanidis(2002) investigates the out-of sample forecasting

performance of various threshold models for the UK stock market indexes.

Among the nonparametric models of particular interest are the local linear regression tech-

nics: Numerous studies on stock market indexes [Hsieh(1991), LeBaron(1998)], exchange rates

[Meese and Rose (1990, 1991), Mizrach (1992), Diebold and Nason(1990), Satchell and Tim-

mermann(1995)] suggest that taking the mean squared prediction error (MSPE) as a measure of

forecast quality, it is impossible to improve significantly upon the simple ”no change” forecast.

On the positive side we mention Ramaswamy(1998) who argues, that MSPE is probably not

the right measure of the economic forecast quality and is able to improve upon the ”no change”

forecast in terms of profitability using a relatively simple nearest neighbor Nadaraya-Watson

estimator and Barinov et al(1999) who, among other estimators, investigate Nadaraya-Watson

estimator in view of speculative decision-making.

In Section 3 we outline the general local polynomial regression framework and suggest a new

empirical procedure for selecting bandwidth in the spirit of ”nearest neighbor” technics. The

procedure is rather specific for financial time series and is not supposed to have any outstanding

theoretical properties in general.

In Section 4 some Monte Carlo simulation is performed to assess this procedure. We find

that its performance in terms of classical measures approximately matches that of conventional

nearest neighbor approach.

In Section 5 we describe daily RTS and weekly SP500 data which were used in the empirical

part of our work and report some preliminary results. In particular, the results of the BDS test

applied to the residuals suggest a strong nonlinearity and provide an additional motivation for

the study of nonlinear models in our work.

In Section 6 the estimation results are reported and discussed. For both RTS daily and

SP500 weekly data we are able to reject the null of constant expected return. We find that the
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power of our test is significantly greater (in case of RTS data) and approximately equal to (in

case of SP500 data) to the power of the Pesaran and Timmermann test.

In Section 7 the results of the previous section are used to track the evolution of market

efficiency through time. For RTS data our results mostly agree with those encountered in the

literature and give evidence on the improving efficiency of Russian financial markets. For SP500

data we observe a non-trivial dynamics of the level of market efficiency throughout the last 50

years, in particular, we provide some evidence for the fact that it decreased substantially during

the last decade.

The author would like to thank his thesis advisor Stanislav Anatoliev for valuable discussions

concerning the material presented here.

2. Forecast evaluation and trading strategies

This section is the main theoretical contribution of this thesis. Based on the properly nor-

malized profitability of the simple trading strategy, which takes some model’s forecast as input,

we construct a new measure of the out-of-sample forecast quality and the test for the constant

expected returns property.

For motivating our model’s forecast quality measure, it is necessary to discuss possible goals

which the construction of such a model should pursue. Throughout the financial literature, the

most frequently used (and questioned) model of financial time series is that of constant expected

returns. The usual objective is, therefore, to build a model which will improve the quality of

one-step forecast over the ’naive’ forecast obtained via the above-mentioned models in terms

of a certain loss functional. The choice of this loss functional turns out to be a very interesting

subject. While we actually need certain structural market models to claim the impossibility of

improving MSPE or mean absolute prediction error (MAPE), the most reasonable assumption

is that of impossibility of obtaining a statistically significant profit in excess of the available

riskless rate. Hellström (1998) argues that ”trading” and ”statistical” forecast problem should

be separated and different quality measures should be used depending on what is the objective

for constructing a model. A more formal approach is found in Leitch, Tanner (1991) who

investigate the following question: ”why profit maximizing firms buy professional forecasts

when statistics such as MSPE or MAPE often indicate that a naive model will forecast about

as well?”. First they analyze the performance of several forecasting models(linear only) and

services for the three-month Treasury bill rate and it appears that although the ”naive” forecast

is the best in terms of conventional forecast quality measures, it is inferior to the professional
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service forecast in terms of the profit obtained via various trading strategies based on the

corresponding forecast. Splitting the data set into several periods they also find that the

correlation between the MSPE and profits is positive in most of the cases. Ramaswamy(1998)

also offers examples where the model with smaller MSPE is less profitable, and uses total return

over the investment period to formulate an optimization problem and to compute optimal

weights for the Nadaraya-Watson estimator.

Here we aim to unite the ”trading” and ”statistical” approaches and introduce a test for the

null hypothesis of the return series having a constant expectation with respect to a certain infor-

mation set It−1. The test is designed in the spirit of the directional accuracy test of Pesaran and

Timmermann (1992) and we outline its construction for the sake of completeness. The null hy-

pothesis of this test is the independence of yt and E[yt | It−1],where It−1 = {yt−1, yt−2...}.Clearly,

if this does hold, the success ratio, defined as

(2.1) SR =
1

T

T∑
t=1

I[0,+∞)(yt E[yt | It−1])

cannot differ much from the expected success ratio that would be obtained in case yt and

E[yt | It−1] are independent. The estimate of the latter, denoted SRI, can be expressed as

SRI = PP̂ + (1 − P )(1 − P̂ ), where P and P̂ are the shares of positive values among yt and

E[yt | It−1], correspondingly. The variances of SR and SRI are easily estimated and the test

statistic of the Hausman type is

(2.2) DA =
SR− SRI√

var(SRI)− var(SR)

is distributed as N(0, 1) under the null.

It should be noted, that the results of this test frequently get misinterpreted in the literature.

The actual H0 is independence of yt and ŷt|t − 1 at all lags and leads. Under the null of

independence of of yt and E[yt | It−1], the latter may by true only approximately and some

correction of the size of the test is needed, which is the subject of further research.

Our test is an extension of the test of Pesaran and Timmermann and is based on the out of

sample profitability of the trading strategy corresponding to an arbitrary forecasting model. By

trading strategy here we mean a rule which issues a buy signal if the next day return forecast

is greater than 0 and sell otherwise.

We start with a stationary time series yt (”returns”) and we are interested in testing the H0 :

E[yt | It−1] = const, where It−1 ⊃ {yt−1, yt−2...} is a certain information set. Suppose st ⊆ It−1
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is a stationary time series, which is used for issuing the trading signal of the form described

above. Strictly speaking, under the null we ask that sign st be independent from yt for all lags

and leads, however, just like in the case of the Pesaran-Timmermann test, the results appear

to be close to exact in case sign st is meaningful estimator of sign yt. Note that the signals of

the form ”buy if previous day return is positive and sell otherwise”, which are mimicked by

setting st = yt−1 are ruled out.

The expected daily return of the trading strategy based on this signal is E[sign(st)yt],and our

test is based on the following two estimators for this return, which are both consistent under

the null:

(2.3) AT =
1

T

∑
t

sign(st)yt

and

(2.4) BT = (
1

T

∑
t

sign(st))(
1

T

∑
t

yt)

Note, that AT represents an average daily return of this trading strategy, and BT can be

interpreted as an expected return of a ”flipping coin” strategy with the same proportion of

”buy” and ”hold” signals, as the strategy based on st. Under the null plim(AT −BT ) = 0 and

it remains to compute the variance of (AT −BT ).

Our approach is based on the idea of the Pesaran-Timmermann test: the estimator BT is

efficient under the null and inconsistent under the alternative, thus, Hausman-type considera-

tions are available. Unfortunately we were unable to prove this statement per se, so we resort

to the direct computation of the joint distribution of AT and BT .

(2.5) var(AT ) =
1

T
(E[sign(st)

2y2
t ]− E[sign(st)yt]

2) =
1

T
(E[y2

t ]− (2ps − 1)2
E[yt]

2)
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var(BT ) = E[(
1

T

∑
t

sign(st))
2(

1

T

∑
t

yt)
2]− E[(

1

T

∑
t

sign(st))(
1

T

∑
t

yt)]
2 =(2.6)

E[(
1

T

∑
t

sign(st))
2] E[(

1

T

∑
t

yt)
2]− E[

1

T

∑
t

sign(st)]
2
E[

1

T

∑
t

yt]
2 =

(var[
1

T

∑
t

sign(st)] + E[
1

T

∑
t

sign(st)]
2)(var[

1

T

∑
t

yt] + E[
1

T

∑
t

yt]
2)− (2ps − 1)2

E[yt]
2 =

(
4

T
ps(1− ps) + (2ps − 1)2)(

1

T
E[y2

t ] +
T − 1

T
E[yt]

2)− (2ps − 1)2
E[yt]

2 =

E[y2
t ](

1

T
(2ps − 1)2 +

4

T 2
ps(1− ps)) + E[yt]

2(− 1

T
(8p2

s − 8ps + 1)− 4

T 2
ps(1− ps))

cov(AT , BT ) = E[(
1

T

∑
t

sign(st)yt)(
1

T

∑
t

sign(st))(
1

T

∑
t

yt)]−(2.7)

E[(
1

T

∑
t

sign(st)yt)] E[(
1

T

∑
t

sign(st))(
1

T

∑
t

yt)] =

1

T 2 E[y2
t ] +

T − 1

T 2
(2ps − 1)2

E[y2
t ] +

T − 1

T 2 E[yt]
2 +

(T − 1)2

T 2
(2ps − 1)2

E[yt]
2 − (2ps − 1)2

E[yt]
2 =

E[y2
t ](

1

T
(2ps − 1)2 +

4

T 2
ps(1− ps))) + E[yt]

2(− 1

T
(8p2

s − 8ps + 1)− 4

T 2
ps(1− ps)) = var(BT )

Thus, indeed, var(AT − BT ) = var(AT ) − var(BT ) = 4ps(1 − ps)
T−1
T 2 var(yt) and it follows,

that under the null the following estimator of var(AT −BT ) is valid:

(2.8) V̂ (AT −BT ) = 4
1

T 2
p̂s(1− p̂s)(

∑
t

(yt − ȳ)2).

The test statistic is constructed in a standard way and under the null we have

(2.9)
AT −BT

V̂ 1/2(AT −BT )

d−→ N(0, 1)

This statistic will be referred to as ”profitability statistic”.

Finally, note that the better our forecasting model is, the greater the expected value of this

statistic under alternative hypothesis will be, thus, in view of increasing the power of our test

we are interested in securing the best model available.

Under the assumption of a constant risk premia and no operational market imperfections,

these kind of tests are usually referred to as tests of ”informational market efficiency”. In

particular, if we take It = {yt, yt−1...}, we obtain a test of the ”weak form market efficiency”,

and if we add to It some other variables publicly known as of the moment t − 1, a test of
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the semi-strong efficiency of the market will be obtained. The notion of informational market

efficiency can be interpreted as a statistically testable proxy for the market efficiency per se,

that is the impossibility of obtaining abnormal profits on the basis of some information. The

main benefit of our approach to testing informational market efficiency is that unlike regression-

based or volatility tests it is based on the out-of sample forecasting profitability thus not only

is free of ”spurious regression”-type biases but also shows direct connections to the underlying

notion of market efficiency.

3. Local polynomial regression

In this section we outline the general local polynomial regression framework and describe our

bandwidth selection procedure.

First we fix some notations. For the model

(3.1) yt = m(yt−1, yt−2...yt−k) + εt

we denote zt = (yt−1, yt−2...yt−k)
′, zt,i = yt−i. The forecast at a point z produced by local

polynomial regression can, in the most general form, be written out using the solution to the

following minimization problem

(3.2)
t−1∑

s=k+1

(ys − Pl(z − zs))
2K(z − zs, h(z)) → min

Pl

,

where Pl is a polynomial of degree l, K is a kernel function and h(z) is a (possibly non-scalar)

bandwidth. The coefficients of Pl are estimated straightforwardly by GLS and the estimated

intercept of this polynomial is the point forecast ŷ(z). In this paper we are mostly interested

in the case when the number of lags k can be greater than 1, thus fitting polynomial of degree

higher than 1 becomes cumbersome. Moreover, in view of the point forecasting problem fitting

polynomials of higher order is also not crucial. Thus, the minimization problem becomes

(3.3)
t−1∑

s=k+1

(ys − α− (z − zs)
′β)2K(z − zs, h(z)) → min

α,β

There is a substantial amount of subjectivity in the treatment of the K(z − zs, h(z)) term

above.

The selection of the underlying one-dimensional kernel function is certainly not the most

important choice to be made, since the loss of effectivity due to the non-optimal kernel function
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selection is negligible. In the empirical literature the most commonly used kernels are uniform,

triangle, tricube and standard normal.

In case k > 1 we have to choose the way of constructing multidimensional kernel functions

out of one-dimensional ones. There two main ways to do that.

First, product kernel functions:

(3.4) K(z − zs, h(z)) =
k∏

i=1

K (
zi − zs,i

hi(z)
)

Second, norm kernel functions:

(3.5) K(z − zs, h(z)) = K (

∥∥∥∥(
z1 − zs,1

h1(z)
,
z2 − zs,2

h2(z)
, ...

zk − zs,k

hk(z)
)

∥∥∥∥),

where by‖•‖we denote any norm on Rk and K is a one-dimensional kernel function.

It appears that the most important choice concerns the way the function h(z) is constructed.

In case of financial data we have excessively non-uniform design of the regressor space, which

means that adjusting bandwidth to the boundary of the regressor space becomes crucial. Indeed,

it is clear that in this case the variance term plays the main role near the boundary. This

is especially true in case of local linear regression, where we have a better control over the

boundary bias, thus increasing bandwidth near the boundary in view of decreasing the variance

appears to be reasonable. Thus it can be suggested that various global bandwidth selection

technics, including crossvalidation, are not likely to be the best choice in this case. Other

problems arise when we switch to the multidimensional locally linear regression, since we have

to increase bandwidth at the boundary of the regressor space for each of the regressors, the

latter complication usually being ignored.

A family of the ”nearest neighbors” algorithms offers a possible solution to this problem.

The idea is that the optimal bandwidth function h(z) which is supposed to catch the behavior

of the regressors in the neighborhood of z can be estimated using the set of k nearest neighbors

of z among the available sample. More precisely, first, the set of neighbors of the point z is

selected according to a certain metric, and then every component of the function h(z) is set to

equal the distance from the point z to its farthest neighbor or some other measure of this set

of neighbors.

Nearest neighbor methods appear to be the most popular in the empirical literature, since

unlike various global bandwidth selection methods they at least allow for the automatic band-

width adjustment at the boundary of the regressor space. Another reason is offered by Cleveland
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and Loader(1996b), who note that these methods offer control over the number of points being

smoothed, which is convenient from the practical point of view. In Cleveland and Loader(1996a)

it is also argued that there seems to be a substantial gap between the recommendations of the

asymptotic theory and the problems encountered in finite samples. In particular, the global

bandwidth selection turn out to perform worse than the nearest neighbors methods in practice,

which contradicts the asymptotic theory.

Before describing the contribution of the current paper we record the usual settings of

this algorithm encountered in the empirical work. Diebold and Nason(1990), Meese and

Rose(1990,1991) use tricube kernel, Euclidean norm kernel function and the distance to the far-

thest neighbor as the bandwidth, while the number of neighbors is selected manually. Mizrach

(1992) and Barkoulas, Baum(1996) employ triangle kernel, Euclidean distance and the sum

of distances to all neighbors as the bandwidth, while the number of neighbors is also selected

manually. It should be noted that in the latter case the actual weight system is not a continuous

function of the distance from z, since observations not belonging to the set of neighbors are

assigned a zero weight, while the weight for the farthest of neighbors is non-zero.

Here we propose an algorithm which is based on the following observation: Suppose that

one of the components of z, say, zi, is relatively close to the boundary of the corresponding

one-dimensional regressor space. It is natural to assume, that in this case the corresponding

component of the optimal bandwidth, hi(z), should be greater than in the case when zi is in the

interior of the regressor space. Although this observation appears to be widely discussed in the

literature on kernel density estimation since mid-sixties, there are few results in the case of local

linear regression. We mention Yang and Tschering(1999) who use elaborate plug-in technics

to estimate the optimal bandwidth vector. The nearest neighbors procedure also allows one to

take this into account and we propose two variants of the algorithm (which may well be known

in case of density estimation).

1. Set Xk(z) to be the set of k nearest neighbors of the point z in the L∞ metric. Set

(3.6) hi(z) = sup
h∈Xk(z)

(|zi − hi|)

2. Let Xk,i(z) be the set of k nearest neighbors for the point zi among zs,i. Set

(3.7) hi(z) = sup
h∈Xk,i(z)

(|zi − h|)

A thorough evaluation of this proposals in the general prediction context falls out of the scope

of this paper, and it should be noted that here we have no hope for the asymptotic optimality
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of this selection in the general case, since the information about the dependent variable is not

used in the selection of h. Some simulation study results are provided in the next section.

Here we just make some comments concerning their possible relevancy to the financial time

series prediction task. It is well known that a substantial and easy detectable nonlinearity is

present in these series. The fact that this easily detected nonlinearity so far haven’t resulted in

a creation of good prediction model can be explained in different ways. One of the explanations

provided by Diebold and Nason (1990) is that the outliers may cause linearity test to reject

the null, while being useless for the out of sample prediction. Here we propose a different view

on the same point. It is natural to assume that the degree of market efficiency is not constant

in time as is our ability to predict its behavior. Moreover, outliers in returns series correspond

to the moments in time, when the market is likely to be less efficient. An easy example is a

news under/overreaction, when the big market moves happen not only directly after the news

announcement, but also for some time after, which clearly contradicts the market efficiency

hypothesis. Thus, in view of the profitability of the corresponding trading strategy, improved

prediction quality in these cases seems to be more important, thus providing the rationale for

the proposed algorithms.

4. Simulation study

Our goal is mainly to compare the performance of the proposed bandwidth vector selection

procedure and the classical nearest neighbors approach, but we also report the results of other

kernel estimators.

We consider the following model with a simple nonlinearity in one of the variables:

(4.1) yn = x1,nI[0,+∞)(x1,n) + x2,n + x3,n + εn

where (x1,n, x1,n, x3,n) are i.i.d. and distributed as N(0, 100) and εn is independent of x’s and

is distributed as N(0, 100). The sample size is 100 and the number of Monte-Carlo repetitions

is 100. The quality of forecast is estimated as MSPE computed over the points zm, where the

first coordinate ranges from −20 to 20 with the step equal to 0.4 (101 points in total) and the

other coordinates are zero. The parameters of the algorithms were chosen ex post optimal, to

ensure that all of the estimation methods are in the same conditions.

The results are reported in Table 1 below. The following should be noted: since the model

itself is locally linear, all of the local linear regression estimators perform much better than the

Nadaraya-Watson estimator due to the zero bias. The performance of the procedure suggested
13



in Alg.2 is unsatisfactory, probably due to the fact, that it goes too far in dealing separately

with each of the regressors, thus the control over the actual number of points being smoothed is

weak. The best performing model in terms of MSPE is the classical nearest neighbors approach,

but the difference among the remaining three models is not very significant.

5. The data and estimation settings

We analyze the RTS stock market index for the period 01.09.1995-18.04.2003 (1909 observa-

tions in total). This index is a basic and most frequently used indicator of the Russian stock

market. As of 01.01.2003 it is comprised of the dollar prices of 59 shares of Russia’s 35 leading

companies, weighted according to their capitalization and expressed in terms of the initial pe-

riod value. The detailed information concerning the way it is computed and the data itself are

available via www.rts.ru.

The alternative index, MICEX, accounts for only 18 most liquid stocks and is denominated

in roubles, thus it is less suitable for our needs.

We also use weekly data on SP500 stock market index for the period 03.01.1950-05.05.2003

to investigate, how sensitive our results are to the choice of dataset.

To obtain stationarity we take first differences of the logarithms of the index.

As was noted in the construction of the market efficiency test in Section 2, we are interested

in securing the best performing model, since it increases the power of our test. Thus, it seems

reasonable to report the results of the BDS test for the raw returns and the residuals of the

simple linear model and see whether they call for the nonlinear models to be considered. The

results for the RTS data are presented in Table 2. Not surprisingly, it can be seen that AR

model fails to detect the dependence in the data caught by the BDS test, i.e. building a

nonlinear model appears to be reasonable.

We employ various nonparametric kernel estimators and use linear model predictions as

benchmarks. Parameters selection, in particular, bandwidth choice is known to be very impor-

tant step in choosing the appropriate nonparametric model.

The kernel function was chosen to be usual standard normal, since the theoretical efficiency

loss due to this selection (comparing to Epanechnikov kernel) is negligible (cf., for example,

Härdle(1990), section 4.5) and, moreover, it allows for the smaller global bandwidth to be

chosen due to the unbounded support.

In the multivariate case the product kernel was used.
14



The global bandwidth in the case of Nadaraya-Watson estimator and local linear regression

was chosen quite arbitrarily. Crossvalidation produces rather unstable results which, when

finite, didn’t differ much from the finally selected bandwidth. On the other hand, excess manual

parameter tweaking may result in data-snooping biases (cf., for example, Lo and MacKinlay

(1990)).

In case of the nearest neighbors local regression we employed the first of the algorithms of

bandwidth selection described in the previous section. The number of neighbors selected by

the crossvalidation again tends to be greater than optimal, thus the number of neighbors was

manually selected to equal 10 or 100.

The number of lags was chosen to be equal to 5 in case of daily RTS data and 1 in case of

weekly SP500 data, since in the latter case it is hard to expect any dependence for the lags

beyond the first one. We assess the quality of the one step forecast using rolling regression with

block of constant length equal to 300 (1909-1-5-300=1603 predictions in total) in case of RTS

data and 104, i.e. two years (2783-1-1-104=2677 predictions in total) in case of SP500 data.

Finally, in the construction of the ’profitability statistic’ defined in section 2, we are setting

st = ŷt, where ŷt is the forecast produced by the corresponding model.

6. The results

The estimation results are reported in the Table 3. Linear model and ’naive’ forecast are

used as benchmarks to estimate the accuracy of forecasts produced by the Nadaraya-Watson

estimator and various types of local linear regressions. We use either a global scalar bandwidth

or Alg. 1 for the bandwidth vector selection described in Section 3. The empirical results of

Alg. 2 are somewhat worse, probably due to the low control over the actual number of point

weighted and are not reported (but are available upon request).

The first thing to be noted is that no model succeeded in improving over the forecast from

the RW hypothesis in terms of MSPE. This is in line with the results encountered in the

literature. However, the results of the directional accuracy test of Pesaran and Timmermann

(1992) suggest a strong predictability even in the case of the usual linear model. The results

become even more impressive if we take into account the profitability of the trading strategy

based on the corresponding models. The last column in Table 3 reports the values of the

profitability statistic which are highly significant in most cases (note, that raw cumulative

returns, while being impressive, should be taken with a grain of salt, especially in case of

RTS data, since transaction costs and market restrictions are taken into account.). Just as
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our simulation result suggest, the usual nearest neighbor algorithm tends to perform better in

terms of MSPE than Alg.1. However, other forecast quality measures, like directional accuracy

and profitability statistic speak in favor of our method. (Note, that in case of SP500, where we

took only 1 lag of y, there is no difference between our bandwidth selection algorithm and the

classical procedure, hence, the results are the same).

Fig. 1 and Fig. 2 show the graphs of the log cumulative returns (in case of h=0.03 and n=10)

of the portfolios based on various forecasting models and our simple trading strategy. For the

case of RTS index the trading strategies based on the different forecasting models turn out to

be ordered according to our perception of their relative power. The best performing one is the

local linear regression with the bandwidth chosen according to the Alg.1, then comes local linear

regression with global bandwidth, Nadaraya-Watson with global bandwidth and a linear model.

The only difference in case of SP500 is that Nadaraya-Watson estimator underperformed all

linear and local linear estimators, which could be explained by the fact that it belongs to the

class of locally constant estimators, thus, in case linear models are a better proxy for the true

market model, this estimator has a substantial bias at the boundary of the regression space,

which is the most crucial region for the profitability.

Apparent similarity between the graphs of log cumulative returns should be noted. The

periods where the gains from the trading strategies are the most evident are the same for all

strategies, which suggests that the results of our test are relatively robust to the choice of the

forecast model.

It can clearly be seen, that the constant expected returns hypothesis for the daily returns of

the RTS index as well as weekly returns of SP500 index is strongly rejected. It is interesting to

observe, that while MSPE tends to decrease when h or the number of neighbors increases, other

forecast quality measures behave differently. This can be explained by the following: taking

the smaller number of neighbors (smaller h) is actually much more in the spirit of “finding

similar prehistories” idea, i.e. is more likely to allow us to catch certain subtle dependencies in

the data. In this case outliers can strongly influence the quality of the forecasts, as measured

by MSPE. However, DA and “profitability” statistics are influenced by the prediction errors

only to the extent that they may change the sign of the prediction, i.e. they are more robust.

A possible explanation for the apparent impossibility of a significant improvement of MSPE

out of sample can be suggested: Even if the data does contain predictable nonlinearity, it

is clear that the stochastic component, which can not be predicted, dominates the data (cf.
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Abhyankar et al(1997)), hence, its variance dominates the MSPE. Properly normalized out-of-

sample profitability is free from this drawback and may be suggested as a right measure for the

forecast quality in case of financial data.

7. The evolution of market efficiency

The raw results of the previous section, i.e. the daily return series of portfolios based on

various trading strategies can be used not only for testing the hypothesis of market efficiency

over the whole period, but also for tracking the evolution of market efficiency through time.

This is obtained by computing the profitability statistic over all subperiods of fixed length of our

sample. The length of this subperiod should be chosen to satisfy the following two conditions:

it should not be too small, to include too much noise, and it should not be too large, to smooth

out some interesting details. For the case of RTS daily data the compromise was obtained at

the block length equal to 250, which corresponds to 1 year, and for weekly SP500 data, 520,

which corresponds to 10 years. It is natural to choose the best performing model in terms of

the profitability statistic, thus only the results for the case of the local linear regression with

the bandwidth selected according to the Alg.l are reported.

The results for RTS and SP500, along with upper 5% confidence bands are reported in Fig

3 and 4, correspondingly. Note, that market inefficiency at a point in time is unobservable, so

the values of the functions at each point, i.e. the values of the profitability statistic over some

period of 1 year (10 years), should be interpreted as the measure of market inefficiency over

the corresponding period. We are mostly interested in global minima and maxima, which are

likely to account for structural breaks in the market efficiency.

For the case of RTS data our results are not completely in line with those of Hall and

Urga(2000), who claim a substantial increase in the market efficiency starting from the first

quarter of the year 1999. The first period for which constant expected returns are not rejected

on 5% level by our test is 08.1999 - 07.2000 which is more in line with the results of Rockinger,

Urga(2000) who notice that the predictability of the Russian market remains high up until the

end of the year 1999. From the beginning of the year 2001 there seem to be no evident trend

in the data and constant expected returns are not rejected.

For the case of SP500 data we can clearly observe 2 points, where the structural breaks in

the market efficiency might have occurred. The first one corresponds to the global maximum

of the profitability statistic over our sample, which occurs for the period from 1963 to 1973.

Starting from the end of this period and up to the year 1992 an apparent trend towards
17



improving market efficiency can easily be seen. In fact, for the period 1982-1992 the value of

the profitability statistic is close to zero. However, after the year 1992 a reversal of this trend is

observed and for the period 1993-2003 the hypothesis of constant expected returns is accepted

only marginally. If this 11-year long trend continues, we are likely to see the hypothesis of weak

informational market efficiency rejected for the SP500 data in the nearest future.
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8. Conclusions and directions for further research

We find a corroborating evidence for the fact that the positive relation between the MSPE

of a model and the profitability of the corresponding trading strategy is ambiguous at best

and propose a new formal forecast quality measure which, in case of return series, has a clear

economic interpretation as a normalized return of a certain trading strategy. Based on this

measure, we constructed a test for the constant expected return property.

We investigated the performance of various non-linear nonparametric models in view of their

forecasting power and suggested a new bandwidth selection procedure for the case of local linear

regression.

In our empirical studies we find that although for both RTS daily and SP500 weekly data

the hypothesis of constant expected returns is rejected, there is remarkable dynamics in the

level of market efficiency throughout the observation period.

Among the most interesting directions of further research we note the following: It is in-

teresting to note that obtaining profit via out of sample forecasting appears to be easier than

improving MSPE of the ’naive’ forecast. This is true despite the fact that the underlying

minimized functional is actually the in-sample squared prediction error (with certain weights

in case of local linear regression). Substituting this functional for the in-sample profitability

might lead to the improvement of the profitability of the corresponding out of sample forecasts.

The theoretical framework for these kind of estimators is developed in the Appendix A and will

be a subject of further empirical studies.

Appendix A: Profitability-based estimators

Traditionally, the first thing to be considered while choosing the estimator is its asymptotic

properties. Under the assumption of normality, this usually implies that the ”in-sample loss

function” is quadratic in the prediction error. However, depending on the expected application

of the forecasts produced by the model, the actual ”out of sample loss” may be quite arbitrary.

Here we consider the case which is likely to be quite common in case of financial data, namely,

when we can describe the expected loss resulting from the forecast’ error. Indeed, suppose that

the forecast ŷt is used for trading via the strategy ”buy if ŷt > 0,sell otherwise”. Then expected

loss from this strategy is E[− sign(ŷt)yt] and it seems natural that the estimator ŷt should

minimize this loss instead of usually considered E[(ŷt − yt)
2].Formally, consider the model:
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(8.1) yt = x′tβ + εt

and the estimator

(8.2) β̂p = argmin
b

(
1

N

∑
− sign(x′tb)yt)

Note that the minimized function is in fact the incurred loss from using the simple trading

strategy with the forecasts from the model. It is also easy to introduce transaction costs as

well as more elaborate trading strategies into this picture.

Since β̂p is defined only up to a multiplication by a positive constant, it is certainly not

consistent, however, there are some reason to believe that it allows one to consistently estimate

the quotients βi

βj
. There are obvious theoretical as well as practical problems associated with

this estimator, since the minimized function is not differentiable and we are planning to deal

with them in a sequel.

Appendix B: Tables and Figures

Table 1. The results of Monte-Carlo simulations

NW, n = 4 LWR, h = 6 NN, n = 6 NNA1, n = 6 NNA2, n = 30

6,05 0,73 0,66 0,68 2,05

NW- Nadaraya-Watson estimator;

LWR -locally linear regression with global bandwidth;

NN-locally linear regression with the scalar bandwidth

NNA1-locally linear regression with the bandwidth vector selected according to Alg.1

NNA2-locally linear regression with the bandwidth vector selected according to Alg.2

Table 2. BDS test statistic for the daily returns of RTS index

BDS test dimension Raw returns AR residuals

2 14,82 12,82

3 17,11 15,61

4 18,48 17,15

5 19,92 18,79

6 21,45 20,46

The AR model was selected according to BIC (lags 1, 10, 12 are included)

The reported numbers are the values of z-statistic, which is distributed as N(0,1) under the null
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Table 3a. Forecasting performance- RTS daily

Sum squared DA-statistic Cumulative Profitability

prediction errors return statistic

RW 1,62 2,10

OLS 1,65 3,36** 345,89 4,56**

NW, h=0.03 1,69 3,05** 362,22 4,66**

NW, h=0.1 1,61 1,71* 6,35 1,33*

LWR, h=0.03 2,43 3,67** 1680,21 5,81**

LWR, h=0.1 1,67 4,03** 811,8 5,24**

NNA1, n=10 1,70 4,15** 2090,73 5,98**

NNA1, n=100 1,63 4,31** 1462,77 5,69**

NN, n=10 1,68 3,80** 1426,72 5,68**

Table 3b. Forecasting performance - SP500 weekly

RW 1,07 38,97

OLS 1,1 2,52** 50,94 2,48**

NW, h=0.03 1,09 0,18 9,82 0,13

NW, h=0.1 1,08 -0,05 10,80 0,10

LWR, h=0.03 1,16 2,31* 77,63 2,97**

LWR, h=0.1 1,10 2,92** 64,56 2,73**

NNA1, n=10 1,14 4,24** 138,50 4,03**

NNA1, n=100 1,10 2,63** 60,40 2,66**

NN, n=10 1,14 4,24** 138,50 4,03**

OLS-Linear model; NW- Nadaraya-Watson estimator;

LWR -locally linear regression with global bandwidth;

NNA1-locally linear regression with the bandwidth vector selected according to Alg.1

NN-locally linear regression with scalar bandwidth

By cumulative return in case of RW prediction we mean that of buy-and-hold strategy

DA-statistic is a directional accuracy statistic of Pesaran and Timmermann

Profitability statistic is defined in 2.9

All reported statistics are distributed as N(0,1) under the null.

*(**) indicates that the corresponding statistic is significant at 5%(1%) level
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Figure 1. Log cumulative returns of the trading strategies - RTS daily
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Figure 2. Log cumulative returns of the trading strategies - SP500 weekly
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Figure 3. Market efficiency evolution - RTS daily

24



Figure 4. Market efficiency evolution - SP500 weekly
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