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Abstract

In this paper a one-output growth model with endogenous transition to

a new technology is considered. This model in general form is presented in

[5], where the authors carefully considered the case of a uniform distribution

governing the random transition to a new technology. This master thesis fol-

lows the main article [5], and our problem is to investigate the case when the

probability of transition to a new technology is governed by an exponential

distribution.
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1 Introduction

Qualitative analysis of trajectories is one of the most important directions for inves-

tigation of dynamic economic models. This approach involves examining trajectory

qualities only with the help of the structural qualities of the model, without direct

knowledge of a given trajectory. It allows us to make predictions and assessments

about the future growth rate and structural breaks in economies. Qualitative analysis

also improves our understanding about the nature of technological choice and growth

in an economy.

The theoretical basis for our analysis is represented by ”turnpike” qualities of

dynamic economic models, which state that for almost all planning periods optimal

trajectories are close to some very simple trajectory (e.g. trajectories of maximal

stationary growth in von Neumann’s models or a golden ray in models involving

consumption) and this path does not depend on the planning horizon, nor the initial

conditions, nor the concrete requirements of the optimality criterion, and so on.

It is reasonable to investigate the question of whether analogous characteristics

are valid for dynamic economic models which consider transition to a new technol-

ogy. Actually we are interested only in the processes of transition, i.e. in optimal

trajectories from the beginning until the moment of transition to the new technology

(since after transition trajectory behaviour becomes trivial), and in the corresponding

investment in the development of the new technology.

In our work a one-output growth model with endogenous transition to a new

technology is considered. This model in general form is presented in [5], where the

authors carefully considered the case of a uniform distribution governing the random

transition to a new technology (see below section 2.1). My master thesis will follow

the main article [5], and our problem is to investigate the case when the probability

of transition to a new technology is governed by an exponential distribution.
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2 Construction of model

2.1 Specification of model

Let us consider the following linear model in discrete time. The ”state” is described

by a nonnegative number x, which evolves with rate α , i.e., during a unit time period

x is transformed into αx. The state x can be interpreted as the current monetary

value of a multiproduct economic system, and linear development can be explained

by the ”turn pike” quality, which states that the optimal trajectories of economic

models with large planning horizons are close to some ray (i.e., grow proportionally

at the von Neumann rate). Thus, the technological opportunities of the system in

our model are described by the rate α.

There is a traditional technology with rate α0 ≥ 1. Further, it is known that there

is an opportunity to transform to a new (more advanced) technology with growth rate

α1 > α0. (We will denote these technologies as α0 and α1 correspondingly.) At the

beginning, α0 is the operational technology and for the transition of the system to α1

some investment is needed. The investments made each period accumulate to create

a fund of project development (FPD) for the new technology. The dynamics of this

fund is described by the following procedure: the current investment c transforms the

state of the fund z ∈ R to the new level z′ := z + c for one period.

Let ξ characterize the minimal level of the fund which is needed to create the

new technology. Let us also suggest that, from the point of view of the planner, ξ

is random with known distribution function π(z) = Pr(ξ < z), z ≥ 0. The time of

transition to the new technology is considered to be the first moment at which the

FPD is greater than ξ.

Thus, the evolution of the whole system in discrete time can be described in the

following way. The state of the system is given by a pair (x, z) ∈ R2
+. If the decision

to invest amount c (0 ≤ c ≤ x) is taken in the state (x, z), then in the next moment

the state of the system will be (x′, z′), with

x′ = α0(x− c), z′ = z + c. (1)
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Transition to the new technology during the current period happens with proba-

bility

β :=
π(z′)− π(z)

1− π(z)
. (2)

If transition does occur, then after that the system develops at the rate α1, having

x′ as an initial value.(After transition investment ceases: we consider only a single

transition.) If the system remains in α0 (with probability 1 − β) then the process

repeats with the new state given by x′ and z′.

2.2 Stationary model, fundamental equation

As shown in [5], a stationary dynamic approach can be used for describing our model.

The Bellman function of this approach is the solution to the following functional

equation

F (x, z) = µ max
0≤c≤x

[(1− β)F (x′, z′) + βx′], (x, z) ∈ R2
+ (3)

where µ := α−1
1 , (x′, z′) and β can be derived from (1) and (2).

It was proved that this equation fully describes the asymptotic behaviour of the

solutions to the problem of maximizing the average state of the system at the end

of the planning interval: ExT → max, when planning horizons are large and equal

T . In particular, the optimal choice of investment in new technology (i.e., optimal

investment as a function of the current state of the system) is close to investment

c∗ = C(x, z), which maximizes the right side of equation (3).

Now let’s make some assumptions about the function π and the level ξ, which sets

the time of transition to the new technology. The case when π is a uniform distribution

is carefully considered in [5]. We will consider the case when π is an exponential

distribution, i.e., π(z) = 1 − e−Θz, z ≥ 0. This represents a situation when the

probability of transition to the new technology depends only on current investment

and does not depend on accumulated funds, i.e., rewriting (2), β = β(c) = 1− e−Θc.
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Then the functional F also does not depend on z, and equation (3) can be written as

F (x) = µ max
0≤c≤x

[(1− β)F (α0(x− c)) + βα0(x− c)] , x ≥ 0. (4)

Let’s denote the solution to (4) as Φ.

Lemma 1: The function Φ possesses the following qualities:

a) Φ(0) = 0

b) Φ(x) is nondecreasing in x

c) Φ is convex, i.e. Φ′(x) is nondecreasing in x

d) Φ(x) ≤ λx when x ≥ 0, where λ := µα0 < 1.

The proof of Lemma 1 is given in [5].

The function Φ depends on three parameters: α0, α1 and λ. We can diminish the

number of parameters by one. Let ϕ(x) := Θα−1
0 Φ(x/Θ); the function ϕ possesses

the qualities a, b and c of Lemma 1, and from qualities c and d it follows that there

is a limit γ, where

γ := lim
x→∞

ϕ(x)

x
= lim

x→∞
ϕ′(x) ≤ µ. (5)

After changing the maximization variable to c := c/Θ, equation (4) transforms to

ϕ(x) = µ max
0≤c≤x

[(1− β)ϕ(α0(x− c)) + β(x− c)] , x ≥ 0 (6)

where now β = 1− e−c.

With the help of (d) from Lemma 1 we can assess ϕ ≤ µx. In equation (6) the

variables x, c, α0, β, α1 and ϕ are all unit free. It is clear that ϕ is not identically

zero (we can substitute c := x/2 in (6)). Substituting also v := x − c, 0 ≤ c ≤ x,

β = 1− e−(x−v) in (6) we have

ϕ(x) = µ max
0≤v≤x

(
v − e−xf(v)

)
, f(v) := ev(v − ϕ(α0v)) (7)

and we will refer to this expression as the fundamental equation.

Since the optimal choice v = V (x) 6= 0 for any x > 0, then all semi-axes R+ are

divided into two regions:

1) Region RE, in which

V (x) = x =⇒ ϕ(x) = µϕ(α0x); (8)
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2) Region RI, where 0 < V (x) < x, and then v = V (x) is an interior optimum,

which can be derived from the condition

d

dv
(v − e−xf(v)) = 1− e−xf ′(v) = 0

i.e.

f ′(v) = ev(v − ϕ(α0v) + 1− α0ϕ
′(α0v)) |v=V (x)= ex. (9)

Lemma 2: There is x′ such that V (x) < x when x > x′. Proof: If the lemma is

not true, then there exists a sequence xn → ∞, such that V (xn) = xn, i.e., ϕ(xn) =

µϕ(α0xn). Then, from (5) we get

γ = lim
n→∞

ϕ(xn)

xn

= λ lim
n→∞

ϕ(α0xn)

α0xn

= λγ,

which is impossible. 2

Lemma 3: Optimal choice v = V (x) is an increasing function.

Proof: In region RE it is clear. In region RI by differentiating (2.7) by x, we can

find (with the help of (2.9))

ϕ′(x) = µe−xf(v) |v=V (x) . (10)

By using (2.7), we get

ϕ(x) + ϕ′(x) = µV (x) (11)

Since ϕ(x) and ϕ′(x) are growing in x (ϕ is convex), the Lemma is proved. 2

Function V (x) determines the transitional mapping x → Y (x) := α0V (x), which

gives birth to the trajectory xt+1 = Y (xt), t = 0, 1, ...

Because of Lemma 2, the transitional mapping y = Y (x) is an increasing function.

Hence, trajectories are monotone: if x1 > x0, then the trajectory is growing, otherwise

it is decreasing.

The construction and investigation of the functions V (x) and ϕ(x), and also tra-

jectory behaviour analysis, which depends on the parameters α0 and α1, are the main

problems considered here.

Note 1.
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As in [5], we will assume that the volume of investment C(x) = x − V (x) is

nondecreasing in x; this assumption is satisfied by all the examples for which cal-

culations on a computer were made. From this fact it follows that the region RE,

where C(x) ≡ 0 (the state of noninvestment), is represented by the segment [0, x0],

and possibly x0 = 0. Thus,

RE := {x | V (x) = x} = [0, x0], RI := {x | V (x) < x} = (x0,∞), (12)

and also from Lemma 2 we get x0 <∞. 2

3 Detailed analysis

3.1 Stationary points

Point x∗ is stationary if Y (x∗) = x∗. For finding such points we will use the ”vekovoe”

equation from V.Z.Belen’kii’s article [6]. In our case, for a stationary point x the

following equations are valid: v = x/α0, ϕ(x) = ψ(x) and ϕ′(x) = ψ′(x), where

ψ(x) :=
x(1− e−σx)

α0(α1 − e−σx)
, σ := 1− 1/α0, (1)

and then equation (2.9) can be transformed to

1− (α1 − 1)(σx+ α0 − 1)

(α0 − 1)(α1eσx − 1)
+

(α1 − 1)σx

(α1eσx − 1)2
= 0. (2)

Let’s denote s := σx, δ := α1− 1 and ε := α0− 1; therefore 0 < ε < δ and (2) can be

rewritten as

1− δ(s+ ε)

ε((δ + 1)es − 1)
+

δs

((δ + 1)es − 1)2
= 0, (3)

Thus, a stationary point can be found using the formula x∗ = s/σ, where s is a

solution of the ”vekovoe” equation (3).

3.1.1 Investigation of ”vekovoe” equation

Introducing the variable y = es − 1, transform equation (3) to

f(y) := ky +
by

y + q
− ln(1 + y) = 0, y ≥ 0 (4)
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q := 1− λ, k :=
ε(1 + ε)

q + ε
, b :=

λε2

q + ε
.

We are interested in nontrivial (strictly positive) solutions to equation (4). If m

is the number of such solutions then because f(0) = 0, m is less than or equal to

the number of roots of the derivative f ′(y). This derivative can be transformed to

f ′(y) = g(y)
(1+y)(y+q)2

, where

g(y) := (k(y + 1)− 1)(y + q)2 + qb(y + 1) (5)

is a polynomial of the third degree in y; so m ≤ 3.

The precise number of solutions depends on ratios of some of the model parame-

ters. It is convenient to conduct our research in the parametric space

Π := {π = (ε, q)|ε > 0, q ∈ (0, 1)}. (6)

The essential role is played by the sign of f ’s derivative when y = 0

χ := f ′(0) = k − 1 +
b

q
=
ε

q
− 1

and, correspondingly, by the diagonal ε = q in the space Π (see picture 1). Since

f(∞) = ∞, there are four cases, as shown on picture 2. Along the diagonal q = ε,

polynomial (5) can be written as

g(y) |q=ε= (1+ε
2
y − 1−ε

2
)(y + ε)2 + ε2(1−ε)

2
(y + 1) =

= y
2
[(1 + ε)y + 2ε](y + 2ε− 1);

This expression is equal to zero when y = 0, and it is positive when y > 0 and

ε > 1/2, or, it has one solution y = 1 − 2ε when y > 0 and ε < 1/2. At the

parametric point π = (1/2, 1/2), g(y) has the double root y = 0, and is positive

when y > 0. Therefore, if the parametric point π is on the diagonal q = ε, then χ = 0

and the function fπ does not have any positive solutions when ε ∈ [1/2, 1], or, has

exactly one positive solution when ε ∈ [0, 1/2).

The region that lies to the right of the diagonal in the space π corresponds to

the right part of picture 2. It has two subregions, m(π) = 0 and m(π) = 2. The
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boundary between them, Γ, corresponds to the case when the function fπ is tangent

to the y axis at some positive and unique point, which serves as a double root. Thus,

the boundary Γ is determined by the following condition: the system of two equations

f(y) = 0, f ′(y) = 0 has a positive solution, i.e.

Γ = {π|∃y > 0 : fπ(y) = 0, gπ(y) = 0} (7).

This argument likewise applies to the left part of picture 2, i.e., for the region to the

left of the diagonal. Thus, formula (7) characterizes the boundary Γ in the whole

space Π.

3.1.2 Construction of the boundary Γ

Note that if k ≥ 1, then using (5), g(y) > 0 ∀y > 0, and therefore, the boundary Γ

lies in the region where k < 1, i.e.

0 < 1− k = 1− ε(1 + ε)

q + ε
=
q − ε2

q + ε
∼ ε2 < q < 1 (8)

Equation (7) can be seen as a parametric way to describe the curve Γ, where the

variable y > 0 is considered in the capacity of a parameter and a parametric point

π = (ε, q) ∈ Π is a function of y. Condition (7) affords the determination of explicit

analytic expressions for the functions ε(y) and q(y); therefore the curve Γ can be

calculated with the help of a computer.

So, let’s move forward. Since we are only interested in strictly positive solutions

of the system f(y) = f ′(y) = 0, the function f can be replaced by the function

v(y) := f(y)/y, and instead of (7) we can write the equivalent conditions v(y) = 0,

v′(y) = 0, i.e., 
L
y

= k + b
y+q

− d
dy

(
L(y)

y

)
= A(y) := (1+y)L−y

y2(1+y)
= b

(y+q)2
, (9)

where L = L(y) := ln(1 + y).

Using the equality
L

y
= yA(y) +

1

1 + y
(10)

10



and the second equation of (9), write (9) as
k = L

y
− b

y+q
= yA(y) + 1

1+y
− (y + q)A(y) = 1

1+y
− qA(y)

b = (y + q)2A(y). (11)

Substituting for k and b their expressions in terms of the main parameters (ε, q)

from (4), we can transform the system of equations (11) to ε2 +Bε− q(1−B) = 0

ε2 − Cε− qC = 0,
(12)

where

B := qA(y) +
y

1 + y
and C :=

1

λ
(q + y)2A(y).

Note that B and do not depend on ε. Subtracting the first equation of system (12)

from the second equation we have

ε = q
(

1

H
− 1

)
, H := B + C. (13)

By substituting the expression for ε, for instance, into the second equation of (2), we

can derive a formula which includes only q and y:

H(C + 2q − qH) = q. (14)

In Appendix 1, section 1 it is shown how this formula can be transformed into the

following quadratic equation relative to q

q2[1 + (2 + 4y)E]− q[1− y(1 + 4y)E] + Ey3 = 0

E = E(y) := (1 + y)A(y), E > 0.
(15)

The discriminant of the quadratic equation has the following form

D(y) = (1 + y)2M(y), M(y) :=

(
2− L

y

)2

− 4L.

The function M(y) is decreasing (see Appendix 1, section 2) and has a unique root

y∗ = 0.3985743...(all digits are significant). Therefore, when y ≤ y∗ equation (15)

has two positive roots q1 and q2, which can be derived explicitly as functions of y.
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Computer calculations show that the smaller root q1(y) grows in y ∈ [0, y∗] from

q1 = 0 to q1 = q∗ = 0.104..., and that the larger root q2(y) decreases from q2 =

1/2 to q∗. Therefore, the two-component function q1,2(y) has a simple and smooth

(differentiable) inverse function y = Y (q), q ∈ [0, 1/2]. Substituting it in (13) gives

ε as a function of q. This function, according to the examples for which computer

calculations were made, is monotonic (moreover ε(q = 0) = 0, ε(q = 1/2) = 1/2) and

therefore it has an inverse function q = Q(ε), ε ∈ [0, 1/2], which corresponds to the

boundary curve Γ defined in (7).

Let’s consider some of the features of the function Q(ε).

Γ1. As was noted, curve Γ lies in region (8). It is important for us that the whole

curve lies below the diagonal: Q(ε) < ε, when ε ∈ (0, 1/2).

Γ2. Q(ε) ≈
√

2ε3/2 when ε→ +0.

Γ3. Q(ε) ≈ ε− 3
4
(1/2− ε)2 when ε→ 1/2− 0.

Γ4. Function

q =

 Q(ε), when 0 ≤ ε ≤ 1/2

ε, when 1/2 < ε ≤ 1

is continuous and has a continuous derivative in the entire segment ε ∈ [0, 1].

Γ5. When ε = q = 1/2 point y∗ = 0 serves as a triple root of function (4):

fπ(y) =
y(3y + 2)

4y + 2
− ln(1 + y) ≈ 2

3
y3 − 7

4
y4...y → 0, π = (1/2, 1/2)

Furthermore, the function X∗(ε) := s(ε)/σ = 1+ε
ε

ln(1 + Y (Q(ε))) (twofold sta-

tionary point as a function of ε) is decreasing in ε ∈ (0, 1/2) from +∞ to zero,

moreover

X∗(ε) ≈
√

2ε−1/2 ε→ 0, X∗(ε) ≈ 9

2
(1/2− ε) ε→ 1/2− 0.

Functions Q(ε) and X∗(ε) are sketched in figure 3; and tables of these functions are

given in Appendix 3.
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3.2 Behaviour of functions for large x

By virtue of Lemma 2, formula (2.11) is valid for large x; from this it follows that

V (x) → ∞ when x → ∞. From (2.5) and (2.9) we have (note that in this case

v = V (x))

lim
x→∞

ex−v

v
= lim

v→∞
(1− ϕ(α0v)

v
) = 1− α0γ =: a, (16)

and

ex−v = av + o(v) ⇒ x = v + ln (av) + o(1). (17)

Further, we get correspondingly

lim
x→∞

x

v
= lim

v→∞

1

v
(v + ln (av)) = 1,

x = v + ln (ax) + ln
v

x
+ o(1) = v + ln (ax) + o(1); (18)

from (2.11),(4) and (16) it follows that

γ = µ, a = 1− λ = q. (19)

Now, from (18) we can derive

V (x) = x− ln (qx) + o(1)

C(x) := x− V (x) = ln (qx) + o(1);
(20)

and, from (2.10),(2.11) and (20),

ϕ(x) = µ(x− ln (qx)− 1) + o(1)

ϕ′(x) = µ(1− 1
x
) + o(1/x).

(21)

3.3 Behaviour of functions for small x

When x→ 0 both of the cases V (x) = x and V (x) < x are relevant, require separate

attention.
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3.3.1 Case V (x) < x.

Here equation (2.11) is applied, from which it follows that ϕ(x) = ϕ′(x) |x=0= 0.

Assuming that ϕ′′(x) |x=0 exists, we have

ϕ(x) = k
x2

2
+ o(x2), ϕ′(x) = kx+ o(x), x→ 0; (22)

where k is some constant; applying equations (2.11) and (2.9) we get

v(x) =
k

µ
x+ o(x) =⇒ k ≤ µ (23)

ex = f ′(v) = 1 + (2− kα2
0)v + o(x) = 1 + (2− kα2

0)
k

µ
x+ o(x),

from which follows (2− kα2
0)

k
µ

= 1, i.e. k will be a root of the equation

k2α2
0 − 2k + µ = 0.

It is possible only if

λα0 = µα2
0 ≤ 1 ∼ ν :=

lnα1

lnα0

≥ 2 (24)

and, with the help of (23),

k =
1−

√
1− λα0

α2
0

=
µ

1 +
√

1− λα0

. (25)

3.3.2 Case V (x) = x.

This case is relevant when

1 < ν < 2,

where ν is determined in (24). The corresponding region is represented by segment

RE = [0, x0] (see (2.12)), in which formula (2.8) is valid and demonstrates a state of

noninvestment, C(x) ≡ 0. This formula does not depend on the distribution function

π(z), and therefore the analysis, conducted in [5] for the uniform distribution, can be

applied in our case.

In [5] it was shown that in the state of noninvestment the functional ϕ grows at

rate ν (i.e. ϕ(x) ≈ xν), which, when ν < 2 is faster than quadratic growth (22).
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4 Synthesis of the overall solution

The detailed analysis accomplished in the previous sections gives us an opportunity to

construct a synthesis of the overall solution to the optimal investment path problem.

4.1 The Parametric space

According to the results of section 3.1, the parametric space (3.6) can be divided into

five subregions, Π1, ...,Π5, 1, as shown in picture 4; with every subregion is associated

a specific type of behavior of trajectories, which are represented by the corresponding

fragments in picture 5.

Since the boundary Γ lies entirely above the diagonal q = ε, the number m of

roots of the function (3.4) in region q > ε is constant. From the left part of picture

2 it can be seen that m = 1 or m = 3. In practice it appears that m = 1, and the

case of m = 3 is not relevant. Thus, in subregion Π3 there is a single stationary point

x∗, such that Y (x) > x when x > x∗ and Y (x) < x when x < x∗. So, point x∗ is

unstable: trajectories move away from it in different directions. Furthermore, in the

neighborhood of the point x = 0, the functional is quadratic, since ν > 2 (see section

3.3.1). This is illustrated by fragment 3 of picture 5.

The subregion above the diagonal is divided by the boundary Γ and the line ν = 2

into four parts. On the right of Γ (subregions Π1,Π2) there is no stationary point

(m = 0), on the left (subregions Π4,Π5) there are stationary points x∗1 and x∗2; when

ν > 2 (subregions Π2,Π4), the asymptote x→ 0 corresponds to the situation exam-

ined in section 3.1.1; when ν < 2 (Π1,Π5) it corresponds to the situation examined

in section 3.3.2. This is illustrated by the corresponding fragments in picture 5.

Let us briefly describe the types of system behavior, depending on which subregion

Π1, ...,Π5 the parametric point π = (ε, q) is situated.

In subregion Π1 the rate α0 of the traditional technology is sufficiently high, and

the difference in the rates α0 and α1 is not large. In this case, Y (x) > x ∀x, and every

1Unlike [5], we do not use parameters (α0, λ), but rather, the coordinates (ε, q) = (α0− 1, 1−λ).

15



trajectory xt, t = 0, 1, ... grows with time, xt →∞. Moreover, from any initial state

the system transforms to the new technology with probability one (since C(x) grows

in x and zt =
∑t

k=0C(xt) →∞ and P (τ > t) = 1− π(zt) = e−zt → 0, as t→∞).

Note that when x0 < x0 (see picture 5.1), at the beginning we have a state of

noninvestment with duration L, which can be derived from the condition x0α
L
0 ≈ x0,

i.e.

L ' ln (x0/x0)/ lnα0; (1)

when t < L, (xt) = 0 and investing in the project begins at the moment t = L.

Correspondingly,

ϕ(x0) = µLϕ(xL) ' µLϕ(x0) = e−L ln α1ϕ(x0) =

= e−ν ln (x0/x0)ϕ(x0) = (x0

x0 )
νϕ(x0) = Axν

0, x0 < x0, (2)

where

A :=
ϕ(x0)

(x0)ν
.

In [5] it is shown, that in a model with continuous time (when L is not restricted

to be an integer), (1) and (2) are represented by strict equalities, i.e. (see section

3.3.2),

ϕ(x) = Axν , x < x0. (3)

Assume that at point x0 the function ϕ is twice differentiable. We could determine

the constant A in (3) from the condition of conjunction

ϕ, ϕ′, ϕ′′ |x0−0= ϕ, ϕ′, ϕ′′ |x0+0;

in Appendix 1, section 3 it is shown that point x0 and constant A can be derived

from these conditions, i.e.,

x0 =
ν(2− ν)

ν − 1
, A = µ(2− ν)(x0)

1−ν , 1 < ν < 2. (4)

In subregion Π2 the system’s behaviour differs from the behaviour in Π1 only in

the sense that there is no state of noninvestment and investing begins from the first
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moment, independently of the initial state x0 > 0. The asymptote of the functional

behaviour near point x = 0 is described in section 3.3.1.

Note that on the boundary of subregions Π1 and Π2, ν = 2, and when ν → 2−0,

in accordance with (4),

A→ lim
ν→2−0

[
µ(2− ν)(

ν(2− ν)

ν − 1
)1−ν

]
=
µ

2
lim

s→+0
ss =

µ

2
, (5)

i.e., ϕ(x) ≡ µ
2
x2, which coincides with asymptote (3.22) when ν = 2.

Subregion Π3 (the triangular region 0 < ε < q < 1) has already been described

above. Let’s mention here only that on the boundary of the subregions Π3 and

Π2 (the segment q = ε, ε ∈ [1/2, 1]), stationary point x∗ which is strictly positive

inside Π3 becomes zero, i.e., Π3 also disappears (the type of behaviour turns into

that associated with region Π2). The peculiarity of region Π3 is the zone of risk:

when x0 < x∗, trajectory xt converges to zero. With positive probability the process

of investing could continue infinitely and the system never transforms to the new

technology.

Subregions Π1,Π2,Π3 are similar to the corresponding subregions Λ1,Λ2,Λ3 from

article (6), and the boundaries among them (the diagonal q = ε and the line ν = 2)

in our case and in the case of uniform distribution (considered in 5) coincide.

New in our case is the presence of subregions Π4 and Π5, created by the boundary

Γ as constructed in section 3.1.2; there are no such subregions in [5], where the

three types mentioned above wholly describe the model: Λ1 = Π1 + Π5, Λ2 =

Π2 + Π4, Λ3 = Π3. The peculiarity of subregions Π4,Π5 is that they have two

stationary points x∗1 and x∗2. The larger one (x∗2) is similar to the stationary point

x∗ of subregion Π3 and in the process of transition of Π3 → Π4 (segment q = ε,

ε ∈ (0, 1/2]), point x∗2 serves as a successor to x∗ (x∗2 is also unstable). Point x∗1,

absent in Π3, at the time of transition from Π3 to Π4 appears starting from x = 0

and is stable (see picture 5, fragments 4,5). When the parameter π moves from the

diagonal, q = ε x∗1 grows, and x∗2 decreases. When π reaches the boundary Γ, x∗1 and

x∗2 turn into a double stationary point, which disappears after the transition.

The evolution of the system in subregions Π4 and Π5 has features typical of the
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subregions Π1 and Π2 - with unit probability the system transforms to the new tech-

nology - and also typical for the subregion Π3 - the presence of a zone of stagnation,

when xt decreases with time. Stagnation occurs when the initial state x0 is situated

between the stationary points, x0 ∈ (x∗1, x
∗
2): see picture 5. If x0 > x∗2, then xt →∞,

else xt → x∗1. So, unlike Π3, even if stagnation occurs, the transition to the new

technology will still happen sooner or later.

The difference between subregions Π4 and Π5 is only that in Π5, there is a zone

of noninvestment RE, while in Π4 there is no such zone.

Note 2. In picture 2 it is denoted, which fragment corresponds to which subregion

i.e., the subregion where point π is situated. 2

4.2 Algorithm of solution’s construction for fixed parametric

point

In this section the algorithm to construct the solution is described. The algorithm is

written in PASCAL.

In accordance with section 3.2 (for any parametric point) for large x, V (x)/x ≈ 1,

and so Y (x) > x. Let us consider a retrotrajectory (trajectory in the past) i.e.,

the sequence x0, x−1, x−2, ... such that Y (x−(t+1)) = x−t, t = 0, 1, ..., beginning at

some large point. Because x−1 < x0 and as long as Y (x) is an increasing function, the

sequence {x−t} is decreasing. In future for convenience instead of x−t we will write

yt, so

yt+1 = Y −1(yt), t = 0, 1, ... (6)

Let’s show that the retrotrajectory can be constructed explicitly. For this purpose

we introduce the sequence ζt := {yt, vt, ϕt, ϕ1t} where

{y, v, ϕ, ϕ1}t := {y, V (y), ϕ(y), ϕ′(y)}y=yt .

With y0 is large enough, the sequence ζ0 can be calculated on the basis of the asymp-

totic formulas from section 3.2, and therefore, we will consider ζ0 as known.
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Further, the process works iteratively: we can describe the transition t → t + 1,

assuming that ζt is known. Since yt = Y (yt+1) = α0V (yt+1) = α0vt+1, we can assume

vt+1 := yt/α0. Formula (2.9) turns into the new equation

ev(v − ϕ(y) + 1− α0ϕ
′(y)) |v=vt+1,y=yt= ex |x=yt+1 . (7)

The left side of equation (7) is already known, and therefore we equate yt+1 :=

ln (left side of (7)). Further, apply formula (2.10); that is, presume that ϕ1t+1 :=

µe−xf(v) |x=yt+1,v=vt+1 . From (2.11), we find ϕt+1 := µV (x)− ϕ′(x) |x=yt+1= µvt+1 −

ϕ1t+1. Thus, the sequence ζt+1 is determined in full.

In subregion Π2 the process described above leads to the origin (i.e., yt → 0 when

t → ∞) and the constructed set of points, graphed on a screen, gives additional

understanding into the solution; thus, when π ∈ Π2 the solution is derived.

If π ∈ Π1 then the iterative process reaches the point x0, where V (x) = x, and

further transforms in regime (2.8), i.e.

ζt+1 := {yt/α0, yt/α0, µϕt, λϕ1t}. (8)

So, for this subregion the solution is also constructed; point x0 itself can be derived

from iterative process by checking the condition

yt − vt < ε, (9)

where ε is of some specified precision (ε ∼ 10−6).

If π ∈ Π3, then the iterative process reaches point x∗; this fact is revealed in the

process of computing the following condition

yt−1 − yt < ε. (10)

In the interval (0, x∗), the solution is similarly constructed: a retrotrajectory starts

from the origin (i.e. from point x0 = δ, where δ is a small number, δ ≈ 10−4); the

initial conditions for the process (the sequence ζ0) are constructed on the basis of

asymptote from section 3.3.1. The retrotrajectory always runs in the direction oppo-

site to a straight trajectory (”straight” directions are shown in picture 5), therefore
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in this case it comes to the same point x∗, but from the left side. The coincidence of

the values x∗left and x∗right is evidence helping to confirm our theoretical approach.

More complicated is the procedure to construct solution in the subregions Π4 and

Π5, which are specific to the exponential model (see section 4.1). In these cases, an

iterative process initiated at y0 = ∞, comes to a stationary point x∗2, and the point

x∗1 can not be derived with the help of the algorithm described above, because retro-

trajectories move away from it (straight trajectories, on the contrary, come towards

x∗1, since this point is stable; see picture 5, cases 4 and 5). But in this case the point

x∗1, as a root of the function (3.4), lies in the segment [0, x∗2] (see picture 2) and easily

can be calculated with the method of bisection. After determining point x∗1, we can

construct the solution in the interval (0, x∗2), by initiating from x∗1 left and right retro-

trajectories (i.e., equating y0 = x∗1− δ and y0 = x∗1 + δ; initial data ζ0 are constructed

on the basis of section 3.1). As above, determining the relevant case (where the point

π is situated) can be done by checking conditions (9) and (10).
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5 Conclusions

The main results of our model in the case of an exponential distribution function are:

1. The Bellman equation is applied and analyzed. The properties of its solutions

are outlined (lemmas 1-3, section 2.2).

2. A detailed analytical investigation of the solution’s characteristics, depending

on model parameters, is carried out.

3. A division of the parametric space into regions is made. Every region corre-

sponds to a specific type of system behaviour. In comparison with [5], which has

only three types of system behavior, in our case we obtain five different types, and

correspondingly five different regions.

4. An algorithm for model calculations and its corresponding program in the PAS-

CAL language is constructed. We also compare the empirical results with theoretical

derivations.
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A Proof of formulas

A.1 Derivation of equation (3.15).

We have

H = B + C =
[
q + 1

λ
(q + y)2

]
A(y) + y

1+y
=

=
[
1 + q

λ
(1+y

y
)2
]
L− q

λ
1+y

y
,

which is linear in q;

C + 2q − qH = C + 2q − q(B + C) = λC − qB + 2q =

= [(q + y)2 − q2]A− q y
1+y

+ 2q = (2qy + y2)A− q y
1+y

+ 2q,

which is also linear in q.

Further transformation maps into quadratic equation (3.15).

A.2 Decreasing of the function M(y).

We have

A(y) = (ln(1 + y)− y
1+y

)/y2 = 1
y2

(∫ y
0 ( 1

1+t
− 1

1+y
)dt
)

=

= 1
(1+y)y2

∫ y
0

y−t
1+t
dt > 0

Thus, the function L(y)/y decreases. Moreover,

E(y) = (1 + y)A(y) =
1

y2

∫ y

0

(
y − t

1 + t

)
dt <

1

y2

∫ y

0
(y − t)dt = 1/2;

therefore

M ′(y) = −2
(
2− L

y

) (
L
y

)′
− 4

1+y
= 2

(
2− L

y

)
A− 4

1+y
=

= − 2
1+y

(
2−

(
2− L

y

)
E
)

= − 2
1+y

[
2(1− E) + L

y
E
]
< 0.

A.3 Proof of equations (4.4).

To the right of x0 formula (2.11) is valid. Moreover, it could be differentiated (from

the assumption that ϕ′′(x) is continuous at point x0), furthermore V ′(x0) exists and

is equal to V ′(x0 − 0) = 1; thus, we have ϕ(x) + ϕ′(x) = µx

ϕ′(x) + ϕ′′(x) = µ
|x=x0+0 .
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From conditions of conjunction these equalities must be valid on the left of x0,

i.e. ϕ(x) = Axν when x = x0 − 0. These two equations with two variables A and x0

yield the values in (4.4).
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B Flow-chart of the algorithm

Available on request

Notes: ε = 10−6, δ = 10−4, ∞ := max[100, 2/q],

ζ(y0) :=


Asymptotic formulas s.3.2, y0 = ∞

Asymptotic formulas s.3.3.1, y0 = δ

Formulas of stationary point s.3.1, else.

N = 1, ...5 is the number of region, N = 0 is a stationary point, {α0 + λ = 2} =

{diagonal q = ε}, root x∗1 can be calculated in segment [δ, x∗right − δ]
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Picture 2. Four cases how roots of ”vekovoe” equation can be situated

(see Notes 2 in the end of section 4.1)
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27



-1.
0 x0

v = x v < x

ϕ = Axν

-
y > x

-2.
0

v < x

ϕ = k x2

2

-
y > x

-3.
0 ϕ = k x2

2
x∗

-y > x
� y < x

-4.
0 ϕ = k x2

2
x∗1 x∗2

-y > x

�R

y > xy < x

-5.
0 ϕ = k x2

2
x∗1 x∗2

-y > x

�R

y > xy < x

x0

Picture 5. Five types of system’s behaviour
Arrows show directions of trajectory’s moving,
when x0 is situated in some subregion of R+.
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