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1. ASYMPTOTIC THEORY

1.1 Asymptotics of t-ratios

Let Xi, i = 1, · · · , n, be an IID sample of scalar random variables with E [Xi] = µ, V [Xi] = σ2,

E

[
(Xi − µ)3

]
= 0, E

[
(Xi − µ)4

]
= τ , all parameters being finite.

(a) Define Tn ≡
X

σ̂
, where, as usual,

X ≡ 1
n

n∑
i=1

Xi, σ̂2 ≡ 1
n

n∑
i=1

(
Xi −X

)2
.

Derive the limiting distribution of
√
nTn under the assumption µ = 0.

(b) Now suppose it is not assumed that µ = 0. Derive the limiting distribution of

√
n

(
Tn− plim

n→∞
Tn

)
.

Be sure your answer reduces to the result of part (a), when µ = 0.

(c) Define Rn ≡
X

σ
, where

σ2 ≡ 1
n

n∑
i=1

X2
i

is the constrained estimator of σ2 under the (possibly incorrect) assumption µ = 0. Derive
the limiting distribution of

√
n

(
Rn− plim

n→∞
Rn

)
for arbitrary µ and σ2 > 0. Under what conditions on µ and σ2 will this asymptotic distri-
bution be the same as in part (b)?

1.2 Asymptotics with shrinking regressor

Suppose that
yi = α+ βxi + ui,

where {ui} are IID with E [ui] = 0, E
[
u2
i

]
= σ2 and E

[
u3
i

]
= ν, while the regressor xi is deter-

ministic: xi = ρi, ρ ∈ (0, 1). Let the sample size be n. Discuss as fully as you can the asymptotic
behavior of the usual least-squares estimates (α̂, β̂, σ̂2) of (α, β, σ2) as n→∞.
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1.3 Creeping bug on simplex

Consider a positive (x, y) orthant, i.e. R2
+, and the unit simplex on it, i.e. the line segment x+y = 1,

x ≥ 0, y ≥ 0. Take an arbitrary natural number k ∈ N. Imagine a bug starting creeping from the
origin (x, y) = (0, 0). Each second the bug goes either in the positive x direction with probability
p, or in the positive y direction with probability 1 − p, each time covering distance 1

k . Evidently,
this way the bug reaches the unit simplex in k seconds. Let it arrive there at point (xk, yk). Now
let k →∞, i.e. as if the bug shrinks in size and physical abilities per second. Determine:

(a) the probability limit of (xk, yk);

(b) the rate of convergence;

(c) the asymptotic distribution of (xk, yk).

1.4 Asymptotics of rotated logarithms

Let the positive random vector (Un, Vn)
′

be such that

√
n

((
Un
Vn

)
−
(
µu
µv

))
d→ N

((
0
0

)
,

(
ωuu ωuv
ωuv ωvv

))
as n→∞. Find the joint asymptotic distribution of(

lnUn − lnVn
lnUn + lnVn

)
.

What is the condition under which lnUn− lnVn and lnUn + lnVn are asymptotically independent?

1.5 Trended vs. differenced regression

Consider a linear model with a linearly trending regressor:

yt = α+ βt+ εt,

where the sequence εt is independently and identically distributed according to some distribution
D with mean zero and variance σ2. The object of interest is β.

1. Write out the OLS estimator β̂ of β in deviations form. Find the asymptotic distribution of
β̂.

2. An investigator suggests getting rid of the trending regressor by taking differences to obtain

yt − yt−1 = β + εt − εt−1

and estimating β by OLS. Write out the OLS estimator β̌ of β and find its asymptotic
distribution.

3. Compare the estimators β̂ and β̌ in terms of asymptotic efficiency.
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1.6 Second-order Delta-Method

Let Sn = 1
n

∑n
i=1Xi, where Xi, i = 1, · · · , n, is an IID sample of scalar random variables with

E [Xi] = µ and V [Xi] = 1. It is easy to show that
√
n(S2

n − µ2) d→ N (0, 4µ2) when µ 6= 0.

(a) Find the asymptotic distribution of S2
n when µ = 0, by taking a square of the asymptotic

distribution of Sn.

(b) Find the asymptotic distribution of cos(Sn). Hint: take a higher order Taylor expansion
applied to cos(Sn).

(c) Using the technique of part (b), formulate and prove an analog of the Delta-Method for the
case when the function is scalar-valued, has zero first derivative and nonzero second derivative,
when the derivatives are evaluated at the probability limit. For simplicity, let all the random
variables be scalars.

1.7 Brief and exhaustive

Give brief but exhaustive answers to the following short questions.

1. Suppose that xt is generated by xt = ρxt−1 + et, where et = εt + θεt−1 and εt is white noise.
Is the OLS estimator of ρ consistent?

2. The process for the scalar random variable xt is covariance stationary with the following
autocovariances: 3 at lag 0; 2 at lag 1; 1 at lag 2; and zero for all higher lags. Let T denote
the sample size. What is the long-run variance of xt, i.e. lim

T→∞
V

(
1√
T

∑T
t=1 xt

)
?

3. Often one needs to estimate the long-run variance Vze of the stationary sequence ztet that
satisfies the restriction E[et|zt] = 0. Derive a compact expression for Vze in the case when
et and zt follow independent scalar AR(1) processes. For this example, propose a way to
consistently estimate Vze and show your estimator’s consistency.

1.8 Asymptotics of averages of AR(1) and MA(1)

Let xt be a martingale difference sequence relative to its own past, and let all conditions for the
CLT be satisfied:

√
TxT = 1√

T

∑T
t=1 xt

d→ N (0, σ2). Let now yt = ρyt−1 + xt and zt = xt + θxt−1,

where |ρ| < 1 and |θ| < 1. Consider time averages yT = 1
T

∑T
t=1 yt and zT = 1

T

∑T
t=1 zt.

1. Are yt and zt martingale difference sequences relative to their own past?

2. Find the asymptotic distributions of yT and zT .

3. How would you estimate the asymptotic variances of yT and zT ?
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4. Repeat what you did in parts 1–3 when xt is a k×1 vector, and we have
√
TxT = 1√

T

∑T
t=1 xt

d→
N (0,Σ), yt = Pyt−1 + xt, zt = xt + Θxt−1, and P and Θ are k× k matrices with eigenvalues
inside the unit circle.
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2. BOOTSTRAP

2.1 Brief and exhaustive

Give brief but exhaustive answers to the following short questions.

1. Comment on: ”The only difference between Monte-Carlo and the bootstrap is possibility and
impossibility, respectively, of sampling from the true population.”

2. Comment on: ”When one does bootstrap, there is no reason to raise B too high: there is a
level when increasing B does not give any increase in precision”.

3. Comment on: ”The bootstrap estimator of the parameter of interest is preferable to the
asymptotic one, since its rate of convergence to the true parameter is often larger”.

4. Suppose that one got in an application θ̂ = 1.2 and s(θ̂) = .2. By the nonparametric bootstrap
procedure, the 2.5% and 97.5% bootstrap critical values for the bootstrap distribution of θ̂
turned out to be .75 and 1.3. Find: (a) 95% Efron percentile interval for θ, (b) 95% Hall
percentile interval for θ, (c) 95% percentile-t interval for θ.

2.2 Bootstrapping t-ratio

Consider the following bootstrap procedure. Using the nonparametric bootstrap, generate pseu-

dosamples and calculate
θ̂
∗
b − θ̂
s(θ̂)

at each bootstrap repetition. Find the quantiles q∗α/2 and q∗1−α/2

from this bootstrap distribution, and construct

CI = [θ̂ − s(θ̂)q∗1−α/2, θ̂ − s(θ̂)q
∗
α/2].

Show that CI is exactly the same as Hall’s percentile interval, and not the t-percentile interval.

2.3 Bootstrap correcting mean and its square

Consider a random variable x with mean µ. A random sample {xi}ni=1 is available. One estimates
µ by x̄n and µ2 by x̄2

n. Find out what the bootstrap bias corrected estimators of µ and µ2 are.

2.4 Bootstrapping conditional mean

Take the linear regression
yi = x′iβ + ei,
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with E [ei|xi] = 0. For a particular value of x, the object of interest is the conditional mean
g(x) = E [yi|x] . Describe how you would use the percentile-t bootstrap to construct a confidence
interval for g(x).

2.5 Bootstrap adjustment for endogeneity?

Let the model be
yi = x′iβ + ei,

but E [eixi] 6= 0, i.e. the regressors are endogenous. Then the OLS estimator β̂ is biased for
the parameter β. We know that the bootstrap is a good way to estimate bias, so the idea is to
estimate the bias of β̂ and construct a bias-adjusted estimate of β. Explain whether or not the
non-parametric bootstrap can be used to implement this idea.
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3. REGRESSION IN GENERAL

3.1 Property of conditional distribution

Consider a random pair (Y,X). Prove that the correlation coefficient

ρ(Y, f(X)),

where f is any measurable function, is maximized in absolute value when f(X) is linear in E [Y |X] .

3.2 Unobservables among regressors

Consider the following situation. The vector (y, x, z, w) is a random quadruple. It is known that

E [y|x, z, w] = α+ βx+ γz.

It is also known that C [x, z] = 0 and that C [w, z] > 0. The parameters α, β and γ are not known.
A random sample of observations on (y, x, w) is available; z is not observable.

In this setting, a researcher weighs two options for estimating β. One is a linear least squares
fit of y on x. The other is a linear least squares fit of y on (x,w). Compare these options.

3.3 Consistency of OLS in presence of lagged dependent variable and

serially correlated errors

1Let {yt}+∞t=−∞ be a strictly stationary and ergodic stochastic process with zero mean and finite
variance.

(i) Define

β =
C [yt, yt−1]
V [yt]

, ut = yt − βyt−1,

so that we can write
yt = βyt−1 + ut.

Show that the error ut satisfies E [ut] = 0 and C [ut, yt−1] = 0.

(ii) Show that the OLS estimator β̂ from the regression of yt on yt−1 is consistent for β.

(iii) Show that, without further assumptions, ut is serially correlated. Construct an example with
serially correlated ut.

1This problem closely follows J.M. Wooldridge (1998) Consistency of OLS in the Presence of Lagged Dependent
Variable and Serially Correlated Errors. Econometric Theory 14, Problem 98.2.1.
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(iv) A 1994 paper in the Journal of Econometrics leads with the statement: ”It is well known that
in linear regression models with lagged dependent variables, ordinary least squares (OLS)
estimators are inconsistent if the errors are autocorrelated”. This statement, or a slight
variation on it, appears in virtually all econometrics textbooks. Reconcile this statement
with your findings from parts (ii) and (iii).

3.4 Incomplete regression

Consider the linear regression

yi = x′i β
k1×1

+ ei, E [ei|xi] = 0, E

[
e2
i |xi

]
= σ2.

Suppose that some component of the error ei is observable, so that

ei = z′i γ
k2×1

+ ηi,

where zi is a vector of observables such that E [ηi|zi] = 0 and E [xiz′i] 6= 0. The researcher wants to
estimate β and γ and considers two alternatives:

1. Run the regression of yi on xi and zi to find the OLS estimates β̂ and γ̂ of β and γ.

2. Run the regression of yi on xi to get the OLS estimate β̂ of β, compute the OLS residuals
êi = yi − x′iβ̂ and run the regression of êi on zi to retrieve the OLS estimate γ̂ of γ.

Which of the two methods would you recommend from the point of view of consistency of
β̂ and γ̂? For the method(s) that yield(s) consistent estimates, find the limiting distribution of√
n (γ̂ − γ) .

3.5 Brief and exhaustive

Give brief but exhaustive answers to the following short questions.

1. Comment on: ”Treating regressors x in a linear mean regression y = x′β + e as random
variables rather than fixed numbers simplifies further analysis, since then the observations
(xi, yi) may be treated as IID across i”.

2. A labor economist argues: ”It is more plausible to think of my regressors as random rather
than fixed. Look at education, for example. A person chooses her level of education, thus it
is random. Age may be misreported, so it is random too. Even gender is random, because
one can get a sex change operation done.” Comment on this pearl.

3. Let (x, y, z) be a random triple. For a given real constant γ a researcher wants to estimate
E [y|E [x|z] = γ]. The researcher knows that E [x|z] and E [y|z] are strictly increasing and
continuous functions of z, and is given consistent estimates of these functions. Show how the
researcher can use them to obtain a consistent estimate of the quantity of interest.
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4. Comment on: ”When one suspects heteroskedasticity, one should use White’s formula

Q−1
xxQxxe2Q

−1
xx

instead of conventional σ2Q−1
xx , since under heteroskedasticity the latter does not make sense,

because σ2 is different for each observation”.
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4. OLS AND GLS ESTIMATORS

4.1 Brief and exhaustive

Give brief but exhaustive answers to the following short questions.

1. Consider a linear mean regression yi = x′iβ + ei, E [ei|xi] = 0, where xi, instead of being IID
across i, depends on i through an unknown function ϕ as xi = ϕ(i) + ui, where ui are IID
independent of ei. Show that the OLS estimator of β is still unbiased.

2. Consider a model y = (α+βx)e, where y and x are scalar observables, e is unobservable. Let
E [e|x] = 1 and V [e|x] = 1. How would you estimate (α, β) by OLS? What standard errors
(conventional or White’s) would you construct?

4.2 Estimation of linear combination

Suppose one has an IID random sample of n observations from the linear regression model

yi = α+ βxi + γzi + ei,

where ei has mean zero and variance σ2 and is independent of (xi, zi) .

1. What is the conditional variance of the best linear conditionally (on the xi and zi observations)
unbiased estimator θ̂ of

θ = α+ βcx + γcz,

where cx and cz are some given constants?

2. Obtain the limiting distribution of √
n
(
θ̂ − θ

)
.

Write your answer as a function of the means, variances and correlations of xi, zi and ei and
of the constants α, β, γ, cx, cz, assuming that all moments are finite.

3. For what value of the correlation coefficient between xi and zi is the asymptotic variance
minimized for given variances of ei and xi?

4. Discuss the relationship of the result of part 3 with the problem of multicollinearity.

4.3 Long and short regressions

Take the true model Y = X1β1 + X2β2 + e, E [e|X1, X2] = 0. Suppose that β1 is estimated only
by regressing Y on X1 only. Find the probability limit of this estimator. What are the conditions
when it is consistent for β1?
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4.4 Ridge regression

In the standard linear mean regression model, one estimates k × 1 parameter β by

β̃ =
(
X ′X + λIk

)−1
X ′Y,

where λ > 0 is a fixed scalar, Ik is a k × k identity matrix, X is n× k and Y is n× 1 matrices of
data.

1. Find E
[
β̃|X

]
. Is β̃ conditionally unbiased? Is it unbiased?

2. Find plim
n→∞

β̃. Is β̃ consistent?

3. Find the asymptotic distribution of β̃.

4. From your viewpoint, why may one want to use β̃ instead of the OLS estimator β̂? Give
conditions under which β̃ is preferable to β̂ according to your criterion, and vice versa.

4.5 Exponential heteroskedasticity

Let y be scalar and x be k× 1 vector random variables. Observations (yi, xi) are drawn at random
from the population of (y, x). You are told that E [y|x] = x′β and that V [y|x] = exp(x′β+α), with
(β, α) unknown. You are asked to estimate β.

1. Propose an estimation method that is asymptotically equivalent to GLS that would be com-
putable were V [y|x] fully known.

2. In what sense is the feasible GLS estimator of Part 1 efficient? In which sense is it inefficient?

4.6 OLS and GLS are identical

Let Y = X(β+ v) +u, where X is n× k, Y and u are n× 1, and β and v are k× 1. The parameter
of interest is β. The properties of (Y,X, u, v) are: E [u|X] = E [v|X] = 0, E [uu′|X] = σ2In,
E [vv′|X] = Γ, E [uv′|X] = 0. Y and X are observable, while u and v are not.

1. What are E [Y |X] and V [Y |X]? Denote the latter by Σ. Is the environment homo- or
heteroskedastic?

2. Write out the OLS and GLS estimators β̂ and β̃ of β. Prove that in this model they are
identical. Hint: First prove that X ′ê = 0, where ê is the n× 1 vector of OLS residuals. Next
prove that X ′Σ−1ê = 0. Then conclude. Alternatively, use formulae for the inverse of a sum
of two matrices. The first method is preferable, being more ”econometric”.

3. Discuss benefits of using both estimators in this model.
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4.7 OLS and GLS are equivalent

Let us have a regression written in a matrix form: Y = Xβ+u, where X is n×k, Y and u are n×1,
and β is k×1. The parameter of interest is β. The properties of u are: E [u|X] = 0, E [uu′|X] = Σ.
Let it be also known that ΣX = XΘ for some k × k nonsingular matrix Θ.

1. Prove that in this model the OLS and GLS estimators β̂ and β̃ of β have the same finite
sample conditional variance.

2. Apply this result to the following regression on a constant:

yi = α+ ui,

where the disturbances are equicorrelated, that is, E [ui] = 0, V [ui] = σ2 and C [ui, uj ] = ρσ2

for i 6= j.

4.8 Equicorrelated observations

Suppose xi = θ + ui, where E [ui] = 0 and

E [uiuj ] =
{

1 if i = j

γ if i 6= j

with i, j = 1, · · · , n. Is x̄n = 1
n (x1 + · · ·+ xn) the best linear unbiased estimator of θ? Investigate

x̄n for consistency.
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5. IV AND 2SLS ESTIMATORS

5.1 Instrumental variables in ARMA models

1. Consider an AR(1) model xt = ρxt−1 + et with E [et|It−1] = 0, E
[
e2
t |It−1

]
= σ2, and |ρ| < 1.

We can look at this as an instrumental variables regression that implies, among others, instru-
ments xt−1, xt−2, · · · . Find the asymptotic variance of the instrumental variables estimator
that uses instrument xt−j , where j = 1, 2, · · · . What does your result suggest on what the
optimal instrument must be?

2. Consider an ARMA(1, 1) model yt = αyt−1 +et−θet−1 with |α| < 1, |θ| < 1 and E [et|It−1] =
0. Suppose you want to estimate α by just-identifying IV. What instrument would you use
and why?

5.2 Inappropriate 2SLS

Consider the model
yi = αz2

i + ui, zi = πxi + vi,

where (xi, ui, vi) are IID, E [ui|xi] = E [vi|xi] = 0 and V
[(
ui
vi

)
|xi
]

= Σ, with Σ unknown.

1. Show that α, π and Σ are identified. Suggest analog estimators for these parameters.

2. Consider the following two stage estimation method. In the first stage, regress zi on xi and
define ẑi = π̂xi, where π̂ is the OLS estimator. In the second stage, regress yi in ẑ2

i to obtain
the least squares estimate of α. Show that the resulting estimator of α is inconsistent.

3. Suggest a method in the spirit of 2SLS for estimating α consistently.

5.3 Inconsistency under alternative

Suppose that
y = α+ βx+ u,

where u is distributed N (0, σ2) independently of x. The variable x is unobserved. Instead we
observe z = x+ v, where v is distributed N (0, η2) independently of x and u. Given a sample of size
n, it is proposed to run the linear regression of y on z and use a conventional t-test to test the null
hypothesis β = 0. Critically evaluate this proposal.
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5.4 Trade and growth

In the paper ”Does Trade Cause Growth?” (American Economic Review, June 1999), Jeffrey
Frankel and David Romer study the effect of trade on income. Their simple specification is

log Yi = α+ βTi + γWi + εi, (5.1)

where Yi is per capita income, Ti is international trade, Wi is within-country trade, and εi reflects
other influences on income. Since the latter is likely to be correlated with the trade variables,
Frankel and Romer decide to use instrumental variables to estimate the coefficients in (5.1). As
instruments, they use a country’s proximity to other countries Pi and its size Si, so that

Ti = ψ + φPi + δi (5.2)

and
Wi = η + λSi + νi, (5.3)

where δi and νi are the best linear prediction errors.

1. As the key identifying assumption, Frankel and Romer use the fact that countries’ geographi-
cal characteristics Pi and Si are uncorrelated with the error term in (5.1). Provide an economic
rationale for this assumption and a detailed explanation how to estimate (5.1) when one has
data on Y, T, W, P and S for a list of countries.

2. Unfortunately, data on within-country trade are not available. Determine if it is possible to
estimate any of the coefficients in (5.1) without further assumptions. If it is, provide all the
details on how to do it.

3. In order to be able to estimate key coefficients in (5.1), Frankel and Romer add another
identifying assumption that Pi is uncorrelated with the error term in (5.3). Provide a detailed
explanation how to estimate (5.1) when one has data on Y, T, P and S for a list of countries.

4. Frankel and Romer estimated an equation similar to (5.1) by OLS and IV and found out
that the IV estimates are greater than the OLS estimates. One explanation may be that the
discrepancy is due to a sampling error. Provide another, more econometric, explanation why
there is a discrepancy and what the reason is that the IV estimates are larger.
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6. EXTREMUM ESTIMATORS

6.1 Extremum estimators

Consider the following class of estimators called Extremum Estimators. Let the true parameter β
be the unique solution of the following optimization problem:

β =arg max
b∈B

E [f(z, b)] , (6.1)

where z ∈ Rl is a random vector on which the data are available, b ∈ Rk is a parameter, f is a
known function, B is a parameter space. The latter is assumed to be compact, so that there are no
problems with existence of the optimizer. The data zi, i = 1, ..., n, are IID.

1. Construct the extremum estimator β̂ of β by using the analogy principle applied to (6.1).
Assuming that consistency holds, derive the asymptotic distribution of β̂. Explicitly state all
assumptions that you made to derive it.

2. Verify that your answer to part 1 reconciles with the results we obtained in class during the
last module for the NLLS and WNLLS estimators, by appropriately choosing the form of
function f .

6.2 Regression on constant

Apply the results of the previous problem to the following model:

yi = β + ei, i = 1, · · · , n,

where all variables are scalars. Assume that {ei} are IID with E[ei] = 0, E[e2
i ] = β2, E[e3

i ] = 0 and
E[e4

i ] = κ. Consider the following three estimators of β:

β̂1 =
1
n

n∑
i=1

yi,

β̂2 =arg min
b

{
log b2 +

1
nb2

n∑
i=1

(yi − b)2

}
,

β̂3 =
1
2

arg min
b

n∑
i=1

(yi
b
− 1
)2
.

Derive the asymptotic distributions of these three estimators. Which of them would you prefer most
on the asymptotic basis? Bonus question: what was the idea behind each of the three estimators?
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6.3 Quadratic regression

Consider a nonlinear regression model

yi = (β0 + xi)2 + ui,

where we assume:

(A) Parameter space is B =
[
−1

2 ,+
1
2

]
.

(B) {ui} are IID with E [ui] = 0, V [ui] = σ2
0.

(C) {xi} are IID with uniform distribution over [1, 2], distributed independently of {ui}. In
particular, this implies E

[
x−1
i

]
= ln 2 and E [xri ] = 1

1+r (2r+1 − 1) for integer r 6= −1.

Define two estimators of β0:

1. β̂ minimizes Sn(β) =
∑n

i=1

[
yi − (β + xi)

2
]2

over B.

2. β̃ minimizes Wn(β) =
∑n

i=1

{
yi

(β + xi)
2 + ln (β + xi)

2

}
over B.

For the case β0 = 0, obtain asymptotic distributions of β̂ and β̃. Which one of the two do you
prefer on the asymptotic basis?
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7. MAXIMUM LIKELIHOOD ESTIMATION

7.1 MLE for three distributions

1. A random variable X is said to have a Pareto distribution with parameter λ, denoted X ∼
Pareto(λ), if it is continuously distributed with density

fX(x|λ) =
{
λx−(λ+1), if x > 1,
0, otherwise.

A random sample x1, · · · , xn from the Pareto(λ) population is available.

(i) Derive the ML estimator λ̂ of λ, prove its consistency and find its asymptotic distribution.

(ii) Derive the Wald, Likelihood Ratio and Lagrange Multiplier test statistics for testing the
null hypothesis H0 : λ = λ0 against the alternative hypothesis Ha : λ 6= λ0. Do any of
these statistics coincide?

2. Let x1, · · · , xn be a random sample from N (µ, µ2). Derive the ML estimator µ̂ of µ and prove
its consistency.

3. Let x1, · · · , xn be a random sample from a population of x distributed uniformly on [0, θ].
Construct an asymptotic confidence interval for θ with significance level 5% by employing a
maximum likelihood approach.

7.2 Comparison of ML tests

1Berndt and Savin in 1977 showed that W ≥ LR ≥ LM for the case of a multivariate regression
model with normal disturbances. Ullah and Zinde-Walsh in 1984 showed that this inequality is
not robust to non-normality of the disturbances. In the spirit of the latter article, this problem
considers simple examples from non-normal distributions and illustrates how this conflict among
criteria is affected.

1. Consider a random sample x1, · · · , xn from a Poisson distribution with parameter λ. Show
that testing λ = 3 versus λ 6= 3 yields W ≥ LM for x̄ ≤ 3 and W ≤ LM for x̄ ≥ 3.

2. Consider a random sample x1, · · · , xn from an exponential distribution with parameter θ.
Show that testing θ = 3 versus θ 6= 3 yields W ≥ LM for 0 < x̄ ≤ 3 and W ≤ LM for x̄ ≥ 3.

3. Consider a random sample x1, · · · , xn from a Bernoulli distribution with parameter θ. Show
that for testing θ = 1

2 versus θ 6= 1
2 , we always getW ≥ LM. Show also that for testing θ = 2

3
versus θ 6= 2

3 , we get W ≤ LM for 1
3 ≤ x̄ ≤

2
3 and W ≥ LM for 0 < x̄ ≤ 1

3 or 2
3 ≤ x̄ ≤ 1.

1This problem closely follows Badi H. Baltagi (2000) Conflict Among Criteria for Testing Hypotheses: Examples
from Non-Normal Distributions. Econometric Theory 16, Problem 00.2.4.
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7.3 Individual effects

Suppose {(xi, yi)}ni=1 is a serially independent sample from a sequence of jointly normal distributions
with E [xi] = E [yi] = µi, V [xi] = V [yi] = σ2, and C [xi, yi] = 0 (i.e., xi and yi are independent
with common but varying means and a constant common variance). All parameters are unknown.
Derive the maximum likelihood estimate of σ2 and show that it is inconsistent. Explain why. Find
an estimator of σ2 which would be consistent.

7.4 Does the link matter?

2Consider a binary random variable y and a scalar random variable x such that

P {y = 1|x} = F (α+ βx) ,

where the link F (·) is a continuous distribution function. Show that when x assumes only two
different values, the value of the log-likelihood function evaluated at the maximum likelihood esti-
mates of α and β is independent of the form of the link function. What are the maximum likelihood
estimates of α and β?

7.5 Nuisance parameter in density

Let zi ≡ (yi, x′i)
′ have a joint density of the form

f(Z|θ0) = fc(Y |X, γ0, δ0)fm(X|δ0),

where θ0 ≡ (γ0, δ0), both γ0 and δ0 are scalar parameters, and fc and fm denote the conditional
and marginal distributions, respectively. Let θ̂c ≡ (γ̂c, δ̂c) be the conditional ML estimators of γ0

and δ0, and δ̂m be the marginal ML estimator of δ0. Now define

γ̃ ≡ arg max
γ

∑
i

ln fc(yi|xi, γ, δ̂m),

a two-step estimator of subparameter γ0 which uses marginal ML to obtain a preliminary estimator
of the ”nuisance parameter” δ0. Find the asymptotic distribution of γ̃. How does it compare to
that for γ̂c? You may assume all the needed regularity conditions for consistency and asymptotic
normality to hold.

Hint: You need to apply the Taylor’s expansion twice, i.e. for both stages of estimation.

7.6 MLE versus OLS

Consider the model where yi is regressed only on a constant:

yi = α+ ei, i = 1, . . . , n,
2This problem closely follows Joao M.C. Santos Silva (1999) Does the link matter? Econometric Theory 15,

Problem 99.5.3.
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where ei conditioned on xi is distributed as N (0, x2
iσ

2); xi’s are drawn from a population of some
random variable x that is not present in the regression; σ2 is unknown; yi’s and xi’s are observable,
ei’s are unobservable; the pairs (yi, xi) are IID.

1. Find the OLS estimator α̂OLS of α. Is it unbiased? Consistent? Obtain its asymptotic
distribution. Is α̂OLS the best linear unbiased estimator for α?

2. Find the ML estimator α̂ML of α and derive its asymptotic distribution. Is α̂ML unbiased? Is
α̂ML asymptotically more efficient than α̂OLS? Does your conclusion contradicts your answer
to the last question of part 1? Why or why not?

7.7 MLE in heteroskedastic time series regression

Assume that data (yt, xt), t = 1, 2, · · · , T, are stationary and ergodic and generated by

yt = α+ βxt + ut,

where ut|xt ∼ N (0, σ2
t ), xt ∼ N (0, v), E[utus|xt, xs] = 0, t 6= s. Explain, without going into deep

math, how to find estimates and their standard errors for all parameters when:

1. The entire σ2
t as a function of xt is fully known.

2. The values of σ2
t at t = 1, 2, · · · , T are known.

3. It is known that σ2
t = (θ + δxt)2, but the parameters θ and δ are unknown.

4. It is known that σ2
t = θ + δu2

t−1, but the parameters θ and δ are unknown.

5. It is only known that σ2
t is stationary.

7.8 Maximum likelihood and binary variables

Suppose Z and Y are discrete random variables taking values 0 or 1. The distribution of Z and Y
is given by

P{Z = 1} = α, P{Y = 1|Z} =
eγZ

1 + eγZ
, Z = 0, 1.

Here α and γ are scalar parameters of interest.

1. Find the ML estimator of (α, γ) (giving an explicit formula whenever possible) and derive its
asymptotic distribution.

2. Suppose we want to test H0 : α = γ using the asymptotic approach. Derive the t test statistic
and describe in detail how you would perform the test.

3. Suppose we want to test H0 : α = 1
2 using the bootstrap approach. Derive the LR (likelihood

ratio) test statistic and describe in detail how you would perform the test.
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7.9 Maximum likelihood and binary dependent variable

Suppose y is a discrete random variable taking values 0 or 1 representing some choice of an indi-
vidual. The distribution of y given the individual’s characteristic x is

P{y = 1|x} =
eγx

1 + eγx
,

where γ is the scalar parameter of interest. The data {yi, xi}, i = 1, ..., n, are IID. When deriving
various estimators, try to make the formulas as explicit as possible.

1. Derive the ML estimator of γ and its asymptotic distribution.

2. Find the (nonlinear) regression function by regressing y on x. Derive the NLLS estimator of
γ and its asymptotic distribution.

3. Show that the regression you obtained in Part 2 is heteroskedastic. Setting weights ω(x) equal
to the variance of y conditional on x, derive the WNLLS estimator of γ and its asymptotic
distribution.

4. Write out the systems of moment conditions implied by the ML, NLLS and WNLLS problems
of Parts 1–3.

5. Rank the three estimators in terms of asymptotic efficiency. Do any of your findings appear
unexpected? Give intuitive explanation for anything unusual.

7.10 Bootstrapping ML tests

1. For the likelihood ratio test of H0 : g(θ) = 0, we use the statistic

LR = 2
(

max
q∈Θ

`n(q)− max
q∈Θ,g(q)=0

`n(q)
)
.

Write out the formula (no need to describe the entire algorithm) for the bootstrap pseudo-
statistic LR∗.

2. For the Lagrange Multiplier test of H0 : g(θ) = 0, we use the statistic

LM =
1
n

∑
i

s
(
zi, θ̂

R

ML

)′
Ĵ−1

∑
i

s
(
zi, θ̂

R

ML

)
.

Write out the formula (no need to describe the entire algorithm) for the bootstrap pseudo-
statistic LM∗.

7.11 Trivial parameter space

Consider a parametric model with density f(X|θ0), known up to a parameter θ0, but with Θ = {θ1},
i.e. the parameter space is reduced to only one element. What is an ML estimator of θ0, and what
are its asymptotic properties?
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8. GENERALIZED METHOD OF MOMENTS

8.1 GMM and chi-squared

Let z be distributed as χ2(1). Then the moment function

m(z, q) =
(

z − q
z2 − q2 − 2q

)
has mean zero for q = 1. Describe efficient GMM estimation of θ = 1 in details.

8.2 Improved GMM

Consider GMM estimation with the use of the moment function

m(x, y, q) =
(
x− q
y

)
.

Determine under what conditions the second restriction helps in reducing the asymptotic variance
of the GMM estimator of θ.

8.3 Nonlinear simultaneous equations

Let
yi = βxi + ui, xi = γy2

i + vi, i = 1, . . . , n,

where xi’s and yi’s are observable, but ui’s and vi’s are not. The data are IID across i.

1. Suppose we know that E [ui] = E [vi] = 0. When are β and γ identified? Propose analog
estimators for these parameters.

2. Let also be known that E [uivi] = 0.

(a) Propose a method to estimate β and γ as efficiently as possible given the above informa-
tion. Your estimator should be fully implementable given the data {xi, yi}ni=1. What is the
asymptotic distribution of your estimator?

(b) Describe in detail how to test H0 : β = γ = 0 using the bootstrap approach and the Wald
test statistic.

(c) Describe in detail how to test H0 : E [ui] = E [vi] = E [uivi] = 0 using the asymptotic
approach.
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8.4 Trinity for GMM

Derive the three classical tests (W, LR, LM) for the composite null

H0 : θ ∈ Θ0 ≡ {θ : h(θ) = 0},

where h : Rk → R
q, for the efficient GMM case. The analog for the Likelihood Ratio test will be

called the Distance Difference test. Hint: treat the GMM objective function as the ”normalized
loglikelihood”, and its derivative as the ”sample score”.

8.5 Testing moment conditions

In the linear model
yi = x′iβ + ui

under random sampling and the unconditional moment restriction E [xiui] = 0, suppose you wanted
to test the additional moment restriction E

[
xiu

3
i

]
= 0, which might be implied by conditional

symmetry of the error terms ui.
A natural way to test for the validity of this extra moment condition would be to efficiently

estimate the parameter vector β both with and without the additional restriction, and then to check
whether the corresponding estimates differ significantly. Devise such a test and give step-by-step
instructions for carrying it out.

8.6 Interest rates and future inflation

Frederic Mishkin in early 90’s investigated whether the term structure of current nominal interest
rates can give information about future path of inflation. He specified the following econometric
model:

πmt − πnt = αm,n + βm,n (imt − int ) + ηm,nt , Et [ηm,nt ] = 0, (8.1)

where πkt is k-periods-into-the-future inflation rate, ikt is the current nominal interest rate for k-
periods-ahead maturity, and ηm,nt is the prediction error.

1. Show how (8.1) can be obtained from the conventional econometric model that tests the
hypothesis of conditional unbiasedness of interest rates as predictors of inflation. What re-
striction on the parameters in (8.1) implies that the term structure provides no information
about future shifts in inflation? Determine the autocorrelation structure of ηm,nt .

2. Describe in detail how you would test the hypothesis that the term structure provides no
information about future shifts in inflation, by using overidentifying GMM and asymptotic
theory. Make sure that you discuss such issues as selection of instruments, construction of
the optimal weighting matrix, construction of the GMM objective function, estimation of
asymptotic variance, etc.

3. Describe in detail how you would test for overidentifying restrictions that arose from your set
of instruments, using the nonoverlapping blocks bootstrap approach.

34 GENERALIZED METHOD OF MOMENTS



4. Mishkin obtained the following results (standard errors in parentheses):

m, n αm,n βm,n t-test of t-test of
(months) βm,n = 0 βm,n = 1

3, 1 0.1421 −0.3127 −0.70 2.92
(0.1851) (0.4498)

6, 3 0.0379 0.1813 0.33 1.49
(0.1427) (0.5499)

9, 6 0.0826 0.0014 0.01 3.71
(0.0647) (0.2695)

Discuss and interpret the estimates and results of hypotheses tests.

8.7 Spot and forward exchange rates

Consider a simple problem of prediction of spot exchange rates by forward rates:

st+1 − st = α+ β (ft − st) + et+1, Et [et+1] = 0, Et

[
e2
t+1

]
= σ2,

where st is the spot rate at t, ft is the forward rate for one-month forwards at t, and Et denotes
expectation conditional on time t information. The current spot rate is subtracted to achieve
stationarity. Suppose the researcher decides to use ordinary least squares to estimate α and β.
Recall that the moment conditions used by the OLS estimator are

E [et+1] = 0, E [(ft − st) et+1] = 0. (8.2)

1. Beside (8.2), there are other moment conditions that can be used in estimation:

E [(ft−k − st−k) et+1] = 0,

because ft−k − st−k belongs to information at time t for any k ≥ 1. Consider the case k = 1
and show that such moment condition is redundant.

2. Beside (8.2), there is another moment condition that can be used in estimation:

E [(ft − st) (ft+1 − ft)] = 0,

because information at time t should be unable to predict future movements in forward rates.
Although this moment condition does not involve α or β, its use may improve efficiency
of estimation. Under what condition is the efficient GMM estimator using both moment
conditions as efficient as the OLS estimator? Is this condition likely to be satisfied in practice?

8.8 Brief and exhaustive

Give concise but exhaustive answers to the following unrelated questions.
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1. Let it be known that the scalar random variable w has mean µ and that its fourth central mo-
ment equals three times its squared variance (like for a normal random variable). Formulate
a system of moment conditions for GMM estimation of µ.

2. Suppose an econometrician estimates parameters of a time series regression by GMM after
having chosen an overidentifying vector of instrumental variables. He performs the overiden-
tification test and claims: ”A big value of the J-statistic is an evidence against validity of the
chosen instruments”. Comment on this claim.

3. We know that one should use recentering when bootstrapping a GMM estimator. We also
know that the OLS estimator is one of GMM estimators. However, when we bootstrap the
OLS estimator, we calculate β̂

∗
= (X∗′X∗)−1X∗′Y ∗ at each bootstrap repetition, and do not

recenter. Resolve the contradiction.

8.9 Efficiency of MLE in GMM class

We proved that the ML estimator of a parameter is efficient in the class of extremum estimators
of the same parameter. Prove that it is also efficient in the class of GMM estimators of the same
parameter.
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9. PANEL DATA

9.1 Alternating individual effects

Suppose that the unobservable individual effects in a one-way error component model are different
across odd and even periods:

yit = µOi + x′itβ + vit for odd t,
yit = µEi + x′itβ + vit for even t,

(∗)

where t = 1, 2, · · · , 2T, i = 1, · · ·n. Note that there are 2T observations for each individual. We
will call (9.1) ”alternating effects” specification. As usual, we assume that vit are IID(0, σ2

v)
independent of x’s.

1. There are two ways to arrange the observations: (a) in the usual way, first by individual, then
by time for each individual; (b) first all ”odd” observations in the usual order, then all ”even”
observations, so it is as though there are 2N ”individuals” each having T observations. Find
out the Q-matrices that wipe out individual effects for both arrangements and explain how
they transform the original equations. For the rest of the problem, choose the Q-matrix to
your liking.

2. Treating individual effects as fixed, describe the Within estimator and its properties. Develop
an F -test for individual effects, allowing heterogeneity across odd and even periods.

3. Treating individual effects as random and assuming their independence of x’s, v’s and each
other, propose a feasible GLS procedure. Consider two cases: (a) when the variance of
”alternating effects” is the same: V

[
µOi
]

= V

[
µEi
]

= σ2
µ, (b) when the variance of ”alternating

effects” is different: V
[
µOi
]

= σ2
O, V

[
µEi
]

= σ2
E , σ2

O 6= σ2
E .

9.2 Time invariant regressors

Consider a panel data model

yit = x′itβ + ziγ + µi + vit, i = 1, 2, · · · , n, t = 1, 2, · · · , T,

where n is large and T is small. One wants to estimate β and γ.

1. Explain how to efficiently estimate β and γ under (a) fixed effects, (b) random effects, when-
ever it is possible. State clearly all assumptions that you will need.

2. Consider the following proposal to estimate γ. At the first step, estimate the model yit =
x′itβ+πi+vit by the least squares dummy variables approach. At the second step, take these
estimates π̂i and estimate the coefficient of the regression of π̂i on zi. Investigate the resulting
estimator of γ for consistency. Can you suggest a better estimator of γ?
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9.3 First differencing transformation

In a one-way error component model with fixed effects, instead of using individual dummies, one
can alternatively eliminate individual effects by taking the first differencing (FD) transformation.
After this procedure one has n(T − 1) equations without individual effects, so the vector β of
structural parameters can be estimated by OLS. Evaluate this proposal.
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10. NONPARAMETRIC ESTIMATION

10.1 Nonparametric regression with discrete regressor

Let (xi, yi), i = 1, · · · , n be an IID sample from the population of (x, y), where x has a discrete
distribution with the support a(1), · · · , a(k), where a(1) < · · · < a(k). Having written the conditional
expectation E

[
y|x = a(j)

]
in the form that allows to apply the analogy principle, propose an analog

estimator ĝj of gj = E

[
y|x = a(j)

]
and derive its asymptotic distribution.

10.2 Nonparametric density estimation

Suppose we have an IID sample {xi}ni=1 and let

F̂ (x) =
1
n

n∑
i=1

I [xi ≤ x]

denote the empirical distribution function if xi, where I(·) is an indicator function. Consider two
density estimators:
◦ one-sided estimator:

f̂1(x) =
F̂ (x+ h)− F̂ (x)

h
◦ two-sided estimator:

f̂2(x) =
F̂ (x+ h/2)− F̂ (x− h/2)

h
Show that:

(a) F̂ (x) is an unbiased estimator of F (x). Hint: recall that F (x) = P{xi ≤ x} = E [I [xi ≤ x]] .

(b) The bias of f̂1(x) is O (ha) . Find the value of a. Hint: take a second-order Taylor series
expansion of F (x+ h) around x.

(c) The bias of f̂2(x) is O
(
hb
)
. Find the value of b. Hint: take a second-order Taylor series

expansion of F
(
x+ h

2

)
and F

(
x+ h

2

)
around x.

Now suppose that we want to estimate the density at the sample mean x̄n, the sample minimum
x(1) and the sample maximum x(n). Given the results in (b) and (c), what can we expect from the
estimates at these points?

10.3 First difference transformation and nonparametric regression

This problem illustrates the use of a difference operator in nonparametric estimation with IID data.
Suppose that there is a scalar variable z that takes values on a bounded support. For simplicity,
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let z be deterministic and compose a uniform grid on the unit interval [0, 1]. The other variables
are IID. Assume that for the function g (·) below the following Lipschitz condition is satisfied:

|g(u)− g(v)| ≤ G|u− v|

for some constant G.

1. Consider a nonparametric regression of y on z:

yi = g(zi) + ei, i = 1, · · · , n, (10.1)

where E [ei|zi] = 0. Let the data {(zi, yi)}ni=1 be ordered so that the z’s are in increasing
order. A first difference transformation results in the following set of equations:

yi − yi−1 = g(zi)− g(zi−1) + ei − ei−1, i = 2, · · · , n. (10.2)

The target is to estimate σ2 ≡ E
[
e2
i

]
. Propose its consistent estimator based on the FD-

transformed regression (2). Prove consistency of your estimator.

2. Consider the following partially linear regression of y on x and z:

yi = x′iβ + g(zi) + ei, i = 1, · · · , n, (10.3)

where E [ei|xi, zi] = 0. Let the data {(xi, zi, yi)}ni=1 be ordered so that the z’s are in increasing
order. The target is to nonparametrically estimate g. Propose its consistent estimator based
on the FD-transformation of (3). [Hint: on the first step, consistently estimate β from the
FD-transformed regression.] Prove consistency of your estimator.
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11. CONDITIONAL MOMENT RESTRICTIONS

11.1 Usefulness of skedastic function

Suppose that for the following linear regression model

yi = x′iβ + ei, E [ei|xi] = 0

the form of a skedastic function is

E

[
e2
i |xi

]
= h(xi, β, π),

where h(·) is a known smooth function, and π is an additional parameter vector. Compare asymp-
totic variances of optimal GMM estimators of β when only the first restriction or both restrictions
are employed. Under what conditions does including the second restriction into a set of moment
restrictions reduce asymptotic variance? Try to answer these questions in the general case, then
specialize to the following cases:

1. the function h(·) does not depend on β;

2. the function h(·) does not depend on β and the distribution of ei conditional on xi is sym-
metric.

11.2 Symmetric regression error

Suppose that it is known that the equation

y = αx+ e

is a regression of y on x, i.e. that E [e|x] = 0. All variables are scalars. The random sample
{yi, xi}ni=1 is available.

1. The investigator also suspects that y, conditional on x, is distributed symmetrically around
the conditional mean. Devise a Hausman specification test for this symmetry. Be specific
and give all details at all stages when constructing the test.

2. Suppose that even though the Hausman test rejects symmetry, the investigator uses the
assumption that e|x ∼ N (0, σ2). Derive the asymptotic properties of the QML estimator of
α.

11.3 Optimal instrument in AR-ARCH model

Consider an AR(1) − ARCH(1) model: xt = ρxt−1 + εt where the distribution of εt conditional
on It−1 is symmetric around 0 with E

[
ε2
t |It−1

]
= (1 − α) + αε2

t−1, where 0 < ρ, α < 1 and
It = {xt, xt−1, · · ·} .
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1. Let the space of admissible instruments for estimation of the AR(1) part be

Zt =

{ ∞∑
i=1

φixt−i, s.t.
∞∑
i=1

φ2
i <∞

}
.

Using the optimality condition, find the optimal instrument as a function of the model pa-
rameters ρ and α. Outline how to construct its feasible version.

2. Use your intuition to speculate on relative efficiency of the optimal instrument you found in
Part 1 versus the optimal instrument based on the conditional moment restriction E [εt|It−1] =
0.

11.4 Modified Poisson regression and PML estimators

1Let the observable random variable y be distributed, conditionally on observable x and unobserv-
able ε as Poisson with the parameter λ(x) = exp(x′β+ε), where E[exp ε|x] = 1 and V[exp ε|x] = σ2.
Suppose that vector x is distributed as multivariate standard normal.

1. Find the regression and skedastic functions, where the conditional information involves only
x.

2. Find the asymptotic variances of the Nonlinear Least Squares (NLLS) and Weighted Nonlinear
Least Squares (WNLLS) estimators of β.

3. Find the asymptotic variances of the Pseudo-Maximum Likelihood (PML) estimators of β
based on

(a) the normal distribution;

(b) the Poisson distribution;

(c) the Gamma distribution.

4. Rank the five estimators in terms of asymptotic efficiency.

11.5 Optimal instrument and regression on constant

Consider the following model:
yi = α+ ei, i = 1, . . . , n,

where unobservable ei conditionally on xi is distributed symmetrically with mean zero and variance
x2
iσ

2 with unknown σ2. The data (yi, xi) are IID.

1. Construct a pair of conditional moment restrictions from the information about the condi-
tional mean and conditional variance. Derive the optimal unconditional moment restrictions,
corresponding to (a) the conditional restriction associated with the conditional mean; (b) the
conditional restrictions associated with both the conditional mean and conditional variance.

1The idea of this problem is borrowed from Gourieroux, C. and Monfort, A. ”Statistics and Econometric Models”,
Cambridge University Press, 1995.
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2. Describe in detail the GMM estimators that correspond to the two optimal sets of uncondi-
tional moment restrictions of part 1. Note that in part 1(a) the parameter σ2 is not identified,
therefore propose your own estimator of σ2 that differs from the one implied by part 1(b). All
estimators that you construct should be fully feasible. If you use nonparametric estimation,
give all the details. Your description should also contain estimation of asymptotic variances.

3. Compare the asymptotic properties of the GMM estimators that you designed.

4. Derive the Pseudo-Maximum Likelihood estimator of α and σ2 of order 2 (PML2) that is
based on the normal distribution. Derive its asymptotic properties. How does this estimator
relate to the GMM estimators you obtained in part 2?
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12. EMPIRICAL LIKELIHOOD

12.1 Common mean

Suppose we have the following moment restrictions: E [x] = E [y] = θ.

1. Find the system of equations that yield the maximum empirical likelihood (MEL) estimator
θ̂ of θ, the associated Lagrange multipliers λ̂ and the implied probabilities p̂i. Derive the
asymptotic variances of θ̂ and λ̂ and show how to estimate them.

2. Reduce the number of parameters by eliminating the redundant ones. Then linearize the
system of equations with respect to the Lagrange multipliers that are left, around their
population counterparts of zero. This will help to find an approximate, but explicit solution
for θ̂, λ̂ and p̂i. Derive that solution and interpret it.

3. Instead of defining the objective function

1
n

n∑
i=1

log pi

as in the EL approach, let the objective function be

− 1
n

n∑
i=1

pi log pi.

This gives rise to the exponential tilting (ET) estimator of θ. Find the system of equations
that yields the ET estimator of θ̂, the associated Lagrange multipliers λ̂ and the implied
probabilities p̂i. Derive the asymptotic variances of θ̂ and λ̂ and show how to estimate them.

12.2 Kullback–Leibler Information Criterion

The Kullback–Leibler Information Criterion (KLIC) measures the distance between distributions,
say g(z) and h(z):

KLIC(g : h) = Eg

[
log

g(z)
h(z)

]
,

where Eg [·] denotes mathematical expectation according to g(z).
Suppose we have the following moment condition:

E

[
m(zi, θ0

k×1
)
]

= 0
`×1

, ` ≥ k,

and an IID sample z1, · · · , zn with no elements equal to each other. Denote by e the empirical
distribution function (EDF), i.e. the one that assigns probability 1

n to each sample point. Denote
by π a discrete distribution that assigns probability πi to the sample point zi, i = 1, · · · , n.
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1. Show that minimization of KLIC(e : π) subject to
∑n

i=1 πi = 1 and
∑n

i=1 πim(zi, θ) =
0 yields the Maximum Empirical Likelihood (MEL) value of θ and corresponding implied
probabilities.

2. Now we switch the roles of e and π and consider minimization of KLIC(π : e) subject to
the same constraints. What familiar estimator emerges as the solution to this optimization
problem?

3. Now suppose that we have a priori knowledge about the distribution of the data. So, instead
of using the EDF, we use the distribution p that assigns known probability pi to the sample
point zi, i = 1, · · · , n (of course,

∑n
i=1 pi = 1). Analyze how the solutions to the optimization

problems in parts 1 and 2 change.

4. Now suppose that we have postulated a family of densities f(z, θ) which is compatible with
the moment condition. Interpret the value of θ that minimizes KLIC(e : f).
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Part II

Solutions

47





1. ASYMPTOTIC THEORY

1.1 Asymptotics of t-ratios

The solution is straightforward, once we determine to what vector to apply LLN and CLT.

(a) When µ = 0, we have: X
p→ 0,

√
nX

d→ N (0, σ2), and σ̂2 p→ σ2, therefore

√
nTn =

√
nX

σ̂

d→ 1
σ
N (0, σ2) = N (0, 1)

(b) Consider the vector

Wn ≡
(
X

σ̂2

)
=

1
n

n∑
i=1

(
Xi

(Xi − µ)2

)
−
(

0
(X − µ)2

)
.

Due to the LLN, the last term goes in probability to the zero vector, and the first term, and
thus the whole Wn, converges in probability to

plim
n→∞

Wn =
(

µ
σ2

)
.

Moreover, since
√
n
(
X − µ

) d→ N (0, σ2), we have
√
n
(
X − µ

)2 d→ 0.

Next, let Wi ≡
(
Xi (Xi − µ)2

)′. Then
√
n

(
Wn− plim

n→∞
Wn

)
d→ N (0, V ), where V ≡ V [Wi].

Let us calculate V . First, V [Xi] = σ2 and V
[
(Xi − µ)2

]
= E

[
((Xi − µ)2 − σ2)2

]
= τ − σ4.

Second, C
[
Xi, (Xi − µ)2

]
= E

[
(Xi − µ)((Xi − µ)2 − σ2)

]
= 0. Therefore,

√
n

(
Wn− plim

n→∞
Wn

)
d→ N

((
0
0

)
,

(
σ2 0
0 τ − σ4

))
Now use the Delta-Method with function

g

(
t1
t2

)
≡ t1√

t2
⇒ g′

(
t1
t2

)
=

1√
t2

 1

− t1
2t2


to get

√
n

(
Tn− plim

n→∞
Tn

)
d→ N

(
0, 1 +

µ2(τ − σ4)
4σ6

)
.

Indeed, the answer reduces to N (0, 1) when µ = 0.

(c) Similarly we solve this part. Consider the vector

Wn ≡
(
X
σ2

)
=

1
n

n∑
i=1

(
Xi

X2
i

)
.
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Due to the LLN, Wn, converges in probability to

plim
n→∞

Wn =
(

µ
µ2 + σ2

)
.

Next,
√
n

(
Wn− plim

n→∞
Wn

)
d→ N (0, V ), where V ≡ V [Wi], Wi ≡

(
Xi X

2
i

)′. Let us calcu-

late V . First, V [Xi] = σ2 and V
[
X2
i

]
= E

[
(X2

i − µ2 − σ2)2
]

= τ + 4µ2σ2 − σ4. Second,
C

[
Xi, X

2
i

]
= E

[
(Xi − µ)(X2

i − µ2 − σ2)
]

= 2µσ2. Therefore,

√
n

(
Wn− plim

n→∞
Wn

)
d→ N

((
0
0

)
,

(
σ2 2µσ2

2µσ2 τ + 4µ2σ2 − σ4

))

Now use the Delta-Method with g

(
t1
t2

)
=

t1√
t2

to get

√
n

(
Rn− plim

n→∞
Rn

)
d→ N

(
0,
µ2τ − µ2σ4 + 4σ6)

4(µ2 + σ2)3

)
.

The answer reduces to that of Part (b) iff µ = 0. Under this condition, Tn and Rn are
asymptotically equivalent .

1.2 Asymptotics with shrinking regressor

The formulae for the OLS estimators are

β̂ =
1
n

∑
i yixi −

1
n2

∑
i yi
∑

i xi
1
n

∑
i x

2
i −

(
1
n

∑
i xi
)2 , α̂ = ȳ − β̂x̄, σ̂2 =

1
n

∑
i

êi
2. (1.1)

Let us talk about β̂ first. From (1.1) it follows that

β̂ =
1
n

∑
i(α+ βxi + ui)xi − 1

n2

∑
i(α+ βxi + ui)

∑
i xi

1
n

∑
i x

2
i − ( 1

n

∑
i xi)2

= β +
1
n

∑
i ρ
iui − 1

n2

∑
i ui
∑

i ρ
i

1
n

∑
i ρ

2i − 1
n2 (
∑

i ρ
i)2

= β +

∑
i ρ
iui − ρ(1−ρ1+n)

1−ρ
(

1
n

∑
i ui
)

ρ2(1−ρ2(n+1))
1−ρ2 − 1

n

(
ρ(1−ρ(n+1))

1−ρ

)2

which converges to

β +
1− ρ2

ρ2
plim
n→∞

n∑
i=1

ρiui,

if ξ ≡ plim
∑

i ρ
iui exists and is a well-defined random variable. It has E [ξ] = 0, E

[
ξ2
]

= σ2 ρ2

1−ρ2

and E
[
ξ3
]

= ν ρ3

1−ρ3 . Hence

β̂ − β d→ 1− ρ2

ρ2
ξ. (1.2)

Now let us look at α̂. Again, from (1.1) we see that

α̂ = α+ (β − β̂) · 1
n

∑
i

ρi +
1
n

∑
i

ui
p→ α,
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where we used (1.2) and the LLN for ui. Next,

√
n(α̂− α) =

1√
n

(β − β̂)
ρ(1− ρ1+n)

1− ρ
+

1√
n

∑
i

ui = Un + Vn.

Because of (1.2), Un
p→ 0. From the CLT it follows that Vn

d→ N (0, σ2). Together,

√
n(α̂− α) d→ N (0, σ2).

Lastly, let us look at σ̂2:

σ̂2 =
1
n

∑
i

ê2
i =

1
n

∑
i

(
(α− α̂) + (β − β̂)xi + ui

)2
. (1.3)

Using the facts that: (1) (α − α̂)2 p→ 0, (2) (β − β̂)2/n
p→ 0, (3) 1

n

∑
i u

2
i

p→ σ2, (4) 1
n

∑
i ui

p→ 0,
(5) 1√

n

∑
i ρ
iui

p→ 0, we can derive that

σ̂2 p→ σ2.

The rest of this solution is optional and is usually not meant when the asymptotics of σ̂2 is
concerned. Before proceeding to deriving its asymptotic distribution, we would like to mark out
that (β − β̂)/nδ

p→ 0 and (
∑

i ρ
iui)/nδ

p→ 0 for any δ > 0. Using the same algebra as before we
have

√
n(σ̂2 − σ2) A∼ 1√

n

∑
i

(u2
i − σ2),

since the other terms converge in probability to zero. Using the CLT, we get

√
n(σ̂2 − σ2) d→ N (0,m4),

where m4 = E

[
u4
i

]
− σ4, provided that it is finite.

1.3 Creeping bug on simplex

Since xk and yk are perfectly correlated, it suffices to consider either one, say, xk. Note that at
each step xk increases by 1

k with probability p, or stays the same. That is, xk = xk−1 + 1
kξk, where

ξk is IID Bernoulli(p). This means that xk = 1
k

∑k
i=1 ξi which by the LLN converges in probability

to E [ξi] = p as k →∞. Therefore, plim(xk, yk) = (p, 1− p). Next, due to the CLT,

√
n (xk − plimxk)

d→ N (0, p(1− p)) .

Therefore, the rate of convergence is
√
n, as usual, and

√
n

((
xk
yk

)
− plim

(
xk
yk

))
d→ N

((
0
0

)
,

(
p(1− p) −p(1− p)
−p(1− p) p(1− p)

))
.
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1.4 Asymptotics of rotated logarithms

Use the Delta-Method for

√
n

((
Un
Vn

)
−
(
µu
µv

))
d−→ N

((
0
0

)
,Σ
)

and g

(
x

y

)
=
(

lnx− ln y
lnx+ ln y

)
. We have

∂g

∂(x y)

(
x

y

)
=
(

1/x −1/y
1/x 1/y

)
, G =

∂g

∂(x y)

(
µu
µv

)
=
(

1/µu −1/µv
1/µu 1/µv

)
,

so
√
n

((
lnUn − lnVn
lnUn + lnVn

)
−
(

lnµu − lnµv
lnµu + lnµv

))
d−→ N

((
0
0

)
, GΣG′

)
,

where

GΣG′ =


ωuu
µ2
u

− 2ωuv
µuµv

+
ωvv
µ2
v

ωuu
µ2
u

− ωvv
µ2
v

ωuu
µ2
u

− ωvv
µ2
v

ωuu
µ2
u

+
2ωuv
µuµv

+
ωvv
µ2
v

 .

It follows that lnUn − lnVn and lnUn + lnVn are asymptotically independent when
ωuu
µ2
u

=
ωvv
µ2
v

.

1.5 Trended vs. differenced regression

1. The OLS estimator β̂ in that case is

β̂ =
∑T

t=1(yt − 1
T

∑T
t=1 yt)(t−

1
T

∑T
t=1 yt)∑T

t=1

(
t− 1

T

∑T
t=1 t

)2 .

Then

β̂ − β =

 1
1
T 3

∑T
t=1 t

2 −
(

1
T 2

∑T
t=1 t

)2 ,−
1
T 2

∑T
t=1 t

1
T 3

∑
t2 −

(
1
T 2

∑T
t=1 t

)2

[ 1
T 3

∑T
t=1 εtt

1
T 2

∑T
t=1 εt

]
.

Now,

T 3/2(β̂−β) =

 1
1
T 3

∑T
t=1 t

2−
(

1
T 2

∑T
t=1 t

)2 ,−
1
T 2

∑T
t=1 t

1
T 3

∑T
t=1 t

2−
(

1
T 2

∑T
t=1 t

)2

 1√
T

T∑
t=1

[
t
T εt
εt

]
.

Since
T∑
t=1

t =
T (T + 1)

2
,

T∑
t=1

t2 =
T (T + 1)(2T + 1)

6
,
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it is easy to see that the first vector converges to (12,−6). Assuming that all conditions for the
CLT for heterogenous martingale difference sequences (e.g., Potscher and Prucha, Theorem
4.12; Hamilton, Proposition 7.8) hold, we find that

1√
T

T∑
t=1

(
t
T εt
εt

)
d→ N

((
0
0

)
, σ2

(
1
3

1
2

1
2 1

))
,

since

lim
1
T

T∑
t=1

V

[
t

T
εt

]
= σ2 lim

1
T

T∑
t=1

(
t

T

)2

=
1
3
,

lim
1
T

T∑
t=1

V [εt] = σ2,

lim
1
T

T∑
t=1

C

[
t

T
εt, εt

]
= σ2 lim

1
T

T∑
t=1

t

T
=

1
2
.

Consequently,

T 3/2(β̂ − β)→ (12,−6) · N
((

0
0

)
, σ2

(
1
3

1
2

1
2 1

))
= N (0, 12σ2).

2. Clearly, that for regression yt − yt−1 = β + εt − εt−1 OLS estimator is

β̌ =
1
T

T∑
t=1

(yt − yt−1) = β +
εT − ε0

T
.

So, T (β̌ − β) = εT − ε0 ∼ D(0, 2σ2).

3. When T is sufficiently large, β̂ A∼ N
(
β, 12σ2

T 3

)
, and β̌ ∼ D

(
β, 2σ2

T 2

)
. It is easy to see that for

large T, the (approximate) variance of the first estimator is less than that of the second.

1.6 Second-order Delta-Method

(a) From CLT,
√
nSn

d→ N (0, 1). Using the Mann–Wald theorem for g(x) = x2, we have
nS2

n
d→ χ2(1).

(b) The Taylor expansion around cos(0) = 1 yields cos(Sn) = 1 − 1
2 cos(S∗n)S2

n, where S∗n ∈
[0, Sn]. From LLN and the Mann–Wald theorem, cos(S∗n)

p→ 1, and from the Slutsky theorem,
2n(1− cos(Sn)) d→ χ2(1).

(c) Let zn
p→ z = const and

√
n(zn − z)

d→ N
(
0, σ2

)
. Let g be twice continuously differentiable

at z with g′(z) = 0 and g′′(z) 6= 0. Then

2n
σ2

g(zn)− g(z)
g′′(z)

d→ χ2(1).
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Proof. Indeed, as g′(z) = 0, from the second-order Taylor expansion,

g(zn) = g(z) +
1
2
g′′(z∗)(zn − z)2,

and, since g′′(z∗)
p→ g′′(z) and

√
n(zn − z)

σ

d→ N (0, 1) , we have

2n
σ2

g(zn)− g(z)
g′′(z)

=
[√

n(zn − z)
σ

]2
d→ χ2(1).

QED

1.7 Brief and exhaustive

1. Observe that xt = ρxt−1 + et, et = εt + θεt−1 is an ARMA(1,1) process. Since C [xt−1, et] =
θσ2 6= 0, the OLS estimator is inconsistent:

ρ̂OLS =
∑
xtxt−1∑
x2
t−1

= ρ+
∑
etxt−1∑
x2
t−1

p→ ρ+
E [etxt−1]
E

[
x2
t−1

] 6= ρ.

Note an interesting thing. We do not consider explosive processes where |ρ| > 1, but the case
ρ = 1 deserves attention. From the above it may seem that then ρ̂OLS

p→ ρ, since E
[
x2
t−1

]
has 1−ρ2 in the denominator. There is a fallacy in this argument, since the usual asymptotic
fails when ρ = 1. However, the unit root asymptotics says that we do have ρ̂OLS

p→ ρ in that
case even though the error term is correlated with the regressor.

2. The long-run variance is just a two-sided infinite sum of all covariances, i.e. 3+2 ·2+2 ·1 = 9.

3. The long-run variance is Vze =
∑+∞

j=−∞C [ztet, zt−jet−j ] . Since et and zt are scalars, indepen-
dent and E [et] = 0, we have C [ztet, zt−jet−j ] = E [ztzt−j ]E [etet−j ] . Let for simplicity zt also
have zero mean. Then E [ztzt−j ] = ρjz

(
1− ρ2

z

)−1
σ2
z and E [etet−j ] = ρje

(
1− ρ2

e

)−1
σ2
e, where

ρz, σ
2
z, ρe, σ

2
e are AR(1) parameters. To sum up,

Vze =
σ2
z

1− ρ2
z

σ2
e

1− ρ2
e

+∞∑
j=−∞

ρjzρ
j
e =

1 + ρzρe
(1− ρzρe) (1− ρ2

z) (1− ρ2
e)
σ2
zσ

2
e..

To estimate Vze, find the OLS estimates ρ̂z, σ̂
2
z, ρ̂e, σ̂

2
e of the AR(1) regressions and plug them

in. The resulting V̂ze will be consistent by the Continuous Mapping Theorem.

1.8 Asymptotics of averages of AR(1) and MA(1)

Note that yt can be rewritten as yt =
∑+∞

j=0 ρ
jxt−j

1. (i) yt is not an MDS relative to own past {yt−1, yt−2, ...}, because it is correlated with older
yt’s; (ii) zt is an MDS relative to {xt−2, xt−3, ...}, but is not an MDS relative to own past
{zt−1, zt−2, ...}, because zt and zt−1 are correlated through xt−1.
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2. (i) By the CLT for the general stationary and ergodic case,
√
TyT

d→ N (0, qyy), where

qyy =
∑+∞

j=−∞ C [yt, yt−j ]︸ ︷︷ ︸
γj

. It can be shown that for an AR(1) process, γ0 =
σ2

1− ρ2
, γj =

γ−j =
σ2

1− ρ2
ρj . Therefore, qyy =

∑+∞
j=−∞ γj =

σ2

(1− ρ)2
. (ii) By the CLT for the general

stationary and ergodic case,
√
TzT

d→ N (0, qzz), where qzz = γ0 + 2γ1 + 2
∑+∞

j=2 γ1︸︷︷︸
=0

=

(1 + θ2)σ2 + 2θσ2 = σ2(1 + θ)2.

3. If we have consistent estimates σ̂2, ρ̂, θ̂ of σ2, ρ, θ, we can estimate qyy and qzz consistently by
σ̂2

(1− ρ̂)2
and σ̂2(1 + θ̂)2, respectively. Note that these are positive numbers by construction.

Alternatively, we could use robust estimators, like the Newey–West nonparametric estimator,
ignoring additional information that we have. But under the circumstances this seems to be
less efficient.

4. For vectors, (i)
√
TyT

d→ N (0, Qyy), whereQyy =
∑+∞

j=−∞ C [yt,yt−j ]︸ ︷︷ ︸ .
Γj

But Γ0 =
∑+∞

j=0 PjΣP′j ,

Γj = PjΓ0 if j > 0, and Γj = Γ′−j = Γ0P′|j| if j < 0. Hence Qyy = Γ0 +
∑+∞

j=1 PjΓ0 +∑+∞
j=1 Γ0P′j = Γ0 + (I − P)−1PΓ0 + Γ0P′(I − P′)−1; (ii)

√
TzT

d→ N (0, Qzz), where Qzz =
Γ0 + Γ1 + Γ−1 = Σ + ΘΣΘ

′
+ ΘΣ + ΣΘ

′
= (I + Θ)Σ(I + Θ)

′
. As for estimation of asymptotic

variances, it is evidently possible to construct a consistent estimator of Qzz that is positive
definite by construction, but it is not clear if Qyy is positive definite after appropriate es-
timates of Γ0 and P are plugged in (constructing a consistent estimator of even Γ0 is not
straightforward). In the latter case it may be better to use the Newey–West estimator.
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2. BOOTSTRAP

2.1 Brief and exhaustive

1. The mentioned difference indeed exists, but it is not the principal one. The two methods have
some common features like computer simulations, sampling, etc., but they serve completely
different goals. The bootstrap is an alternative to analytical asymptotic theory for making
inferences, while Monte-Carlo is used for studying small-sample properties of the estimators.

2. After some point raising B does not help since the bootstrap distribution is intrinsically
discrete, and raising B cannot smooth things out. Even more than that if we’re interested
in quantiles, and we usually are: the quantile for a discrete distribution is a whole interval,
and the uncertainty about which point to choose to be a quantile doesn’t disappear when we
raise B.

3. There is no such thing as a ”bootstrap estimator”. Bootstrapping is a method of inference,
not of estimation. The same goes for an ”asymptotic estimator”.

4. (a) CE = [q∗n(2.5%), q∗n(97.5%)] = [.75, 1.3]. (b) CH = [θ̂ − q
θ̂
∗−θ̂(97.5%), θ̂ − q

θ̂
∗−θ̂(2.5%)] =

[2θ̂ − q∗n(97.5%), 2θ̂ − q∗n(2.5%)] = [1.1, 1.65].
(c) We cannot compute this from the given information, since we need the quantiles of the
t-statistic, which are unavailable.

2.2 Bootstrapping t-ratio

The Hall percentile interval is CIH = [θ̂ − q̃∗1−α/2, θ̂ − q̃
∗
α/2], where q̃∗α is the bootstrap α-quantile

of θ̂
∗ − θ̂, i.e. α = P{θ̂∗ − θ̂ ≤ q̃∗α}. But then

q̃∗α

s(θ̂)
is the α-quantile of

θ̂
∗ − θ̂
s(θ̂)

= T ∗n , since

P

{
θ̂
∗ − θ̂
s(θ̂)

≤ q̃∗α

s(θ̂)

}
= α. But by construction, the α-quantile of T ∗n is q∗α, hence q̃∗α = s(θ̂)q∗α.

Substituting this into CIH , we get the CI as in the problem.

2.3 Bootstrap correcting mean and its square

The bootstrap version x̄∗n of x̄n has mean x̄n with respect to the EDF: E∗ [x̄∗n] = x̄n. Thus the
bootstrap version of the bias (which is itself zero) is Bias∗(x̄n) = E

∗ [x̄∗n] − x̄n = 0. Therefore, the
bootstrap bias corrected estimator of µ is x̄n − Bias∗(x̄n) = x̄n. Now consider the bias of x̄2

n:

Bias(x̄2
n) = E

[
x̄2
n

]
− µ2 = V

[
x̄2
n

]
=

1
n
V [x] .
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Thus the bootstrap version of the bias is the sample analog of this quantity:

Bias∗(x̄2
n) =

1
n
V
∗ [x] =

1
n

(
1
n

∑
x2
i − x̄2

n

)
. Therefore, the bootstrap bias corrected estimator of µ2 is

x̄2
n − Bias∗(x̄2

n) =
n+ 1
n

x̄2
n −

1
n2

∑
x2
i .

2.4 Bootstrapping conditional mean

We are interested in g(x) = E [x′β + e|x] = x′β, and as the point estimate we take ĝ(x) = x′β̂,
where β̂ is the OLS estimator for β. To pivotize ĝ(x), we observe that

x′(β̂ − β) d→ N (0, x
(
E

[
xix
′
i

])−1
E

[
e2
ixix

′
i

] (
E

[
xix
′
i

])−1
x′),

so the appropriate statistic to bootstrap is

tg =
x′(β̂ − β)
s (ĝ(x))

,

where s (ĝ(x)) =
√
x (
∑
xix′i)

−1 (∑ ê2
ixix

′
i

)
(
∑
xix′i)

−1 x′. The bootstrap version is

t∗g =
x′(β̂

∗ − β̂)
s (ĝ∗(x))

,

where s (ĝ∗(x)) =
√
x (
∑
x∗ix

∗′
i )−1 (∑ ê∗2i x

∗
ix
∗′
i

)
(
∑
x∗ix

∗′
i )−1 x′. The rest is standard, and the con-

fidence interval is
CIt =

[
x′β̂ − q∗1−α

2
s (ĝ(x)) ;x′β̂ − q∗α

2
s (ĝ(x))

]
,

where q∗α
2

and q∗1−α
2

are appropriate bootstrap quantiles for t∗g.

2.5 Bootstrap adjustment for endogeneity?

When we bootstrap an inconsistent estimator, its bootstrap analogs are concentrated more and
more around the probability limit of the estimator, and thus the estimate of the bias becomes
smaller and smaller as the sample size grows. That is, bootstrapping is able to correct the bias
caused by finite sample nonsymmetry of the distribution, but not the asymptotic bias (difference
between the probability limit of the estimator and the true parameter value). Rigorously, assume
for simplicity that x and β are scalars. Then β̂

p→ β + a, where

a =plim
n→∞

∑n
i=1 xiei∑n
i=1 x

2
i

=
E[xiei]
E[x2

i ]
.
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Denote g
(
u
v

)
= β + u

v , and let G1 be the vector of the first derivatives of g, and G2 be the matrix

of its second derivatives. Also let us define: x̄ =
(

1
n

∑n
i=1 xiei

1
n

∑n
i=1 x

2
i

)
and µ =

(
E [xiei]
E

[
x2
i

] ) . Then

β̂ − (β + a) = G1(µ)(x̄− µ) +
1
2

(x̄− µ)′G1(µ)(x̄− µ) +Rn,

and so

E

[
β̂ − β

]
= a+

1
2
E

[
(x̄− µ)′G1(µ)(x̄− µ)

]
+O

(
1
n2

)
.

Thus we see that β̂ is biased from β by

Bn = a+
1
2
E

[
(x̄− µ)′G1(µ)(x̄− µ)

]
+O

(
n−2

)
.

For the bootstrap analogs,

β̂
∗ − β̂ = G1(x̄)(x̄∗ − x̄) +

1
2

(x̄∗ − x̄)′G1(x̄)(x̄∗ − x̄) +R∗n,

and

E
∗
[
β̂
∗ − β̂

]
=

1
2
E
∗ [(x̄∗ − x̄)′G1(x̄)(x̄∗ − x̄)

]
+O

(
1
n2

)
.

so the bootstrap bias is

B∗n = E
∗ [(x̄∗ − x̄)′G1(x̄)(x̄∗ − x̄)

]
+O

(
n−2

)
.

Moreover, a + E [B∗n] = Bn + O(n−2). We see that E
[
β̂ − β

]
= a + O

(
n−1

)
and E

[
β̂ −B∗n

]
=

β +Bn − E [B∗n] = β + a+O(n−2), which means that by adjusting the estimator β̂ by changing it
to β̂ − B∗n, we get rid of the bias due to finiteness of sample, but do not put away the asymptotic
bias a.
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3. REGRESSION IN GENERAL

3.1 Property of conditional distribution

By definition,

|ρ(Y, f(X))| = |C [Y, f(X)]|√
V [Y ]

√
V [f(X)]

.

Now,

|C [Y, f(X)]| = |E [(Y − E [Y ]) (f(X)− E [f(X)])]| = |E [E [Y − E [Y ] |X] (f(X)− E [f(X)])]|
= |E [(E [Y |X]− E [Y ]) (f(X)− E [f(X)])]|
≤ E |(E [Y |X]− E [Y ]) (f(X)− E [f(X)])|

≤
√
E

[
(E [Y |X]− E [Y ])2

]√
E

[
(f(X)− E [f(X)])2

]
=
√
V [E [Y |X]]

√
V [f(X)],

therefore

|ρ(Y, f(X))| ≤

√
V [E [Y |X]]
V [Y ]

.

Note that this bound does not depend on f(X). We will now see that a + bE(Y |X) attains this
bound, and therefore is a maximizer. Indeed,

|ρ(Y, a+ bE [Y |X])| =
|C [Y, a+ bE [Y |X]]|√
V [Y ]

√
V [a+ bE [Y |X]]

=
|b| |C [Y,E [Y |X]]|√
V [Y ]

√
b2V [E [Y |X]]

=
|E [(Y − E [Y ]) (E [Y |X]− E [Y ])]|√

V [Y ]
√
V [E [Y |X]]

=
|E [(E [Y |X]− E [Y ]) (E [Y |X]− E [Y ])]|√

V [Y ]
√
V [E [Y |X]]

=
V [E [Y |X]]√

V [Y ]
√
V [E [Y |X]]

=

√
V [E [Y |X]]
V [Y ]

.

3.2 Unobservables among regressors

By the Law of Iterated Expectations, E [y|x, z] = α + βx + γz. Thus we know that in the linear
prediction y = α + βx + γz + ey, the prediction error ey is uncorrelated with the predictors, i.e.
C [ey, x] = C [ey, z] = 0. Consider the linear prediction of z by x: z = ζ + δx + ez, C [ez, x] = 0.
But since C [z, x] = 0, we know that δ = 0. Now, if we linearly predict y only by x, we will have
y = α + βx + γ (ζ + ez) + ey = α + γζ + βx + γez + ey. Here the composite error γez + ey is
uncorrelated with x and thus is the best linear prediction error. As a result, the OLS estimator of
β is consistent.
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Checking the properties of the second option is more involved. Notice that the OLS coefficients
in the linear prediction of y by x and w converge in probability to

plim
(
β̂

ω̂

)
=
(
σ2
x σxw
σxw σ2

w

)−1(
σxy
σwy

)
=
(
σ2
x σxw
σxw σ2

w

)−1(
βσ2

x

βσxw + γσwz

)
,

so we can see that
plimβ̂ = β +

σxwσwz
σ2
xσ

2
w − σ2

xw

γ.

Thus in general the second option gives an inconsistent estimator.

3.3 Consistency of OLS in presence of lagged dependent variable and

serially correlated errors

1. Indeed,

E[ut] = E[yt − βyt−1] = E[yt]− βE[yt−1] = 0− β · 0 = 0

and
C [ut, yt−1] = C [yt − βyt−1, yt−1] = C [yt, yt−1]− βV [yt−1] = 0.

(ii) Now let us show that β̂ is consistent. Since E[yt] = 0, it immediately follows that

β̂ =
1
T

∑T
t=2 ytyt−1

1
T

∑T
t=2 y

2
t−1

= β +
1
T

∑T
t=2 utyt−1

1
T

∑T
t=2 y

2
t−1

p→ β +
E [utyt−1]
E

[
y2
t

] = β.

(iii) To show that ut is serially correlated, consider

C[ut, ut−1] = C [yt − βyt−1, yt−1 − βyt−2] = β (βC [yt, yt−1]− C [yt, yt−2]) ,

which is generally not zero unless β = 0 or β =
C [yt, yt−2]
C [yt, yt−1]

. As an example of a serially

correlated ut take the AR(2) process

yt = αyt−2 + εt,

where εt are IID. Then β = 0 and thus ut = yt, serially correlated.

(iv) The OLS estimator is inconsistent if the error term is correlated with the right-hand-side
variables. This latter is not necessarily the same as serial correlatedness of the error term.

3.4 Incomplete regression

1. Note that
yi = x′iβ + z′iγ + ηi.
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We know that E [ηi|zi] = 0, so E [ziηi] = 0. However, E [ziηi] 6= 0 unless γ = 0, because
0 = E[xiei] = E [xi (z′iγ + ηi)] = E [xiz′i] γ + E [xiηi] , and we know that E [xiz′i] 6= 0. The
regression of yi on xi and zi yields the OLS estimates with the probability limit

p lim
(
β̂

γ̂

)
=
(
β

γ

)
+Q−1

(
E [xiηi]

0

)
,

where

Q =
(
E[xix′i] E[xiz′i]
E[zix′i] E[ziz′i]

)
.

We can see that the estimators β̂ and γ̂ are in general inconsistent. To be more precise, the
inconsistency of both β̂ and γ̂ is proportional to E [xiηi] , so that unless γ = 0 (or, more subtly,
unless γ lies in the null space of E [xiz′i]), the estimators are inconsistent.

2. The first step yields a consistent OLS estimate β̂ of β because of the OLS estimator is
consistent in a linear mean regression. At the second step, we get the OLS estimate

γ̂ =
(∑

ziz
′
i

)−1∑
ziêi =

(∑
ziz
′
i

)−1 (∑
ziei −

∑
zix

′
i

(
β̂ − β

))
=

= γ +
(

1
n

∑
ziz
′
i

)−1 (
1
n

∑
ziηi − 1

n

∑
zix

′
i

(
β̂ − β

))
.

Since 1
n

∑
ziz
′
i
p→ E [ziz′i] ,

1
n

∑
zix

′
i
p→ E [zix′i] ,

1
n

∑
ziηi

p→ E [ziηi] = 0, β̂ − β p→ 0, we have
that γ̂ is consistent for γ.

Therefore, from the point of view of consistency of β̂ and γ̂, we recommend the second method.
The limiting distribution of

√
n (γ̂ − γ) can be deduced by using the Delta-Method. Observe that

√
n (γ̂ − γ) =

(
1
n

∑
ziz
′
i

)−1
(

1√
n

∑
ziηi − 1

n

∑
zix

′
i

(
1
n

∑
xix
′
i

)−1
1√
n

∑
xiei

)
and

1√
n

∑(
ziηi
xiei

)
d→ N

((
0
0

)
,

(
E[ziz′iη

2
i ] E[zix′iηiei]

E[xiz′iηiei] σ2
E[xix′i]

))
.

Having applied the Delta-Method and the Continuous Mapping Theorems, we get

√
n (γ̂ − γ) d→ N

(
0,
(
E[ziz′i]

)−1
V
(
E[ziz′i]

)−1
)
,

where

V = E[ziz′iη
2
i ] + σ2

E[zix′i]
(
E[xix′i]

)−1
E[xiz′i]

−E[zix′i]
(
E[xix′i]

)−1
E[xiz′iηiei]− E[zix′iηiei]

(
E[xix′i]

)−1
E[xiz′i].

3.5 Brief and exhaustive

1. It simplifies a lot. First, we can use simpler versions of LLNs and CLTs; second, we do not
need additional conditions beside existence of some moments. For example, for consistency
of the OLS estimator in the linear mean regression model yi = xiβ + ei, E [ei|xi] = 0, only
existence of moments is needed, while in the case of fixed regressors we (1) have to use the
LLN for heterogeneous sequences, (2) have to add the condition 1

n

∑n
i=1 x

2
i →n→∞M .
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2. The economist is probably right about treating the regressors as random if he has a random
sampling experiment. But his reasoning is completely ridiculous. For a sampled individual,
his/her characteristics (whether true or false) are fixed; randomness arises from the fact that
this individual is randomly selected.

3. Ê [x|z] = g(z) is a strictly increasing and continuous function, therefore g−1(·) exists and
E [x|z] = γ is equivalent to z = g−1(γ). If Ê[y|z] = f(z), then Ê [y|E [x|z] = γ] = f(g−1(γ)).

4. Yes, one should use White’s formula, but not because σ2Q−1
xx does not make sense. It does

make sense, but is irrelevant to calculation of the asymptotic variance of the OLS estimator,
which in general takes the ”sandwich” form. It is not true that σ2 varies from observation to
observation, if by σ2 we mean unconditional variance of the error term.
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4. OLS AND GLS ESTIMATORS

4.1 Brief and exhaustive

1. The OLS estimator is unbiased conditional on all xi-variables, irrespective of how xi’s are
generated. The conditional unbiasedness property implied unbiasedness.

2. Observe that E [y|x] = α+ βx, V [y|x] = (α+ βx)2. Consequently, we can use the usual OLS
estimator and White’s standard error. By the way, the model y = (α + βx)e can be viewed
as y = α+ βx+ u, where u = (α+ βx)(e− 1), E [u|x] = 0, V [u|x] = (α+ βx)2.

4.2 Estimation of linear combination

1. Consider the class of linear estimators, i.e. one having the form θ̃ = AY, where A de-
pends only on data X = ((1, x1, z1)′ · · · (1, xn, zn)′)′ . The conditional unbiasedness require-
ment yields the condition AX = (1, cx, cy), where δ = (α, β, γ)′. The best linear unbiased
estimator is θ̂ = (1, cx, cy)δ̂, where δ̂ is the OLS estimator. Indeed, this estimator belongs to
the class considered, since θ̂ = (1, cx, cy) (X ′X )−1X ′Y = A∗Y for A∗ = (1, cx, cy) (X ′X )−1X ′
and A∗X = (1, cx, cy). Besides,

V

[
θ̂|X

]
= σ2(1, cx, cy)

(
X ′X

)−1 (1, cx, cy)′

and is minimal in the class because the key relationship (A−A∗)A∗ = 0 holds.

2. Observe that
√
n
(
θ̂ − θ

)
= (1, cx, cy)

√
n
(
δ̂ − δ

)
d→ N

(
0, Vθ̂

)
, where

Vθ̂ = σ2

(
1 +

φ2
x + φ2

z − 2ρφxφz
1− ρ2

)
,

φx = E[x]−cx√
V[x]

, φz = E[z]−cz√
V[z]

, and ρ is the correlation coefficient between x and z.

3. Minimization of Vθ̂ with respect to ρ yields

ρopt =


φx
φz

if
∣∣∣∣φxφz

∣∣∣∣ < 1,

φz
φx

if
∣∣∣∣φxφz

∣∣∣∣ ≥ 1.

4. Multicollinearity between x and z means that ρ = 1 and δ and θ are unidentified. An
implication is that the asymptotic variance of θ̂ is infinite.
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4.3 Long and short regressions

Let us denote this estimator by β̌1. We have

β̌1 =
(
X ′1X1

)−1
X ′1Y =

(
X ′1X1

)−1
X ′1 (X1β1 +X2β2 + e) =

= β1 +
(

1
n
X ′1X1

)−1( 1
n
X ′1X2

)
β2 +

(
1
n
X ′1X1

)−1( 1
n
X ′1e

)
.

Since E [eix1i] = 0, we have that 1
nX
′
1e

p→ 0 by the LLN. Also, by the LLN, 1
nX
′
1X1

p→ E [x1ix
′
1i]

and 1
nX
′
1X2

p→ E [x1ix
′
2i] . Therefore,

β̌1
p→ β1 +

(
E

[
x1ix

′
1i

])−1
E

[
x1ix

′
2i

]
β2.

So, in general, β̌1 is inconsistent. It will be consistent if β2 lies in the null space of E [x1ix
′
2i] . Two

special cases of this are: (1) when β2 = 0, i.e. when the true model is Y = X1β1 + e; (2) when
E [x1ix

′
2i] = 0.

4.4 Ridge regression

1. There is conditional bias: E
[
β̃|X

]
= (X ′X+λIk)−1X ′E [Y |X] = β−(X ′X+λIk)−1λβ, unless

β = 0. Next E
[
β̃
]

= β − E
[
(X ′X + λIk)−1

]
λβ 6= β unless β = 0. Therefore, estimator is in

general biased.

2. Observe that

β̃ = (X ′X + λIk)−1X ′Xβ + (X ′X + λIk)−1X ′ε

=

(
1
n

∑
i

xix
′
i +

λ

n
Ik

)−1
1
n

∑
i

xix
′
iβ +

(
1
n

∑
i

xix
′
i +

λ

n
Ik

)−1
1
n

∑
i

xiεi.

Since 1
n

∑
xix
′
i
p→ E [xix′i] ,

1
n

∑
xiεi

p→ E [xiεi] = 0, λn
p→ 0, we have:

β̃
p→
(
E

[
xix
′
i

])−1
E

[
xix
′
i

]
β +

(
E

[
xix
′
i

])−1 0 = β,

that is, β̃ is consistent.

3. The math is straightforward:

√
n(β̃ − β) =

(
1
n

∑
i

xix
′
i +

λ

n
Ik

)−1

︸ ︷︷ ︸
↓p

(E [xix′i])
−1

−λ√
n︸︷︷︸
↓
0

β+

(
1
n

∑
i

xix
′
i +

λ

n
Ik

)−1

︸ ︷︷ ︸
↓p

(E [xix′i])
−1

1√
n

∑
i

xiεi︸ ︷︷ ︸
↓d

N
(
0,E

[
xix
′
iε

2
i

])
p→ N

(
0, Q−1

xxQxxe2Q
−1
xx

)
.
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4. The conditional mean squared error criterion E
[(
β̃ − β

)2
|X
]

can be used. For the OLS

estimator,

E

[(
β̂ − β

)2
|X
]

= V

[
β̂
]

= (X ′X)−1X ′ΩX(X ′X)−1.

For the ridge estimator,

E

[(
β̃ − β

)2
|X
]

=
(
X ′X + λIk

)−1 (
X ′ΩX + λ2ββ′

) (
X ′X + λIk

)−1

By the first order approximation, if λ is small, (X ′X + λIk)−1 ≈ (X ′X)−1(Ik − λ(X ′X)−1).
Hence,

E

[(
β̃ − β

)2
|X
]
≈ (X ′X)−1(I − λ(X ′X)−1)(X ′ΩX)(I − λ(X ′X)−1)(X ′X)−1

≈ E[(β̂ − β)2]− λ(X ′X)−1[X ′ΩX(X ′X)−1 + (X ′X)−1X ′ΩX](X ′X)−1.

That is E
[(
β̂ − β

)2
|X
]
− E

[(
β̃ − β

)2
|X
]

= A, where A is likely to be positive definite.

Thus for small λ, β̃ may be a preferable estimator to β̂ according to the mean squared error
criterion, despite its biasedness.

4.5 Exponential heteroskedasticity

1. At the first step, estimate consistently α and β. This can be done using the relationship

E

[
y2|x

]
= (x′β)2 + exp(x′β + α),

by using NLLS on this nonlinear mean regression, to get β̂. Then construct σ̂2
i ≡ exp(x′iβ̂)

for all i (we don’t need exp(α) since it is just a multiplicative scalar that eventually cancels
out) and use these weights at the second step to construct a feasible GLS estimator of β:

β̃ =

(
1
n

∑
i

σ̂−2
i xix

′
i

)−1
1
n

∑
i

σ̂−2
i xiyi.

2. The feasible GLS estimator is asymptotically efficient, since it is asymptotically equivalent to
GLS. It is finite-sample inefficient, since we changed the weights from what GLS presumes.

4.6 OLS and GLS are identical

1. Evidently, E [Y |X] = Xβ and Σ = V [Y |X] = XΓX ′ + σ2In. Since the latter depends on X,
we are in the heteroskedastic environment.

2. The OLS estimator is
β̂ =

(
X ′X

)−1
X ′Y,
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and the GLS estimator is
β̃ =

(
X ′Σ−1X

)−1
X ′Σ−1Y.

First, X ′ê = X ′
(
Y −X (X ′X)−1X ′Y

)
= X ′Y − X ′X (X ′X)−1X ′Y = X ′Y − X ′Y = 0.

Premultiply this by XΓ: XΓX ′ê = 0. Add σ2ê to both sides and combine the terms on the
left-hand side:

(
XΓX ′ + σ2In

)
ê ≡ Σê = σ2ê. Now predividing by matrix Σ gives ê = σ2Σ−1ê.

Premultiply once gain by X ′ to get 0 = X ′ê = σ2X ′Σ−1ê, or just X ′Σ−1ê = 0. Recall now
what ê is: X ′Σ−1Y = X ′Σ−1X (X ′X)−1X ′Y which implies β̂ = β̃.

The fact that the two estimators are identical implies that all the statistics based on the two
will be identical and thus have the same distribution.

3. Evidently, in this model the coincidence of the two estimators gives unambiguous superiority
of the OLS estimator. In spite of heteroskedasticity, it is efficient in the class of linear unbiased
estimators, since it coincides with GLS. The GLS estimator is worse since its feasible version
requires estimation of Σ, while the OLS estimator does not. Additional estimation of Σ adds
noise which may spoil finite sample performance of the GLS estimator. But all this is not
typical for ranking OLS and GLS estimators and is a result of a special form of matrix Σ.

4.7 OLS and GLS are equivalent

1. When ΣX = XΘ, we have X ′ΣX = X ′XΘ and Σ−1X = XΘ−1, so that

V

[
β̂|X

]
=
(
X ′X

)−1
X ′ΣX

(
X ′X

)−1 = Θ
(
X ′X

)−1

and
V

[
β̃|X

]
=
(
X ′Σ−1X

)−1 =
(
X ′XΘ−1

)−1 = Θ
(
X ′X

)−1
.

2. In this example,

Σ = σ2


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

 ,
and ΣX = σ2(1 + ρ(n− 1)) · (1, 1, · · · , 1)′ = XΘ, where

Θ = σ2(1 + ρ(n− 1)).

Thus one does not need to use GLS but instead do OLS to achieve the same finite-sample
efficiency.

4.8 Equicorrelated observations

This is essentially a repetition of the second part of the previous problem, from which it follows
that under the circumstances x̄n the best linear conditionally (on a constant which is the same as
unconditionally) unbiased estimator of θ because of coincidence of its variance with that of the GLS

68 OLS AND GLS ESTIMATORS



estimator. Appealing to the case when |γ| > 1 (which is tempting because then the variance of x̄n
is larger than that of, say, x1) is invalid, because it is ruled out by the Cauchy-Schwartz inequality.

One cannot appeal to the usual LLNs because x is non-ergodic. The variance of x̄n is V [x̄n] =
1
n · 1 + n−1

n · γ → γ as n → ∞, so the estimator x̄n is in general inconsistent (except in the case
when γ = 0). For an example of inconsistent x̄n, assume that γ > 0 and consider the following
construct: ui = ε+ ς i, where ς i ∼ IID(0, 1− γ) and ε ∼ (0, γ) independent of ς i for all i. Then the
correlation structure is exactly as in the problem, and 1

n

∑
ui

p→ ε, a random nonzero limit.
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5. IV AND 2SLS ESTIMATORS

5.1 Instrumental variables in ARMA models

Give brief but exhaustive answers to the following short questions.

1. The instrument xt−j is scalar, the parameter is scalar, so there is exact identification. The
instrument is obviously valid. The asymptotic variance of the just identifying IV estimator of
a scalar parameter under homoskedasticity is Vxt−j = σ2Q−2

xz Qzz. Let us calculate all pieces:

Qzz = E

[
x2
t−j

]
= V [xt] = σ2

(
1− ρ2

)−1 ; Qxz = E [xt−1xt−j ] = C [xt−1, xt−j ] = ρj−1
V [xt] =

σ2ρj−1
(
1− ρ2

)−1
. Thus, Vxt−j = ρ2−2j

(
1− ρ2

)
. It is monotonically declining in j, so this

suggests that the optimal instrument must be xt−1. Although this is not a proof of the fact,
the optimal instrument is indeed xt−1.. The result makes sense, since the last observation is
most informative and embeds all information in all the other instruments.

2. It is possible to use as instruments lags of yt starting from yt−2 back to the past. The regressor
yt−1 will not do as it is correlated with the error term through et−1. Among yt−2, yt−3, · · · the
first one deserves more attention, since, intuitively, it contains more information than older
values of yt.

5.2 Inappropriate 2SLS

1. Since E[u] = 0, we have E [y] = αE
[
z2
]
, so α is identified as long as z is not deterministic

zero. The analog estimator is

α̂ =

(
1
n

∑
i

z2
i

)−1
1
n

∑
i

yi.

Since E[v] = 0, we have E[z] = πE[x], so π is identified as long as x is not centered around
zero. The analog estimator is

π̂ =

(
1
n

∑
i

xi

)−1
1
n

∑
i

zi.

Since Σ does not depend on xi, we have Σ = V

(
ui
vi

)
, so Σ is identified since both u and v

are identified. The analog estimator is

Σ̂ =
1
n

∑
i

(
ûi
v̂i

)(
ûi
v̂i

)′
,

where ûi = yi − α̂z2
i and v̂i = zi − π̂xi.
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2. The estimator satisfies

α̃ =

(
1
n

∑
i

ẑ4
i

)−1
1
n

∑
i

ẑ2
i yi =

(
π̂4 1
n

∑
i

x4
i

)−1

π̂2 1
n

∑
i

x2
i yi.

We know that 1
n

∑
i x

4
i

p→ E

[
x4
]
, 1
n

∑
i x

2
i yi = απ2 1

n

∑
i x

4
i + 2απ 1

n

∑
i x

3
i vi + α 1

n

∑
i x

2
i v

2
i +

1
n

∑
i x

2
iui

p→ απ2
E

[
x4
]

+ αE
[
x2v2

]
, and π̂

p→ π. Therefore,

α̃
p→ α+

α

π2

E

[
x2v2

]
E [x4]

6= α.

3. Evidently, we should fit the estimate of the square of zi, instead of the square of the estimate.
To do this, note that the second equation and properties of the model imply

E

[
z2
i |xi

]
= E

[
(πxi + vi)2|xi

]
= π2x2

i + 2E [πxivi|xi] + E
[
v2
i |xi

]
= π2x2

i + σ2
v.

That is, we have a linear mean regression of z2 on x2 and a constant. Therefore, in the
first stage we should regress z2 on x2 and a constant and construct ẑ2

i = π̂2x2
i + σ̂2

v, and in
the second stage, we should regress yi on ẑ2

i . Consistency of this estimator follows from the
theory of 2SLS, when we treat z2 as a right hand side variable, not z.

5.3 Inconsistency under alternative

We are interesting in the question whether the t-statistics can be used to check H0 : β = 0. In
order to answer this question we have to investigate the asymptotic properties of β̂. First of all,
β̂ = β +

(∑n
i=1 z

2
i

)−1∑n
i=1 ziεi →p 0, since under the null,

n∑
i=1

ziεi
p→ E [(x+ v)(u− βv)] = −βη2 = 0.

It is straightforward to show that under the null the conventional standard error correctly estimates
(i.e. if correctly normalized, is consistent for) the asymptotic variance of β̂ . That is, under the
null, tβ

d→ N (0, 1) , which means that we can use the conventional t-statistics for testing H0.

5.4 Trade and growth

1. The economic rationale for uncorrelatedness is that the variables Pi and Si are exogenous
and are unaffected by what’s going on in the economy, and on the other hand, hardly can
they affect the income in other ways than through the trade. To estimate (5.1), we can use
just-identifying IV estimation, where the vector of right-hand-side variables is x = (1, T,W )′

and the instrument vector is z = (1, P, S)′. (Note: the full answer should include the details
of performing the estimation up to getting the standard errors).

2. When data on within-country trade are not available, none of the coefficients in (5.1) is
identifiable without further assumptions. In general, neither of the available variables can
serve as instruments for T in (5.1) where the composite error term is γWi + εi.
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3. We can exploit the assumption that Pi is uncorrelated with the error term in (5.3). Substitute
(5.3) into (5.1) to get

log Yi = (α+ γη) + βTi + γλSi + (γνi + εi) .

Now we see that Si and Pi are uncorrelated with the composite error term γνi + εi due to
their exogeneity and due to their uncorrelatedness with νi which follows from the additional
assumption and νi being the best linear prediction error in (5.3). (Note: again, the full answer
should include the details of performing the estimation up to getting the standard errors, at
least). As for the coefficients of (5.1), only β will be consistently estimated, but not α or γ.

4. In general, for this model the OLS is inconsistent, and the IV method is consistent. Thus, the
discrepancy may be due to the different probability limits of the two estimators. The fact that
the IV estimates are larger says that probably Let θIV

p→ θ and θOLS
p→ θ + a, a < 0. Then

for large samples, θIV ≈ θ and θOLS ≈ θ + a. The difference is a which is (E [xx′])−1
E[xe].

Since (E [xx′])−1 is positive definite, a < 0 means that the regressors tend to be negatively
correlated with the error term. In the present context this means that the trade variables are
negatively correlated with other influences on income.
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6. EXTREMUM ESTIMATORS

6.1 Extremum estimators

Part 1. The analog estimator is

β̂ =arg max
b∈B

1
n

n∑
i=1

f(zi, b). (6.1)

Assume that:

1. β̂
p→ β;

2. β is an interior point of the compact set B (i. e. β is contained in B with its open neighbor-
hood);

3. f(z, b) is a twice continuously differentiable function of b for almost all z;

4. the derivatives ∂f(z,b)
∂b and ∂2f(z,b)

∂b∂b′ satisfy the ULLN condition in B;

5. ∀b ∈ B there exist and are finite the moments E [|f(z, b)|] , E
[∥∥∥∂f(z,b)

∂b

∥∥∥] and E
[∥∥∥∂2f(z,b)

∂b∂b′

∥∥∥];
6. there exists finite E [fbf ′b] ≡ E

[
∂f(z,β)
∂b

∂f(z,β)
∂b′

]
, and matrix E [fbb] ≡ E

[
∂2f(z,β)
∂b∂b′

]
is non-

degenerate.

Then β̂ is asymptotically normal with asymptotic variance given below in (6.3). To see this
write the FOC for an interior solution of problem (6.1) and expand the first derivative around
b = β:

0 =
∂

∂b

(
1
n

n∑
i=1

f(zi, β̂)

)
=

∂

∂b

(
1
n

n∑
i=1

f(zi, β)

)
+

∂2

∂b∂b′

(
1
n

n∑
i=1

f(zi, β∗)

)
(β̂ − β), (6.2)

where β∗s ∈ [βs, β̂s] and β∗ may be different in different equations of (6.2). In particular, β∗
p→ β.

From here,
√
n(β̂ − β) = −

(
1
n

n∑
i=1

∂2f(zi, β∗)
∂b∂b′

)−1
1√
n

n∑
i=1

∂f(zi, β)
∂b

.

By the ULLN condition for∂
2f(z,b)
∂b∂b′ one has

1
n

n∑
i=1

∂2f(zi, β∗)
∂b∂b′

p→ E [fbb] .

By the CLT, applicable to independent random variables,

1√
n

n∑
i=1

∂f(zi, β)
∂b

d→ N
(
0,E

[
fbf
′
b

])
.
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The last equality uses the FOC for the extremum problem for β: E
[
∂f(zi,β)

∂b

]
= 0. Thus,

√
n(β̂ − β) d→ N

(
0,
(

(E [fbb])
−1
E

[
fbf
′
b

]
(E [fbb])

−1
)−1

)
. (6.3)

Part 2. Let E [y|x] = g(x, β), σ2(x) ≡ E
[
(y − g(x, β))2

]
. The NLLS and WNLLS estimators

are extremum estimators with

f1(x, y, b) = −1
2

(y − g(x, b))2 for NLLS,

and

f2(x, y, b) = −1
2

(y − g(x, b))2

σ2(x)
=
f1(x, y, b)
σ2(x)

for WNLLS.

It was shown in class that
√
n(β̂NLLS − β) d→ N

(
0, Q−1

gg Qgge2Q
−1
gg

)
,
√
n(β̂WNLLS − β) d→ N

(
0, Q gg

σ2

)
,

where

Qgg = E

[
gb(x, β)gb(x, β)′

]
,

Qgge2 = E

[
gb(x, β)gb(x, β)′(y − g(x, β))2

]
,

Q gg

σ2
= E

[
gb(x, β)gb(x, β)′/σ2(x)

]
.

This coincides with (6.3) since

∂f1(x, β)
∂b

= (y − g(x, β))gb(x, β)

and
∂2f1(x, β)
∂b∂b′

= (y − g(x, β))gbb(x, β)− gb(x, β)gb(x, β)′,

and E [(y − g(x, β))gbb(x, β)] = E [E [y − g(x, β)|x] gbb(x, β)] = 0. In fact, we have E [f1bf
′
1b] = Qgge2 ,

−E [f1bb] = Qgg, E [f2bf
′
2b] = −E [f2bb] = Q gg

σ2
.

It is worth noting that under the ID-condition for NLLS/WNLLS estimators the solution of
corresponding extremum problem in population is unique and equals β.

6.2 Regression on constant

For the first estimator use standard LLN and CLT:

β̂1 =
1
n

n∑
i=1

yi
p→ E[yi] = β (consistency),

√
n(β̂1 − β) =

1√
n

n∑
i=1

ei
d→ N (0,V[ei]) = N

(
0, β2

)
(asymptotic normality).

Consider

β̂2 =arg min
b

{
log b2 +

1
nb2

n∑
i=1

(yi − b)2

}
. (6.4)
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Denote ȳ = 1
n

n∑
i=1

yi, y2 = 1
n

n∑
i=1

y2
i . The FOC for this problem gives after rearrangement:

β̂
2

+ β̂ȳ − y2 = 0⇔ β̂± = − ȳ
2
±

√
ȳ2 + 4y2

2
.

The two values β̂± correspond to the two different solutions of local minimization problem in
population:

E

[
log b2 +

1
b2

(y − b)2

]
→ min

β
⇔ b± = −E[y]

2
±
√
E[y]2 + 4E[y2]

2
= −β

2
± 3|β|

2
. (6.5)

Note that β̂+
p→ b+ and β̂−

p→ b−̄. If β > 0, then b+ = β and the consistent estimate is β̂2 = β̂+.

If, on the contrary, β < 0, then b−̄ = β and β̂2 = β̂− is a consistent estimate of β. Alternatively,
one can easily prove that the unique global solution of (6.5) is always β. It follows from general
theory that the global solution β̂2 of (6.4) (which is β̂+ or β̂− depending on the sign of ȳ) is
then a consistent estimator of β. The asymptotics of β̂2 can be found by formula (6.3). For
f(y, b) = log b2 + 1

b2
(y − b)2 ,

∂f(y, b)
∂b

=
2
b
− 2(y − b)2

b3
− 2(y − b)

b2
⇒ E

[(
∂f(y, β)
∂b

)2
]

=
4κ
β6 ,

∂2f(y, b)
∂b2

=
6(y − b)2

b4
+

8(y − b)
b3

⇒ E

[
∂2f(y, β)
∂b2

]
=

6
β2 .

Consequently,
√
n(β̂2 − β) d→ N (0,

κ

9β2 ).

Consider now β̂3 = 1
2 arg minb

n∑
i=1

f(yi, b), where f(y, b) =
(y
b − 1

)2
. Note that

∂f(y, b)
∂b

= −2y2

b3
+

2y
b2
,

∂2f(y, b)
∂b2

=
6y2

b4
− 4y
b3
.

The FOC is
n∑
i=1

∂f(yi,b̂)
∂b = 0 ⇔ b̂ = y2

ȳ and the estimate is β̂3 = b̂
2 = 1

2
y2

ȳ

p

→ 1
2
E[y2]
E[y] = β. To find the

asymptotic variance calculate

E

[(
∂f(y, 2β)

∂b

)2
]

=
κ− β4

16β6 , E

[
∂2f(y, 2β)

∂b2

]
=

1
4β2 .

The derivatives are taken at point b = 2β because 2β, and not β, is the solution of the extremum
problem E[f(y, b)]→ minb, which we discussed in part 1. As follows from our discussion,

√
n(b̂− 2β) d→ N

(
0,
κ− β4

β2

)
⇔
√
n(β̂3 − β) d→ N

(
0,
κ− β4

4β2

)
.

A safer way to obtain this asymptotics is probably to change variable in the minimization problem

from the beginning: β̂3 = arg minb
n∑
i=1

( y
2b − 1

)2, and proceed as above.

No one of these estimators is a priori asymptotically better than the others. The idea behind
these estimators is: β̂1 is just the usual OLS estimator, β̂2 is the ML estimator for conditional
distribution y|x ∼ N (β, β2). The third estimator may be thought of as the WNLLS estimator for
conditional variance function σ2(x, b) = b2, though it is not completely that (we should divide by
σ2(x, β) in the WNLLS).
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6.3 Quadratic regression

Note that we have conditional homoskedasticity. The regression function is g(x, β) = (β + x)2.

Estimator β̂ is NLLS, with
∂g(x, β)
∂β

= 2(β + x). Then Qxx = E

[(
∂g(x,0)
∂β

)2
]

= 28
3 . Therefore,

√
nβ̂

d→ N (0, 3
28σ

2
0).

Estimator β̃ is an extremum one, with

h(x, Y, β) = − Y

(β + x)2
− ln[(β + x)2].

First we check the ID condition. Indeed,

∂h(x, Y, β)
∂β

=
2Y

(β + x)3
− 2
β + x

,

so the FOC to the population problem is E
[
∂h(x,Y,β)

∂β

]
= −2βE

[
β+2x

(β+x)3

]
, which equals zero iff β = 0.

As can be checked, the Hessian is negative on all B, therefore we have a global maximum. Note
that the ID condition would not be satisfied if the true parameter was different from zero. Thus,
β̃ works only for β0 = 0.

Next,
∂2h(x, Y, β)

∂β2 = − 6Y
(β + x)4

+
2

(β + x)2
.

Then Σ = E

[(
2Y
x3 − 2

x

)2] = 31
40σ

2
0 and Ω = E

[
−6Y
x4 + 2

x2

]
= −2. Therefore,

√
nβ̃

d→ N (0, 31
160σ

2
0).

We can see that β̂ asymptotically dominates β̃. In fact, this follows from asymptotic efficiency
of NLLS estimator under homoskedasticity (see your homework problem on extremum estimators).

78 EXTREMUM ESTIMATORS



7. MAXIMUM LIKELIHOOD ESTIMATION

7.1 MLE for three distributions

1. For the Pareto distribution with parameter λ the density is

fX(x|λ) =
{
λx−(λ+1), if x > 1,
0, otherwise.

Therefore the likelihood function is L = λn
∏n
i=1 x

−(λ+1)
i and the loglikelihood is `n = n lnλ−

(λ+ 1)
∑n

i=1 lnxi

(i) The ML estimator λ̂ of λ is the solution of ∂`n/∂λ = 0. That is, λ̂ML = 1/lnx,
which is consistent for λ, since 1/lnx

p→ 1/E [lnx] = λ. The asymptotic distribution
is
√
n
(
λ̂ML − λ

)
d→ N

(
0, I−1

)
, where the information matrix is I = −E [∂s/∂λ] =

−E
[
−1/λ2

]
= 1/λ2

(ii) The Wald test for a simple hypothesis is

W = n(λ̂− λ)′I(λ̂)(λ̂− λ) = n
(λ̂− λ0)2

λ̂
2

d→ χ2(1)

The Likelihood Ratio test statistic for a simple hypothesis is

LR = 2
[
`n(λ̂)− `n(λ0)

]
= 2

[
n ln λ̂− (λ̂+ 1)

n∑
i=1

lnxi −

(
n lnλ0 − (λ0 + 1)

n∑
i=1

lnxi

)]

= 2

[
n ln

λ̂

λ0
− (λ̂− λ0)

n∑
i=1

lnxi

]
d→ χ2(1).

The Lagrange Multiplier test statistic for a simple hypothesis is

LM =
1
n

n∑
i=1

s(xi, λ0)′I(λ0)−1
n∑
i=1

s(xi, λ0) =
1
n

[
n∑
i=1

(
1
λ0
− lnxi

)]2

λ2
0

= n
(λ̂− λ0)2

λ̂
2

d→ χ2(1).

W and LM are numerically equal.

2. Since x1, · · · , xn are from N (µ, µ2), the loglikelihood function is

`n = const−n ln |µ| − 1
2µ2

n∑
i=1

(xi − µ)2 = const−n ln |µ| − 1
2µ2

(
n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2

)
.
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The equation for the ML estimator is µ2 + x̄µ − x2 = 0. The equation has two solutions
µ1 > 0, µ2 < 0:

µ1 =
1
2

(
−x̄+

√
x̄2 + 4x2

)
, µ2 =

1
2

(
−x̄−

√
x̄2 + 4x2

)
.

Note that `n is a symmetric function of µ except for the term 1
µ

∑n
i=1 xi. This term determines

the solution. If x̄ > 0 then the global maximum of `n will be in µ1, otherwise in µ2. That is,
the ML estimator is

µ̂ML =
1
2

(
−x̄+ sgn(x̄)

√
x̄2 + 4x2

)
.

It is consistent because, if µ 6= 0, sgn(x̄)
p→ sgn(µ) and

µ̂ML
p→ 1

2

(
−Ex+ sgn(Ex)

√
(Ex)2 + 4Ex2

)
=

1
2

(
−µ+ sgn(µ)

√
µ2 + 8µ2

)
= µ.

3. We derived in class that the maximum likelihood estimator of θ is

θ̂ML = x(n) ≡ max{x1, · · · , xn}

and its asymptotic distribution is exponential:

Fn(θ̂ML−θ)(t)→ exp(t/θ) · I[t ≤ 0] + I[t > 0].

The most elegant way to proceed is by pivotizing this distribution first:

Fn(θ̂ML−θ)/θ(t)→ exp(t) · I[t ≤ 0] + I[t > 0].

The left 5%-quantile for the limiting distribution is log(.05). Thus, with probability 95%,
log(.05) ≤ n(θ̂ML − θ)/θ ≤ 0, so the confidence interval for θ is[

x(n), x(n)/(1 + log(.05)/n)
]
.

7.2 Comparison of ML tests

1. Recall that for the ML estimator λ̂ and the simple hypothesis H0 : λ = λ0,

W = n(λ̂− λ0)′I(λ̂)(λ̂− λ0),

LM =
1
n

∑
i

s(xi, λ0)′I(λ0)−1
∑
i

s(xi, λ0).

2. The density of a Poisson distribution with parameter λ is

f(xi|λ) =
λxi

xi!
e−λ,

so λ̂ML = x̄, I(λ) = 1/λ. For the simple hypothesis with λ0 = 3 the test statistics are

W =
n(x̄− 3)2

x̄
, LM =

1
n

(∑
xi/3− n

)2
3 =

n(x̄− 3)2

3
,

and W ≥ LM for x̄ ≤ 3 and W ≤ LM for x̄ ≥ 3.
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3. The density of an exponential distribution with parameter θ is

f(xi) =
1
θ
e−

xi
θ ,

so θ̂ML = x̄, I(θ) = 1/θ2. For the simple hypothesis with θ0 = 3 the test statistics are

W =
n(x̄− 3)2

x̄2
, LM =

1
n

(∑
i

xi
32
− n

3

)2

32 =
n(x̄− 3)2

9
,

and W ≥ LM for 0 < x̄ ≤ 3 and W ≤ LM for x̄ ≥ 3.

4. The density of a Bernoulli distribution with parameter θ is

f(xi) = θxi(1− θ)1−xi ,

so θ̂ML = x̄, I(θ) = 1
θ(1−θ) . For the simple hypothesis with θ0 = 1

2 the test statistics are

W = n

(
x̄− 1

2

)2
x̄(1− x̄)

, LM =
1
n

(∑
i xi
1
2

−
n−

∑
i xi

1
2

)2
1
2

1
2

= 4n
(
x̄− 1

2

)2

,

andW ≥ LM (since x̄(1−x̄) ≤ 1/4). For the simple hypothesis with θ0 = 2
3 the test statistics

are

W = n

(
x̄− 2

3

)2
x̄(1− x̄)

, LM =
1
n

(∑
i xi
2
3

−
n−

∑
i xi

1
3

)2
2
3

1
3

=
9
2
n

(
x̄− 2

3

)2

,

therefore W ≤ LM when 2/9 ≤ x̄(1− x̄) and W ≥ LM when 2/9 ≥ x̄(1− x̄). Equivalently,
W ≤ LM for 1

3 ≤ x̄ ≤
2
3 and W ≥ LM for 0 < x̄ ≤ 1

3 or 2
3 ≤ x̄ ≤ 1.

7.3 Individual effects

The loglikelihood is

`n
(
µ1, · · · , µn, σ2

)
= const− n log(σ2)− 1

2σ2

n∑
i=1

{
(xi − µi)2 + (yi − µi)2

}
.

FOC give

µ̂iML =
xi + yi

2
, σ2

ML =
1

2n

n∑
i=1

{
(xi − µ̂iML)2 + (yi − µ̂iML)2

}
,

so that

σ̂2
ML =

1
4n

n∑
i=1

(xi − yi)2.

Since σ̂2
ML = 1

4n

∑n
i=1

{
(xi − µi)2 + (yi − µi)2 − 2(xi − µi)(yi − µi)

} p→ σ2

4 + σ2

4 − 0 = σ2

2 , the ML
estimator is inconsistent. Why? The Maximum Likelihood method (and all others that we are
studying) presumes a parameter vector of fixed dimension. In our case the dimension instead
increases with an increase in the number of observations. Information from new observations goes
to estimation of new parameters instead of increasing precision of the old ones. To construct a
consistent estimator, just multiply σ̂2

ML by 2. There are also other possibilities.
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7.4 Does the link matter?

Let the x variable assume two different values x0 and x1, ua = α+βxa and nab = #{xi = xa, yi = b},
for a, b = 0, 1 (i.e., na,b is the number of observations for which xi = xa, yi = b). The log-likelihood
function is

l(x1,..xn, y1, ..., yn;α, β) = log
[∏n

i=1 F (α+ βxi)yi(1− F (α+ βxi))1−yi
]

=

= n01 logF (u0) + n00 log(1− F (u0)) + n11 logF (u1) + n10 log(1− F (u1)).
(7.1)

The FOC for the problem of maximization of l(...;α, β) w.r.t. α and β are:[
n01

F ′(û0)
F (û0)

− n00
F ′(û0)

1− F (û0)

]
+
[
n11

F ′(û1)
F (û1)

− n10
F ′(û1)

1− F (û1)

]
= 0,

x0

[
n01

F ′(û0)
F (û0)

− n00
F ′(û0)

1− F (û0)

]
+ x1

[
n11

F ′(û1)
F (û1)

− n10
F ′(û1)

1− F (û1)

]
= 0

As x0 6= x1, one obtains for a = 0, 1

na1

F (ûa)
− na0

1− F (ûa)
= 0⇔ F (ûa) =

na1

na1 + na0
⇔ ûa ≡ α̂+ β̂xa = F−1

(
na1

na1 + na0

)
(7.2)

under the assumption that F ′(ûa) 6= 0. Comparing (7.1) and (7.2) one sees that l(..., α̂, β̂) does not
depend on the form of the link function F (·). The estimates α̂ and β̂ can be found from (7.2):

α̂ =
x1F−1

(
n01

n01+n00

)
− x0F−1

(
n11

n11+n10

)
x1 − x0

, β̂ =
F−1

(
n11

n11+n10

)
− F−1

(
n01

n01+n00

)
x1 − x0

.

7.5 Nuisance parameter in density

The FOC for the second stage of estimation is

1
n

n∑
i=1

sc(yi, xi, γ̃, δ̂m) = 0,

where sc(y, x, γ, δ) ≡
∂ log fc(y|x, γ, δ)

∂γ
is the conditional score. Taylor’s expansion with respect to

the γ-argument around γ0 yields

1
n

n∑
i=1

sc(yi, xi, γ0, δ̂m) +
1
n

n∑
i=1

∂sc(yi, xi, γ∗, δ̂m)
∂γ′

(γ̃ − γ0) = 0,

where γ∗ lies between γ̃ and γ0 componentwise.
Now Taylor-expand the first term around δ0:

1
n

n∑
i=1

sc(yi, xi, γ0, δ̂m) =
1
n

n∑
i=1

sc(yi, xi, γ0, δ0) +
1
n

n∑
i=1

∂sc(yi, xi, γ0, δ
∗)

∂δ′
(δ̂m − δ0),

where δ∗ lies between δ̂m and δ0 componentwise.
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Combining the two pieces, we get:

√
n(γ̃ − γ0) = −

(
1
n

n∑
i=1

∂sc(yi, xi, γ∗, δ̂m)
∂γ′

)−1

×

×

(
1√
n

n∑
i=1

sc(yi, xi, γ0, δ0) +
1
n

n∑
i=1

∂sc(yi, xi, γ0, δ
∗)

∂δ′
√
n(δ̂m − δ0)

)
.

Now let n → ∞. Under ULLN for the second derivative of the log of the conditional density,

the first factor converges in probability to −(Iγγc )−1, where Iγγc ≡ −E
[
∂2 log fc(y|x, γ0, δ0)

∂γ∂γ′

]
. There

are two terms inside the brackets that have nontrivial distributions. We will compute asymptotic
variance of each and asymptotic covariance between them. The first term behaves as follows:

1√
n

n∑
i=1

sc(yi, xi, γ0, δ0) d→ N (0, Iγγc )

due to the CLT (recall that the score has zero expectation and the information matrix equal-

ity). Turn to the second term. Under the ULLN,
1
n

n∑
i=1

∂sc(yi, xi, γ0, δ
∗)

∂δ′
converges to −Iγδc =

E

[
∂2 log fc(y|x, γ0, δ0)

∂γ∂δ′

]
. Next, we know from the MLE theory that

√
n(δ̂m−δ0) d→ N

(
0, (Iδδm )−1

)
,

where Iδδm ≡ −E
[
∂2 log fm(x|δ0)

∂δ∂δ′

]
. Finally, the asymptotic covariance term is zero because of the

”marginal”/”conditional” relationship between the two terms, the Law of Iterated Expectations
and zero expected score.

Collecting the pieces, we find:

√
n(γ̃ − γ0) d→ N

(
0, (Iγγc )−1

(
Iγγc + Iγδc (Iδδm )−1Iγδc

′
)

(Iγγc )−1
)
.

It is easy to see that the asymptotic variance is larger (in matrix sense) than (Iγγc )−1 that
would be the asymptotic variance if we new the nuisance parameter δ0. But it is impossible to
compare to the asymptotic variance for γ̂c, which is not (Iγγc )−1.

7.6 MLE versus OLS

1. α̂OLS = 1
n

∑n
i=1 yi, E [α̂OLS ] = 1

n

∑n
i=1 E [y] = α, so α̂OLS is unbiased. Next, 1

n

∑n
i=1 yi

p→
E [y] = α, so α̂OLS is consistent. Yes, as we know from the theory, α̂OLS is the best lin-
ear unbiased estimator. Note that the members of this class are allowed to be of the form
{AY,AX = I} , where A is a constant matrix, since there are no regressors beside the con-
stant. There is no heteroskedasticity, since there are no regressors to condition on (more
precisely, we should condition on a constant, i.e. the trivial σ-field, which gives just an un-
conditional variance which is constant by the IID assumption). The asymptotic distribution
is

√
n(α̂OLS − α) =

1√
n

n∑
i=1

ei
d→ N

(
0, σ2

E

[
x2
])
,

since the variance of ei is E
[
e2
]

= E

[
E

[
e2|x

]]
= σ2

E

[
x2
]
.
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2. The conditional likelihood function is

L(y1, ..., yn, x1, ..., xn, α, σ
2) =

n∏
i=1

1√
2πx2

iσ
2

exp
{
−(yi − α)2

2x2
iσ

2

}
.

The conditional loglikelihood is

`n(y1, ..., yn, x1, ..., xn, α, σ
2) = const−

n∑
i=1

(yi − α)2

2x2
iσ

2
− 1

2
log σ2 →max

α,σ2
.

From the first order condition
∂`n
∂α

=
n∑
i=1

yi − α
x2
iσ

2
= 0, the ML estimator is

α̂ML =
∑n

i=1 yi/x
2
i∑n

i=1 1/x2
i

.

Note: it as equal to the OLS estimator in

yi
xi

= α
1
xi

+
ei
xi
.

The asymptotic distribution is

√
n(α̂ML−α) =

1√
n

∑n
i=1 ei/x

2
i

1
n

∑n
i=1 1/x2

i

d→
(
E

[
1
x2

])−1

N
(

0, σ2
E

[
1
x2

])
= N

(
0, σ2

(
E

[
1
x2

])−1
)
.

Note that α̂ML is unbiased and more efficient than α̂OLS since(
E

[
1
x2

])−1

< E
[
x2
]
,

but it is not in the class of linear unbiased estimators, since the weights in AML depend on
extraneous xi’s. The α̂ML is efficient in a much larger class. Thus there is no contradiction.

7.7 MLE in heteroskedastic time series regression

Since the parameter v is never involved in the conditional distribution yt|xt, it can be efficiently
estimated from the marginal distribution of xt, which yields

v̂ =
1
T

T∑
t=1

x2
t .

If xt is serially uncorrelated, then xt is IID due to normality, so v̂ is a ML estimator. If xt is
serially correlated, a ML estimator is unavailable due to lack of information, but v̂ still consistently
estimates v. The standard error may be constructed via

V̂ =
1
T

T∑
t=1

x4
t − v̂2

if xt is serially uncorrelated, and via a corresponding Newey-West estimator if xt is serially corre-
lated.

84 MAXIMUM LIKELIHOOD ESTIMATION



1. If the entire function σ2
t = σ2(xt) is fully known, the conditional ML estimator of α and β is

the same as the GLS estimator:(
α̂

β̂

)
ML

=

(
T∑
t=1

1
σ2
t

(
1 xt
xt x2

t

))−1 T∑
t=1

1
σ2
t

(
1
xt

)
yt.

The standard errors may be constructed via

V̂ML = T

(
T∑
t=1

1
σ2
t

(
1 xt
xt x2

t

))−1

.

2. If the values of σ2
t at t = 1, 2, · · · , T are known, we can use the same procedure as in Part 1,

since it does not use values of σ2(xt) other than those at x1, x2, · · · , xT .

3. If it is known that σ2
t = (θ + δxt)2, we have in addition parameters θ and δ to be estimated

jointly from the conditional distribution

yt|xt ∼ N (α+ βxt, (θ + δxt)2).

The loglikelihood function is

`n (α, β, θ, δ) = const− n

2
log(θ + δxt)2 − 1

2

T∑
t=1

(yt − α− βxt)2

(θ + δxt)2
,

and
(
α̂ β̂ θ̂ δ̂

)′
ML

=arg max
(α,β,θ,δ)

`n (α, β, θ, δ). Note that

(
α̂

β̂

)
ML

=

(
T∑
t=1

1

(θ̂ + δ̂xt)2

(
1 xt
xt x2

t

))−1 T∑
t=1

yt

(θ̂ + δ̂xt)2

(
1
xt

)
,

i. e. the ML estimator of α and β is a feasible GLS estimator that uses
(
θ̂ δ̂
)′
ML

as the
preliminary estimator. The standard errors may be constructed via

V̂ML = T

 T∑
t=1

∂`n

(
α̂, β̂, θ̂, δ̂

)
∂ (α, β, θ, δ)′

∂`n

(
α̂, β̂, θ̂, δ̂

)
∂ (α, β, θ, δ)

−1

.

4. Similarly to Part 1, if it is known that σ2
t = θ+ δu2

t−1, we have in addition parameters θ and
δ to be estimated jointly from the conditional distribution

yt|xt, yt−1, xt−1 ∼ N
(
α+ βxt, θ + δ(yt−1 − α− βxt−1)2

)
.

5. If it is only known that σ2
t is stationary, conditional maximum likelihood function is unavail-

able, so we have to use subefficient methods, for example, OLS estimation(
α̂

β̂

)
OLS

=

(
T∑
t=1

(
1 xt
xt x2

t

))−1 T∑
t=1

(
1
xt

)
yt.

The standard errors may be constructed via

V̂OLS = T

(
T∑
t=1

(
1 xt
xt x2

t

))−1

·
T∑
t=1

(
1 xt
xt x2

t

)
ê2
t ·

(
T∑
t=1

(
1 xt
xt x2

t

))−1

,

where êt = yt − α̂OLS − β̂OLSxt. Alternatively, one may use a feasible GLS estimator after
having assumed a form of the skedastic function σ2(xt) and standard errors robust to its
misspecification.
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7.8 Maximum likelihood and binary variables

1. Since the parameters in the conditional and marginal densities do not overlap, we can separate
the problem. The conditional likelihood function is

L(y1, ..., yn, z1, ..., zn, γ) =
n∏
i=1

(
eγzi

1 + eγzi

)yi (
1− eγzi

1 + eγzi

)1−yi
,

and the conditional loglikelihood –

`n(y1, ..., yn, z1, ..., zn, γ) =
n∑
i=1

[yiγzi − ln(1 + eγzi)]

The first order condition
∂`n
∂γ

=
n∑
i=1

[
yizi −

zie
γzi

1 + eγzi

]
= 0

gives the solution γ̂ = log n11
n10
, where n11 = #{zi = 1, yi = 1}, n10 = #{zi = 1, yi = 0}.

The marginal likelihood function is

L(z1, ..., zn, α) =
n∏
i=1

αzi(1− α)1−zi ,

and the marginal loglikelihood –

`n(z1, ..., zn, α) =
n∑
i=1

[zi lnα+ (1− zi) ln(1− α)]

The first order condition
∂`n
∂α

=
∑n

i=1 zi
α

−
∑n

i=1(1− zi)
1− α

= 0

gives the solution α̂ = 1
n

∑n
i=1 zi. From the asymptotic theory for ML,

√
n

((
α̂

γ̂

)
−
(
α

γ

))
d→ N

0,

 α(1− α) 0

0
(1 + eγ)2

αeγ

 .

2. The test statistic is
t =

α̂− γ̂
s(α̂− γ̂)

d→ N (0, 1)

where s(α̂− γ̂) =

√
α̂(1− α̂) +

(1 + eγ̂)2

α̂eγ̂
is the standard error. The rest is standard (you are

supposed to describe this standard procedure).

3. For H0 : α = 1
2 , the LR test statistic is

LR = 2
(
`n(z1, ..., zn, α̂)− `n(z1, ..., zn,

1
2)
)
.

Therefore,

LR∗ = 2
(
`n

(
z∗1 , ..., z

∗
n,

1
n

∑n

i=1
z∗i

)
− `n(z∗1 , ..., z

∗
n, α̂)

)
,

where the marginal (or, equivalently, joint) loglikelihood is used, should be calculated at
each bootstrap repetition. The rest is standard (you are supposed to describe this standard
procedure).
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7.9 Maximum likelihood and binary dependent variable

1. The conditional ML estimator is

γ̂ML = arg max
c

n∑
i=1

{
yi log

ecxi

1 + ecxi
+ (1− yi) log

1
1 + ecxi

}

= arg max
c

n∑
i=1

{cyixi − log (1 + ecxi)} .

The score is

s(y, x, γ) =
∂

∂γ
(γyx− log (1 + eγx)) =

(
y − eγx

1 + eγx

)
x,

and the information matrix is

J = −E
[
∂s(y, x, γ)

∂γ

]
= E

[
eγx

(1 + eγx)2x
2

]
,

so the asymptotic distribution of γ̂ML is N
(
0,J −1

)
.

2. The regression is E [y|x] = 1 · P{y = 1|x}+ 0 · P{y = 0|x} =
eγx

1 + eγx
. The NLLS estimator is

γ̂NLLS = arg min
c

n∑
i=1

(
yi −

ecxi

1 + ecxi

)2

.

The asymptotic distribution of γ̂NLLS isN
(
0, Q−1

gg Qgge2Q
−1
gg

)
. Now, since E

[
e2|x

]
= V [y|x] =

eγx

(1 + eγx)2 , we have

Qgg = E

[
e2γx

(1 + eγx)4x
2

]
, Qgge2 = E

[
e2γx

(1 + eγx)4x
2
E

[
e2|x

]]
= E

[
e3γx

(1 + eγx)6x
2

]
.

3. We know that V [y|x] =
eγx

(1 + eγx)2 , which is a function of x. The WNLLS estimator of γ is

γ̂WNLLS = arg min
c

n∑
i=1

(1 + eγxi)2

eγxi

(
yi −

ecxi

1 + ecxi

)2

.

Note that there should be the true γ in the weighting function (or its consistent estimate
in a feasible version), but not the parameter of choice c! The asymptotic distribution is
N
(

0, Q−1
gg/σ2

)
, where

Qgg/σ2 = E

[
1

V [y|x]
e2γx

(1 + eγx)4x
2

]
=
(

eγx

(1 + eγx)2x
2

)
.

4. For the ML problem, the moment condition is ”zero expected score”

E

[(
y − eγx

1 + eγx

)
x

]
= 0.
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For the NLLS problem, the moment condition is the FOC (or ”no correlation between the
error and the pseudoregressor”)

E

[(
y − eγx

1 + eγx

)
eγx

(1 + eγx)2x

]
= 0.

For the WNLLS problem, the moment condition is similar:

E

[(
y − eγx

1 + eγx

)
x

]
= 0,

which is magically the same as for the ML problem. No wonder that the two estimators are
asymptotically equivalent (see Part 5).

5. Of course, from the general theory we have VMLE ≤ VWNLLS ≤ VNLLS . We see a strict
inequality VWNLLS < VNLLS , except maybe for special cases of the distribution of x, and this
is not surprising. Surprising may seem the fact that VMLE = VWNLLS . It may be surprising
because usually the MLE uses distributional assumptions, and the NLLSE does not, so usually
we have VMLE < VWNLLS . In this problem, however, the distributional information is used by
all estimators, that is, it is not an additional assumption made exclusively for ML estimation.

7.10 Bootstrapping ML tests

1. In the bootstrap world, the constraint is g(q) = g(θ̂ML), so

LR∗ = 2

(
max
q∈Θ

`∗n(q)− max
q∈Θ,g(q)=g(θ̂ML)

`∗n(q)

)
,

where `∗n is the loglikelihood calculated on the bootstrap pseudosample.

2. In the bootstrap world, the constraint is g(q) = g(θ̂ML), so

LM∗ = n

(
1
n

n∑
i=1

s(z∗i , θ̂
∗R
ML)

)′ (
Ĵ∗
)−1

(
1
n

n∑
i=1

s(z∗i , θ̂
∗R
ML)

)
,

where θ̂
∗R
ML is the restricted (subject to g(q) = g(θ̂ML)) ML pseudoestimate and Ĵ∗ is the

pseudoestimate of the information matrix, both calculated on the bootstrap pseudosample.
No additional recentering is needed, since the ZES rule is exactly satisfied at the sample.

7.11 Trivial parameter space

Since the parameter space contains only one point, the latter is the optimizer. If θ1 = θ0, then the
estimator θ̂ML = θ1 is consistent for θ0 and has infinite rate of convergence. If θ1 6= θ0, then the
ML estimator is inconsistent.
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8. GENERALIZED METHOD OF MOMENTS

8.1 GMM and chi-squared

The feasible GMM estimation procedure for the moment function

m(z, q) =
(

z − q
z2 − q2 − 2q

)
is the following:

1. Construct a consistent estimator θ̂. For example, set θ̂ = z̄ which is a GMM estimator
calculated from only the first moment restriction. Calculate a consistent estimator for Qmm
as, for example,

Q̂mm =
1
n

n∑
i=1

m(zi, θ̂)m(zi, θ̂)′

2. Find a feasible efficient GMM estimate from the following optimization problem

θ̂GMM =arg min
q

1
n

n∑
i=1

m(zi, q)′ · Q̂−1
mm ·

1
n

n∑
i=1

m(zi, q)

The asymptotic distribution of the solution is
√
n(θ̂GMM−θ)

d→ N
(
0, 3

2

)
, where the asymptotic

variance is calculated as

Vθ̂GMM
= (Q′∂mQ

−1
mmQ∂m)−1

with

Q∂m = E

[
∂m(z, 1)
∂q′

]
=
(
−1
−4

)
and Qmm = E

[
m(z, 1)m(z, 1)′

]
=
(

2 12
12 96

)
.

A consistent estimator of the asymptotic variance can be calculated as

V̂θ̂GMM
= (Q̂′∂mQ̂

−1
mmQ̂∂m)−1,

where

Q̂∂m =
1
n

n∑
i=1

∂m(zi, θ̂GMM )
∂q′

and Q̂mm =
1
n

n∑
i=1

m(zi, θ̂GMM )m(zi, θ̂GMM )′

are corresponding analog estimators.
We can also run the J-test to verify the validity of the model:

J =
1
n

n∑
i=1

m(zi, θ̂GMM )′ · Q̂−1
mm ·

n∑
i=1

m(zi, θ̂GMM ) d→ χ2(1).
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8.2 Improved GMM

The first moment restriction gives GMM estimator θ̂ = x̄ with asymptotic variance AV(θ̂) = V [x] .
The GMM estimation of the full set of moment conditions gives estimator θ̂GMM with asymptotic
variance AV(θ̂GMM ) = (Q′∂mQ

−1
mmQ∂m)−1, where

Q∂m = E

[
∂m(x, y, θ)

∂q

]
=
(
−1
0

)
and

Qmm = E

[
m(x, y, θ)m(x, y, θ)′

]
=
(
V(x) C(x, y)
C(x, y) V(y)

)
.

Hence,

AV(θ̂GMM ) = V [x]− (C [x, y])2

V [y]

and thus efficient GMM estimation reduces the asymptotic variance when

C [x, y] 6= 0.

8.3 Nonlinear simultaneous equations

1. Since E[ui] = E[vi] = 0, m(w, θ) =
(
y − βx
x− γy2

)
, where w =

(
x

y

)
, θ =

(
β

γ

)
, can be used

as a moment function. The true β and γ solve E[m(w, θ)] = 0, therefore E[y] = βE[x] and
E[x] = γE

[
y2
]
, and they are identified as long as E[x] 6= 0 and E

[
y2
]
6= 0. The analog of the

population mean is the sample mean, so the analog estimators are

β̂ =
1
n

∑
yi

1
n

∑
xi
, γ̂ =

1
n

∑
xi

1
n

∑
y2
i

.

2. (a) If we add E [uivi] = 0, the moment function is

m(w, θ) =

 y − βx
x− γy2

(y − βx)(x− γy2)


and GMM can be used. The feasible efficient GMM estimator is

θ̂GMM =arg min
q∈Θ

(
1
n

n∑
i=1

m(wi, q)

)′
Q̂−1
mm

(
1
n

n∑
i=1

m(wi, q)

)
,

where Q̂mm = 1
n

∑n
i=1m(wi, θ̂)m(wi, θ̂)′ and θ̂ is consistent estimator of θ (it can be calcu-

lated, from part 1). The asymptotic distribution of this estimator is

√
n(θ̂GMM − θ)

d−→ N (0, VGMM ),

where VGMM = (Q′mQ
−1
mmQm)−1. The complete answer presumes expressing this matrix in

terms of moments of observable variables.
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(b) For H0 : β = γ = 0, the Wald test statistic is W = θ̂
′
GMM V̂

−1
GMM θ̂GMM . In order to

build the bootstrap distribution of this statistic, one should perform the standard bootstrap
algorithm, where pseudo-estimators should be constructed as

θ̂
∗
GMM = arg min

q∈Θ

(
1
n

n∑
i=1

m(w∗i , q)−
1
n

n∑
i=1

m(wi, θ̂GMM )

)′
Q̂∗−1
mm ×

×

(
1
n

n∑
i=1

m(w∗i , q)−
1
n

n∑
i=1

m(wi, θ̂GMM )

)
,

and Wald pseudo statistic is calculated as (θ̂
∗
GMM − θ̂GMM )′V̂ ∗−1

GMM (θ̂
∗
GMM − θ̂GMM ).

(c) H0 is E [m(w, θ)] = 0, so the test of overidentifying restriction should be performed:

J = n

(
1
n

n∑
i=1

m(wi, θ̂GMM )

)′
Q̂−1
mm

(
1
n

n∑
i=1

m(wi, θ̂GMM )

)
,

where J has asymptotic distribution χ2
1. So, H0 is rejected if J > q0.95.

8.4 Trinity for GMM

The Wald test is the same up to a change in the variance matrix:

W = nh(θ̂GMM )′
[
H(θ̂GMM )(Ω̂′Σ̂−1Ω̂)−1H(θ̂GMM )′

]−1
h(θ̂GMM ) d→ χ2

q ,

where θ̂GMM is the unrestricted GMM estimator, Ω̂ and Σ̂ are consistent estimators of Ω and Σ,

relatively, and H(θ) =
∂h(θ)
∂θ′

.

The Distance Difference test is similar to the LR test, but without factor 2, since
∂2Q̂n
∂θ∂θ′

p→
2Ω′Σ−1Ω:

DD = n
[
Qn(θ̂

R

GMM )−Qn(θ̂GMM )
]

d→ χ2
q .

The LM test is a little bit harder, since the analog of the average score is

λ(θ) = 2

(
1
n

n∑
i=1

∂m(zi, θ)
∂θ′

)′
Σ̂−1

(
1
n

n∑
i=1

m(zi, θ)

)
.

It is straightforward to find that

LM =
n

4
λ(θ̂

R

GMM )′(Ω̂′Σ̂−1Ω̂)−1λ(θ̂
R

GMM ) d→ χ2
q .

In the middle one may use either restricted or unrestricted estimators of Ω and Σ.
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8.5 Testing moment conditions

Consider the unrestricted (β̂u) and restricted (β̂r) estimates of parameter β ∈ Rk. The first is the
CMM estimate (i. e. a GMM estimate for the case of just identification):

n∑
i=1

xi(yi − x′iβ̂u) = 0⇒ β̂u =

(
1
n

n∑
i=1

xix
′
i

)−1
1
n

n∑
i=1

xiyi

The second is a feasible efficient GMM estimate:

β̂r = arg min
b

1
n

n∑
i=1

mi(b)′ · Q̂−1
mm ·

1
n

n∑
i=1

mi(b), (8.1)

where mi(b) =
(
xiui(b)
xiui(b)3

)
, ui(b) = yi − xib, ui ≡ ui(β), and Q̂−1

mm is an efficient estimator of

Qmm = E

[
mi(β)m′i(β)

]
= E

[(
xix
′
iu

2
i xix

′
iu

4
i

xix
′
iu

4
i xix

′
iu

6
i

)]
.

Denote also Q∂m = E

[
∂mi(β)
∂b′

]
= E

[(
−xix′i
−3xix′iu

2
i

)]
. Writing out the FOC for (8.1) and

expanding mi(β̂r) around β gives after rearrangement

√
n(β̂r − β) A= −

(
Q′∂mQ

−1
mmQ∂m

)−1
Q′∂mQ

−1
mm

1√
n

n∑
i=1

mi(β).

Here A= means that we substitute the probability limits for their sample analogues. The last equation
holds under the null hypothesis H0 : E

[
xiu

3
i

]
= 0.

Note that the unrestricted estimate can be rewritten as

√
n(β̂u − β) A= E

[
xix
′
i

]−1 (
Ik Ok

) 1√
n

n∑
i=1

mi(β).

Therefore,

√
n(β̂u−βr)

A=
[(
E

[
xix
′
i

])−1 (
Ik Ok

)
+
(
Q′∂mQ

−1
mmQ∂m

)−1
Q′∂mQ

−1
mm

] 1√
n

n∑
i=1

mi(β) d→ N (0, V ),

where (after some algebra)

V =
(
E

[
xix
′
i

])−1
E

[
xix
′
iu

2
i

] (
E

[
xix
′
i

])−1 −
(
Q′∂mQ

−1
mmQ∂m

)−1
.

Note that V is k × k. matrix. It can be shown that this matrix is non-degenerate (and thus has a
full rank k). Let V̂ be a consistent estimate of V. By Slutsky and Wald-Mann Theorems

W ≡ n(β̂u − β̂r)′V̂ −1(β̂u − βr)
d→ χ2

k.

The test may be implemented as follows. First find the (consistent) estimate β̂u given xi and
yi. Then compute Q̂mm = 1

n

∑n
i=1mi(β̂u)mi(β̂u)′, use it to carry out feasible GMM and obtain β̂r.

Use β̂u or β̂r to find V̂ (the sample analog of V ). Finally, compute the Wald statisticW, compare it
with 95% quantile of χ2(k) distribution q0.95, and reject the null hypothesis if W > q0.95, or accept
otherwise.
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8.6 Interest rates and future inflation

1. The conventional econometric model that tests the hypothesis of conditional unbiasedness of
interest rates as predictors of inflation, is

πkt = αk + βki
k
t + ηkt , Et

[
ηkt

]
= 0.

Under the null, αk = 0, βk = 1. Setting k = m in one case, k = n in the other case, and
subtracting one equation from another, we can get

πmt − πnt = αm − αn + βmi
m
t − βnint + ηnt − ηmt , Et [ηnt − ηmt ] = 0.

Under the null αm = αn = 0, βm = βn = 1, this specification coincides with Mishkin’s
under the null αm,n = 0, βm,n = 1. The restriction βm,n = 0 implies that the term structure
provides no information about future shifts in inflation. The prediction error ηm,nt is serially
correlated of the order that is the farthest prediction horizon, i.e., max(m,n).

2. Selection of instruments: there is a variety of choices, for instance,(
1, imt − int , imt−1 − int−1, i

m
t−2 − int−2, π

m
t−max(m,n) − π

n
t−max(m,n)

)′
,

or (
1, imt , i

n
t , i

m
t−1, i

n
t−1, π

m
t−max(m,n), π

n
t−max(m,n)

)′
,

etc. Construction of the optimal weighting matrix demands Newey-West (or similar robust)
procedure, and so does estimation of asymptotic variance. The rest is more or less standard.

3. This is more or less standard. There are two subtle points: recentering when getting a
pseudoestimator, and recentering when getting a pseudo-J-statistic.

4. Most interesting are the results of the test βm,n = 0 which tell us that there is no information
in the term structure about future path of inflation. Testing βm,n = 1 then seems excessive.
This hypothesis would correspond to the conditional bias containing only a systematic com-
ponent (i.e. a constant unpredictable by the term structure). It also looks like there is no
systematic component in inflation (αm,n = 0 is accepted).

8.7 Spot and forward exchange rates

1. This is not the only way to proceed, but it is straightforward. The OLS estimator uses
the instrument zOLSt = (1 xt)

′ , where xt = ft − st. The additional moment condition adds
ft−1−st−1 to the list of instruments: zt = (1 xt xt−1)′ . Let us look at the optimal instrument.
If it is proportional to zOLSt , then the instrument xt−1, and hence the additional moment
condition, is redundant. The optimal instrument takes the form ζt = Q′∂mQ

−1
mmzt. But

Q∂m = −

 1 E[xt]
E[xt] E[x2

t ]
E[xt−1] E[xtxt−1]

 , Qmm = σ2

 1 E[xt] E[xt−1]
E[xt] E[x2

t ] E[xtxt−1]
E[xt−1] E[xtxt−1] E[x2

t−1]

 .
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It is easy to see that

Q′∂mQ
−1
mm = σ−2

(
1 0 0
0 1 0

)
,

which can verified by postmultiplying this equation by Qmm. Hence, ζt = σ−2zOLSt . But the
most elegant way to solve this problem goes as follows. Under conditional homoskedasticity,
the GMM estimator is asymptotically equivalent to the 2SLS estimator, if both use the same
vector of instruments. But if the instrumental vector includes the regressors (zt does include
zOLSt ), the 2SLS estimator is identical to the OLS estimator (for an example, see Problem
#2 in Assignment #5). In total, GMM is asymptotically equivalent to OLS and thus the
additional moment condition is redundant.

2. This problem is similar to Problem #1(2) of Assignment #3, so we can expect asymptotic
equivalence of the OLS and efficient GMM estimators when the additional moment function
is uncorrelated with the main moment function. Indeed, let us compare the 2× 2 northwest
block of VGMM =

(
Q′∂mQ

−1
mmQ∂m

)−1 with asymptotic variance of the OLS estimator

VOLS = σ2

(
1 E[xt]

E[xt] E[x2
t ]

)−1

.

Denote ∆ft+1 = ft+1 − ft. For the full set of moment conditions,

Q∂m = −

 1 E[xt]
E[xt] E[x2

t ]
0 0

 , Qmm =

 σ2 σ2
E[xt] E[et+1∆ft+1]

σ2
E[xt] σ2

E[x2
t ] E[xtet+1∆ft+1]

E[et+1∆ft+1] E[xtet+1∆ft+1] E[e2
t+1(∆ft+1)2]

 .

It is easy to see that when E[et+1∆ft+1] = E[xtet+1∆ft+1] = 0, Qmm is block-diagonal and
the 2× 2 northwest block of VGMM is the same as VOLS . A sufficient condition for these two
equalities is E[et+1∆ft+1|It] = 0, i. e. that conditionally on the past, unexpected movements
in spot rates are uncorrelated with and unexpected movements in forward rates. This is
hardly to be satisfied in practice.

8.8 Brief and exhaustive

1. We know that E [w] = µ and E
[
(w − µ)4

]
= 3

(
E

[
(w − µ)2

])2
. It is trivial to take care of

the former. To take care of the latter, introduce a constant σ2 = E

[
(w − µ)2

]
, then we have

E

[
(w − µ)4

]
= 3

(
σ2
)2
. Together, the system of moment conditions is

E

 w − µ
(w − µ)2 − σ2

(w − µ)4 − 3
(
σ2
)2
 = 0

3×1
.

2. The argument would be fine if the model for the conditional mean was known to be correctly
specified. Then one could blame instruments for a high value of the J-statistic. But in our
time series regression of the type Et [yt+1] = g(xt), if this regression was correctly specified,
then the variables from time t information set must be valid instruments! The failure of
the model may be associated with incorrect functional form of g(·), or with specification of
conditional information. Lastly, asymptotic theory may give a poor approximation to exact
distribution of the J-statistic.
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3. Indeed, we are supposed to recenter, but only when there is overidentification. When the
parameter is just identified, as in the case of the OLS estimator, the moment conditions hold
exactly in the sample, so the ”center” is zero anyway.

8.9 Efficiency of MLE in GMM class

The theorem we proved in class began with the following. The true parameter θ solves the maxi-
mization problem

θ = arg max
q∈Θ

E [h(z, q)]

with a first order condition

E

[
∂

∂q
h(z, θ)

]
= 0
k×1

.

Consider the GMM minimization problem

θ = arg min
q∈Θ

E [m(z, q)]′WE [m(z, q)]

with FOC

2E
[
∂

∂q′
m(z, θ)

]′
WE [m(z, θ)] = 0

k×1
,

or, equivalently,

E

[
E

[
∂

∂q
m(z, θ)′

]
Wm(z, θ)

]
= 0
k×1

.

Now treat the vector E
[
∂

∂q
m(z, θ)′

]
Wm(z, q) as

∂

∂q
h(z, q) in the given proof, and we are done.
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9. PANEL DATA

9.1 Alternating individual effects

It is convenient to use three indices instead of two in indexing the data. Namely, let

t = 2(s− 1) + q, where q ∈ {1, 2}, s ∈ {1, · · · , T}.

Then q = 1 corresponds to odd periods, while q = 2 corresponds to even periods. The dummy
variables will have the form of the Kronecker product of three matrices, which is defined recursively
as A⊗B ⊗ C = A⊗ (B ⊗ C).

Part 1. (a) In this case we rearrange the data column as follows:

yisq = yit; yis =
(
yis1
yis2

)
; yi =

 yi1
...
yiT

 ; y =

 y1

...
yn

 ;

µ = (µO1 µE1 · · · µOn µEn )′. The regressors and errors are rearranged in the same manner as y’s.
Then the regression can be rewritten as

y = Dµ+Xβ + v, (9.1)

where D = In ⊗ iT ⊗ I2, and iT = (1 · · · 1)′ (T × 1 vector). Clearly,

D′D = In ⊗ i′T it ⊗ I2 = T · In·T ·2,

D(D′D)−1D′ =
1
T
In ⊗ iT i′t ⊗ I2 =

1
T
In ⊗ JT ⊗ I2,

where JT = iT i
′
T . In other words, D(D′D)−1D′ is block-diagonal with n 2T × 2T -blocks of the

form: 
1
T 0 ... 1

T 0
0 1

T ... 0 1
T

... ... ... ... ...
1
T 0 ... 1

T 0
0 1

T ... 0 1
T

 .

The Q-matrix is then Q = In·T ·2 − 1
T In ⊗ JT ⊗ I2. Note that Q is an orthogonal projection and

QD = 0. Thus we have from (9.1)
Qy = QXβ +Qv. (9.2)

Note that 1
T JT is the operator of taking the mean over the s-index (i.e. over odd or even periods

depending on the value of q). Therefore, the transformed regression is:

yisq − ȳiq = (xisq − x̄iq)′β + v∗, (9.3)

where ȳiq =
∑T

s=1 yisq.
(b) This time the data are rearranged in the following manner:

yqis = yit; yqi =

 yi1
...
yiT

 ; yq =

 yq1
...
yqn

 ; y =
(
y1

y2

)
;
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µ = (µO1 · · · µOn µE1 · · · µEn )′. In matrix form the regression is again (9.1) with D = I2 ⊗ In ⊗ iT ,
and

D(D′D)−1D′ =
1
T
I2 ⊗ In ⊗ iT i′t =

1
T
I2 ⊗ In ⊗ JT .

This matrix consists of 2N blocks on the main diagonal, each of them being 1
T JT . The Q-matrix is

Q = I2n·T − 1
T I2n ⊗ JT . The rest is as in Part 1(b) with the transformed regression

yqis − ȳqi = (xqis − x̄qi)′β + v∗, (9.4)

with ȳqi =
∑T

s=1 yqis, which is essentially the same as (9.3).
Part 2. Take the Q-matrix as in Part 1(b). The Within estimator is the OLS estimator in

(9.4), i.e. β̂ = (X ′QX)−1X ′QY, or

β̂ =

∑
q,i,s

(xqis − x̄qi)(xqis − x̄qi)′
−1∑

q,i,s

(xqis − x̄qi)(yqis − ȳqi).

Clearly, E[β̂] = β, β̂
p→ β and β̂ is asymptotically normal as n → ∞, T fixed. For normally

distributed errors vqis the standard F-test for hypothesis

H0 : µO1 = µO2 = ... = µOn and µE1 = µE2 = ... = µEn

is

F =
(RSSR −RSSU )/(2n− 2)
RSSU/(2nT − 2n− k)

H0

˜ F (2n− 2, 2nT − 2n− k)

(we have 2n − 2 restrictions in the hypothesis), where RSSU =
∑

isq(yqis − ȳqi − (xqis − x̄qi)′β)2,

and RSSR is the sum of squared residuals in the restricted regression.
Part 3. Here we start with

yqis = x′qisβ + uqis, uqis := µqi + vqis, (9.5)

where µ1i = µOi and µ2i = µEi ; E[µqi] = 0. Let σ2
1 = σ2

O, σ
2
2 = σ2

E . We have

E

[
uqisuq′i′s′

]
= E

[
(µqi + vqis)(µq′i′ + vq′i′s′)

]
= σ2

qδqq′δii′1ss′ + σ2
vδqq′δii′δss′ ,

where δaa′ = {1 if a = a′, and 0 if a 6= a′}, 1ss′ = 1 for all s, s′. Consequently,

Ω = E[uu′] =
(
σ2

1 0
0 σ2

2

)
⊗ In ⊗ JT + σ2

vI2nT = (Tσ2
1 + σ2

v)
(

1 0
0 0

)
⊗ In ⊗

1
T
JT +

+(Tσ2
2 + σ2

v)
(

0 0
0 1

)
⊗ In ⊗

1
T
JT + σ2

vI2 ⊗ In ⊗ (IT −
1
T
JT ).

The last expression is the spectral decomposition of Ω since all operators in it are idempotent
symmetric matrices (orthogonal projections), which are orthogonal to each other and give identity
in sum. Therefore,

Ω−1/2 = (Tσ2
1 + σ2

v)
−1/2

(
1 0
0 0

)
⊗ In ⊗

1
T
JT + (Tσ2

2 + σ2
v)
−1/2

(
0 0
0 1

)
⊗ In ⊗

1
T
JT +

+σ−1
v I2 ⊗ In ⊗ (IT −

1
T
JT ).

The GLS estimator of β is
β̂ = (X ′Ω−1X)−1X ′Ω−1Y.
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To put it differently, β̂ is the OLS estimator in the transformed regression

σvΩ−1/2y = σvΩ−1/2Xβ + u∗.

The latter may be rewritten as

yqis − (1−
√
θq)ȳqi = (xqis − (1−

√
θq)x̄qi)′β + u∗,

where θq = σ2
v/(σ

2
v + Tσ2

q).
To make β̂ feasible, we should consistently estimate parameter θq. In the case σ2

1 = σ2
2 we may

apply the result obtained in class (we have 2n different objects and T observations for each of them
– see Part 1(b)):

θ̂ =
2n− k

2n(T − 1)− k + 1
û′Qû

û′Pû
,

where û are OLS-residuals for (9.4), and Q = I2n·T − 1
T I2n ⊗ JT , P = I2nT −Q. Suppose now that

σ2
1 6= σ2

2. Using equations

E [uqis] = σ2
v + σ2

q ; E [ūis] =
1
T
σ2
v + σ2

q ,

and repeating what was done in class, we have

θ̂q =
n− k

n(T − 1)− k + 1
û′Qqû

û′Pqû
,

with Q1 =
(

1 0
0 0

)
⊗In⊗(IT− 1

T JT ), Q2 =
(

0 0
0 1

)
⊗In⊗(IT− 1

T JT ), P1 =
(

1 0
0 0

)
⊗In⊗ 1

T JT ,

P2 =
(

0 0
0 1

)
⊗ In ⊗ 1

T JT .

9.2 Time invariant regressors

1. (a) Under fixed effects, the zi variable is collinear with the dummy for µi. Thus, γ is uniden-
tifiable.. The Within transformation wipes out the term ziγ together with individual effects
µi, so the transformed equation looks exactly like it looks if no term ziγ is present in the
model. Under usual assumptions about independence of vit and X, the Within estimator of
β is efficient.
(b) Under random effects and mutual independence of µi and vit, as well as their independence
of X and Z, the GLS estimator is efficient, and the feasible GLS estimator is asymptotically
efficient as n→∞.

2. Recall that the first-step β̂ is consistent but π̂i’s are inconsistent as T stays fixed and n→∞.
However, the estimator of γ so constructed is consistent under assumptions of random effects
(see Part 1(b)). Observe that π̂i = ȳi− x̄′iβ̂. If we regress π̂i on zi, we get the OLS coefficient

γ̂ =
∑n

i=1 ziπ̂i∑n
i=1 z

2
i

=

∑n
i=1 zi

(
ȳi − x̄′iβ̂

)
∑n

i=1 z
2
i

=

∑n
i=1 zi

(
x̄′iβ + ziγ + µi + v̄i − x̄′iβ̂

)
∑n

i=1 z
2
i

= γ +
1
n

∑n
i=1 ziµi

1
n

∑n
i=1 z

2
i

+
1
n

∑n
i=1 ziv̄i

1
n

∑n
i=1 z

2
i

+
1
n

∑n
i=1 zix̄

′
i

1
n

∑n
i=1 z

2
i

(
β − β̂

)
.
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Now, as n→∞,

1
n

n∑
i=1

z2
i

p→ E

[
z2
i

]
6= 0,

1
n

n∑
i=1

ziµi
p→ E [ziµi] = E [zi]E [µi] = 0,

1
n

n∑
i=1

ziv̄i
p→ E [ziv̄i] = E [zi]E [v̄i] = 0,

1
n

n∑
i=1

zix̄
′
i
p→ E

[
zix̄
′
i

]
, β − β̂ p→ 0.

In total, γ̂
p→ γ. However, so constructed estimator of γ is asymptotically inefficient. A better

estimator is the feasible GLS estimator of Part 1(b).

9.3 First differencing transformation

OLS on FD-transformed equations is unbiased and consistent as n → ∞ since the differenced
error has mean zero conditional on the matrix of differenced regressors under the standard FE
assumptions. However, OLS is inefficient as the conditional variance matrix is not diagonal. The
efficient estimator of structural parameters is the LSDV estimator, which is an OLS estimator on
Within-transformed equations.
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10. NONPARAMETRIC ESTIMATION

10.1 Nonparametric regression with discrete regressor

Fix a(j), j = 1, . . . , k. Observe that

g(a(j)) = E[yi|xi = a(j)] =
E(yiI[xi = a(j)])
E(I[xi = a(j)])

because of the following equalities:

E

[
I

[
xi = a(j)

]]
= 1 · P{xi = a(j)}+ 0 · P{xi 6= a(j)} = P{xi = a(j)},

E

[
yiI
[
xi = a(j)

]]
= E

[
yiI
[
xi = a(j)

]
|xi = a(j)

]
· P{xi = a(j)} = E

[
yi|xi = a(j)

]
· P{xi = a(j)}.

According to the analogy principle we can construct ĝ(a(j)) as

ĝ(a(j)) =

∑n
i=1 yiI

[
xi = a(j)

]∑n
i=1 I

[
xi = a(j)

] .
Now let us find its properties. First, according to the LLN,

ĝ(a(j)) =

∑n
i=1 yiI

[
xi = a(j)

]∑n
i=1 I

[
xi = a(j)

] p→
E

[
yiI[xi = a(j)]

]
E

[
I[xi = a(j)]

] = g(a(j)).

Second,
√
n
(
ĝ(a(j))− g(a(j))

)
=
√
n

∑n
i=1

(
yi − E

[
yi|xi = a(j)

])
I

[
xi = a(j)

]∑n
i=1 I

[
xi = a(j)

] .

According to the CLT,

1√
n

n∑
i=1

(
yi − E

[
yi|xi = a(j)

])
I

[
xi = a(j)

] d→ N (0, ω) ,

where

ω = V

[(
yi − E

[
yi|xi = a(j)

])
I

[
xi = a(j)

]]
= E

[(
yi − E

[
yi|xi = a(j)

])2 |xi = a(j)

]
P{xi = a(j)}

= V

[
yi|xi = a(j)

]
P{xi = a(j)}.

Thus
√
n
(
ĝ(a(j))− g(a(j))

) d→ N

(
0,
V

[
yi|xi = a(j)

]
P{xi = a(j)}

)
.

10.2 Nonparametric density estimation

(a) Use the hint that E [I [xi ≤ x]] = F (x) to prove the unbiasedness of estimator:

E

[
F̂ (x)

]
= E

[
1
n

n∑
i=1

I [xi ≤ x]

]
=

1
n

n∑
i=1

E [I [xi ≤ x]] =
1
n

n∑
i=1

F (x) = F (x).
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(b) Use the Taylor expansion F (x + h) = F (x) + hf(x) + 1
2h

2f ′(x) + o(h2) to see that the bias
of f̂1(x) is

E

[
f̂1(x)

]
− f(x) = h−1 (F (x+ h)− F (x))− f(x)

=
1
h

(F (x) + hf(x) +
1
2
h2f ′(x) + o(h2)− F (x))− f(x)

=
1
2
hf ′(x) + o(h).

Therefore, a = 1.

(c) Use the Taylor expansions F
(
x+ h

2

)
= F (x) + h

2f(x) + 1
2

(
h
2

)2
f ′(x) + 1

6

(
h
2

)3
f ′′(x) + o(h3)

and F
(
x− h

2

)
= F (x) − h

2f(x) + 1
2

(
h
2

)2
f ′(x) − 1

6

(
h
2

)3
f ′′(x) + o(h3) to see that the bias of

f̂2(x) is

E

[
f̂2(x)

]
− f(x) = h−1 (F (x+ h/2)− F (x− h/2))− f(x) =

1
24
h2f ′′(x) + o(h2).

Therefore, b = 2.

Let us compare the two methods. We can find the optimal rate of convergence when the bias
and variance are balanced: variance ∝ bias2. The ”variance” is of order nh for both methods, but
the ”bias” is of different order (see parts (b) and (c)). For f̂1, the optimal rate is n ∝ h−1/3, for f̂2

– the optimal rate is n ∝ h−1/5. Therefore, for the same h, with the second method we need more
points to estimate f with the same accuracy.

Let us compare the performance of each method at border points like x(1) or x(n), and at
a median point like x̄n. To estimate f(x) with approximately the same variance we need an
approximately same number of points in the window [x, x + h] for the first method and [x −
h/2, x+h/2] for the second. Since concentration of points in the window at a border is much lower
than in the median window, we need a much bigger sample to estimate the density at border points
with the same accuracy as at median points. On the other hand, when the sample size is fixed, we
need greater h for border points to meet the accuracy of estimation with that for in median points.
When h increases, the bias increases with the same rate in the first method and with the double
rate in the second method. Consequently, f̂1 is preferable for estimation at border points.

10.3 First difference transformation and nonparametric regression

1. Let us consider the following average that can be decomposed into three terms:

1
n− 1

n∑
i=2

(yi − yi−1)2 =
1

n− 1

n∑
i=2

(g(zi)− g(zi−1))2 +
1

n− 1

n∑
i=2

(ei − ei−1)2

+
2

n− 1

n∑
i=2

(g(zi)− g(zi−1))(ei − ei−1).

Since zi compose a uniform grid and are increasing in order, i.e. zi− zi−1 = 1
n−1 , we can find

the limit of the first term using the Lipschitz condition:∣∣∣∣∣ 1
n− 1

n∑
i=2

(g(zi)− g(zi−1))2

∣∣∣∣∣ ≤ G2

n− 1

n∑
i=2

(zi − zi−1)2 =
G2

(n− 1)2
→

n→∞
0
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Using the Lipschitz condition again we can find the probability limit of the third term:∣∣∣∣∣ 2
n− 1

n∑
i=2

(g(zi)− g(zi−1))(ei − ei−1)

∣∣∣∣∣ ≤ 2G
(n− 1)2

n∑
i=2

|ei − ei−1|

≤ 2G
n− 1

1
n− 1

n∑
i=2

(|ei|+ |ei−1|)
p→

n→∞
0

since 2G
n−1 →

n→∞
0 and 1

n−1

∑n
i=2 (|ei|+ |ei−1|)

p→
n→∞

2E |ei| < ∞. The second term has the
following probability limit:

1
n− 1

n∑
i=2

(ei − ei−1)2 =
1

n− 1

n∑
i=2

(
e2
i − 2eiei−1 + e2

i−1

) p→
n→∞

2E
[
e2
i

]
= 2σ2.

Thus the estimator for σ2 whose consistency is proved by previous manipulations is

σ̂2 =
1
2

1
n− 1

n∑
i=2

(yi − yi−1)2.

2. At the first step estimate β from the FD-regression. The FD-transformed regression is

yi − yi−1 = (xi − xi−1)′β + g(zi)− g(zi−1) + ei − ei−1,

which can be rewritten as
∆yi = ∆x′iβ + ∆g(zi) + ∆ei.

The consistency of the following estimator for β

β̂ =

(
n∑
i=2

∆xi∆x′i

)−1( n∑
i=2

∆xi∆yi

)

can be proved in the standard way:

β̂ − β =

(
1

n− 1

n∑
i=2

∆xi∆x′i

)−1(
1

n− 1

n∑
i=2

∆xi(∆g(zi) + ∆ei)

)

Here 1
n−1

∑n
i=2 ∆xi∆x′i has some non-zero probability limit, 1

n−1

∑n
i=2 ∆xi∆ei

p→
n→∞

0 since

E[ei|xi, zi] = 0, and
∣∣∣ 1
n−1

∑n
i=2 ∆xi∆g(zi)

∣∣∣ ≤ G
n−1

1
n−1

∑n
i=2 |∆xi|

p→
n→∞

0. Now we can use
standard nonparametric tools for the ”regression”

yi − x′iβ̂ = g(zi) + e∗i ,

where e∗i = ei + x′i(β − β̂). Consider the following estimator (we use the uniform kernel for
algebraic simplicity):

ĝ(z) =
∑n

i=1(yi − x′iβ̂)I [|zi − z| ≤ h]∑n
i=1 I [|zi − z| ≤ h]

.

It can be decomposed into three terms:

ĝ(z) =

∑n
i=1

(
g(zi) + x′i(β − β̂) + ei

)
I [|zi − z| ≤ h]∑n

i=1 I [|zi − z| ≤ h]
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The first term gives g(z) in the limit. To show this, use Lipschitz condition:∣∣∣∣∑n
i=1(g(zi)− g(z))I [|zi − z| ≤ h]∑n

i=1 I [|zi − z| ≤ h]

∣∣∣∣ ≤ Gh,
and introduce the asymptotics for the smoothing parameter: h→ 0. Then∑n

i=1 g(zi)I [|zi − z| ≤ h]∑n
i=1 I [|zi − z| ≤ h]

=
∑n

i=1(g(z) + g(zi)− g(z))I [|zi − z| ≤ h]∑n
i=1 I [|zi − z| ≤ h]

=

= g(z) +
∑n

i=1(g(zi)− g(z))I [|zi − z| ≤ h]∑n
i=1 I [|zi − z| ≤ h]

→
n→∞

g(z).

The second and the third terms have zero probability limit if the condition nh→∞ is satisfied∑n
i=1 x

′
iI [|zi − z| ≤ h]∑n

i=1 I [|zi − z| ≤ h]︸ ︷︷ ︸
↓p
E [x′i]

(β − β̂)︸ ︷︷ ︸
↓p
0

p→
n→∞

0

and ∑n
i=1 eiI [|zi − z| ≤ h]∑n
i=1 I [|zi − z| ≤ h]

p→
n→∞

E [ei] = 0.

Therefore, ĝ(z) is consistent when n→∞, nh→∞, h→ 0.
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11. CONDITIONAL MOMENT RESTRICTIONS

11.1 Usefulness of skedastic function

Denote θ =
(
β
π

)
and e = y − x′β. The moment function is

m(y, x, θ) =
(
m1

m2

)
=
(

y − x′β
(y − x′β)2 − h(x, β, π)

)
The general theory for the conditional moment restriction E [m(w, θ)|x] = 0 gives the optimal

restriction E
[
D(x)′Ω(x)−1m(w, θ)

]
= 0, where D(x) = E

[
∂m

∂θ′
|x
]

and Ω(x) = E[mm′|x]. The

variance of the optimal estimator is V =
(
E

[
D(x)′Ω(x)−1D(x)

])−1
. For the problem at hand,

D(x) = E

[
∂m

∂θ′
|x
]

= −E
[(

x′ 0
2ex′ + h′β h′π

)
|x
]

= −
(

x′ 0
h′β h′π

)
,

Ω(x) = E[mm′|x] = E

[(
e2 e(e2 − h)

e(e2 − h) (e2 − h)2

)
|x
]

= E

[(
e2 e3

e3 (e2 − h)2

)
|x
]
,

since E[ex|x] = 0 and E[eh|x] = 0.
Let ∆(x) ≡ det Ω(x) = E[e2|x]E[(e2 − h)2|x]− (E[e3|x])2. The inverse of Ω is

Ω(x)−1 =
1

∆(x)
E

[(
(e2 − h)2 −e3

−e3 e2

)
|x
]
,

and the asymptotic variance of the efficient GMM estimator is

V −1 = E

[
D(x)′Ω(x)−1D(x)

]
=
(
A B′

B C

)
,

where

A = E

[
(e2 − h)2xx′ − e3(xh′β + hβx

′) + e2hβh
′
β

∆(x)

]
,

B = E

[
−e3hπx

′ + e2hπh
′
β

∆(x)

]
, C = E

[
e2hπh

′
π

∆(x)

]
.

Using the formula for inversion of the partitioned matrices, find that

V =
(

(A−B′C−1B)−1 ∗
∗ ∗

)
,

where ∗ denote submatrices which are not of interest.

To answer the problem we need to compare V11 = (A−B′C−1B)−1 with V0 =
(
E

[
xx′

h

])−1

,

the variance of the optimal GMM estimator constructed with the use of m1 only. We need to show
that V11 ≤ V0, or, alternatively, V −1

11 ≥ V
−1

0 . Note that

V −1
11 − V

−1
0 = Ã−B′C−1B,
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where Ã = A− V −1
0 can be simplified to

Ã = E

[
1

∆(x)

(
xx′
(
E

[
e3|x

])2
E [e2|x]

− e3(xh′β + hβx
′) + e2hβh

′
β

)]
.

Next, we can use the following representation:

Ã−B′C−1B = E[ww′],

where

w =
E

[
e3|x

]
x− E

[
e2|x

]
hβ√

E [e2|x]
√

∆(x)
+B′C−1hπ

√
E [e2|x]
∆(x)

.

This representation concludes that V −1
11 ≥ V

−1
0 and gives the condition under which V11 = V0. This

condition is w(x) = 0 almost surely. It can be written as

E

[
e3|x

]
E [e2|x]

x = hβ −B′C−1hπ almost surely.

Consider the special cases.

1. hβ = 0. Then the condition modifies to

E

[
e3|x

]
E [e2|x]

x = −E
[
e3hπx

′

∆(x)

]
E

[
e2hπh

′
π

∆(x)

]−1

hπ almost surely.

2. hβ = 0 and the distribution of ei conditional on xi is symmetric. The previous condition is
satisfied automatically since E

[
e3|x

]
= 0.

11.2 Symmetric regression error

Part 1. The maintained hypothesis is E [e|x] = 0. We can use the null hypothesis H0 : E
[
e3|x

]
= 0

to test for the conditional symmetry. We could in addition use more conditional moment restrictions
(e.g., involving higher odd powers) to increase the power of the test, but in finite samples that would
probably lead to more distorted test sizes. The alternative hypothesis is H1 : E

[
e3|x

]
6= 0.

An estimator that is consistent under both H0 and H1 is, for example, the OLS estimator
α̂OLS . The estimator that is consistent and asymptotically efficient (in the same class where α̂OLS
belongs) under H0 and (hopefully) inconsistent under H1 is the instrumental variables (GMM)
estimator α̂OIV that uses the optimal instrument for the system E [e|x] = 0, E

[
e3|x

]
= 0. We

derived in class that the optimal unconditional moment restriction is

E

[
a1(x) (y − αx) + a2(x) (y − αx)3

]
= 0,

where (
a1(x)
a2(x)

)
=

x

µ2(x)µ6(x)− µ4(x)2

(
µ6(x)− 3µ2(x)µ4(x)

3µ2(x)2 − µ4(x)

)
and µr(x) = E [(y − αx)r |x] , r = 2, 4, 6. To construct a feasible α̂OIV , one needs to first estimate
µr(x) at the points xi of the sample. This may be done nonparametrically using nearest neighbor,

106 CONDITIONAL MOMENT RESTRICTIONS



series expansion or other approaches. Denote the resulting estimates by µ̂r(xi), i = 1, · · · , n,
r = 2, 4, 6 and compute â1(xi) and â2(xi), i = 1, · · · , n. Then α̂OIV is a solution of the equation

1
n

n∑
i=1

(
â1(xi) (yi − α̂OIV xi) + â2(xi) (yi − α̂OIV xi)3

)
= 0,

which can be turned into an optimization problem, if convenient.
The Hausman test statistic is then

H = n
(α̂OLS − α̂OIV )2

V̂OLS − V̂OIV
d→ χ2 (1) ,

where V̂OLS = n
(∑n

i=1 x
2
i

)−2∑n
i=1 x

2
i (yi − α̂OLSxi)2 and V̂OIV is a consistent estimate of the

efficiency bound

VOIV =
(
E

[
x2
i (µ6(xi)− 6µ2(xi)µ4(xi)) + 9µ3

2(xi))
µ2(xi)µ6(xi))− µ2

4(xi)

])−1

.

Note that the constructed Hausman test will not work if α̂OLS is also asymptotically efficient,
which may happen if the third-moment restriction is redundant and the error is conditionally
homoskedastic so that the optimal instrument reduces to the one implied by OLS. Also, the test
may be inconsistent (i.e., asymptotically have power less than 1) if α̂OIV happens to be consistent
under conditional non-symmetry too.

Part 2. Under the assumption that e|x ∼ N (0, σ2), irrespective of whether σ2 is known or
not, the QML estimator α̂QML coincides with the OLS estimator and thus has the same asymptotic
distribution

√
n (α̂QML − α) d→ N

0,
E

[
x2 (y − αx)2

]
(E [x2])2

 .

11.3 Optimal instrument in AR-ARCH model

Let us for convenience view a typical element of Zt as
∑∞

i=1 ωiεt−i, and let the optimal instrument
be ζt =

∑∞
i=1 aiεt−i.The optimality condition is

E[vtxt−1] = E

[
vtζtε

2
t

]
for all vt ∈ Zt.

Since it should hold for any vt ∈ Zt, let us make it hold for vt = εt−j , j = 1, 2, · · · . Then we get a
system of equations of the type

E[εt−jxt−1] = E

[
εt−j

(∑∞

i=1
aiεt−i

)
ζtε

2
t

]
.

The left-hand side is just ρj−1 because xt−1 =
∑∞

i=1 ρ
i−1εt−i and because E[ε2

t ] = 1. In the right-

hand side, all terms are zeros due to conditional symmetry of εt, except ajE
[
ε2
t−jε

2
t

]
. Therefore,

aj =
ρj−1

1 + αj(κ− 1)
,
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where κ = E

[
ε4
t

]
. This follows from the ARCH(1) structure:

E

[
ε2
t−jε

2
t

]
= E

[
ε2
t−jE[ε2

t |It−1]
]

= E

[
ε2
t−j
(
(1− α) + αε2

t−1

)]
= (1− α) + αE

[
ε2
t−j+1ε

2
t

]
,

so that we can recursively obtain

E

[
ε2
t−jε

2
t

]
= 1− αj + αjκ.

Thus the optimal instrument is

ζt =
∞∑
i=1

ρi−1

1 + αi(κ− 1)
εt−i =

=
xt−1

1 + α(κ− 1)
+ (κ− 1)(1− α)

∞∑
i=2

(αρ)i−1

(1 + αi(κ− 1)) (1 + αi−1(κ− 1))
xt−i.

To construct a feasible estimator, set ρ̂ to be the OLS estimator of ρ, α̂ to be the OLS estimator
of α in the model ε̂2

t − 1 = α(ε̂2
t−1 − 1) + υt, and compute κ̂ = T−1

∑T
t=2 ε̂

4
t .

The optimal instrument based on E[εt|It−1] = 0 uses a large set of allowable instruments,
relative to which our Zt is extremely thin. Therefore, we can expect big losses in efficiency in
comparison with what we could get. In fact, calculations for empirically relevant sets of parameter
values reveal that this intuition is correct. Weighting by the skedastic function is much more pow-
erful than trying to capture heteroskedasticity by using an infinite history of the basic instrument
in a linear fashion.

11.4 Modified Poisson regression and PML estimators

Part 1. The mean regression function is E[y|x] = E[E[y|x, ε]|x] = E[exp(x′β + ε)|x] = exp(x′β).
The skedastic function is V[y|x] = E[(y − E[y|x])2|x] = E[y2|x]− E[y|x]2. Since

E

[
y2|x

]
= E

[
E

[
y2|x, ε

]
|x
]

= E

[
exp(2x′β + 2ε) + exp(x′β + ε)|x

]
= exp(2x′β)E

[
(exp ε)2|x

]
+ exp(x′β) = (σ2 + 1) exp(2x′β) + exp(x′β),

we have V [y|x] = σ2 exp(2x′β) + exp(x′β).

Part 2. Use the formula for asymptotic variance of NLLS estimator:

VNLLS = Q−1
gg Qgge2Q

−1
gg ,

whereQgg = E

[
∂g(x,β)
∂β

∂g(x,β)
∂β′

]
andQgge2 = E

[
∂g(x,β)
∂β

∂g(x,β)
∂β′

(y − g(x, β))2
]
. In our problem g(x, β) =

exp(x′β) and Qgg = E [xx′ exp(2x′β)] ,

Qgge2 = E

[
xx′ exp(2x′β)(y − exp(x′β))2

]
= E

[
xx′ exp(2x′β)V[y|x]

]
= E

[
xx′ exp(2x′β)(σ2 exp(2x′β) + exp(x′β))

]
= E

[
xx′ exp(3x′β)

]
+ σ2

E

[
xx′ exp(4x′β)

]
.

To find the expectations we use the formula E[xx′ exp(nx′β)] = exp(n
2

2 β
′β)(I + n2ββ′). Now, we

have Qgg = exp(2β′β)(I + 4ββ′) and Qgge2 = exp(9
2β
′β)(I + 9ββ′) + σ2 exp(8β′β)(I + 16ββ′).

Finally,

VNLLS = (I + 4ββ′)−1

(
exp(

1
2
β′β)(I + 9ββ′) + σ2 exp(4β′β)(I + 16ββ′)

)
(I + 4ββ′)−1.
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The formula for asymptotic variance of WNLLS estimator is

VWNLLS = Q−1
gg/σ2 ,

where Qgg/σ2 = E

[
∂g(x,β)
∂β

∂g(x,β)
∂β′

1
V[y|x]

]
. In this problem

Qgg/σ2 = E

[
xx′ exp(2x′β)(σ2 exp(2x′β) + exp(x′β))−1

]
,

which can be rearranged as

VWNLLS = σ2

(
I − E

[
xx′

1 + σ2 exp(x′β)

])−1

.

Part 3. We use the formula for asymptotic variance of PML estimator:

VPML = J −1IJ −1,

where

J = E

[
∂C

∂m

∣∣∣∣
m(x,β0)

∂m(x, β0)
∂β

∂m(x, β0)
∂β′

]
,

I = E

( ∂C

∂m

∣∣∣∣
m(x,β0)

)2

σ2(x, β0)
∂m(x, β0)

∂β

∂m(x, β0)
∂β′

 .
In this problem m(x, β) = exp(x′β) and σ2(x, β) = σ2 exp(2x′β) + exp(x′β).

(a) For the normal distribution C(m) = m, therefore ∂C
∂m = 1 and VNPML = VNLLS .

(b) For the Poisson distribution C(m) = logm, therefore ∂C
∂m = 1

m ,

J = E[exp(−x′β)xx′ exp(2x′β)] = exp(
1
2
β′β)(I + ββ′),

I = E[exp(−2x′β)(σ2 exp(2x′β) + exp(x′β))xx′ exp(2x′β)]

= exp(
1
2
β′β)(I + ββ′) + σ2 exp(2β′β)(I + 4ββ′).

Finally,

VPPML = (I + ββ′)−1

(
exp(−1

2
β′β)(I + ββ′) + σ2 exp(β′β)(I + 4ββ′)

)
(I + ββ′)−1.

(c) For the Gamma distribution C(m) = − α
m , therefore ∂C

∂m = α
m2 ,

J = E[α exp(−2x′β)xx′ exp(2x′β)] = αI,

I = α2
E[exp(−4x′β)(σ2 exp(2x′β) + exp(x′β))xx′ exp(2x′β)]

= α2σ2I + α2 exp(
1
2
β′β)(I + ββ′).

Finally,

VGPML = σ2I + exp(
1
2
β′β)(I + ββ′).
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Part 4. We have the following variances:

VNLLS = (I + 4ββ′)−1

(
exp(

1
2
β′β)(I + 9ββ′) + σ2 exp(4β′β)(I + 16ββ′)

)
(I + 4ββ′)−1,

VWNLLS = σ2

(
I − E xx′

1 + σ2 exp(x′β)

)−1

,

VNPML = VNLLS ,

VPPML = (I + ββ′)−1

(
exp(−1

2
β′β)(I + ββ′) + σ2 exp(β′β)(I + 4ββ′)

)
(I + ββ′)−1,

VGPML = σ2I + exp(
1
2
β′β)(I + ββ′).

From the theory we know that VWNLLS ≤ VNLLS . Next, we know that in the class of PML

estimators the efficiency bound is achieved when
∂C

∂m

∣∣∣∣
m(x,β0)

is proportional to
1

σ2(x, β0)
, then the

bound is

E

[
∂m(x, β)

∂β

∂m(x, β)
∂β′

1
V[y|x]

]
which is equal to VWNLLS in our case. So, we have VWNLLS ≤ VPPML and VWNLLS ≤ VGPML. The
comparison of other variances is not straightforward. Consider the one-dimensional case. Then we
have

VNLLS =
eβ

2/2(1 + 9β2) + σ2e4β2
(1 + 16β2)

(1 + 4β2)2
,

VWNLLS = σ2

(
1− E x2

1 + σ2 exp(xβ)

)−1

,

VNPML = VNLLS ,

VPPML =
eβ

2/2(1 + β2) + σ2eβ
2
(1 + 4β2)

(1 + β2)2
,

VGPML = σ2 + eβ
2/2(1 + β2).

We can calculate these (except VWNLLS) for various parameter sets. For example, for σ2 = 0.01
and β2 = 0.4 VNLLS < VPPML < VGPML, for σ2 = 0.01 and β2 = 0.1 VPPML < VNLLS <
VGPML, for σ2 = 1 and β2 = 0.4 VGPML < VPPML < VNLLS , for σ2 = 0.5 and β2 = 0.4
VPPML < VGPML < VNLLS . However, it appears impossible to make VNLLS < VGPML < VPPML

or VGPML < VNLLS < VPPML.

11.5 Optimal instrument and regression on constant

Part 1. We have the following moment function: m(x, y, θ) = (y − α, (y − α)2 − σ2x2
i )
′ with

θ =
(
α
σ2

)
. The optimal unconditional moment restriction is E[A∗(xi)m(x, y, θ)] = 0, where A∗(xi) =

D′(xi)Ω(xi)−1, D(xi) = E

[
∂m(x, y, θ)/∂θ′|xi

]
, Ω(xi) = E[m(x, y, θ)m(x, y, θ)′|xi].

(a) For the first moment restriction m1(x, y, θ) = y − α we have D(xi) = −1 and Ω(xi) =
E

[
(y − α)2|xi

]
= σ2x2

i , therefore the optimal moment restriction is

E

[
yi − α
x2
i

]
= 0.
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(b) For the moment function m(x, y, θ) we have

D(xi) =
(
−1 0
0 −x2

i

)
, Ω(xi) =

(
σ2x2

i 0
0 µ4(xi)− x4

iσ
4

)
,

where µ4(x) = E

[
(y − α)4|x

]
. The optimal weighting matrix is

A∗(xi) =


1

σ2x2
i

0

0
x2
i

µ4(xi)− x4
iσ

4

 .

The optimal moment restriction is

E




yi − α
x2
i

(yi − α)2 − σ2x2
i

µ4(xi)− x4
iσ

4
x2
i


 = 0.

Part 2. (a) The GMM estimator is the solution of

1
n

∑
i

yi − α̂
x2
i

= 0 ⇒ α̂ =
∑
i

yi
x2
i

/∑
i

1
x2
i

.

The estimator for σ2 can be drawn from the sample analog of the condition E
[
(y − α)2

]
= σ2

E

[
x2
]
:

σ̃2 =
∑
i

(yi − α̂)2

/∑
i

x2
i .

(b) The GMM estimator is the solution of

∑
i


yi − α̂
x2
i

(yi − α̂)2 − σ̂2x2
i

µ̂4(xi)− x4
i σ̂

4 x2
i

 = 0.

We have the same estimator for α:

α̂ =
∑
i

yi
x2
i

/∑
i

1
x2
i

,

σ̂2 is the solution of ∑
i

(yi − α̂)2 − σ̂2x2
i

µ̂4(xi)− x4
i σ̂

4 x2
i = 0,

where µ̂4(xi) is non-parametric estimator for µ4(xi) = E

[
(y − α)4|xi

]
, for example, a nearest

neighbor or a series estimator.

Part 3. The general formula for the variance of the optimal estimator is

V =
(
E

[
D′(xi)Ω(xi)−1D(xi)

])−1
.
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(a) Vα̂ = σ2
(
E

[
x−2
i

])−1
. Use standard asymptotic techniques to find

Vσ̃2 =
E

[
(yi − α)4

](
E

[
x2
i

])2 − σ4.

(b)

V(α̂,σ̂2) =

E



1
σ2x2

i

0

0
x4
i

µ4(xi)− x4
iσ

4




−1

=

 σ2
(
E

[
x−2
i

])−1 0

0
(
E

[
x4
i

µ4(xi)− x4
iσ

4

])−1

 .

When we use the optimal instrument, our estimator is more efficient, therefore Vσ̃2 > Vσ̂2 .
Estimators of asymptotic variance can be found through sample analogs:

V̂α̂ = σ̂2

(
1
n

∑
i

1
x2
i

)−1

, Vσ̃2 = n

∑
i(yi − α̂)4(∑

i x
2
i

)2 − σ̃4, Vσ̂2 = n

(∑
i

x4
i

µ̂4(xi)− x4
i σ̂

4

)−1

.

Part 4. The normal distribution PML2 estimator is the solution of the following problem:(̂
α

σ2

)
PML2

= arg max
α,σ2

{
const− n

2
log σ2 − 1

σ2

∑
i

(yi − α)2

2x2
i

}
.

Solving gives

α̂PML2 = α̂ =
∑
i

yi
x2
i

/∑
i

1
x2
i

, σ̂2
PML2 =

1
n

∑
i

(yi − α̂)2

x2
i

Since we have the same estimator for α, we have the same variance Vα̂ = σ2
(
E

[
x−2
i

])−1. It can be
shown that

Vσ̂2 = E

[
µ4(xi)
x4
i

]
− σ4.
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12. EMPIRICAL LIKELIHOOD

12.1 Common mean

Part 1. We have the following moment function: m(x, y, θ) =
(
x−θ
y−θ
)
. The MEL estimator is the

solution of the following optimization problem.∑
i

log pi →max
pi,θ

subject to ∑
i

pim(xi, yi, θ) = 0,
∑
i

pi = 1.

Let λ be a Lagrange multiplier for the restriction
∑

i pim(xi, yi, θ) = 0, then the solution of the
problem satisfies

pi =
1
n

1
1 + λ′m(xi, yi, θ)

,

0 =
1
n

∑
i

1
1 + λ′m(xi, yi, θ)

m(xi, yi, θ),

0 =
1
n

∑
i

1
1 + λ′m(xi, yi, θ)

(
∂m(xi, yi, θ)

∂θ′

)′
λ.

In our case, λ =
(
λ1

λ2

)
and the system is

pi =
1

1 + λ1(xi − θ) + λ2(yi − θ)
,

0 =
1
n

∑
i

1
1 + λ1(xi − θ) + λ2(yi − θ)

(
xi − θ
yi − θ

)
,

0 =
1
n

∑
i

−λ1 − λ2

1 + λ1(xi − θ) + λ2(yi − θ)
.

The asymptotic distribution of the estimators is

√
n(θ̂el − θ)

d→ N(0, V ),
√
n

(
λ1

λ2

)
d→ N (0, U),

where V =
(
Q′∂mQ

−1
mmQ∂m

)−1
, U = Q−1

mm − Q−1
mmQ∂mV Q

′
∂mQ

−1
mm. In our case Q∂m =

(−1
−1

)
and

Qmm =
(
σ2
x σxy
σxy σ2

y

)
, therefore

V =
σ2
xσ

2
y − σ2

xy

σ2
y + σ2

x − 2σxy
, U =

1
σ2
y + σ2

x − 2σxy

(
1 −1
−1 1

)
.

Estimators for V and U based on consistent estimators for σ2
x, σ2

y and σxy can be constructed from
sample moments.
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Part 2. The last equation of the system gives λ1 = −λ2 = λ, so we have

pi =
1

1 + λ(xi − yi)
, 0 =

1
n

∑
i

1
1 + λ(xi − yi)

(
xi − θ
yi − θ

)
.

The MEL estimator is

θ̂MEL =
∑
i

xi
1 + λ(xi − yi)

/∑
i

1
1 + λ(xi − yi)

=
∑
i

yi
1 + λ(xi − yi)

/∑
i

1
1 + λ(xi − yi)

,

where λ is the solution of ∑
i

xi − yi
1 + λ(xi − yi)

= 0.

Linearization with respect to λ around 0 gives

pi = 1− λ(xi − yi), 0 =
1
n

∑
i

(1− λ(xi − yi))
(
xi − θ
yi − θ

)
,

and helps to find an approximate but explicit solution

λ =
∑

i(xi − yi)∑
i(xi − yi)2

, θ̃MEL =
∑

i(1− λ(xi − yi))xi∑
i(1− λ(xi − yi))

=
∑

i(1− λ(xi − yi))yi∑
i(1− λ(xi − yi))

.

Observe that λ is a normalized distance between the sample means of x’s and y’s, θ̃el is a weighted
sample mean. The weights are such that the weighted mean of x’s equals the weighted mean of
y’s. So, the moment restriction is satisfied in the sample. Moreover, the weight of observation i
depends on the distance between xi and yi and on how the signs of xi − yi and x̄ − ȳ relate to
each other. If they have the same sign, then such observation says against the hypothesis that the
means are equal, thus the weight corresponding to this observation is relatively small. If they have
the opposite signs, such observation supports the hypothesis that means are equal, thus the weight
corresponding to this observation is relatively large.

Part 3. The technique is the same as in the MEL problem. The Lagrangian is

L = −
∑
i

pi log pi + µ

(∑
i

pi − 1

)
+ λ′

∑
i

pim(xi, yi, θ).

The first-order conditions are

− 1
n

(log pi + 1) + µ+ λ′m(xi, yi, θ) = 0, λ′
∑
i

pi
∂m(xi, yi, θ)

∂θ′
= 0.

The first equation together with the condition
∑

i pi = 1 gives

pi =
eλ
′m(xi,yi,θ)∑

i e
λ′m(xi,yi,θ)

.

Also, we have

0 =
∑
i

pim(xi, yi, θ), 0 =
∑
i

pi

(
∂m(xi, yi, θ)

∂θ′

)′
λ.

The system for θ and λ that gives the ET estimator is

0 =
∑
i

eλ
′m(xi,yi,θ)m(xi, yi, θ), 0 =

∑
i

eλ
′m(xi,yi,θ)

(
∂m(xi, yi, θ)

∂θ′

)′
λ.
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In our simple case, this system is

0 =
∑
i

eλ1(xi−θ)+λ2(yi−θ)
(
xi − θ
yi − θ

)
, 0 =

∑
i

eλ1(xi−θ)+λ2(yi−θ)(λ1 + λ2).

Here we have λ1 = −λ2 = λ again. The ET estimator is

θ̂et =
∑

i xie
λ(xi−yi)∑

i e
λ(xi−yi)

=
∑

i yie
λ(xi−yi)∑

i e
λ(xi−yi)

,

where λ is the solution of ∑
i

(xi − yi)eλ(xi−yi) = 0.

Note, that linearization of this system gives the same result as in MEL case.
Since ET estimators are asymptotically equivalent to MEL estimators (the proof of this fact is

trivial: the first-order Taylor expansion of the ET system gives the same result as that of the MEL
system), there is no need to calculate the asymptotic variances, they are the same as in part 1.

12.2 Kullback–Leibler Information Criterion

1. Minimization of
KLIC(e : π) = Ee

[
log

e

π

]
=
∑
i

1
n

log
1
nπi

is equivalent to maximization of
∑

i log πi which gives the MEL estimator.

2. Minimization of
KLIC(π : e) = Eπ

[
log

π

e

]
=
∑
i

πi log
πi

1/n

gives the ET estimator.

3. The knowledge of probabilities pi gives the following modification of MEL problem:∑
i

pi log
pi
πi
→min

πi,θ
s.t.

∑
πi = 1,

∑
πim(zi, θ) = 0.

The solution of this problem satisfies the following system:

πi =
pi

1 + λ′m(xi, yi, θ)
,

0 =
∑
i

pi
1 + λ′m(xi, yi, θ)

m(xi, yi, θ),

0 =
∑
i

pi
1 + λ′m(xi, yi, θ)

(
∂m(xi, yi, θ)

∂θ′

)′
λ.

The knowledge of probabilities pi gives the following modification of ET problem∑
i

πi log
πi
pi
→min

πi,θ
s.t.

∑
πi = 1,

∑
πim(zi, θ) = 0.
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The solution of this problem satisfies the following system

πi =
pie

λ′m(xi,yi,θ)∑
j pje

λ′m(xj ,yj ,θ)
,

0 =
∑
i

pie
λ′m(xi,yi,θ)m(xi, yi, θ),

0 =
∑
i

pie
λ′m(xi,yi,θ)

(
∂m(xi, yi, θ)

∂θ′

)′
λ.

4. The problem

KLIC(e : f) = Ee

[
log

e

f

]
=
∑
i

1
n

log
1/n

f(zi, θ)
→min

θ

is equivalent to ∑
i

log f(zi, θ)→max
θ
,

which gives the Maximum Likelihood estimator.
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