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Introduction

In this article we associate the choice of competitive resource allocations in

traditional equilibrium models with the relevant Nash bargaining problems. Why

do we associate these problems? In both cases the question is to choose a point

from  a convex compact set (the set of feasible allocations)  given a status quo-

point (initial endowments) and bargaining powers (production shares). However

these similar problems are solved differently: cooperatively in the bargaining

problems and non-cooperatively in the market environment; a bargaining solution

ignores physical outcomes while the competitive rule ignores utility aspect. The

question I would like to discuss here is the following: can we explain the choice of

a competitive allocation in terms of a relevant Nash bargaining problem? The

positive answer would allow to shed an additional light on the normative

properties of competitive allocations. Note that the question is rather opposite to

the traditional line of studies concerning the Nash bargaining problem: to support

cooperative solutions by equilibria of non-cooperative games (K. Binmore (1987)).

The basic situation is a problem of social choice in a convex set Z given

agents’ preferences, a status-quo point ω∈ Z and non-negative numbers β i

interpreted as agents’ rights or «bargaining powers» in the decision making. As it

is known the Nash bargaining solution (NBS) concept suggests to map the initial

set of alternatives by means of von Neumann and Morgenstern agents’ utilities to

the corresponding utility values space and to choose in the image the NBS under

given  status-quo utility values and «bargaining powers». In the present setting we

define a bargaining solution in the initial set of alternatives. To this end given a
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point z∈ Z we define a supporting linear utility profile l at the point z for agents’

preference profile P and determine the NBS for the NB problem l(Z) with status-

quo point l(ω) and «bargaining powers» βi. If  l(z) is just the NBS of this problem

then z is chosen in Z  and we call z a Nash agreement point (NAP). In particular,

when a continuous choice of supporting linear utilities is possible in Z, we call the

corresponding chosen point a Nash bargaining point (NBP). We establish

existence of NBPs in Z.

We give two equivalent characterizations for NAPs (and NBPs): one

interprets them as  equilibrium points (EP) with individual prices and another does

it in terms of  axiomatic requirements. The axiomatic characterization follows the

line of studies developed by Polterovich (1973), Sotskov (1987), Nagahisha

(1994), Yoshihara  (1998). Polterovich’s  article was the starting point and a

sample for our advancements..

Having got all the necessary results in the abstract setting we proceed to

applications, in particular, to the characterization of competitive allocations of

goods in equilibrium models. The general results imply that competitive

allocations of goods are  NAPs , and in the case of smooth preferences, NBPs in

the set of feasible allocations. That is a competitive allocation z is such a  point in

set of feasible allocations Z whose image under supporting (to the preferences)

linear mapping at z is the NBS. Agents’ shares of production perform the role of

«bargaining powers» in a model of allocation of goods (model A). In Arrow-

Debreu type model (C) this is so in «interior» points z . We consider also a pure

exchange model (B) where «bargaining powers» are not given explicitly.

We complete the article by constructing a simple mechanism  which

implements the Walrasian rule for a pure exchange economy by  Nash equilibrium

outcomes. This gives one more characterization of competitive allocations.
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ΙΙΙΙ�� Bargaining  in the initial space of alternatives

I. The Nash agreement points

We begin with formulating  a bargaining problem in the initial space of

alternatives. A group of n agents chooses a point from a given set Z. This is a

publicly feasible set of alternatives. Besides the agents have individual

«consumption» sets Zi ⊃  Z,  i =1,...,n on which strict preference relations Pi are

defined. Given this the agents might choose a Pareto-optimal point but have no

ground to prefer one such a point to another one. The problem of choice becomes

more definite when there is a status-quo point ω ∈  Z to compare with.  Sometimes

(for example, in pure exchange models) these data already allow to determine

unique choice. In many other cases ( in particular, in models with production) to

narrow the choice we need some additional information in the form of agents’

weights, rights, shares,  say  numbers β i ≥ 0,  ∑β i=1 which we call «bargaining

powers». The latter are not given sometimes  explicitly but for the moment we

assume that the both (ω ∈  Z and (β i)) are given. Thus a problem of choice in Z is

defined by the data: S = (Z,ω , (Zi , Pi , β i ) i=1,...,n ); a class of feasible problems

denoted by S is specified below by the conditions A)-D).

A) Z is  a convex compact set,  Z⊂ Zi , i=1,...,n; Zi  are closure of open sets in a

finite-dimensional euclidean space L .

Let Pi  be agent i’s strict preference on Zi and P  be the strict preference

profile        (Pi ) i=1 ,...,n  . A linear functional li  on L is called supporting to

preference Pi at point z, if      li z’>li z  for any  z’∈ Pi(z). We denote by ∂Pi(z) the

set of all supporting linear functionals to preference Pi at point z;  l∈  ∂P(z) means

that l is a supporting profile at z .
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Definition 1. A point z∈  Z is called a  Nash agreement point (NAP) in the

problem of choice  S = (Z,ω , (Zi , Pi , β i ) i=1,...,n ) ,  if  for some supporting profile

l∈  ∂P (z) the point  l (z-ω) ∈  Rn is the Nash bargaining solution in the set l(Z-ω)

with bargaining powers   β i , and  disagreement point  0 ∈  l(Z-ω).

Under the Nash bargaining solution (NBS) for a convex,  closed, and

bounded above set  M ⊂  Rn with status-quo point 0∈  M  and bargaining powers β i

≥ 0 we understand the solution of the problem:

max x1
β1 ⋅⋅⋅xn

βn ,  x =(x1,...,xn) ∈  M∩ Rn
+ , (we set 00 =1) .

Obviously the NBS is not empty. Below we supply the unique NBS for the

NB problems  of the form  M=l(Z-ω). To this end we  require the following

«resource relatedness» condition B) to hold for the problems S∈  S:

B) for any z∈ Z, l∈  ∂P (z), i , j ∈  {1,...,n} such that i ≠  j, and l(z) ≥ l (ω), there

exists z’∈  Z such that  lr (z’-z ) ≥ 0  for all  r ≠  i and  lj (z’-z )>0.

The condition B) means that any  individually rational with respect to supporting

utilities  l state z  can be moved in Z so that at the expense of an agent i one can

improve the position of any other agent without changing for the worse all other

agents’ positions.  

The «resource relatedness» condition B) implies the following property of the

NBSs.

Lemma 1. For any l ∈  ∂P (Z) the NBS ξ* for the set M = l(Z-ω)  is unique

and        β i =0  implies ξ i* = 0; if  M∩Rn
+ ≠ {0} then β i > 0 implies ξ i*> 0.

Proof. First we show that βi =0  implies ξ i* = 0. Indeed, if ξ i* > 0 then using

condition B) one can increase  all ξ j* for which β j >0  at the expense of ξ i* and

thereby to increase the value x1
β1 ⋅⋅⋅xn

βn . So this is true. If set M∩Rn
+ ≠ {0} then it
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contains a strictly positive point (condition B implies it). It follows that  if β i > 0

then ξ i*> 0. Finally, the NBS is unique because the solution of the problem max

Πi: βi >0  xi
βi  on the set               Z’={(xi)∈ Z: xi=0  if βi =0} is unique. ·

We come back to the definition of NAPs. Note that if the initial preference

profile is linear: P = l,  then  any point z∈ Z such that  l(z-ω) is the NBS for the set

l(Z-ω) is a NAP. In other words any preimage  point (at the mapping l) of the NBS

is a NAP. In Section 3, we consider another definition of a bargaining solution

which for a linear preference profile gives only the preimage points of the NBS .

Denote the set of all Nash agreement points in Z for a problem S  by NAP(S);

sometimes we write NAP(P ) or NAP (l), underlining that the  variables in S are

preference profiles P  or l . Thus we have a multi-valued rule NAP :S→→→→ 2Z  called

the Nash agreement rule.

2. Equilibrium points

Here we introduce a notion of an equilibrium in a problem S∈ S. «Individual

prices» pi∈ L* play the main role in it.  Given a bundle of «prices» p= (p1,...,pn) we

call a «profit» the following number π (p) = max
 z Z∈

 pi
i

n

=
∑

1
(z - ω). Using «bargaining

powers» β i we can form the «budget sets» Bi (p) = {z∈  Zi / pi z ≤ piω + β iπ (p)}.

Note that a budget set Bi (p) is a subset of Zi, not Z.

Definition 2. A pair ( z*, p ) is called an equilibrium in a problem S = (Z, ω ,

(Zi , Pi , β i ) i=1,...,n ) ,  if  z*∈  Z and  

Pi (z*)∩ Bi (p) = ∅  , i=1,...,n.
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The alternative z* is called an equilibrium point (EP), the set of all equilibrium

points in a problem S is denoted by EP ( S), a multi-valued rule  EP : S →→→→ 2Z  is

called  the  equilibrium rule.

In the sequel the following assumptions C)-D) about agents’ preferences in

the problems S∈  S  are supposed to hold:

C) the sets Pi (z) are non-empty subsets in Zi for any  z∈ Zi  ;

D) if  z’∈ Pi (z) then (αz’ + (1-α)z)∈ Pi (z), for all  α∈ (0,1].

Denote by U(S) a class of preference profiles P =(P1,...,Pn)  satisfying the

conditions B)-D) in the problem S = (Z, ω , (Zi , ⋅  , β i ) i=1,...,n ); we assume that

U(S) contains all  preference profiles generated by  profiles of linear functionals

l∈ ∂P (Z).

Using properties of preferences C) and D) one can get the following

implications from definition 2.

Lemma 2. Let ( z*, p) be an equilibrium in a problem S∈ S. Then

i)  pi z* = pi ω + β i π (p) for all i,

ii)  p∈  ∂P (z*).

Proof. i). Suppose that  pi z* > pi ω + β i π (p) for some i. Then there is

another agent j , for which  pj  z* < pj ω + β j π (p). Since Pj(z*)≠ ∅   there is a point

z∈  Pj (z*). Then for sufficiently small α >0 the point α z+ (1-α )z* belongs to Pj

(z*) and to budget set Bj (p). This contradicts the definition of z*. So point z*

satisfies all budget equalities.

ii). It follows from the relations  pi z > pi z*  for any  z∈  Pi(z*), i=1,...,n .·

Corollary 1. (Pareto-optimality) If  z*∈  EP(P)  then there is no z∈ Z for which

z∈  Pi(z*) and z∈  closure Pj(z*) ,  j≠ i.
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Proof. Indeed, the  existence of such a point z would contradict the assertions

of lemma 2 ii) and equality (1’’).

Now we can  establish the following theorem.

Theorem 1. Assume the class of problems S satisfies the requirements A)-D).

Then rule NAP coincides with  rule EP on S.

Proof. Assume  z*∈ EP (S) in a problem S = (Z,ω , (Zi , Pi , β i ) i=1,...,n ). Then

there exists a price profile p =( pi ) such that (z*, p) is an equilibrium in S. Due to

lemma 2  we have the equalities:

pi(z -ω) = β i π( p), i=1,..., n and so                                                               (1’)

  pi
i

n

=
∑

1
(z*-ω) = π( p) = max

 z Z∈
pi

i

n

=
∑

1
 (z - ω).                                                          (1’’)

We consider the set  p(Z-ω )⊂ Rn.. Then the number π( p) is the maximum of the

sum of coordinates of vectors from p(Z-ω) . This maximum is achieved at the point

p(z*-ω) and its coordinates pi (z*-ω) are proportional to β i . But this just means

that the point p(z*-ω) is the NBS for the problem p(Z-ω ) with weights β i and zero

status-quo point. Since due to Lemma 2 ii) vectors pi are supporting to preferences

Pi at  z*, we get the inclusion z*∈  NAP(S).

We prove the converse. Assume z*∈  NAP(S). Then by definition 1 for some

supporting profile      l∈  ∂P (z*) the point ξ*=l (z*-ω) ≥ 0 is the solution of the

problem      max ξ1
β1 ⋅⋅⋅ξn

βn  when ξ∈  (l(Z-ω)-Rn
+)∩Rn

+ . According to Lemma 1

either  0 is an interior point in l(Z-ω)-Rn
+  and then β i=0 ⇒  ξ*i=0 and β i> 0 ⇒

ξ*i > 0, or 0 is a Pareto-efficient point in A and then  all ξ*i=0.

We set λi=β i /ξ i*  if ξ*i > 0 and λi= 1 if ξ*=0. We determine «prices» pi =

λili . Then π(p)=1 and  z* is a solution of the problem

li z → max  under constraints:
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pi  z ≤ pi ω + βi π(p), i=1,...,n ,  z∈ Zi .

Since  vectors li are supporting functionals to preferences  Pi  at  z*, point z*  is a

solution for the individual maximization problems with  preferences Pi. Hence z* is

an EP  for the preference profile P, that is z*∈  EP(S). ·

According to Corollary 1 any NAP is a Pareto-optimal point in Z.

In order to get rid of choosing  appropriate supporting functionals to

preferences Pi  we consider the case of  smooth preferences.

3. Smooth preferences

By a smoothing out of a preference Р on Zi  we call a mapping which with

every point z∈  Zi  associates a linear functional  lz  =l(z,⋅) on L, depending

continuously on z∈ Zi , and such that lz∈  ∂P(z). We call a preference Pi smooth if it

admits a smoothing out on Zi. A preference profile P is called smooth if every

preference Pi  is smooth; lz =(lz
1,..., lz

n) is called the gradient profile to preference

profile P at z. In this Section, we assume that all preference profiles in  the

problems S∈ S  are smooth.  The definition 1 now takes the following form.

Definition 1’. A point  z∈  Z is called a  Nash bargaining point (NBP) in a

problem   S = (Z,ω , (Zi, Pi , β i ) i=1,...,n ) ,  if lz (z) is the Nash bargaining solution in

the set     lz (Z-ω)   with  disagreement point  0 and bargaining powers β i .

Denote by NBP (S) the set of all Nash bargaining points in the problem S.

When  preferences  Pi are generated by linear functionals li on Zi , that is Pi = li ,

then NBP (l)  is the set of points z∈ Z for which l (z) is the NBS in the set l (Z-ω)

(or  simply the whole preimage in Z at the mapping l  of the NBS).
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We call agent i’s gradient individual value  at  z any functional λlz
i , λ > 0 .

Denote by EPg  the equilibrium rule which uses as individual prices pi gradient

individual values in definition 2. There takes place the double of theorem 1.

Theorem 1’.  NBP(S) = EPg(S) for any S∈ S.

The proof repeats that of theorem 1.

Do exist NBPs  in case of smooth agents’ preferences?

Lemma 3. NBP ( S) ≠ ∅   for any S∈ S .

Proof. Let S = (Z,ω , (Zi, Pi , β i ) i=1,...,n )  be a problem in class S. We define

the multi-valued correspondence  G  from Z to Z , setting

G(z) = { z’∈ Z  lz (z’-ω ) is the NBS for the set lz (Z-ω)}.

The set G(z)  is non-empty (because set Mz
+= lz (Z-ω) ∩ Rn

+ ≠ ∅   and by lemma 1

the NBS is uniquely defined in it), convex (as a linear preimage of a point), and the

correspondence G is closed. Indeed, lz is continuous in z, so set Mz
+ changes

continuously in Hausdorf metrics in z; the NBS depends continuously on the

problem set (because Argmax is a closed correspondence), and at last the preimage

correspondence of the NBS (at the mapping lz ) is closed. Thus the correspondence

G satisfies the requirements of  Kakutani theorem. So there exists a fixed point

z∈ Z for which vector lz (z)  is the NBS, that is  z∈  NBP (S).·

Corollary 2. EP (S) ≠ ∅   for any S ∈  S.·

In case of smooth preferences the using definition 1’ of a NBP seems to be

more attractive than definition 1 of a NAP. Obviously NBP(S) ⊆  NAP(S)=EP(S)

for any S∈  S. The equality holds in particular for smooth preference profiles when

all sets Pi(z) belong entirely to int Zi. In a more general case the equality may fails.

A question arises: when an arbitrary EP  z is a  NBP (i.e. a preimage  point of the

NBS for the gradient utilities at z)? This question directly concerns the problem of
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characterization of equilibrium allocations which we are going to discuss here. We

impose a rather strong condition  E which provides the equality.

E. (Equivalence of outcomes condition): for any  S ∈  S ,  linear profile l∈

U(S), and  z, z’∈  EP (l)  there takes place l(z)=l(z’).

Due to theorem 1 the requirement means that for any linear profile l∈  U(S)

any NAP is a NBP. Later in the applications to equilibrium models we shall

discuss when this condition is fulfilled.

Lemma 4. Assume that the rule EP  satisfies the condition E. Then EP(S) ⊆

NBP(S) for any S∈  S.

Proof. Let  z∈  EP (P). It is obvious  from  definition 2  that z∈  EP (lz), where

lz is the gradient profile for preference profile P  at z. We take a point z’ such that

vector  lz(z’) is the NBS for the set lz(Z). Due to theorem 1, z’∈  EP(lz). According

to condition E  lz ( z ) = l z( z’).  Hence  by definition 1’ z∈  NBP(P). ·

We sum up all this in the following theorem.

Theorem 2. Assume that class S verifies the conditions A)-D) and agents’

preferences are smooth. Then  NBP(S) = EPg(S) ⊂  EP(S)=NAP(S) for any S∈  S. If

rule EP satisfies the condition E then the equalities hold:  NAP = EP = NBP =

EPg .

Proof.  The assertion follows from lemma 2’, theorem 1, and lemma 4. ·

�heorem 2 characterizes equilibrium points as Nash agreement or under the

special conditions as Nash bargaining points. In the following Section we give

another characterization.

4.  Axiomatic characterization.
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 Here we give an axiomatic characterization of  equilibrium points and

thereby due to theorems 1, 2 we get it for NAPs and NBPs. Essentially this will be

the Nash’s axiomatization transferred to the initial space of alternatives. Note that

the NAPs,         NBPs, and EPs were defined for a given problem S. Now we also

take a problem  S and considering Z, Zi , ωi , βi as fixed   we associate the choice for

«close» preference profiles from U(S): that for a given  P and for its gradient or

supporting linear profile l.  Denote by  FM: S → 2Z  any multi-valued rule

satisfying the following below axioms F, M. Again we will write FM(P) or FM(l)

to distinguish the variables in the problem S . Let S∈  S, U=U(S).

Axiom F (Fair choice). Suppose that a linear preference profile l ∈  U  and  a

point z∈  Z are such that

li (z) - li(ω) = β i ⋅ π( l)  for all  i=1,...,n,  where  π(l ) = 
z Z'

max
∈

l zj
j

n

=
∑ −

1

( ' )]ω .

Then  z∈  FM (l ).

Axiom M (Monotonicity).: Let  z∈  Z, P ∈  U, and l∈  ∂P(z).  Then  the

inclusion z∈  FM (l)  implies the inclusion z∈  FM (P).

Axiom F reminds the axiom for the NBS in a symmetrical situation supplemnted

by the independence of irrelevant alternatives (IIA).  It means that if for a linear

preference profile l ∈  U a point z∈ Z is such that l(z-ω) is the NBS then z is chosen

by the rule AX. Axiom M  performs the role of the IIA axiom and also makes the

choice independent on how the utility scales are calibrated.

Axioms F and  M define  a large class of social choice rules, we denote it by

FM. We show that class FM is not empty.

Lemma 5. The equilibrium rule EP belongs to class FM.
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Proof is almost obvious. Check axiom F. Suppose that for some z∈ Z and a

linear profile l∈ U the budget equalities hold:

li (z) - li(ω) = β i ⋅ π( l)  for all  i=1,...,n.

We take the price profile p = l . Then obviously z∈ EP(l).

Axiom  M is fulfilled by the definition of equilibrium. ·

The rule EP possesses also other useful «natural» properties which we name

as axioms and formulate for linear utilities.

Axiom I  If  z∈ EP(l) then l(z)≥ l (ω).

Axiom P. If  z∈ EP(l) then there is no z’∈ Z  for which li (z’)>li (z) and lj (z’) ≥

lj (z) for  j≠ i.

Axiom N (Nondiscrimination).  Rule EP  discriminates  no equivalent

alternatives for linear preference profiles l ∈  U:

if  z∈ EP (l ),  z’∈  Z  and l (z) = l (z’)  then  z’∈  EP(l).

If agents’ preferences are smooth then rule EP satisfies the following axiom.

Axiom L (Expanding to the linear approximation).

   Let P∈ U,  z∈  EP (P)  and   l z  be the gradient profile of P  at  z. Then  z∈  EP (l z).

We check only axiom N because the other are obviously fulfilled. Let z∈ EP(l)

for a linear preference profile l∈  U,  p be the equilibrium price profile, and  z’ be

another vector from Z such that l (z) =l (z’).  Then

pi z’ ≥  piω + βi π(p)  for any  i . Obviously, all these inequalities hold as equalities.

It follows then that  z’∈  EP (l ).

One can add axioms I, P, N to F, M and to narrow class of rules FM without

changing the result of theorem 3 below. Instead  we add  axioms E (see below), L

which together with axioms F, M implies I, P, N,  (as it will follow from theorem
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3) and retain in class FM only one rule EP. We call EFLM any rule which satisfies

axioms E, F, L, M, class of rules EFLM is denoted by  EFLM.

Axiom E (Equivalence of outcomes).  For any linear preference profile l ∈  U   

rule EFLM  chooses only equivalent alternatives:

if  z, z’∈ EFML (l )  then  l (z) = l (z’).

Obviously axioms M and E  act in the opposite directions and could be

replaced by one if the sets Pi(xi) were wholly in int Zi :

z∈  EFLM (P)  if and only if  z∈  EFLM(l ).

Axioms F and E  together imply that EFLM (l ) is the whole preimage of the

NBS, that is EFLM (l ) =Argmax Πn
i=1 li(z-ω)βi   on Z. Indeed, axiom F says that

any solution of this maximization problem belongs to EFLM(l),  while axiom E

says that  only solutions of this problem enters EFLM(l).

Theorem 3. Assume that class S satisfies requirements A)-D). Then  rule EP

is the least among the rules FM∈ FM. Assume that agents’ preferences are smooth

and rule EP satisfies axiom E. Then class EFLM consists of one rule {EP}

={NBP} .

Proof. We check that EP(P) ⊆  FM(P) for any P∈ U, FM ∈  FM. Let  z∈  EP

(P). Then by lemma 2 there exists a price profile p∈ ∂P (z) such that

pi (z - ω) = βi π(p)  for all   i =1,...,n.

Then according to axiom F  we get the inclusion:  z ∈  FM (p). Axiom M implies

then the inclusion:  z∈  FM (P). The first part of the theorem is proved.

Now we prove the second part. Let z∈  EFLM (P) for some  rule EFLM .  By

axiom L  z∈ EFLM (lz). We take an arbitrary z’∈  EP(lz). According to Corollary 2

this is possible to do. Since EP(lz) ⊆   EFLM(lz)  (as we proved above, and also

because the both verify axioms E, L) the inclusion z’ ∈  EFLM(lz) holds . By axiom
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E  we get the equality: lz(z)=lz(z’). Axiom N which holds for rule EP  gives the

inclusion z∈ EP(lz ) . Using axiom M we get: z∈  EP(P). Finally by theorem 2

EP(P)=NBP(P).·

Note that the theorem implies that rules FM and EFLM are non-empty-valued.

Sometimes a model contains no information about agents’ bargaining powers

βi   though the choice is quite definite due to a special form of the set Z as in the

case of pure exchange models. In this case we will replace axiom F  (retaining the

other axioms unchanged) by  the individual rationality axiom I, or its weaker

variant IR see Part II, Section 2.

In the next part in applications we take the same individual consumption sets

Zi≡ RK
+. For this case we mark the following relation between NAPs and NBPs.

Remark.  Given  S = (Z,ω , (RK
+ ,Pi , β i ) i=1,...,n )  any point z∈  NAP(S) is a

point z∈ NBP (S’) for S’ = (Z,ω , (RK
+ ,Pi , β’i ) i=1,...,n )  where β’i  generally differs

from β i if z is located on the boundary of RK
+. Indeed, if z∈ NAP(S)=E(S) then

there are individual prices pi  satisfying together with z conditions of definition 2. It

follows then that for some gradient individual values lz
i  the following relations

hold:

lz
i = pi - γi , γi ⋅ z = 0, γ i ≥ 0 .

After substituting them into budget constraints pi  z =  pi ω + βi π(p), i=1,...,n,  we

get the new constraints:

lz
i z = lz

i ω + β‘i π(l z),  i=1,...,n, where

β’i = (βiπ( p)+γi ⋅ω)/(π( p)+ ∑j γ j ⋅ω), i=1,...,n .                                        (2)

We discuss the sense of the formula (2) in Part II, where we use it in applications.
·
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II. Applications. Characterization of competitive allocations.

The essential peculiarity of competitive models is the notion of a resource

allocation. The set Z is the set of feasible resource allocations. We assume that

agents’ preferences Pi depend on their own consumption and indifferent with

respect to consumption of other agents. In this case  the corresponding coordinates

of any supporting linear functional to preference Pi equal to zero and we shall use

it. We consider three competitive models and find out that competitive

allocations of goods can be interpreted as  Nash agreement points or in case of

smooth preferences as Nash bargaining points. Besides we give axiomatic

characterizations for the models. At last we construct simple Nash implementing

mechanisms for the models. In all cases we take consumption sets Zi for all agents

equal to some non-negative orthant. We keep for β i the role of «bargaining

powers» and for α i the role of shares of production.  They can differ at the

boundary of the consumption set because of the rents which emerge there and

change the utility contribution of agents to the economy. But this is not the case for

the first model.

1. A resource allocation model (A)

In  model  A  private and public resources  are produced and allocated among

n consumers.  The consumers have zero personal endowments but are stockholders

with shares  of production α i > 0, i=1,...,n . We take the following notations:

xi  is a vector of the private resources consumed by agent i,  xi∈  Rk + ,

gi  is a vector of the public resources consumed by agent i,  gi∈ Rm
+ ,

x  is a vector  of pure outcome of the private resources,  x∈ Rk
+ ,

g  is a vector of outcome of the public resources,  g∈  Rm
+,
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Y  is the production set,  Y⊂  Rk
+ × Rm

+.

The set of feasible allocations Z has the following form:

Z = { z =(xi ,gi )i=1,...,n     x xi
i

n

=
∑ ≤

1
, gi  ≤≤≤≤ g , (x,g) ∈  Y, xi ≥ 0, gi ≥ 0 }.

Here the production set Y  is assumed to be convex and compact. It contains 0  and

a point  y = (x,g) > 0 . (One can think that in the economy there is a common

(state) initial endowment of resources ω0 ≥ 0  and  a technology Y0 ⊆  Rk× Rm which

uses the resources from ω0  as the input to produce bundles of commodities from

the set Y ={y ≥ 0 : y∈  {ω0 ) + Y0 }).  Agent i-s strict preference Pi  is  strictly

monotone on his own consumption set Rk
+ × Rm

+ , and indifferent with respect to

consumption of other agents; Pi satisfies conditions C), D).   

A competitive allocation of goods is a point z*= (x*i , g*i)i=1,...,n ∈ Z  such that

there exist prices of private goods p∈  Rk
+  and individual prices of public goods

qi∈  Rm
+  for which z* is a solution of the problem:

max Pi  under constraints  pxi + qigi ≤ α i π(p,q1 ,...,qn) , xi ≥ 0 , gi ≥ 0, i=1,...,n,

where π(p,q1 ,...,qn) =
( , )

max
x g Y∈

(px + ∑qj g).

In order to characterize competitive allocations as a bargaining choice we

come back to our notations used in Part I: L= RK, K=(k+m)n,   Z ⊂  L is defined

above, U is the class of preference profiles on RK
+ with the properties described

above, S ={S: S=(Z,0, (RKn
+ ,Pi ,βi=α i )i=1,...,n , P∈ U}  the class of choice problems

in Z. Denote by W  the correspondence of competitive allocations W:S →→→→ 2Z  for

model A.

Existence of a vector y > 0 warrants that the status-quo point ω = 0  will be

an interior point in the corresponding Nash bargaining problems; besides, Y is



19

compact and    α i >0 . All this yields the result of lemma 1, in particular, the NBS

is uniquely determined for any linear profile l ∈  U.

What are the Nash agreement and bargaining points in this model?  We show

that all they (depending on smoothness of preferences) are identical to competitive

allocations of goods.  We prove that competitive allocations in model A are

equilibrium points in terms of definition 2 (Part 1, Section 2), and then the result

follows from the theorem 1.

Proposition 1. W(S) =NAP (S)  for any  S∈ S . If agents’ preferences are

smooth then W(S) =NBP (S)  for any  S∈ S .

Proof. Given S∈  S,  let  z* = ( , )* *x gi i i=1,...,n ∈  NAP (S). By theorem 1 z* is an

equilibrium point from EP(S). The latter means that there exists a profile of

individual prices  p = (p1 , ..., pn) which (together with z* ) satisfy definition 2, in

particular :

Pi (z*)∩ Bi (p) = ∅  , Bi (p) = {z∈  RK
+ / pi z ≤ βi π (p) }.

According to lemma 2 i)   pi z* = pi ω + β i π (p) for all i, and ii) p∈  ∂P (z*). It

follows that the summary price vector  p∑ = pi
i

n

=
∑

1
defines a supporting linear

functional to set Z at point z*.  The general form of such a functional p∑    is the

following:

p∑ = ( p -δi , qi - γi ) i=1,...,n  ,  where p,δ i ∈ Rk
+, qi ,γi ∈ Rm

+, δ i  xi* = γ igi*= 0,      (3)

 where  (p, qi
i

n

=
∑

1
)  is a supporting linear functional to the set Y at the corresponding

point y* = (x*, g*)∈  Y.  Besides, the individual prices pi ∈  (Rk
+ × Rm

+ )n being a

supporting functionals to preferences Pi   have zero coordinates corresponding to

consumption vectors of  agents  j≠ i . Indeed, suppose that  pi
r>0 for a coordinate r
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out of agent i-s  consumption space. Let z∈ Pi(z*) . Then z∈ Pi(z*+λek ) for any

λ>0 since agent i is indifferent with respect to consumption of other agents (ek is

the k-th coordinate vector).  From the other side pi(z*+λek ) > pi(z) for sufficiently

big λ that contradicts  the definition of a supporting functional.   Considering this

(3) implies the relations:

pi = (p - δ i , qi - γi ) ∈  ∂Pi (z*) , i=1,...,n                                                                 (4)

In formula (4) we consider  pi as vectors from Rk
+ × Rm

+ supporting to preferences

Pi at   point (x*i , g*i). Thus the budget  equalities take the form: px*i + qig*i  =

βiπ(p), i=1,...,n. Together with relations (4) they mean that  the point z*= (x*i ,

g*i)n
i=1 ∈ Z  is a solution of the problem:

max Pi  under constraints  pxi + qigi ≤ βi π(p,q1 ,...,qn) , xi ≥ 0 , gi ≥ 0 , for every

i=1,...,n,   where

π(p,q1 ,...,qn) =
( , )

max
x g Y∈

(px + ∑qj g) =  px* + ∑qj g* = ∑(p-δj)x*j + ∑(qj -γj) g*j =

π(p).

We have showed that any Nash agreement point z*∈ Z is a competitive

equilibrium allocation in model A. It is easy to see that the argument can be

reversed.  Given an economic equilibrium (z*, p, q1,...,qn ), and going back we get

the optimality conditions (4) of individual maximization problems. Individual

prices pi  with z* satisfy the budget equalities, and so z*∈ EP(P).  By theorem 1

then  z*∈  NAP(P).

Assume now that agents have smooth preferences in class of problems S∈ S

and   z*∈ NBP(S).  Then due to theorem 1’ z*∈ EPg(S). Hence there exists a profile

of gradient individual values pi=λilz
i    satisfying definition 2. Further the proof

repeats that given above which yields inclusion z*∈ W(S) .  Conversely, assume
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that z*=(x*i , g*i)∈ W(P). Then z*∈ W(l) for any profile of  gradient individual

values l* =(λi li
z) at z*. Let a bundle (z*, p,  q1,...,qn ) be an economic equilibrium.

From the individual maximization problems  we get  relations  (4) where  pi = λili
z

= (p - δ i , qi - γi ) for some λi >0 . Substitute individual prices  pi   into the  budget

equalities:

pi z*= (p - δ i )x*i+ (qi - γi)g*i =  px*i+ qig*i =βi π(p,q1 ,...,qn)= βiπ(p) ,

where the last equality was founded above. Thus z*∈ EPg(l*). By theorem 1’

z*∈ NBP(l*) and so z*∈  NBP(P)·

Note that  the bargaining powers βi here coincide with the production shares

of agents α i. This is not generally the case when agent i-s initial endowment ωi  ≠

0 and the vector of the equilibrium allocation belongs to the boundary of  the

consumption set.

The axiomatic characterization of rule EP given in theorem 3 is entirely valid

here because as it follows from the proof of Proposition 1 rule EP coincides with

rule W. Moreover, theorem 3 can be strengthen for model A because condition E is

fulfilled. It follows from the fact that for a profile of linear utilities  l  any NAP in

Z is a NBP (with the same bargaining powers βi , cf. Remark at the end of Part I).

Indeed,  if z*∈ NAP(l) then there is a profile  of supporting functionals  pi= li - εi, εi

z*=0, εi≥ 0 . Whence  l z*= p z*. So if this point is the NBS then z* is at the same

time a NAP and a NBP. Considering this we can formulate the following variant of

theorem 3 .

Proposition 1’. In model A rule W is the unique rule satisfying axioms E, F,

L, M.
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2.  A pure exchange model (B)

We distinguish this model in order to discuss the question about bargaining

powers in a simpler situation. In model B  set Z has the form: Z ={z =(xi) 

xi
i

n

i
i

n

= =
∑ ∑=

1 1
ω , xi ≥ 0} , where  xi ,ω i ∈  Rk

+ , ω i ≠ 0,  ∑ω i >0 ;  preferences Pi on Rk
+

are smooth and satisfy  conditions B), C), D) . Here there is the natural status-quo

point ω  but nothing is given to take as bargaining powers. When the  agents make

their choice basing on market prices p the common «profit» π(p) =0  and since

there is nothing to divide the weights  β i are not essential and not determined.

Assume now we look at the exchange model as a decision making process  where

agents use their  individual prices pi∈ ∂Pi(z). In this case the common «profit» π(p )

generally is not zero. Then the bargaining powers βi  are determined  depending on

individual prices and initial endowments ω i  so that to clean markets .

Proposition 2. An allocation  z*= (x*i ) in model B is Walrasian if and only if

it is a NAP in Z (NBP in case of smooth agents’ preferences P) with disagreement

point ω =(ω1,..., ωn)  and bargaining powers β i  determined from the relations:

pi (xi*-ωi ) =  β i π(p),                                                                                              (5)

β i = (p-pi)ωi/π(p) , i=1,...,n , where                                                                       (6)

ps = max j  ps
j , s=1,...,k  .                                                                                         (7)

If π(p)=0  the  weights β i  are indefinite.

The proof of the proposition is given for a more general case in the next

Section.

Note that model B as well as model A also verifies the equivalence of

outcomes condition, D.Gale (1976).
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Consider the distribution of the «profit» π(p) (or differently the total value of

all bargains  in individual values pi)  in equilibrium. Every agent i evaluates the

utility  of his   initial endowment  ω i  in terms of  his (gradient) individual value pi

, that is equal to  piω i. The market price p of every good is maximal among all

individual values of the good. If agent i evaluates a good  s below the equilibrium

market price ps,  he does not consume it and sells the quantity ωi
s. The difference

equal to (ps -pi
s
 )ωi

s
  is the «utility profit» of the society. (This is the rent which the

society gets from agent i because of  the lower constraint xs
i ≥ 0) . The summary

«utility profit» of the society  ( )p pi i−∑ ω  = π(p) in equilibrium is divided among

the agents according to bargaining powers β i  (determined by formula (6)) .  If

π(p)=0 (as it happens when the equilibrium allocation is an interior point of the

consumption sets and individual values equal to the market prices)  β i are

indefinite and inessential. But when π(p)>0 then β i is equal to the share of his

contribution to the «utility profit» of the society by formula (6).

For finding  an equilibrium state agents pick out the lengths of gradients to

their preferences at every state z∈ Z until they find appropriate z, (pi) satisfying  the

relations    (5)-(7).

The axiomatic characterization of Walrasian allocations is given by the list of

axioms E, I, L, M, N. The individual rationality axiom I can be weaken  here (in

the resource allocation environment) and takes the form. Let  A:U →→→→ 2Z  be some

rule

Axiom I. For any linear preference profile l =(l,...,l)∈  U and  z∈ A( l )

there take place the inequalities: l(z) ≥  l(ω).

Proposition 2’. The unique rule which in model B satisfies axioms E, I, L, M,

N is rule W.
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The proof follows from the analogous assertion for Arrow-Debreu type

model, see Corollary from theorem 4 below in Section 4.

3. An Arrow-Debreu type model (C)

In model C the set  Z  has the form: Z={z=(xi)n
i=1 | Σ xi = Σ ωi + y , y∈ Y, xi ∈

Rk
+} where Y  is a convex compact production set in Rk , 0∈ Y ; Σ ωi > 0. The

consumers have shares α i ≥ 0, ∑α i=1.  Agents’s strict preferences Pi  on Rk
+ are

strictly monotone, and satisfying conditions B), C), D). By U we denote a class of

preference profiles  P  on Rk
+ including all those preferences generated by linear

functionals (li) which satisfy conditions B), C), D). Denote by W: U → 2Z the

Walrasian rule in this Arrow-Debreu type model . A competitive allocation in

model C follows the traditional Arrow-Debreu concept of equilibrium. We keep

the notation π(p) for the profit when p = (p,...,p).

The next proposition  generalizes Proposition 2.

Proposition 3. An allocation  z*= (xi*) in model C is competitive if and only if

it is a NAP (NBP when agents’ preferences Pi are smooth) with disagreement point

ω =(ω1,..., ωn)  and bargaining powers β i  = α i  when all xi*> 0, and otherwise

determined  from the general relations:

p∈ ∂P (z*)                                                                                                                (8)

pi(xi*- ωi ) =  β i π(p),                                                                                              (9)

β i =[α iπ(p)+(p-pi)ωi]/ π(p) , i=1,...,n , where                                                     (10)

ps = max j  ps
j , s=1,...,k  .                                                                                        (11)

Proof. Sufficiency. Suppose that a point z*=( xi*) is a NAP in Z and a price

profile p∈ ∂P (z*)  satisfy  either relations (9)-(11) if π(p)>0 or relation (9) if

π(p)=0. (The case xi*> 0, i=1,...,n, is included here). Then the bundle (xi*) gives
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maximum to 
i

n

=
∑

1
pi (xi -ωi ) on Z equal to π(p). It follows that there exist  vectors

p0 , γ i  such that

pi = p0 - γ i ,  γ i xi* = 0,   p0 , γ i ∈  Rk
+ ,  p0 y*=max p0 y  on Y,  i=1,...,n ,            (12)

where y* =∑ (xi* -ωi ). If  agent  i  consumes good s, i.e.  xi
s*> 0 , then γi

s = 0,

whence  ps
0 = ps

i =  max j  ps
j . If no agent consumes good t, i.e. xi

t*= 0, and  γt
i > 0

for i=1,...,n, we change pt
o  and γi

t setting  pt
o = pt =maxj pt

j  , and  γi
t =0  for i∈  I =

Arg maxj pt
j.  In order to justify this replacement one should only to check that  p0

y* = max p0 y  on Y  for new   p0 . Indeed,  we have from (12):   ∑s∉  I  ps
0 (y s* - y

s)+ ∑t∈ I  pt
0 (y t* - y t) ≥ 0 , where the first addendum does not change while the

second does not decrease because pt
0  becomes less, and y t *- y t = - ∑i ω ti - y t ≤ 0

for t∈ I.  So one can take p0  = p defined in (11). We substitute relations (12) (with

p0 = p) and (10) in (9). After cancellations we get:

p(xi* -ω i ) =α i π(p),  i=1,...,n                                                                                (13)

In the case π(p) = 0  we also get the budget equalities (13) . Indeed,       π(p)

= π(p) + ∑ j γ jω j=0  where every addendum is nonnegative.      So we have

π(p)=0  and γiω i=0  ,  and hence  pi(xi* - ωi )= p(xi* -ω i ) =0. Relations (12)

together with budget equalities (13) mean that vectors xi* are solutions of

individual problems at market prices p. Together with inclusion  z*∈  Z this means

that pair (z*, p) is a Walrasian equilibrium.

Necessity. Suppose that a pair (z*, p) compose a competitive equilibrium.

Then for some supporting (to P at z*) linear functionals pi there take place

relations (11), (12), where  p0= p. Substituting p= p0  from (12) to (13), and

introducing the notation (10) we obtain (9) if only π(p)>0. If π(p)=0 then noting

that π(p)=∑pi(xi*-ωi) and using the same argument as above we get the identities



26

in (9). Hence  z* is an equilibrium point in terms of definition 2. By theorem 1 z* is

a NAP with status-quo ω and bargaining powers βi determined by (10).

When agents preferences are smooth the same line of proof which use

gradient individual values pi  gives the assertion of the proposition that Walrasian

allocations are NBPs.·

Note that here we did not use the equivalence of outcomes condition for linear

utilities. Bargaining powers for NAPs and NBPs can differ from each other and the

both from shares α i at the boundary of the orthant Rkn
+ . According to general

formula (10) β i is equal to agent i’s  relative summary contribution:  to the

common production and to the virtual «utility profit» of the society.

4. Axiomatic characterization of competitive allocations in the Arrow-Debreu

type model.

The axiomatic characterization given in theorem 3 (Part I) was good in the

general setting with fixed bargaining powers β i .  It appeared to be appropriate in

model A. For model C (and B) we modify the list of axioms. One cause is the

specific form of set Z, the other one is that  β i deviate from α i at the boundary of

agents’ consumption sets. We will assume here that preferences in class U are

smooth. Denote by ∑: U→→→→ 2Z any non-empty-valued rule satisfying the following

below 4 axioms: I, L, M, N. Only  axiom I is new. It replaces axiom F and uses the

concrete form of the model. For convenience of the reader we give the full list of

the axioms.

Axiom I (Individual rationality). For any positive linear functional l on Rk  and         

z=(x1,...,xn)∈  ∑(l) , where l=(l,...,l), the following  inequalities hold: l(xi -ω i)≥ α i

l(y)  for every  y∈  Y , i=1,...,n.
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Axiom N (Nondiscrimination).  The rule ∑   discriminates  no equivalent

alternatives for linear preference profiles l ∈  U:

if  z∈  ∑ (l ),  z’∈  Z  and l (z) = l (z’)  then  z’∈  ∑(l);

Axiom M (Monotonicity).: Let P ∈  U  and  l∈ ∂P (z) .  Then inclusion  z∈∑  (l)

implies  inclusion z∈∑  (P).

   Axiom L (Expanding to the linear approximation).

   Let P∈  U,  z∈  ∑ (P)  and   l z  be the gradient profile of P  at  z. Then  z∈∑  (l z).

Axioms I, L, M, N  define  a class of social choice rules ∑∑∑∑ . We check that the

class is not empty.

Lemma 5. The Walrasian rule W  satisfies  axioms I, L, M, N.

Proof. Check axiom I. Suppose that z∈ W (l) for some linear positive profile l

=(l,...,l),  and p be the equilibrium price. Then the following equalities hold:

p xi = pω i+ α i π(p) , l = λi p - γ i , γ ixi = 0  for any  i , where  λi> 0, γi ≥ 0 . Here

p>0 and since ω i ≠0, vectors xi ≠ 0 , whence it follows that  vectors γ i can not be

positive. Besides, since Σωi > 0 every good s is consumed by an agent i, and so  γs
i

=0. Given this we can check that  all vectors  γ i=0   and   λi ≡λ>0 . Indeed, show

that λi =λj . There are some  γs
i= 0 and    γr

j =0.  If  γ sj =0  then  λi=λj;  if  not, then

λi < λj as it follows from the equality: ls= λi ps -γs
i =λj ps -γs

j . From the other hand

the equality γr
i =0 implies again λi=λj while γr

i >0 implies from the similar

equality that λj < λi . Thus supposing that some coordinate of a vector γi  is not

zero we get a contradiction. If all γ i =0 then λi ≡λ>0 .

Now we multiply the budget equalities by λ  and get the assertion of  axiom 1.

The checking axioms L, M, N does not differ from that made in Section 4,

Part I.·  Lemma 5 shows that the Walrasian rule is one of the rules ∑∈∑∑∑∑ .
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Again in order to narrow class ∑∑∑∑  to one element we introduce axiom E. We

say that rule ∑ satisfies axiom E if under linear preference profiles l ∈  U  rule ∑

chooses only equivalent alternatives:

if  z, z’∈∑  (l )  then  l (z) = l (z’).

In order to Walrasian rule W fulfill axiom E we impose the AGS-property on

production set Y. A production set Y is said to have the AGS-property if the

correspondence - Argmax py|Y  possesses this property.

By definition (see Polterovich and Spivak (1983)) a multi-valued

correspondence T from RM to RM satisfies the AGS-property if  for any  p, q∈ RM
+ ,

p ≤  q, such that  I(p, q) = {k∈  M / pk = qk } ≠ ∅  , and for any  d∈ T(p),  f ∈  T(q) the

following inequality holds:

k I p q∈
∑

( , )
 (pk  dk - qk f k ) ≤ 0 .

One can show for example that if outcome of every good is determined by the

Cobb-Duglas function then Y satisfies the AGS-property.

Now we can prove the theorem analogous to theorem 3 .

Theorem 4.  In model C  the Walrasian rule W is the least among the rules

∑∈∑∑∑∑ . If  the production set Y has the AGS-property then the unique rule ∑  which

satisfies axiom E  is rule W.

Proof. According to lemma 5 the rule W belongs to class ∑∑∑∑. We prove that W

is the minimal rule in class ∑∑∑∑.  Let  z∈ W(P), z = (xi). Let  p be the equilibrium

prices, then the budget equalities hold: pxi= pω i+α i π(p), i=1,...,n. We take the

linear preference profile l = (p,...,p),  and a point z’∈∑  (l), z’=(x’i). By axiom I

(individual rationality of ∑ ) and the inclusion z’∈ Z we get the equalities: pxi’ =

pω i + α iπ(p) , i=1,...,n. Then by axiom N (nondiscrimination)  we get the inclusion
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z ∈  ∑ (l). Since l  is a supporting linear profile to preference profile P at  z, by

axiom M  (monotonicity)  z∈∑  (P). So W(P) ⊆  ∑(P) .

Assume  now that production set Y has the AGS-property. Then as it follows

from  Polterovich and Spivak (1983) rule W satisfies axiom E. Suppose that  a rule

∑∈∑∑∑∑  satisfies axiom E. We prove the inclusion W(P)⊇  ∑(P) for any preference

profile P∈ U. Let  z ∈  ∑(P). Then by axiom L  we have the inclusion z ∈  ∑(l z)

where l z is the gradient profile for preference profile P at  z. By axiom E

(equivalence of  outcomes) l z (∑(l z) ) =    l z (z).  We proved above the inclusion

W(l z) ⊆  ∑ (l z ) (at present with axiom E). So axiom N  applied to the rule W gives

the inclusion z∈ W (l z). Monotonicity of the rule W (axiom M) implies: z∈  W (P ).

Note also that the strong requirement which is contained in axiom E was not

used  to prove the inclusion W⊆  ∑  for any rule ∑∈∑∑∑∑ .

Corollary 3.  For pure exchange models the unique rule ∑: U→→→→ 2Z  which

satisfies axioms E, I, L, M, N  is the Walrasian rule W.

III. Conclusion

 One can see now that decision making based on the Nash bargaining solution

for agents’ gradient (subgradient) utilities gives the same set of allocations NBP (S)

(NAP(S)) as the Walrasian rule W(S) (all applications in Part II were merely

examples of different sets Z). We say it more exactly. For model A the Walrasian

rule coincides with the NAP-rule or in case of smooth preferences with NBP -rule.

For the Arrow-Debreu type model C (in particular B) the set W(S) coinsides with

NBP (S) (NAP(S)) where the bargaining powers are equal to the production shares

α i when the allocation z =(xi) is strictly inside the orthant Rkn
+ . In particular when

monotone preferences Pi are such that the sets Pi(xi) are entirely belong to intRk
+
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this is so. Thus any interior equilibrium allocation of goods (xi) is a preimage point

of the Nash bargaining solution for the gradient agents’ utilities taken at points xi .

At the boundary of  the orthant Rkn
+  the agents’ bargaining powers deviate from α i

and are determined by the formula (10).

The axiomatic characterization exposes the properties of choice of the NBP

(NAP)-rule  in the initial space of alternatives.

IV. Appendix

A simple mechanism for Nash implementation of  Walrasian equilibrium

outcomes

We describe here a simple mechanism in the spirit of Maskin whose Nash-

equilibrium outcomes are Walrasian equilibrium allocations of goods. The main

elements of the construction remind those used by B. Dutta et al. (1995).

We consider a pure exchange economy with k goods and n≥ 3 agents. Agent’s

i strict preference Pi  is supposed to be convex and strictly monotone on  the open,

convex set of admissible exchange bargains Xi ⊂  Rk , P is a preference profile. As

usual a positive coordinate of  vector xi ∈ Xi  means that agent  i receives the good

and a negative one means that he delivers the good. The convexity of the

preferences means that if x’Pi x then (αx’+(1-α)x)Pi x for any α∈  (0,1]. We assume

that every set Xi contains a vector a>0 and a vector b = - a/(n-1).

Denote by si a strategy of agent i. It consists of  two parts: si = (x , p), where

x∈  X={(x1,...,xn)| ∑ xi = 0, xi∈  Xi} is an allocation of  exchange bargains, proposed

by agent i, p∈  ∆  is the exchange price proposed by agent i, ∆  is a unit k-1 -

dimensional simplex. Any strategic pair (x, p)  is supposed to satisfy the equalities:
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pxj = 0 for all j=1,...,n. So the strategy set of any agent i  is a subset Si ⊂  X × ∆

defined above.

Denote by f: S1× ⋅⋅⋅ × Sn → X  the mechanism defined by the following rules.

Rule 1. If  s1 = ... = sn = (x , p) for all  i = 1,...,n,  then f(s1,...,sn) = x.

Rule 2. If all strategies si except sj are the same: si ≡ (x , p) and sj = (x’, p’) ≠  (x , p)

then

f(s1,..., sn) = x’  if  px’i ≤ 0  and f(s1,..., sn) = x  otherwise.

Rule 3. In all other cases the «roulette» mechanism starts functioning, where the

winner gets the bargain a and every other agent gets the bargain b.

We define what is the «roulette» mechanism. Let [npi
1] be the least integer

number which is more or equal n pi
1  where pi

1 is the price of the first good,

proposed by agent i. Then the winner is determined by the number equal to ∑ [npi
1

] (mod n).

Denote by  NE(f, P)  the set of Nash equilibrium strategy profiles given

mechanism f and preference profile  P, and let W( P)  be the set of Walrasian

allocations in X  under preference profile P. The inclusion x ∈  W(P)  means that x∈

X and there exist prices p such that pxi=0, and Pi(xi) ∩ Bi(p)= ∅   where Bi(p)={x∈

Xi ,  pxi   ≤  0}   is the budget set of agent i.

 Proposition 4. W( P) = f(NE(f,  P)) for any P∈  U.

Proof. We show the inclusion  ⊆  . Assume x ∈  W( P) and p ∈∆   be the

equilibrium prices. We set si = (x, p) for all i = 1,...,n. According to rule 1 f(s1,...,sn)

= x. Every agent i can choose another strategy  (x’, p’) and enforce outcome x’  if

px’i  ≤ 0. According to rule 2 only such deviations are permissible for individuals.

However since the pair (x, p) is equilibrium no such a vector x’i  belongs to the set

Pi (xi). Hence the bundle (si) ∈  NE(f, P)) and   x∈  f(NE(f, P)).
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Conversely, we show  that f(NE(f, P)) ⊆  W(P). Assume (s1,...,sn) ∈  NE(f, P).

We check that the outcome x = f(s1,...,sn)  is determined by the rule 1. Indeed, the

«roulette» mechanism has no equilibria, because everybody prefers a to b and can

obtain it. So x    can’t be obtained by the rule 3. Suppose that the outcome x is

determined by the rule 2 when only one agent i deviates from the common strategy

(p, x). Then any other agent j  can activate the «roulette» sending a message (p’’,

x’’) with p’’≠ p, p’, which makes him a winner. So if the outcome x is a Nash

equilibrium outcome then it is determined by the rule 1. The latter means that all

agents propose the same pair (p, x). We show that this is a Walrasian equilibrium.

Suppose the converse, i.e. an agent i has a better bargain                x’i ∈  Pi(xi) in the

budget set Bi(p). Due to monotonicity of the preference one can count that px’i =0.

We take  vectors x’j ∈  Rk ,  j ≠ i ,  such that x’i + ∑j≠ i x’j = 0, and  px’j = 0 (for

example, x’j = -x’i /(n-1)). Then for sufficiently small α >0 the following is true:

a) vector xαi = α x’i +(1-α ) xi  belongs to Xi and is strictly better than xi ,

b) every vector xαi  belongs to Xi , and all the budget equalities hold.

So agent i can choose the strategy s’i= (x’, p) and enforce x’ which he prefers to x.

But this contradicts the definition of x as a Nash equilibrium outcome. Thus every

xi  is a maximal element in the budget set  Bi(p) and  ∑i xi =0. So x ∈ W(P). ·

We used open convex sets of admissible bargains Xi . Now we give a

condition which allow to justify this requirement. Suppose that the initial

allocation of goods (ωi)i=1,...,n is fixed, known, and non-manipulated by agents.

Agents preferences are defined on Rk
+, their strict preferences are convex and

monotone.  We impose the following boundary condition on the set of feasible

profiles P ∈  U : the allocations which give the total endowment of some good to

an agent are not Pareto-optimal. Let us give a  variant of resource relatedness
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condition B’) under which the requirement holds. We come back to the previous

notation: z=(xi) is a consumption bundle.

B’) Let  z∈ Z  be such that xr
i = ω r for an agent i and  a good r . Then there is

agent j and a good s such that agents i and j have a profitable exchange bargain

with goods r and s

(xi - α e r + β es) Pi xi  and  (xj + α e r - β es) Pj xj  ,  where

er , es  are unit orths,  α ,β are small numbers. To fulfill this condition it suffices

that for every good there be at least two agents with high marginal utility of the

good when it is not consumed.

Now if the boundary condition is fulfilled then Walrasin allocations z being

Pareto-optimal give to each agent xi < ω . So one can take as a set of admissible

bargains for agent i the set Xi ={ξ i∈ Rk , ξ i < ∑ j≠ i ω j} which is obviously open and

convex.

Considering the axiomatic characterization given in theorem 4 and Corollary

3 for the Walrasian rules one can affirm the following. 

Corollary. Mechanism  f  Nash implements the rule of social choice ∑ : U→→→→

2Z , which satisfies the axioms E, I, L, M, N.

The analogous implementation mechanism for the Walrasian rule  can be

constructed for model C.

The author sincerely  thanks V.I. Danilov for a lot of useful remarks and

advices.
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