
ÐÎÑÑÈÉÑÊÀß ÝÊÎÍÎÌÈ×ÅÑÊÀß ØÊÎËÀ

N E W  E C O N O M I C  S C H O O L

Best student papers

Boris  Kovtunenko

THE WAR OF ATTRITION WITH EXPECTED CHANGES OF FUTURE

TERMS

Working paper # BSP/99/016

This paper presents a Master’s Thesis completed at NES in 1999.
The paper was written within the research program “Transforming Government in Economies in

Transition” (GET) sponsored by the Ford Foundation (Grant No.950-1503), project  “Institutional
Changes and Traps in Transition Economies”.

This paper was prepared under the supervision of Prof. L. Polishchuk and Prof. V.
Polterovich. I would like to thank them for their helpful guidance.

МОСКВА

1999



Ковтуненко Б.И. Война на выживание с ожидаемыми изменениями во внешних

обстоятельствах в будущем./ Препринт # BSP/99/016.- М.: Российская Экономическая Школа,

1999. - 57с. (Англ.)

В данной работе рассматривается война на выживание с двумя игроками и неполной

информацией. В отличие от общепринятой версии войны на выживание с бесконечным горизонтом

мы ввели внешнее ограничение на длительность «войны». В работе показано, что данное

ограничение приводит к появлению «мертвой зоны» непосредственно перед моментом

ограничения. В «мертвой зоне» игра заканчивается с нулевой вероятностью и, следовательно, если

игра дошла до «мертвой зоны», она продлится до самого конца, и этот факт является общим

знанием для обоих игроков. В работе также показано, что в некоторых случаях введение внешнего

ограничения на продолжительность «войны» может привести не только к увеличению, но и к

уменьшению ожидаемого общественного благосостояния.

Kovtunenko B.I. The War Of Attrition With Expected Changes Of Future Terms. / Working

Paper #BSP/99/016. –Moscow, New Economic School, 1999, -57p. (Engl.)

This paper considers a two-player incomplete information war of attrition. In contrast to the

conventional infinite horizon war of attrition setting, we introduce an external constraint on the duration

of the “war”. It is shown that this constraint results in the occurrence of the “dead zone” right before the

moment of the constraint. In the “dead zone” the “war” ends with probability zero and, thus, once the

game evolved into the “dead zone”, it is common knowledge for the players that the “war” will last till the

very end. It is also shown that in some cases the introduction of the external constraint on the duration of

the “war” can not only raise but also lower the expected social welfare.

ISBN 5-8211-0054-2

© Ковтуненко Б.И., 1999 г.

© Российская Экономическая Школа, 1999 г.



3

Contents

1. Introduction                                                                                                          3

2. The Infinite Horizon Model                                                                                10

3. The Finite Horizon Version of the Model                                                         19

4. Expected Social Welfare                                                                                     28

5. Summary and extensions                                                                                     40

Appendix                                                                                                                   44

References                                                                                                                 53

Figures                                                                                                                       55



4

1. Introduction
The war of attrition was introduced in theoretical biology by Maynard Smith

(1974) to explain animals' fights for prey. This approach was also used in

industrial organization for the case of a natural monopoly (on this point, Tirole

(1993, pp.311-314)). Two animals fighting for prey may resemble two firms

fighting for control of an increasing returns industry. Fighting is costly to the

animals; at the very least, they forgo the opportunity of other activities and become

exhausted. Similarly, duopoly competition may be costly because it generates

negative profits. In both cases, the object of the fight is to induce the rival to give

up. The winning animal keeps the prey; the winning firm obtains monopoly power.

The loser is left wishing it had never entered the fight. In a war of attrition, each

player waits and suffers for a while. If at some point in time his rival has not yet

quit, a player gives up. The same framework, with minor changes, can be used for

the case of two firms engaged in a patent race (see Tirole (1993, pp.394-399)). In

the conventional versions of the stationary war of attrition with two identical

players, there is a unique symmetric Nash equilibrium, which is stationary,

involves mixed strategies, and has a property that at each date the players are

indifferent between stopping at time t and waiting a bit longer, until t+ε, to see if

the opponent stops first (see Fudenberg and Tirole (1991, pp.119-121))1.

The cases described above are the examples of complete information wars of

attrition. In this paper, we will mainly concentrate on the incomplete information

war of attrition first introduced in the theoretical biology literature by Bishop,

Cannings, and Maynard Smith (1978), and extended by Kreps and Wilson (1982).

In the incomplete information war of attrition players' types are private information

and independently drawn from the same distribution function. The analysis of such
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games is performed within the concept of Bayesian Nash equilibrium. Alesina and

Drazen (1991) used the incomplete information war of attrition approach to

explain the delays in providing socially beneficial reforms2,3. Their model of

delayed stabilization considers an economy in which the government is running a

deficit due to failure of interest groups to agree on a deficit reduction program. In

the absence of a consensus, only highly distortionary taxes can be used to finance

government expenditures, and the revenue from those taxes is insufficient to fully

cover expenditures. The budget deficit prior to stabilization is financed by a

growing external debt. A fiscal reform program replaces highly distortionary taxes

with less distortionary taxes large enough to cover government expenditures and

close the deficit. Taxes after stabilization, however, must be distributed unequally

across different groups in the economy. As a result, each group would like the

burden of higher taxes placed elsewhere and refuses to agree to bearing a large

fraction of the taxes in the hope that some other group will concede and accept (or

no longer block) a fiscal reform placing a high burden on them. As any group can

obstruct program it dislikes, fiscal reform requires consensus. Groups in the

economy differ from one another in the welfare loss they suffer from the

distortions associated with the prestabilization methods of government finance.

Since each particular group does not know the welfare losses of the other groups,

characterized by their types, at the beginning of the “game” there is a positive

option value from waiting for any group with a loss lower than the maximum

possible loss. Only when a group realizes that it can only do worse by waiting any

                                                                                                                                                             
1 For a more general analysis of complete information wars of attrition in continuous time see Hendricks
et al. (1988).
2 For a good survey of recent approaches in explaining the delays in reforms see Drazen (1996).
3 The incomplete information war of attrition has also been used to describe industrial competition. The
classic reference is Fudenberg and Tirole (1986). In contrast to the classic war of attrition for a natural
monopoly industry, the authors assume that with (arbitrarily small) probability the market may
accommodate two existing firms. This assumption results in a unique perfect Bayesian equilibrium.
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more, will they concede and accept a reform with unfavorable distributional

implications.

Drazen and Grilli (1993), following Alesina and Drazen(1991), considered

an economy in which the government budget deficit is fully covered by the

inflation tax. Stabilization raises taxes and eliminates the budget deficit. There are

two individuals in the economy, representing two different groups, and taxes are

divided half-half before stabilization and fall entirely on one individual after

stabilization. The individuals differ in the group-specific costs of inflation. As in

Alesina and Drazen (1991), the distributional conflict between groups leads to a

delay in reaching an agreement. The general argument of the paper is that highly

distortionary finance may improve the expected social welfare if the government

must finance some portion of its expenditures in a distortionary way. Higher

inflation, by raising the cost of living in the economy prior to stabilization, will

shorten the delay in reaching agreement. There is thus a trade-off, with a higher

inflation lowering welfare until an agreement is reached, but inducing earlier time

of agreement on use of nondistortionary financing. There should therefore be a

positive but finite level of inflation that maximizes expected utility. More

precisely, the war of attrition analysis may be seen as a formalization of the view

that policies which reduce (but do not eliminate) either inflation or the costs

associated with inflation may be counterproductive, since they make it more

difficult to gain agreement on undertaking painful policy steps to eliminate

inflation.

All the models described above explicitly assume that the war can, in

principle, last forever. For simplicity, no changes in external circumstances

following the original shock were considered. As a result, there is a positive

probability for the game to last any finite amount of time. This assumption might
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sound a bit artificial in some cases. More generally, during a war of attrition, a

change in the environment may lead to a change in agents’ behavior and the end of

the “war”. In this paper we argue that even (or especially) when this change is

expected, the war of attrition is crucial in the delay of stabilization until the

external change. For example, a country financing its budget deficit by borrowing

from abroad, that is a country with a rising debt to GNP ratio as in Alesina and

Drazen (1991), usually find much more difficult to borrow more when the

debt/GNP ratio exceeds some critical value, and this fact is common knowledge.

We argue that in some cases it is a fact of closing the credit line from abroad that

might induce a reform.

Even without the external constraint on the amount of debt, there is a

feasibility issue when the debt and, therefore, interest payments are so high that the

loser of the war of attrition is unable to bear the cost of a stabilization. As argued

in Alesina and Drazen (1991), as the value of initial output to debt ratio increases,

the fraction of the distribution of groups whose behavior is not affected by this

constraint rises. However, a problem of delayed reforms is often a problem of poor

countries, whose initial output to foreign debt ratio in many cases can not be

considered high enough to neglect the issue of constraints on the duration of the

delay in reforming the economy.

Elections might also be considered as an example of expected future changes

in the external circumstances. Even in developing countries with not very long-

lasting democratic traditions, the time of the nearest elections is often known with

a great degree of confidence long before the moment of the elections. Thus, this

knowledge might affect the behavior of different groups with conflicting

distributional objectives since these groups often represent different political

parties. As the moment of elections approaches, the assumption that those groups



8

behave as if they were unaware about the probable change in the external

circumstances in the future becomes less and less justified.

In this paper, we present a simple two players war of attrition model with

external constraint on the duration of the “war”. It is common knowledge for the

players that due to some changes in the environment in the future4 the game can

not last more than some finite amount of time. If no one concedes till that time, the

coin is flipped to determine the loser. We investigate the changes in the

equilibrium outcome of the game as compared with the infinite horizon version of

the model. It will be shown that, because of the constraint on the duration of the

game, the “dead zone” occurs right before the moment of the constraint. In the

“dead zone” the game ends with probability zero. Thus, once the game evolved

into the “dead zone”, the “war” will last till the very end with probability one and

this fact is common knowledge. It will be also shown that the expected duration of

the finite horizon game is always lower than the expected duration of the game

with an infinite horizon. However, our analysis will yield an unexpected result: in

some (not extremely specific) cases the relative size of the “dead zone” does not

approach zero as the time of the constraint rises.

The occurrence of the “dead zone” raises an important question: whether the

expected social welfare of the finite horizon war of attrition always exceeds the

expected social welfare of the infinite horizon “war”. The introduction of the

external constraint on the duration of the “war”, TM , has two opposite effects on

the expected social welfare. First of all, agents who conceded within the “dead

zone” (before TM) in the infinite horizon game now wait until TM, which obviously

decreases the expected social welfare. On the other hand, agents who conceded

later than TM in the infinite horizon “war” concede earlier in the finite horizon

                                                
4 These expected changes are of the types considered above, but we do not explicitly model them here.
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game, which increases the expected social welfare. Therefore, despite the fact that

the expected duration of the “war” is always lower in the finite horizon model, the

sign of the change in the expected social welfare might be ambiguous. In this paper

we will show that this sign is indeed ambiguous. It means that in some cases the

introduction of the external constraint on the duration of the “war” can not only

increase the expected social welfare but also decrease it. Moreover, for some

region of TM a decrease in the external constraint on the duration of the game is

associated with a decrease in the expected social welfare. Therefore, policies which

reduce the duration of the war of attrition but do not eliminate it completely might

be counterproductive5. The striking result is that the decrease in the expected social

welfare appears not for high but for relatively low values of the external constraint

TM .

The only work of a similar theme of which we are aware is that of Cannings

and Whittaker (1995). They considered an infinite population of identical

individuals who have fixed finite time available for war of attrition type contests;

individuals start a new trial as soon as their old one has finished. Thus choosing to

play for a long period of time in any particular trial will increase an individual's

chance of winning that trial, but will tend to decrease the number of trials it is

possible for that individual to play before the population runs out of time, and the

contestant must balance these two factors. The paper presents the analytical

analysis together with computer simulations of the evolutionary stable strategies6

of the model. Despite some similarities, our approach is quite different. Cannings

and Whittaker (1995) considered an infinite set of identical individuals, therefore

their model is a symmetric information war of attrition. They also used discrete

                                                
5 This argument is similar to that of Drazen and Grilli (1993).
6 Following Selten (1980), a strategy r is said to be evolutionary stable if (i) r is a best response to itself
and (ii) for any alternative best response r′ to r, r is a better response to r′ than r′ to itself.
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strategy space. We will consider an incomplete information war of attrition with

two agents and infinite strategy space and focus on the symmetric Bayesian Nash

equilibrium.

The paper is organized as follows. Section 2 presents a simple infinite

horizon war of attrition model and investigates basic features of the equilibrium

outcome of this model which will be used in the following sections. Some

generalizations are also considered. Section 3 introduces the external constraint on

the duration of the game considered in Section 2 and investigates the changes in

the symmetric equilibrium outcome induced by this constraint. Section 4 examines

the change in the expected social welfare after the introduction of the external

constraint on the duration of the “war”. The final section briefly summarizes the

results and suggests extensions.

2. The Infinite Horizon Model
Consider an incomplete information infinite horizon war of attrition with

two risk-neutral players. Player i chooses his strategy iT  (the time of concession if

the rival has not conceded before) from [0, + ∞ ]. Both players choose their

strategies simultaneously at the beginning of the game. The player who chooses the

longer time wins. The payoffs are











=θ−+

<θ−
<θ−

=θ

jiii

ijji

jiii
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 if         )(
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  if                    
 if                     

);,(     (2.1)
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Player i's type, iθ , characterizes the utility loss the player suffers from the “war”7,

is private information, and takes values in [ θθ  , ], θ<θ≤0 , with cumulative

distribution )( iF θ  and strictly positive on ( θθ  , ) density )( if θ . Types are

independent between the players. The payoff received by the winner, B, is greater

than the payoff received by the loser, b, that is 0>−≡∆ bBB . When both players

choose the same time of concession, either they share the total payoff (as in (2.1))

or the coin is flipped to determine the loser8. Since we suppose that players are

risk-neutral, they are indifferent between these two alternatives.

Let us look for a pure-strategy Bayesian Nash equilibrium ))(),(( 21 θθ TT of

this game. For each iθ , )( iiT θ must satisfy

[ ] [ ]

{ } }∫ <θθ θθθθ−+



 =θ





 θ−++>θθ−=θ

iTjjTj jjjji

ijjiiijjii
iT

ii

dfTB

TTTBbTTTbT

)( )())((

)(Pr
2

)(Pr)(maxarg)(
(2.2)

Let us consider some properties of an equilibrium profile of this game.

Lemma 1: Equilibrium strategies must be nonincreasing.

(See Appendix for a proof).

It is worth noticing that monotonicity property of equilibrium strategies

holds not only for this particular game but also in a rather general case. Namely,

consider a war of attrition with two players of the types specified above but with a

more general payoff for a player if the game ends at moment T :

( ) ),,(; TxHTu iii θ=θ , where H(.) is a strictly increasing function of x and strictly

                                                
7 Following Fudenberg and Tirole (1986) iθ  might be interpreted not only as resources devoted to the
“war” but also as opportunity costs (the benefits from forgone activity). Opportunity costs are particularly
likely to be private information.
8 We assume that there is no dissipation of the total surplus when both players concede at the same time.
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decreasing in T, and { }Bbbx ,,=  depending on whether the player i loses, ties, or

wins the game, Bbb ≤≤ . Then Lemma 1 can be generalized as follows

Theorem 1: If ),,( TxH iθ  is a function specified above and ( )TxH
i

i

,,θ
θ∂

∂  is

nonincreasing (nondecreasing) in T and x and strictly decreasing (increasing) in

at least one of T and x for any feasible ( )Tx i ,,θ , then equilibrium strategies are

nonincreasing (nondecreasing).

(See Appendix for a proof).

The reason for this monotonicity property is rather clear intuitively. If the

cost per unit of time of the "war", 
T
H

∂
∂− , is increasing with the type of the agent,

and a marginal gain from winning the game, 
x
H

∂
∂ , is decreasing with the type, that

is for any time of the end of the game a player with higher type incurs higher costs

than a lower type player and obtains lower gain from winning the game as

compared with losing it, then a player with a higher type will always choose lower

time of concession.

The intuition that the time of concession is strictly decreasing with the type

is also justified. To obtain this result we should eliminate the equilibrium where

one player waits forever and the other one concedes immediately. For our simple

model, we have the following lemma.

Lemma 1': If T=0 is not a mass point of one of equilibrium strategies, then

equilibrium strategies are strictly decreasing.

(See Appendix for a proof).

Again, this result appears to be rather general.
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Theorem 1': If all the conditions of the first (second) part of Theorem 1 are

satisfied, ( )TxH ,,θ  is continuous in T for any ( )θ,x , and T=0 is not a mass point

of one of equilibrium strategies, then equilibrium strategies are strictly decreasing

(increasing)9.

(See Appendix for a proof).

The intuition is straightforward: If the strategy is not strictly decreasing

(increasing), there must be a mass point T in the distribution of a player's

concession time. Thus, the other player will never set his strategy closely below

that mass point since he can be better off setting it just above T . But in that case

playing T is no more optimal for the first player since it can lower his strategy not

affecting the probability of winning the game but reducing the expected cost.

Similar intuition underlines the argument that strategies must be continuous.

Theorem 2: If equilibrium strategies are monotonous, they must be continuous.

(See Appendix for a proof).

Theorems 1, 1', and 2 allow us to investigate general properties of the war of

attrition considering rather simple model (2.1). For example, if we introduce a

discount r in model (2.1), we obtain

( ) ( )rTirT
T

o

rt
i

rT
i e

r
xedtexeTxH −−−− −θ−=θ−=θ ∫ 1,, (2.3)

Since ( )11 −=
θ∂

∂ −rT

i

e
r

H  is strictly decreasing in T and does not depend on x, all the

conditions of Theorem 1 hold. Therefore, the presence of a discount does not

change the equilibrium behavior of the agents but makes calculations more

cumbersome. The same is true for the model considered in Alesina and Drazen

(1991). In our notations, the model takes the form
                                                
9 It is possible for an equilibrium strategy to have a mass point at +∞=T . In that case, the strategy is
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( ) ( ) ( )



 −α+α−−





 θ+−=θ γγ− 121

2
1,, xeebTxH rT

i
rT

i  (2.4)

where b  is the present discounted value of future tax payments before and after

stabilization, ( )γ−1  is a fraction of government expenditures covered by issuing

debt until the date of stabilization (a fraction γ  is covered by distortionary

taxation), 
2
1>α  is a share of tax burden levied on the loser after stabilization, r is

world interest rate, which is equal to the discount rate, and x=0 for a loser and x=1

for a winner (see Alesina and Drazen (1991)). Again, all the conditions of Theorem

1 hold. Therefore, most of the results of this paper might be applied to the model of

Alesina and Drazen (1991).

 Let us return to our simple model (2.1) and denote by ( )TGi  the

distributions of the players optimal times of concession (they are, of course,

endogenous and will be derived below) and by ( )Tgi  the associated density

functions (thus, we implicitly assume that equilibrium strategies are differentiable).

The expected payoff of player i as a function of his strategy iT  is

( ) ( ) ( ) ( )[ ]( )iiij

iT

jiiii TbTGdttgtBTU θ−−+θ−=θ ∫ 1,
0

 (2.5)

We did not include in (2.5) the case of ji TT =  as we consider an equilibrium in

strictly decreasing strategies (that is, without a mass point at T=0 for any agent)

and, therefore, for a finite density function ( )θf  the probability of a tie is zero.

Maximizing (2.5) with respect to iT  we obtain

( )
( ) i

ij

ij B
TG

Tg
θ=∆












−1

 (2.6)

                                                                                                                                                             
monotonous until at some +∞=θθ )~(  ,~ T .
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If there exists a solution to the first order conditions (2.6), it also satisfies the

second order conditions. Indeed, from (2.5)-(2.6) we have

( ) ( )( )))((1),( iijiiiii
i

i TGT
T
U θ′−θ−θ′=θθ′

∂
∂ (2.7)

Thus, according to Lemma 1,

( ) ( ) ( ))()(),( iiiiiiiii
i

i TTsignsignT
T
Usign θ′−θ=θ−θ′=θθ′

∂
∂ (2.8)

Therefore, we have proved the following corollary:

Corollary 1: A solution to (2.6) constitutes Bayesian Nash equilibrium of our

game.

The right-hand side of (2.6) is the cost of waiting another instant to concede.

The left-hand side is the expected gain from waiting another instant to concede,

which is the product of the conditional probability that one's opponent concedes

(the hazard rate in brackets) multiplied by the gain if the other player concedes.

The concession occurs when the (player-specific) cost of waiting just equals the

expected benefit from waiting.

We now want to find a symmetric Bayesian Nash equilibrium in which each

player's concession behavior is described by the same function ( )θT . Then (2.6)

takes the form

( )
( ) θ=∆





−
B

TG
Tg

1
 (2.9)

Since ( )θT  is strictly decreasing in θ  (see Lemma 1'), ( )( ) ( )θ−=θ FTG 1  and

( ) ( ) ( )
( )θ′
θ−=′≡

T
fTGTg . Substituting this into (2.7), we finally obtain the equation

that implicitly defines a symmetric equilibrium ( )θT

( )
( ) ( ) θ=∆





θ′θ
θ− B

TF
f 1  (2.10)
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To derive the initial boundary condition, note first that, for any value of

],[ θθ∈θ  and for any time T, the gain from having the opponent to concede is

positive. Therefore, as long as there exists ε>0 such that ( ) 0>θf  for ) ,( θε−θ∈θ ,

players with θ<θ  will not concede immediately as there is a positive probability

to have an opponent with higher θ . This in turn implies that a player with θ=θ

(i.e., a player that knows he has the highest possible cost of waiting) will find it

optimal to choose

( ) 0=θT  (2.11)

It can be also proved that equilibrium strategies in (2.10)-(2.11) constitute a

perfect Bayesian equilibrium, which means that once a player chooses his

concession time at the beginning of the game, he will never want to change it

during the game.

Lemma 2: Bayesian Nash equilibrium strategies from (2.6) are perfect Bayesian

equilibrium strategies.10

(See Appendix for a proof).

Lemma 2 is useful in understanding the evolution of the war of attrition from

viewpoint of one side. If the types of the agents were common knowledge, an agent

with the higher type would concede immediately11. However, players do not know

the types of their opponents and form expectations about those types. Consider a

                                                
10 Again, this result is very general. Since each player knows that his decision to concede is only relevant
if the other player has not conceded before, the game is strategically equivalent to a static game in which
players simultaneously choose concession times. Thus, if there exist Bayesian Nash equilibrium
strategies, they also constitute a perfect Bayesian equilibrium.
11 When agents have an infinite horizon, stationary wars of attrition with complete information have an
infinite number of subgame perfect equilibria (see Hendricks et al. (1988)). In particular, there is a
subgame perfect equilibrium in which anyone concedes immediately. However, if we assume instead that
agents have a finite horizon, the game has a unique subgame perfect equilibrium in which the agent with
the higher type concedes immediately and the other one waits. This remains true even when the time
horizon goes to infinity. If we treat the infinite horizon game as the limit of the set of finite horizon
games, this outcome stands out even in infinite horizon games (on this issue, though in a slightly different
setting, see Bilodeau and Slivinski (1996)).
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player with θ<θ . At time 0, there is some probability that his opponent has θ=θ

and will concede immediately. If no one concedes at time 0, both sides know that

their opponent is not type θ . A the “next” instant the “next-highest” type concedes

and so on, so as time elapses each side learns that his opponent does not has a cost

above a certain level. When the conditional probability of an opponents concession

in the next instant (based on what the player has learnt about his highest possible

cost) is such that (2.6) holds, it is time to “throw in the towel”.

We derived (2.6) and thus (2.10) under the assumption that equilibrium

strategies are differentiable. However, in the symmetric equilibrium case it can be

proved directly.

Lemma 3: Symmetric equilibrium strategies are differentiable.

(See Appendix for a proof).

From Lemma 3, the first-order condition (2.10) and the initial boundary

condition (2.11) characterize the equilibrium uniquely. Therefore, we have proved

the following corollary:

Corollary 2:12 The unique symmetric perfect Bayesian equilibrium of the game is

defined by

( ) ∫
θ

θ
∆=θ

 

 )(
)(

x
dx

xF
xfBT (2.12)

Given concession times as a function of θ , the expected duration of the

game is then the expected minimum T, the expectation taken over ( )θF . Following

Alesina and Drazen (1991), the expected value of minimum T in a two-player case

is

∫
θ

θ
=

 

 
)()()(2 dxxfxFxTT E  (2.13)

                                                
12 Similar results can also be found in Bliss and Nalebuff (1984), Bulow and Klemperer (1998), and
elsewhere.
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Therefore, both the equilibrium strategy and the expected duration of the game are

directly proportional to the difference between the payoffs of the winner and of the

loser B∆ .

As long as all participants in the process initially believe that someone else

may have a higher θ , the game does not stop immediately. The cumulative

distribution of duration times T is therefore 1 minus the probability that every

player has θ  lower than the value consistent with the game's end at T. With two

players it is

( ) ( )( )[ ]21 TFTS θ−= (2.14)

where ( )Tθ  is defined by ( ) TT =θ .

Consider the influence of an increase in the costs associated with the “war”

on the equilibrium strategy. For this purpose, let us denote θ−θ≡θ∆ . An increase

in the costs may be of two different types. First, it may be a multiplicative shift in

θ  that is an increase in θ  for unchanged θ∆ . Second, it may be an increase in θ∆

for unchanged θ . Finally, it may be a combination of these two increases.

Lemma 4: An increase in the costs associated with the “war”, for an unchanging

distribution of θ , lowers the equilibrium strategies and the expected duration of

the game.13

(See Appendix for a proof).

Finally, consider the behavior of the equilibrium strategy ( )θT  as θ

approaches θ .

Lemma 5: If ( )θf  is continuous at θ  and ( ) 0>θf , then ( ) +∞→θT  as θ→θ  .14

                                                
13 Unchanging distribution of θ means that the probability for an agent to have a type ],[ 21 θθ∈θ , where

the interval ],[ 21 θθ  constitutes the share 
θ−θ
θ−θ=α 12  of the whole interval, does not change for any

constant α  when ],[ θθ  changes.
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(See Appendix for a proof).

Therefore, in the symmetric equilibrium there is a positive probability for the

game to last any finite amount of time. Thus, even without an explicit constraint on

the duration of the game the issue of feasibility cannot be avoided once initial

endowments of players are limited.

To illustrate the results of this section, consider a uniform distribution

( )
θ∆

=θ 1f  over ],[ θθ . The symmetric equilibrium strategy in that case is

( )

( ) 0for       ln

0for             11

>θ





θ−θ
θ∆

θ
θ

θ
∆=θ

=θ






θ
−

θ
∆=θ

BT

BT
(2.15)

The expected duration of the game is

0for     ln1 

0for                            

>θ








θ
θ

θ∆
θ−

θ∆
∆=

=θ
θ

∆=

∞

∞

BT

BT

E

E

(2.16)

3. The Finite Horizon Version of the Model
Let us consider a finite horizon version of the model (2.1). Players are

allowed to play the war of attrition within a finite time, that is player i chooses his

strategy iT  (the time of concession if the rival has not conceded before) from

[0, MT ], where +∞<< MT0 . If no one has considered before MT , a tie-breaking

rule is used to determine the winner (each agent having a probability 1/2 to win).

                                                                                                                                                             
14 The result of Lemma 5 also holds if ( )θf  is n  times )1( ≥n  differentiable at θ , 0)()( =θkf  for

10 −≤≤ nk , and ( ) 0)( >θnf .
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To get an intuition of the change in players’ equilibrium behavior in that

case consider the symmetric equilibrium strategy ( )θT  in the infinite horizon

version of the model (of course, it is not an equilibrium strategy for this game, but

as we will show, it does make sense)15. The constraint implies that now the

distribution of concession times will have a mass point at MT , with concession

occurring at that moment with probability 1 if it has not occurred before. It is clear

that an agent who conceded after MT  without the constraint will concede at MT

now. Let us denote ( ) MMM TT =θθ  : . The existence of a mass point at MT  implies

that players with costs close to but above Mθ  (i.e., players that would have

conceded before MT  under strategy ( )θT  if there were no mass point at MT ) will

now find it preferable to wait until MT  to end the “war” under a tie-breaking rule.

Define Mθ>θ~  as the cost when a player is indifferent between being the loser at

( )θ= ~~ TT  and waiting until MT  to be the winner with probability 1/2. Thus, in the

symmetric equilibrium there will be a “dead zone” of times MTTTT <<~:  when

the game ends with probability zero. That means that if no one has conceded

before or at T~ , both players know for sure that the game will last till MT . Being

perfectly rational, they will wait until MT  to take their chances in a tie-breaking

contest. Note that waiting from T~  to MT  with probability 1 is highly inefficient

from the social point of view and the best outcome (conditional on reaching T~ ) is

to make the tie breaking contest immediately, but due to lack of coordination the

probability for the players to concede at the same time is zero for any MTT < . As a

result, the “dead zone” occurs (any war of attrition is a consequence of the lack of

                                                
15 Here we closely follow the logic from Alesina and Drazen (1991) but focus our attention on the "dead
zone" occurrence and investigate the properties of this zone in a formal way.
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coordination problem, but, in our opinion, this result is one of the most impressive

consequences).

Let us now present a more formal proof of the equilibrium properties

considered above. First of all, notice that the proof of Lemma 1 is valid for this

model since it does not use the fact that players' strategies are nonlimited.

Therefore, equilibrium strategies are still nonincreasing.

Lemma 6: If ( ) 0=θT , then symmetric Bayesian Nash equilibrium strategies

cannot be continuous.

(See Appendix for a proof).

The condition ( ) 0=θT  is significant since in this model the player with the

highest possible cost does not always concede immediately. Making his decision,

he compares his expected payoff from conceding at ( ) bUT == 0:0  (we will show

below that there cannot be mass points other than MT ) with the expected payoff

from waiting till MT : ( ) MM TBbTU θ−+=
2

. He will choose ( ) 0=θT  only if

( ) ( )MTUU >0 , that is

2
BTM

∆>θ (3.1)

Otherwise players of all the types will wait until MT  and, therefore, the game ends

at MT  with probability 1 (this is the case when 0~ =T ).

The discontinuity point of the symmetric equilibrium strategy is MT and the

reason for that is clear: by conceding at MT  a player cannot lose, the worst

outcome he can get is a tie, while for any concession time below MT  a player can

lose the game with positive probability. Since the payoff from a tie (without costs

of waiting) is strictly greater than the payoff from losing the game, this gap must
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be compensated by the difference in the costs of waiting and, therefore, a

symmetric equilibrium strategy cannot be continuous at MT .

Lemma 7: In a symmetric equilibrium, the distribution of concession times cannot

have a mass point other than MT .

 (See Appendix for a proof).

From this Lemma, it follows that a symmetric equilibrium strategy is strictly

decreasing for any ( ) MTT <θθ : .

Lemma 8: In a symmetric equilibrium strategy, there cannot be a discontinuity

point other than MT .

(See Appendix for a proof).

Therefore, if the condition (3.1) holds, a symmetric equilibrium strategy of

the finite horizon war of attrition must be found in the form

( )
( )







θ<θ

θ>θθ
=θ

 ~for                                                           

 ~for          decreasingstrictly  continuous

MT

T
T (3.2)

and θ~  having a property that the agent with θ~  is indifferent between being a loser

at ( )θ= ~~ TT  and being a winner at MT  with probability 1/2

( ) MTBbTb θ−+=θθ− ~
2

~~  (3.3)

It can be proved that ( )θT  is differentiable for θ>θ ~ 16. Therefore, denoting

by ( )TG  the distribution of one of the players optimal time of concession and by

( )Tg  the associated density function for TT ~< , the expected payoff for the player

θ  from playing T is

                                                
16 The proof is the same as the proof of Lemma 3.
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( )

( ) ( )[ ]( )

( ) ( )[ ]













=




 θ−+−+θ−

<θ−−+θ−

=θ

∫

∫

MM

T

T

TTTBbTGdttgtB

TTTbTGdttgtB

TU

for    
2

 ~1)(

~for            1)(

,
~

0

0

(3.4)

Maximizing ( )θ,TEU  for TT ~<  leads to (2.9) and, therefore, (2.10). Thus,

we are ready to make the following statement:

Corollary 3: The symmetric perfect Bayesian equilibrium strategy of the finite

horizon model is unique. It has the same functional form (2.12) as in the infinite

horizon model for θ>θ ~  and equals TM  for θ<θ ~ , where θ~  is determined

according to (3.3).17

Therefore, the change in the symmetric equilibrium strategy in the finite

horizon model as compared with the infinite horizon one is fully determined by θ~

(or )~(~ θ= TT ).

Let us investigate the behavior of T~  when MT  changes. From (3.1) it follows

that when 
θ

∆≤
2

BTM , then 0~ =T  and the game ends at ),0[ MTT ∈  with probability

zero. Consider MT  large enough so that (3.1) holds. In that case, from (3.3),

0~2
~ >

θ
∆−= BTT M .

Lemma 9: θ~  is decreasing in MT  and, if ( )θf  is continuous at θ  and ( ) 0>θf ,

θ→θ~  when +∞→MT .18

(See Appendix for a proof).

                                                
17 Corollary 3 justifies the intuition considered at the beginning of this section.
18 As in Lemma 5, θ→θ~  as +∞→MT  if ( )θf  is n  times )1( ≥n  differentiable at θ , 0)()( =θkf
for 10 −≤≤ nk , and ( ) 0)( >θnf .
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Thus, both the beginning T~  and the size TTM
~−  of the “dead zone” are

increasing in MT , T~  approaches ∞+ , and TTM
~−  approaches 

θ
∆
2
B  for 0>θ  and

∞+  for 0=θ  as +∞→MT . The existence of the “dead zone” in the equilibrium

outcome of the game can be neglected for MT  high enough only if its relative size

M

M

T
TT ~−  approaches zero as MT  rises to infinity, but this is not always the case.

Lemma 10: For ( )θf  continuous at θ  and ( ) 0>θf , 
M

M

T
TT ~−  is decreasing in MT

high enough. If 0>θ , then 0
~

→−

M

M

T
TT  when +∞→MT . If 0=θ , then

3
1~

→−

M

M

T
TT  when +∞→MT 19.

(See Appendix for a proof).

Therefore, even if the probability for a player not to bear the costs from

living in the “war” is zero, once there is a positive probability to face a player with

the costs below any positive value, the relative size of the “dead zone” will be

above some positive level for whatever high MT . Moreover, if 0>θ ,

MM

M

T
B

T
TT

θ
∆≈−

2

~
for MT  high enough, thus the relative size of the “dead zone”

becomes low only for 
θ

> 1
MT , which might be very high for θ  small enough. In

addition, it can be easily proved that a multiplicative downward shift of the

                                                
19 The result of Lemma 10 also holds if ( )θf  is n  times )1( ≥n  differentiable at θ , 0)()( =θkf  for

10 −≤≤ nk , and ( ) 0)( >θnf . If 0=θ , then 
32

1~

+
→−

nT
TT

M

M  as +∞→MT .
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distribution ( )θf  increases the relative size of the “dead zone” for any fixed high

enough MT  (see Lemma 4). Thus, for small θ , and especially for 0=θ , the fact

that the game cannot last forever (arising whether from a change in the external

circumstances or from the feasibility problem) should be treated with some

caution.

The expected duration of the finite horizon game is (see (2.13) and (3.2))

( ) ( )[ ] 2  
~ 

~)()()(2 θ+= ∫
θ

θ
FTdxxfxFxTTT MM

E (3.5)

As +∞→MT , the first part of the sum in the right-hand side of (3.5)

approaches the expected duration of the infinite horizon game (2.13) (denote it
ET∞ ). The question is whether the second part of the sum approaches zero.

Lemma 11: If ( )θf  is continuous at θ  and ( ) 0>θf , then ( )M
E TT  is strictly

increasing for all 0≥MT  and ( ) E
M

E TTT ∞→  when +∞→MT .20

(See Appendix for a proof).

Thus, the presence of the “dead zone”, even with strictly positive relative

size, does not affect the behavior of the expected duration of the game in the limit

+∞→MT .

For example, in the case of a uniform distribution over ],0[ θ  (see (2.15)-

(2.16)) we have

( )









>α

















α+
α+





α+
−

≤α
=

∞ 2
1for     

)1(2
3

)1(2
31

 
2
1for                                                          

22
E

M

M
E

T

T
TT (3.6)

                                                
20 Again, the result of Lemma 11 is also true if ( )θf  is n  times )1( ≥n  differentiable at θ , 0)()( =θkf
for 10 −≤≤ nk , and ( ) 0)( >θnf .
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where 
B

TM

∆
θ=α . Thus, we can see that ( )M

E TT  is strictly increasing in MT  for any

0≥α  and ( ) E
M

E TTT ∞→  as ∞→α .

Discounting

The introduction of discounting in the model does not change the

equilibrium outcome much. All the results about the general behavior of the

symmetric equilibrium strategies for both infinite and finite horizon models studied

in Sections 2 and 3 are also valid in this case. However, the behavior of the “dead

zone” changes slightly.

In the case when players' payoffs take the form ( )TxH ,,θ  (see Section 2)

and symmetric equilibrium strategies of the infinite horizon game are

differentiable, the first order condition (2.10) takes the from

( )
( ) ( ) ( )( ) ( )( ){ } ( )( )θθ

∂
∂−=θθ−θθ





θ′θ
θ− Tb

T
HTbHTBH

TF
f ,,,,,,1 (3.7)

When all the conditions of Theorem 1' are satisfied, a solution to (3.7) also

satisfies the second order condition and, therefore, constitutes a symmetric

Bayesian Nash equilibrium of the game.

For the model with discounting (2.3) it can be easily proved that symmetric

equilibrium strategies are differentiable and constitute Perfect Bayesian equilibria

of the infinite horizon game. Therefore, the unique perfect Bayesian equilibrium in

this case, according to (3.7), is defined by

∫
θ

θ +
∆=θ

brx
dx

xF
xfBT
)(
)()( (3.8)

For the finite horizon model, as in the case without discounting, the only

difference in the symmetric equilibrium strategy as compared with (3.8) is the
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presence of the “dead zone”. Similar to (3.1), an agent with the highest possible

cost of the “war” will concede immediately only if







θ+

∆+>⇔θ−




 θ++> −

)(2
1ln1       

2 rb
Br

r
T

r
e

r
Bbb M

MrT (3.9)

As before, the “dead zone” is determined by type θ~  having the property that

an agent with this type is indifferent between conceding at ( )θ~T  and waiting until

TM:

( ) ( ) 





θ+

∆+=θ−⇔




 θ++=




 θ+ −θ−

)~(2
1ln1~       

~

2

~
~

rb
Br

r
TTe

r
Bbe

r
b M

MrTrT (3.10)

For the model with discounting the case when the cost of waiting another

instant to concede for the lowest type player θ , ( )Tb
T
H ,,θ

∂
∂− , is equal to zero,

corresponds to br−=θ  ( 0<b ). For br−≥θ , as before, θ~  is decreasing in TM and

approaches θ  when TM → ∞. Therefore, from (3.10), the absolute side of the “dead

zone” is increasing in TM and bounded from above for br−>θ  and approaches

infinity for br−=θ . However, in contrast with Lemma 10, the relative size of the

“dead zone” approaches zero in both cases:

( )

( ) rb
BrT

TT

rb
rb

Br
Br
rb

T
TT

M

M

M

M

−=θ
∆

θ−θθ−θ−≈θ−

−>θ







+θ
∆+

∆
+θ

θ−θ
−≈θ−

for                                  )~ln()~(~

for       
)(2

1ln
)~ln(

1~

(3.11)

Nevertheless, when r→0 the rate of convergence to zero of the relative size

of the “dead zone” is unaffected for br−>θ  but becomes slower and slower for

br−=θ  (in the limit we have the result of Lemma 10).
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4. Expected Social Welfare
The expected social welfare of the war of attrition equals the expected total

surplus minus the expected costs of the “war”. For our setting (2.1) we have

[ ]),()( 2121 θθθ+θ−+= TEBbESW (4.1)

where ),( 21 θθT is the time of the end of the “war” when players’ types are θ1 and

θ2 and expectations E[.] are taken over ],[],[ 2211 θθ×θθ .

Since the expected total surplus is constant for our model without

discounting, the expected total costs of the “war” completely determine the

expected social welfare. Let us try to investigate the changes in the expected social

welfare when the external constraint on the duration of the “war” is introduced into

the model.

A disappointing result is that in our case the appropriate version of the

Revenue Equivalence Theorem21 is reduced to the trivial statement:

Lemma 12: (The Revenue Equivalence Theorem) Consider a war of attrition

setting with two risk-neutral players, in which player i has privately known costs

of the “war” θi independently drawn from interval ],[ ii θθ , ii θ<θ≤0 , with

cumulative distribution )( iiF θ  and strictly positive on ),( ii θθ  density )( iif θ .

Suppose that given pair of Bayesian Nash equilibria of two different wars of

attrition are such that: (i) For each possible realization of ),( 21 θθ  the time of the

end of the “war”, ),( 21 θθT , is the same in both equilibria; and (ii) For any i=1,2

player i has the same expected utility level in the two wars of attrition when his

cost of the “war” is at its highest possible level. Then these equilibria of the two

wars of attrition generate the same expected social welfare.

(See Appendix for a proof).
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Since the function of the end of the “war”, ),( 21 θθT , changes after the

introduction of the external constraint on the duration of the “war” (see Section 3),

the Revenue Equivalence Theorem loses its predictive power in our case.

Let us return to the symmetric war of attrition setting (2.1) and consider the

symmetric perfect Bayesian equilibria for the infinite and finite horizon wars of

attrition studied in Sections 2 and 3 correspondingly. The expected total costs of

the “war” for the infinite horizon game are

[ ]( )∫

∫∫

∫∫

θ

θ

θ≥θ

θ

θ

θ

θ
∞

θθθθθ≤θθ+θ=

θθθθθθθ+θ=

θθθθθθθ+θ=

11111221

21

21212121

21212121

)()()(   2

)()(}),(max{)(2

)()(}),(max{)(

dfFTE

ddffT

ddffTETC

(4.2)

where T(θ) is symmetric equilibrium strategy (2.12).

Now consider the finite horizon model with the external constraint on the

duration of the game TM and let θ~  be the solution of (3.3) for 
θ

∆≥
2

BTM  and θ=θ~

otherwise. Notice that the outcome of the “war” does not change as compared with

the infinite horizon model when one of the players has costs above θ~ . Thus, the

difference in the expected social welfare between the infinite and the finite horizon

“wars” is associated with players’ types within ]~,[]~,[ θθ×θθ . The expected costs

for these agents in the infinite and finite horizon models are

[ ]( )

[ ] [ ]θ≤θθθ=θ

θθθθθ≤θ′θ′+θ=θ ∫
θ

θ
∞

~ )~(2)~(

)()()(    2)~(

2 
M

~

EFTETC

dfFTEETC

MT

(4.3)

                                                                                                                                                             
21 See Myerson (1981) and Riley and Samuelson (1981) for the earliest statements of the Revenue
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correspondingly. The difference in the expected total costs between the models is

)~()~( θ−θ=− ∞∞ MTMT ETCETCETCETC (4.4)

The introduction of the external constraint on the duration of the “war”, TM ,

has two opposite effects on the expected total costs. First of all, agents with types

within ]~,[ θθM , where θM is defined as MM TT =θ )( , who conceded before TM in the

infinite horizon game now wait until TM, which obviously increases the total

expected costs of the “war”. On the other hand, agents with types below θM

concede earlier in the finite horizon model, which decreases the expected total

costs. Therefore, despite the fact that the expected duration of the game is always

lower in the finite horizon model (see Lemma 11), the sign of the change in the

expected social welfare might be ambiguous.

In this paper we argue that this sign is indeed ambiguous. It means that in

some cases the introduction of the external constraint TM on the duration of the

“war” will increase the expected social welfare, but in other cases it will actually

decrease it. In order to prove this argument we will consider two examples. In the

first one the expected social welfare of the finite horizon model is always higher

than in the model with the infinite horizon. In the second example, however, for

some values of TM the expected social welfare of the finite horizon model is lower

than in the infinite horizon one.

                                                                                                                                                             
Equivalence Theorem.
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Example 1

Consider a uniform distribution ( )
θ∆

=θ 1f  over ],[ θθ . The symmetric

equilibrium strategy for this case is given by (2.15). For 
θ

∆≥
2

BTM  we have

θ≤θ<θ ~  (see Section 3) and, according to (3.3) and (4.3),

[ ]

[ ] 





θ
θ++





θθ

θ
θ

θ+θθ=θ
∆







θ
θ

θ∆
θ−θ

θ∆
θ+





+





θθ

θ
θ

θ+θθ=θ
∆ ∞

~22
1

)~(

~
ln

~
)~()~(1

~
ln)~(

2
1

)~(

~
ln

~
)~()~(1

2 

2 

F
FETC

B

F
F

FETC
B

MT

(4.5)

where ( )
θ∆
θ−θ=θ

~~F .

Therefore, according to (4.5),







θ
θθ−

θ
θ−θ

θ∆
θ∆=− ∞

~
ln~2

~ 22

2BESWESW
MT (4.6)

First of all, notice that the change in the expected social welfare is

proportional to θ. Therefore, if θ =0, 0=− ∞ESWESW
MT  for 

θ
∆≥
2

BTM . It means

that for θ=0 in the symmetric equilibrium of the finite horizon game the agents

change their strategies in such a way that the expected social welfare remains

unchanged in spite of the reduced expected duration of the “war” (see Figure 1a).

For the case θ>0, 0→− ∞ESWESW
MT  as θ→θ~  (that corresponds to

∞→MT  according to Lemma 9) and ( ) 0~1
2~

2

2 >






θ
θ−

θ∆
θ∆=−

θ ∞ BESWESW
d
d

MT

for any θ>θ~ . Therefore, 0>− ∞ESWESW
MT  for any 

θ
∆≥
2

BTM  (see Figure 1b).
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For 
θ

∆<
2

BTM  agents of all the types will wait until TM in the finite horizon

model, that means θ=θ~ . Therefore, we have

MMT

E

TBbESW

TBBbESW

)(

 
2

θ+θ−+=

θ−∆−+= ∞∞ (4.7)

Thus, 0>− ∞ESWESW
MT  for 

θ
∆<
2

BTM  in both cases (see Figures 1a and 1b).

Summing up this example, for the case of a uniform distribution over ],[ θθ

the introduction of the external constraint on the duration of the “war” can only

raise the expected social welfare, though in the case of θ=0 the expected social

welfare increases only for low enough TM (see Figures 1a and 1b).

Example 2

Our second example is a little bit tricky and the reasons for that are as

follows. As can be seen from Example 1, a uniform distribution does not allow us

to obtain the result that the expected social welfare can fall due to the introduction

of the external constraint on the duration of the “war”. For this to be true, we

should “overload” the right-hand side of the distribution of agents’ types that

means to give more weight (in terms of probability) to the higher types than to the

lower ones. But even for a uniform distribution the calculations are quite

cumbersome, and they become much more cumbersome for an increasing density

function (even in the case of “stairs” made from uniform distributions).

In order to avoid unnecessary calculations and to make the result more

tractable we will use the following trick. Consider the following probability

density function
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


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
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
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+θθ∈θ




 ε−π

=θ

),(for     
2
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),(for        

),(for         
2

1
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b
b

ba
ba

a
a

f (4.8)

where a, b, and ε are strictly positive and small enough and 0<π<1 (see Figure 2).

For this distribution, all the conditions of Sections 2 and 3 are satisfied. Thus, we

can find the symmetric equilibrium strategies and calculate the expected social

welfare for both infinite and finite horizon models. After that we can take a limit

0→ε , 0→a , and 0→b . In that case the distribution (4.8) approaches to the

degenerate distribution: θ=θ  with probability π and θ=θ  with probability 1-π.

Though the symmetric equilibrium strategy T(θ) does not, strictly speaking, have a

limit when (a,b,ε)→0,22 the expected social welfare is continuous in (a,b,ε)>0.

Therefore, we can (after some simple transformations) change the order of the limit

and the integral in (4.3) and take the limit within the integral before we take the

integral itself. As will be seen below, it will reduce the calculations significantly

without affecting the result much.

First of all, notice that most of the results of Sections 2 and 3 are valid for

the case when f(θ)=0 for some interval [θ′,θ″]⊂ ( θθ, ) (in that case the symmetric

equilibrium strategy will be constant on [θ′,θ″] and, therefore, will not be strictly

                                                
22 For such a degenerate distribution function, agents play mixed strategies in the symmetric perfect
Bayesian equilibrium. Thus, Example 2 can also be considered as an example of the procedure for
calculating such an equilibrium using the idea that any degenerate probability distribution can be
considered as a limit of differentiable probability distributions with strictly positive densities.
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decreasing). Thus, we can set ε→0 even before we calculate T(θ) without loss of

generality.23

Consider θ∈ [ θ−θ  ,b ]. Then 
b

f π−=θ 1)( , 



 θ−θ−π−+π=θ

b
F 1)1()( .

According to (2.12) for the symmetric equilibrium strategy of the infinite horizon

model we have

)(ln)(1ln)(ln

1

)( θ
θ

∆−→










 θ

θ
−+θ−

π−
−θ

∆=θ FBFbF
b

BT  as b→0 (4.9)

For θ∈ ( a+θθ  , ] we have 
a

f π=θ)( , 
a

F θ−θπ=θ)(  and, according to (2.12),







θ
π+

θ
θ∆−→−θ+








θ+θ

+θ−θ−
θ

∆=θ ln)(ln)(
)(

ln)(ln)( yBbT
ay

ayBT (4.10)

where 
π
θ=θ )()( Fy ∈ (0,1] and we set a→0 and b→0 in the limit. Thus, the

symmetric equilibrium strategy of the infinite horizon game for small enough a and

b has a form presented in Figure 3.

We also have

[ ]

[ ] ( ) ( )

] b,-[for                                                          
)(

 )(1
2

)(
2)(

1  

] ,(for              )(
2

  

θθ∈θ
θ
θ∆π−θ→










 θ+π−−θπ−θ+





 +θπ

θ
=θ≤θ′θ′

+θθ∈θθ→θ+θ=θ≤θ′θ′

F
FbFa

F
E

ayaE

(4.1

1)

Therefore, the integral in (4.3) is in fact taken over F(θ)∈ (0, )~(θF ) and the

upper limit of the integral, )~(θF , is continuous in (a,b)>0. Thus, in order to

                                                
23 It is possible to strictly follow the logic of the previous paragraph and set ε→0 only within the integral.
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calculate the limit of the integral (4.3) we can use the following procedure: first,

we take the limits (a,b)→0 within the integral; after that take the integral itself. As

a result, we can obtain






 π

θ
θ−+−π∆→θ∞ ln21~ln2~)~( 22 yyBETC (4.12)

for ] ,(~ a+θθ∈θ , where 
a

y θ−θ=
~

~ ;








θ
θ∆π−π−+







θ
θ∆π−−∆→θ∞ )~(2~~~ln~2)~( 2 zzzzzBETC (4.13)

for ] ,[~ θ−θ∈θ b , where )~(~ θ= Fz .

Now we can interpret our results in terms of the symmetric perfect Bayesian

equilibrium of the infinite horizon war of attrition with a degenerate distribution of

players’ types: θ=θ  with probability π and θ=θ  with probability 1-π. In this

equilibrium an agent with θ=θ  plays a mixed strategy: ‘Concede at







θ
π+

θ
∆−= lnln)()1( yByT  if the rival has not conceded before’, where y is

uniformly distributed over [0,1]. An agent with θ=θ  plays a mixed strategy:

‘Concede at zBzT ln)()2(

θ
∆−=  if the rival has not conceded before’, where z is

uniformly distributed over [π,1]. (4.11) presents the expected type of the rival if no

one has conceded before a certain moment of time. If this time is less than )()2( πT ,

a player is still not sure about the type of his rival and forms expectations about it

according to Bayesian rule. Once the time becomes more than )()2( πT , the player

knows for sure that his rival has type θ . (4.12) and (4.13) present the expected

total costs for the “war” between two agents on condition that they will not
                                                                                                                                                             
The result will be the same, but the calculations will be more cumbersome.
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concede before )~()1( yT  and )~()2( zT  correspondingly. From (4.13) we can also

obtain the expected social welfare of this game








θ
θ∆π−π−∆−+=∞ )1(21BBbESW (4.14)

Now let us consider the finite horizon version of this “war” and use the

following procedure: first, we work with distribution (4.8) (with ε=0 without loss

of generality); once the symmetric equilibrium strategy is substituted into the

expected total costs (4.3), we take the limit (a,b)→0.

Let 
θ

∆≤
2

BTM . Then agents of any type will wait until TM, that means θ=θ~

and, according to (4.3),








θ
θ∆π−θ= 12 MMT TETC (4.15)

Comparing (4.14) and (4.15), we can see that for π<
2
1 , ∞> ETCETC

MT  for

θ
∆≤<
2

~min BTT MM  (see Figure 4) and, therefore, the expected social welfare of the

finite horizon game is lower than in the case of the infinite horizon. The largest

difference in the expected social welfare, ∞−






θ
∆= ETCBTETC MMT 2

, has its

maximum value 
θ
θ∆∆

8
B  for 

4
1=π .

Now consider 
)(2

)(
2 b

BbTTB
M −θ

∆+−θ≤<
θ

∆ , which corresponds to






 π−

θ
∆≤<

θ
∆ ln

2
1

2
BTB

M  in the limit b→0. In that case all the agents of the lower

types, ] , [ a+θθ∈θ , will wait until TM , but some agents of the higher types,
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namely those with types higher than θ~ : θ<θ≤−θ ~b , will concede according to

the infinite horizon strategy. In the limit b→0 for the degenerate distribution

function it corresponds to agent θ  playing the mixed strategy: ‘Wait until TM’ with

probability 
π−
π−

1

~z  or ‘concede at )()2( zT  if the rival has not conceded before’ with

probability density function zz )~1( − , where z is uniformly distributed over [π,1]

and ]1 , [
2
1exp)~(lim~

0
π∈





∆
θ−=θ=

→ B
TFz M

b
. Then, according to (4.3) and (4.11), in

the limit we have

( )zzzETC
MT

~ln21~~)~( −






θ
θ∆π−=θ (4.16)

Therefore, from (4.13) and (4.16) we can obtain that in the limit (a,b,ε)→0

( )zBETCETCESWESW
MTMT

~2)~()~( −π
θ
θ∆π∆=θ−θ=− ∞∞ (4.17)

Form (4.17) we can see that for π<
2
1 , ∞< ESWESW

MT  for max~
2 MM TTB <<
θ

∆  (see

Figure 4).

For

( ) ( ) 














θ
π−

θ
∆





 π−

θ
∆→








+θ

∆+−θ
−θ

∆+−θ∈ ln
2
1,ln

2
1

)(2
,

)(2
BB

a
BbT

b
BbTTM

all the lower type agents will wait until TM and all the higher type agents will

follow the infinite horizon strategy. Formally, we have ]b , [~ −θ+θ∈θ a  and,

therefore, ( ) π=θ~F  and [ ] θ→+θ=θ≤θ′θ′   
2

~  aE . Thus, according to (4.3),

( ) θπ=θ 22~
MMT TETC (4.18)
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Therefore, the expected social welfare of the finite horizon game is higher

than the expected social welfare of the infinite horizon one for that region of TM

(see Figure 4).

Now consider the last region for the external constraint:

)(2
)(

a
BbTTM +θ

∆+−θ>  that corresponds to 






θ
π−

θ
∆> ln

2
1BTM  in the limit.

Now some of the higher type agents, namely those with type above θ~ :

) ,(~ a+θθ∈θ , concede as if they were playing the infinite horizon game.

Therefore, according to (4.9),







θ
π−





 −

θ
∆= ln~ln

2
11 yBTM (4.19)

From (4.19) and (4.11) we finally obtain

 




 π

θ
θ−+−π∆=θ ln21~ln2~)~( 22 yyBETC

MT (4.20)

Thus, comparing (4.12) and (4.20) we can see that ∞= ESWESW
MT  for this

region of MT  (see Figure 4). This result is a consequence of a→0. In the case of a

(nondegenerate) uniform distribution with a>0, according to Example 1, we have

∞> ESWESW
MT  and the difference in the expected social welfare is proportional

to a (from (4.6) for the case θ<<θ∆=a  we can obtain

θ
∆≈− ∞

ayBESWESW
MT

3~
6

).

Summing up this example, for the case of a degenerate distribution (and for

distribution (4.8) with a, b, and ε low enough) the introduction of the external

constraint on the duration of the “war” can not only raise but also lower the

expected social welfare for some small (around 
θ

∆
2

B ) values of TM (see Figure 4).
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And this effect occurs when the probability share of the higher type agents exceeds

that of the lower type agents, that is just in the case when it is more probable to

face an agent with higher costs of the “war” than with low costs.

Discounting

The introduction of discounting into the model does not change the general

logic of this section much. Now not only the total costs of the “war” but also the

total surplus depend on the time of the end of the game. The earlier the “war” ends

the more the total surplus is. Since the expected duration of the final horizon war

of attrition is always lower than that of the infinite horizon game (see Section 3),

the expected total surplus always rises after the external constraint on the duration

of the “war” is introduced. However, the effect of this constraint on the expected

total costs is still ambiguous. Moreover, since the cost of the “war” is discounted,

the society gains less (in terms of present value) from the reduction of the total

costs due to the introduction of the external constraint on the duration of the game.

Therefore, the sign of the change in the expected social welfare might still be

ambiguous.

 Since players’ utilities are continuous in the discount factor, the sign of the

change in the expected social welfare is still ambiguous for low enough

discounting. Higher discounting, according to (3.8), lowers the symmetric

equilibrium strategies of the players and, therefore, the “war” becomes effectively

“shorter”. At the present state of our research we do not know for sure whether the

extremely heavy discounting can eliminate the possibility of a welfare

deteriorating constraint on the duration of the “war”, though this effect seems to us

rather improbable.
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5. Summary and extensions
In the incomplete information war of attrition, the players' uncertainty about

the type of their rivals leads to delays in the end of the game. In this paper we

showed that in the case when the symmetric equilibrium strategy of the infinite

horizon war of attrition is nonlimited, the introduction of an expected change in the

external circumstances to the model leads to the occurrence of the “dead zone”

right before the moment of the change. In the “dead zone” the game ends with

probability zero and, therefore, once no one has conceded before the beginning of

this zone, both players know for sure that the game will continue until the date of

the change in the external circumstances. The type of the change in the

circumstances considered in this paper, namely the end of the game under a tie-

breaking rule, is, of course, the simplest one. Nevertheless, the “dead zone” result

can be generalized for other types of external changes. For example, for a country

financing the fiscal deficit by borrowing abroad, as in Alesina and Drazen (1991),

there might be the case that, as the debt to output ratio reaches a certain value,

there is a positive probability for the foreign credit line to be closed. Another

possible extension which might be relevant to the present situation in Russia is that

a country with a full financing of the fiscal deficit by the inflation tax (as in Drazen

and Grilli (1993)) might have a positive probability for a foreign loan on favorable

terms to be granted at a certain moment of time. In all the cases, the fact that this

change is expected by all the agents might lead to the “dead zone” occurrence. If

we consider elections as an example of expected future changes in the external

circumstances, the occurrence of the “dead zone” might be considered as a formal

proof of the commonly observed fact that reforms are almost never implemented

right before the elections. Our result suggests that if the reform has not been
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implemented before a certain moment of time, it will not be implemented until the

time of the elections.

In this paper it is also shown that in the case when there is a strictly positive

probability for an agent to face an opponent with the costs below any positive

value, the fact that the “war” can not last forever due to some external constraint

leads to the following unexpected result: for the model without discounting the

relative size of the "dead zone" stays above some strictly positive level for

whatever high value of the external constraint. This result, however, does not hold

for the model with a strictly positive discount factor. Nevertheless, when the

discount factor is small, the relative size of the “dead zone” will be significant

even for high enough values of the constraint on the duration of the game24.

We also showed in this paper that the introduction of the external constraint

on the duration of the war of attrition could not only increase but also decrease the

expected social welfare. Namely, the decrease in the expected social welfare might

occur when the right-hand side of the distribution of agents’ types is “overloaded”

(that means that the probability for an agent to have a cost of the “war” from the

higher cost region is always more than the same probability for the lower cost

region). A striking result is that the decrease in the expected social welfare occurs

for relatively low rather than for relatively high values of the constraint on the

duration of the game. It means that when a third party (for example, the

government in the case of the “war” for a monopoly profit or an international

monetary organization in the case of a country with a fiscal deficit) tries to

interfere into the war of attrition with a generous goal to increase the social

welfare, the effect of such an interference might be quite the opposite. Moreover,

this perversity result might occur just in the case when it is much more probable to
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face an agent with high costs of the “war” than with low costs. Another possible

application of our result might be the case of pre-term elections, which is relevant

to the present Russian situation. Consider a country with a “weak” government,

that means that the government is unable to undertake painful policy steps to

introduce necessary reforms into the economy. A usually suggested “cure” in such

a case is to hold pre-term elections as soon as possible in order to elect a

sufficiently “strong” government. Our analysis suggests that such pre-term

elections might, in fact, lower the expected social welfare and this effect might

appear just in the case when most of the population suffers significantly from

living in an unstabilized economy.

A possible extension of our model, which might be interesting to consider, is

the model in which the properties of Theorem 1 do not hold and, consequently,

equilibrium strategies can be nonmonotonous. For example, for the case

( ) cTxTxH −θ=θ,, ,25 all the properties of Theorem 1 hold and the symmetric

equilibrium strategy is increasing in the type θ  and nonlimited for the case of the

infinite horizon war. However, the introduction of the discount into this model,

( ) ( )rTrT e
r
cexTxH −− −−θ=θ 1,, , might change the agents' behavior significantly.

Now a player with higher type θ  not only gains a higher prize for winning the

game but also has higher costs from waiting another instant to concede

( ) ( ) rTecrbTb
T
H −+θ=θ

∂
∂− ,, . Choosing his equilibrium strategy, a player should

balance these two factors. In this case, the monotonicity property of equilibrium

                                                                                                                                                             
24 If r is the discount factor, then the “scale” of the constraint on the duration of the “war” has an order of
1/r.
25 This is the classic case studied in most of the auctions and war of attrition literature (see, for example,
Myerson (1981), Bishop, Cannings, and Maynard Smith (1978), and Bulow and Klemperer (1998)).
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strategies might be lost26. If the equilibrium strategies in the infinite horizon model

appear to be limited, the players will have a finite planning horizon and the

expected future changes in the external circumstances at the time beyond this

horizon might not influence the agents' equilibrium behavior.

Finally, it is worth noticing that the case when the time of the change in the

external circumstances is known for sure by the agents is very extreme. In most of

the real life situations, the moment of the external change MT  is not known for sure

and economic agents form expectations about it. The random nature of MT  might

become very important as the time horizon of the agents rises (it occurs either

when MT  rises with unchanged costs distribution or when MT  does not change but

the costs of the “war”, including a discount rate as a special case, rise). Thus, the

war of attrition model with a random constraint on its duration might deserve

certain consideration.

                                                
26 It might appear if Brb ∆> , that is if the difference between the winner's and the loser's payoffs is not
very high or the discounting is very heavy.
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Appendix
Proof of Lemma 1: Equilibrium requires that type iθ′  prefers )( iii TT θ′≡′  to

)( iii TT θ′′≡′′  and that type iθ′′  prefers iT ′′  to iT ′ . Thus, according to (2.2), we have

( ) [ ] [ ]

{ } ( ) [ ]
[ ] { }∫
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and

( ) [ ] [ ]

{ } ( ) [ ]

[ ] { }∫

∫

′<θθ

″<θθ

θθθθ′′−+′=θ




 ′θ′′−++

′>θ′θ′′−≥θθθθ′′−+

′′=θ




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Summing (A1) and (A2), we obtain

( ) ( )[ ] ( )[ ]{

( ){ } ( ) ( )( ){ } 0

PrPr

≥


θθθ−+

′′≥θ′′−′≥θ′θ′−θ′′

∫∫ ″<θθ′<θθ iTjjTj
jjjj

iTjjTj

ijjiijjiii

dfT

TTTTTT
(A3)

Suppose that for ii θ′>θ′′  we have ii TT ′>′′ . Then (A3) takes the form

( ) ( ) ( )[ ] ( )( )( ){ } ( ) 0Pr ≤






 θθθ−′+′′≥θ′′−′θ′−θ′′ ∫ ″<θ≤′θ jj

iTjjTiTj
jjiijjiiii dfTTTTTT (A4)

And (A4) equals to zero only if ( )[ ] 0Pr =′≥θ ijj TT . In that case, player iθ′′  does not

change his payoff by choosing any ii TT ′≥′′ , but he might increase his expected

payoff by choosing other iT ′′ . For this case without loss of generality we can set

ii TT ′≤′′ . Therefore, in equilibrium if ii θ′>θ′′ , ( ) ( )iiii TT θ′≤θ′′ .    □.
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Proof of Theorem 1: In the full analogy with deriving (A3) we can obtain

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]

( ){ } ( )( )( ){ } ( ) 0,

Pr,Pr,

Pr,Pr,

≥θθθ∆−+

′′=θ′′∆−′=θ′∆+
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iTjjTj
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iTjjTj

ijjiijji
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 (A5)

where ( ) ),,(),,(, TxHTxHTxH ii θ′′−θ′≡∆ .

Consider ii θ′>θ′′ . Then ( ) ( )∫
″θ

′θ
θθ

θ∂
∂−=∆ i

i
ii

i

dTxHTxH
 

 
,,,  is a nondecreasing

function of x and T (we consider the first part of the theorem). Suppose ii TT ′>′′ .

Then (A5) takes the form

( ) ( ){ } ( )[ ] ( ) ( ){ } ( )[ ]
( ) ( )[ ] ( ) ( )[ ]{

( )( )( ){ } ( ) 0,

Pr,Pr,

Pr,,Pr,,

≤


θθθ∆−

′=θ′∆+′′<θ<′′∆+

′′=θ′′∆−′∆+′′>θ′′∆−′∆

∫ ″<θ≤′θ jj
iTjjTiTj
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ijjiijjii
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(A6)

since all the differences in {} in (A6) are nonpositive. According to the theorem

conditions, the second and the third differences are strictly negative. Therefore,

(A6) equals to zero only if ( ) ( ){ } ( )[ ] 0Pr,, =′′>θ′′∆−′∆ ijjii TTTbHTbH  and

( )[ ] 0Pr =′′≤θ≤′ ijji TTT . In that case, since player iθ′′  is indifferent among choosing

any ii TT ′≥′′ , without loss of generality we can set ii TT ′≤′′ (see the proof of Lemma

1). Therefore, in an equilibrium if ii θ′>θ′′ , ( ) ( )iiii TT θ′≤θ′′ .

The proof of the second part of the theorem is the same as above.    □.

Proof of Lemma 1': According to Lemma 1, if equilibrium strategies were not

strictly decreasing, there would be a mass point in the distribution of concession

times. Let T>0 be a mass point of agent j's equilibrium strategy, that is

0])(Pr[ >≡=θ PTT jj . In this case, player i would assign probability 0 to the
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interval (T-ε ,T) as he does better playing just above T. Indeed, for 0,0 >ε>δ  we

have he following difference in expected payoffs for player i

( ) ( ) ( ) ( )[ ] ( )[ ]
( ) ( )[ ] ( )[ ]

( )[ ] ( )( ) ( )( ){ }∫ δ+<θ≤ε−θ
θθθθ−+ε−=θ+−
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dfTBTTBb
TTTbTTTT
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2

Pr,,

(A

7)

Since a distribution can not have two infinitely close mass points,

( )[ ] ( )[ ] 0PrlimPrlim
00

=ε−=θ=δ+=θ
→ε→δ

TTTT jjjj . Therefore

( ) ( ) 0,lim,lim
00

>∆=θε−−θδ+
→ε→δ

BPTUTU iiii  for any iθ .

Therefore, there exists 0>ε  such that player i assigns probability 0 to the interval

(T-ε ,T). Thus, the types of player j that play T would be better off playing T-ε ,

because it would not reduce the probability of winning and would lead to reduced

cost. Therefore, T can not be a mass point of agent j's equilibrium strategy.    □.

Proof of Theorem 1': As in Lemma 1' we can obtain for a mass point T>0 of agent

j's equilibrium strategy and for 0,0 >ε>δ :

( ) ( ) ( ) ( )( ) 0,,,,,lim,lim
00

>θ−θ=θε−−θδ+
→ε→δ

TbHTBHPTUTU iiiiii  for any iθ ,

since ( )TxH i ,,θ  is strictly increasing in x. The rest of the proof closely follows

that of Lemma 1'. □.

Proof of Theorem 2: If agent j's equilibrium strategy were discontinuous, then

there would be 0≥′T  and TT ′>′′  such that ( )[ ] 0Pr =′′<θ<′ TTT jj  while

( ) ε+′′=θ TT jj
~  for some small 0≥ε  for some jθ~ . In this case, player i strictly



47

prefers TTi ′=  to any ( )TTTi ′′′∈ , , as the probability of winning is the same and

the expected cost is reduced. But then the quitting "at or just beyond" T ′′ is not

optimal for player j with type jθ~ .    □.

Proof of Lemma 2: Consider agent i with the time of concession Ti chosen at the

beginning of the game according to (2.6). At any moment during the game either

one of the players has conceded and the game is over or the "war" is still going on.

Consider iTT <~  and suppose that no one has conceded yet. Player i at time T~

updates his beliefs about the time of concession of his rival according to the

Bayesian rule: ( ) ( )
( )TG

Tg
TTg

j

ij
ij ~1

~
−

=  for TTi
~≥ . Thus, his expected payoff from

time T~  on from choosing iT  is

( ) ( ) ( )
( )

( )[ ]
( ) ( )ii

j

ijiT

T
j

j
iii Tb

TG
TG

dt
TG

tg
tBTTU θ−

−
−

+
−

θ−= ∫ ~1
1

~1
~  

~ 
 (A8)

which leads to (2.6) after maximizing with respect to iT .    □.

Proof of Lemma 3: According to Lemma 1’, the expected utility of the player θ in

a symmetric equilibrium is

[ ] { }( )[ ]θ′θθ−θ>θ′∆+=θ ,maxPr)( TEBbU (A9)

where (.)T is a symmetric equilibrium strategy and expectations [].E  are taken over

θ′ .

Now notice that since in equilibrium no type of agent can gain by following any

other type’s concession rule,

( ) ( ) ( ) { }( )[ ]θ′θθ−θ+θ≥θ ,max babba TEUU (A10)

So )(θU  is differentiable
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{ }( )[ ] 





θ′θ′θ′+θθ−=θ′θ−=

θ ∫
θ

θ

dfTFTTE
d
dU )()()()(,max (A11)

On the other hand, from (A9),

)()()()()](1[)( θθθ−θ′θ′θ′θ−θ−∆+=θ ∫
θ

θ

FTdfTFBbU (A12)

Since all the terms of (A12) except the last one are differentiable and )(θF  is also

differentiable, )(θT  must be differentiable too.    □.

Proof of Lemma 4: Consider a multiplicative shift in θ , that is

( ) ( ) 0 ; ~~  :~ >δθ=θδ+θ=θ FF . From (2.12) we have

( ) ( )θ<
δ+

∆=∆=θ ∫∫
θ

θ

θ

θ
T

x
dx

xF
xfB

x
xd

xF
xfBT

 

 

~
 
~ )(

)(
~
~

)~(
)~(~~ (A13)

Since ( ) ( ) ( ) ( ) θθθ=θθθ dfFdfF ~~~~~ , EE TT <~ .

Consider an increase in θ∆  for an unchanged θ , that is

( ) ( ) ( ) 1 ; ~~ : ~ >λθ=θθ−θλ+θ=θ FF  and, therefore, ( ) ( ) θθ=θθ dfdf ~~~ . From (2.12)

we have

( ) ( ) ( )θ<
θ−λ+θ

∆=∆=θ ∫∫
θ

θ

θ

θ
T

x
dx

xF
xfB

x
xd

xF
xfBT

 

 

~
 
~ )(

)(
~
~

)~(
)~(~~ (A14)

Again, since ( ) ( ) ( ) ( ) θθθ=θθθ dfFdfF ~~~~~ , EE TT <~ .

Any increase in the costs of the "war" with unchanging distribution function can be

represented as a successive combination of the increases considered above.

Therefore, the result of Lemma 4 holds.    □.
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Proof of Lemma 5: As θ→θ , ( ) ( )( ) θ−θθ≈θ fF . Therefore, from (2.12), for

θ→θ  ( ) 





θ−θθ
∆≈θ 1lnBT  if 0>θ  and ( )

θ
∆≈θ BT  if 0=θ .    □.

Proof of Lemma 6: Since ( ) 0=θT , if ( )θT  is continuous there must exist

( ) MTT =θθθ∈θ ~:),[~ and ( ) MTT <θ  for ],~( θθ∈θ . Consider 0 ,~ >εε+θ=θ . Then

( ) δ−=θ MTT , where 0for  0 →ε→δ . If no one has conceded before ( )θT , the

player θ  concedes at ( )θT  and obtains

( ) ( )( ) ( )δ−θ−=θθ MTbTTU  (A15)

However, if the player waits until MT , his expected payoff will be

( )( ) MM TBbTTU θ−+≥θ
2

 (A16)

Since 0→δ  for 0→ε , ( ) ( ))()()( θθ>θ TTUTTU M  and playing ( )θT  is not

optimal for the playerθ .     □.

Proof of Lemma 7: The proof of this lemma closely resembles the proof of

Lemma1'. Let MTT <  be a mass point of one of the agents’ equilibrium strategy. In

this case, the other agent will never play T since

( ) ( ) ( )[ ] 0
2

Pr,,lim
0

>∆=θ=θ−θδ+
→δ

BTTTUTU jjiiii  for any iθ  and agent i will be

better off setting his concession time just above T. Therefore, T cannot be a mss

point of a symmetric equilibrium strategy.     □.

Proof of Lemma 8: The proof is almost the same as the proof of Theorem 2.

Proof of Lemma 9: From (3.3) we have
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( ) MTBT =
θ

∆+θ ~2
~ (A17)

Since the left-hand side of (A17) is a decreasing function of θ~ , ( )MTθ~  is

decreasing in MT . From Lemma 5, ( ) +∞→θ~T  as θ→θ~ . Since ∞<
θ

∆
~2
B  for θ>θ~ ,

θ→θ~  as +∞→MT .     □.

Proof of Lemma 10: Form (3.3) we have

BT
B

T
B

T
TT

MM

M

∆+θθ
∆=

θ
∆=−

)~(~2~2

~
(A18)

From (2.12) we have

( )( ) ( )
( )






θ
θ−∆=θθ

θ ∫
θ

θ F
f

x
dx

xF
xfBT

d
d  

 )(
)( (A19)

Since ( ) 0>θf , ( )
( ) θ−θ

→
θ
θ 1

F
f  as θ→θ . Thus, ( )( ) 0<θθ

θ
T

d
d  for both 0=θ  and

0>θ . Therefore, (A18) is decreasing in MT  for +∞→MT .

If 0>θ , then, according to Lemma 5, ( ) +∞→θθ ~~T  for θ→θ~  and 0
~

→−

M

M

T
TT

when +∞→MT . If 0=θ , then ( )
θ

∆≈θ BT  for θ→θ  (see the proof of Lemma 5).

Therefore, ( ) BT ∆→θθ ~~  for θ→θ~  and, from (A18), 
3
1~

→−

M

M

T
TT  when

+∞→MT .     □.

Proof of Lemma 11: According to (3.1), M
E TT =  for 

θ
∆≤
2

BTM , which is

obviously increasing in MT .
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For 
θ

∆>
2

BTM , according to (3.5),

( )[ ] ( )( ) ( ) ( )
M

M
M

E

dT
dfFTTF

dT
dT θθθθ−+θ=

~~~~2~ 2 
(A20)

From (3.3) we can obtain

( )
θ

∆=θ− ~2
~ BTTM (A21)

and from here, using (2.12),

( )
( ) θ=θ









θ

+
θ
θ∆− ~~

~2
1

~
~

MdT
d

F
fB (A22)

Substituting (A21) and (A22) into (A20), we finally obtain

( )[ ]
( ) ( )θθ+θ

θ= ~~2~
~ 3 

fF
F

dT
dT

M

E

(A23)

Thus, 0>
M

E

dT
dT  for 

θ
∆>
2

BTM . (Remember that we assume 0)( >θf ) for ),( θθ∈θ

throughout the paper. Thus, θ>θ~  for any ∞<MT .) Therefore, ET  is strictly

increasing in MT  for any 0≥MT .

As +∞→MT , θ→θ~  (see Lemma 9) and, therefore, we have

( ) 







θ−θθ

∆≈θ ~
1ln~ BT  for 0>θ , ( )

θ
∆≈θ ~

~ BT  for 0=θ  (see the proof of Lemma 5),

and ( ) ( )( )θ−θθ≈θ ~~ fF .

From (A17) we have

( )[ ] ( ) ( )[ ]
( )( )

( )( )[ ]









>θθ−θθ







θ−θθ

∆

=θθθ∆
≈θ







θ
∆+θ=θ

0for    ~
~

1ln

0for                         ~
2
3

~
~2

~~
2 

2

2 2 

fB

fB
FBTFTM (A24)
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Therefore, ( )[ ] 0~ 2
→θFTM  as θ→θ~  in both cases.    □.

Proof of Lemma 12: Denote [ ]),()( iiiii TET −− θθ=θ  and [ ]),()( iiiii PEP −− θθ=θ ,

which are the expected time of the end of the “war” and the expected probability to

win the “war” for player i with type θi. Then the expected utility of player i is

)()()( iiiiiii TPBbU θθ−θ∆+=θ (A25)

As in proof of Lemma 3, it can be easily shown that

(i) )( iiT θ  is nonincreasing in θi and

(ii) ∫
θ

θ

+θ=θ
i

i

iiiii dxxTUU )()()( (A26)

Then from (A25), (A26), and the fact that 1),(),( 212211 =θθ+θθ PP  for any (θ1,θ2),

it can be easily obtained that

[ ]∫∫∑
θ

θ

θ

θ=
θθθθ+θθθθ+θ=

2

2

211122221121

1

1

2

1
)()()()(),()( ddfFfFTUESW

i
ii (A27)

□.
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Figure 1a. The expected social welfare of the finite horizon war of attrition with uniform over
[ θ,0 ] distribution of players’ types.

Figure 1b. The expected social welfare of the finite horizon war of attrition with uniform over
[ θθ, ] ( 0>θ ) distribution of players’ types.

b + B

ESWTM

ESW∞

0 ∆B
2θ

TM

b + B

ESWTM

ESW∞

0 ∆B
2θ

TM



56

Figure 2. Players’ types density function for Example 2.

Figure 3. The symmetric perfect Bayesian equilibrium strategy for the density function in Figure
2 with ε=0.

θθ− θ + a− θ − b− θ−

f(θ)

1 − π − ε
2−

ε
2−π −

ε

θθ− θ + a− θ − b− θ−

T(θ)
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Figure 4. The expected social welfare of the finite horizon war of attrition with a degenerate
distribution function of players’ types: θ=θ  with probability π and θ=θ  with probability 1-π,
π<1/2.
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