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Beliefs Aggregation and Return Predictability

ALBERT S. KYLE, ANNA A. OBIZHAEVA, and YAJUN WANG*

ABSTRACT

We study return predictability using a model of speculative trading among
competitive traders who agree to disagree about the precision of private informa-
tion. Although traders apply Bayes’ Law consistently, returns are predictable. In ad-
dition to trading on long-term fundamental value, traders also trade on perceived
short-term opportunities arising from foreseen future disagreement, as in a Keyne-
sian beauty contest. Contradicting conventional wisdom, this short-term speculation
dampens price fluctuations and generates time-series momentum. Model calibration
shows quantitatively realistic patterns of return dynamics. Consistent with empiri-
cal evidence, our model predicts more pronounced momentum for stocks with higher
trading volume.

ALTHOUGH RESEARCHERS HAVE DOCUMENTED SHORT-RUN time-series mo-
mentum in equity returns, they have found it notoriously difficult to explain
theoretically why this pattern can occur in a competitive market. We present a
dynamic model of competitive trading based on flows of new private informa-
tion. The model generates time-series momentum endogenously by relaxing
the rationality assumption in only a minimal way.

As new information arrives, all traders apply Bayes’ Law consistently and
optimize correctly, with the single exception that each trader symmetrically
assigns a higher precision to his own signal than to other traders’ signals. As a
result of this relative overconfidence, each trader anticipates that, upon ob-
serving new information in the future, others will correct their mistakes by
adjusting their valuations toward unconditional levels and toward his own
level. To profit from this perceived short-run return predictability, traders
make speculative trades which bet against other traders’ expectations. This
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dampens prices relative to traders’ own long-term valuations and leads to time-
series momentum even if traders’ signals are empirically correct on average.

For example, suppose all traders have positive signals such that they all
agree that the fundamental value is $30. Since each trader believes that oth-
ers are putting too much weight on both their current and future information,
each trader believes that other traders will revise their expectations downward
in the future. As a result, each trader would want to trade on this short-term
profit opportunity by selling today at price $30 and plan to buy at better (lower)
prices later. This internalization of future disagreement reduces the price to-
day below $30, even when all traders correctly agree that $30 is an accurate
estimate of fundamental value. As Keynes puts it, “it is not sensible to pay
25 for an investment of which you believe the prospective yield to justify value
of 30, if you also believe that the market will value it at 20 three months hence.”

While this short-term trading faithfully reflects the logic of a Keynesian
beauty contest, its empirical implication contradicts Keynes’s unmodeled in-
tuition that short-term speculation amplifies volatility and leads to mean re-
version in prices. In contrast, our theory implies dampened price fluctuations,
dampened volatility, and therefore momentum—exactly the opposite of what
Keynes expected. We first confirm our insight using a two-period model with
closed-form solution. We then obtain a quasi-closed-form numerical solution to
an infinite-horizon discrete-time model. Price dampening is more pronounced
in the infinite-horizon dynamic trading model than in the two-period model.
The intuition that prices are dampened because of speculative trading suggests
the hypothesis that increasing the frequency of trading will increase momen-
tum. Indeed, we show that increased trading frequency magnifies speculative
trading in a Keynesian beauty contest and leads to larger momentum.

With belief heterogeneity, empirical prices and quantities depend on both
traders’ beliefs and the empirically correct model specification which ulti-
mately govern the dynamics of fundamentals and information. For example,
when traders’ beliefs about the decay rates of signals are different from the
empirically correct parameter, the expected returns are described by a struc-
tural model which is linear in state variables including the current levels of
prices and dividends as well as exponentially weighted averages of these vari-
ables in the past. We calibrate model parameters and obtain positive return
autocorrelation over short periods of one to two years and negative autocor-
relation over longer horizons, matching empirically observed return patterns.
Time-series return momentum arises from price dampening, and return mean
reversion arises when traders believe that the signals decay at a slower rate
than the empirically correct parameter implies.

Our results contribute to the theoretical literature concerning whether dif-
ferences in beliefs or expectations can generate price drift (defined as positive
return autocorrelation). The rational expectations paradigm of Muth (1961)
implies that price changes are unpredictable because prices aggregate funda-
mental information correctly when traders are correct on average, even when
individual traders make mistakes. It may thus seem reasonable to attribute
return predictability, including momentum, to irrational behavior or bounded
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Beliefs Aggregation and Return Predictability 429

rationality. However, when return anomalies are motivated by behavioral bi-
ases, Fama (1998) suggests that a Pandora’s box is opened, undermining mod-
eling parsimony by enabling one plethora of behavioral biases to explain an-
other plethora of anomalies. We therefore explore the suggestion of Morris
(1995) and drop “the common prior assumption from otherwise rational be-
havior,” based on the idea that even rational agents may have heterogeneous
beliefs. We do so by assuming overconfidence, as in Aumann (1976).

Allen, Morris, and Shin (2006) attribute price drift to iterating expectations
in a market where traders are assumed to share a common prior but observe
different information. Banerjee, Kaniel, and Kremer (2009) point out, however,
that in such a noisy rational expectations model, when traders are allowed to
learn from prices, returns should exhibit mean reversion, not momentum, due
to the noise in prices.

Importantly, Banerjee, Kaniel, and Kremer (2009) also show that for het-
erogeneous beliefs to generate price drift, it is necessary for traders to dis-
agree not only about the joint distribution of signals and fundamental value
but also about the joint distribution of the signals themselves. Our two-period
and infinite-horizon models satisfy both of these necessary conditions. Even
when traders are correct on average, our model generates positive return au-
tocorrelation by assuming that traders receive new signals over time, disagree
about how to interpret the signals both in the present and in the future, and
correctly understand how this disagreement plays out in prices. In our frame-
work, these conditions are sufficient to generate price dampening and return
momentum. The return predictability is related to perceived order flow pre-
dictability from traders’ short-term speculative trading based on disagreement
about the information content of future signals. Banerjee, Kaniel, and Kremer
(2009), in their Example 3 (p. 3718), describe a model in which noisy asset
supply has independent increments and traders receive signals only at date 0,
correctly interpret their own signals and noisy supply, and believe that other
traders’ signals are uninformative; this example does not generate price drift
(Kyle and Wang (2021)).1

Our model is similar to Kyle, Obizhaeva, and Wang (2018), who show that
strategic traders rationally smooth their trading in continuous time to reduce
permanent and temporary price impact. The models differ in that we assume
a competitive model of trading in discrete time. Assuming perfect competi-
tion and discrete trading allows us to make direct comparisons with existing
literature, which also assumes perfect competition and discrete time. Assum-
ing discrete-time trading also allows us to show that momentum is more pro-
nounced when trading opportunities are more frequent.

Hong and Stein (1999), Barberis and Shleifer (2003), and Greenwood
and Shleifer (2014) generate return predictability by assuming that traders
follow simple trading rules and do not extract information from prices.

1 In private correspondence, Banerjee pointed out that positive return autocorrelation can be
obtained if their Example 3 is modified to assume that supply has small variance and follows an
AR(1) process rather than a random walk.
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Gruber (1996), Lou (2012), and Vayanos and Woolley (2013) derive time-series
momentum from the aggregate amount of money chasing returns. Detemple
and Murthy (1994), Basak (2005), Jouini and Napp (2007), Dumas, Kurshev,
and Uppal (2009), Xiong and Yan (2010), Cujean and Hasler (2017), Atmaz and
Basak (2018), and Ottaviani and Sorensen (2015) derive return predictability
from the interaction of beliefs aggregation and wealth effects. Andrei and Cu-
jean (2017) study word-of-mouth communication instead of beliefs aggregation
as a mechanism that generates return predictability. In our model, return pre-
dictability is unrelated to traders following simple rules, wealth effects, the
flow of money into the market, and word-of-mouth communication. Instead,
we assume that traders follow optimal strategies, there are no wealth effects,
the asset is in zero net supply, and traders infer other traders’ information
from prices.

Consistent with the empirical evidence presented in Internet Appendix Sec-
tion IV,2 our model implies that time-series momentum is more significant
when disagreement among traders is larger and assets are more actively
traded. Lee and Swaminathan (2000) and Cremers and Pareek (2014) find mo-
mentum to be stronger for stocks with higher volume and more short-term
trading. Zhang (2006) and Verardo (2009) show that momentum returns are
larger for stocks with higher analyst disagreement. Moskowitz, Ooi, and Ped-
ersen (2012) document time-series momentum in liquid futures contracts. Our
findings may also be relevant for empirical research on return predictability in
models with heterogenous beliefs, such as Greenwood and Shleifer (2014) and
Buraschi, Piatti, and Whelan (2022).

This paper is structured as follows. Section I presents a two-period model
and describes intuition behind price dampening. Section II considers a com-
petitive dynamic model with discrete trading and further clarifies mechanisms
generating price dampening. Section III analyzes predictions for holding-
period return and calibrates the model parameters. Section IV concludes.
Proofs are in the Appendix.

I. A Two-Period Model

To explain the economic intuition behind price dampening and time-series
momentum, we first present a simple two-period model.

A. Model Setup

Consider a two-period model of competitive trading among N traders with
different beliefs. A risky asset with random liquidation value v ∼ N(0 , 1/τv)
is traded for a safe numeraire asset. The total supply of the risky asset is zero.

2 The Internet Appendix may be found in the online version of this article.
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Beliefs Aggregation and Return Predictability 431

Traders trade in periods 1 and 2, and the payoff v is realized at period 3. At
periods t = 1 and t = 2, each trader n observes private signals int ,

int := τ 1/2
n (τ 1/2

v v) + ent, (1)

with ent ∼ N(0,1). The asset payoff v and 2N private-signal errors e1t , …, eNt
with t = 1, 2 are independently distributed.

In equilibrium, prices are functions of the average of traders’ private sig-
nals.3 Therefore, each trader n can infer from the equilibrium price the average
of other traders’ private signals, denoted i−nt :

i−nt := 1
N−1

N∑
m=1,m �=n

imt . (2)

To generate trading, we assume that traders agree to disagree about the pre-
cisions of private signals τn. Each trader is “relatively overconfident,” believing
that his own signal has high precision τn = τH and other traders’ signals have
low precision τm = τL for m �= n, with τH > τL ≥ 0.4

Each trader has the same exponential utility function with constant absolute
risk aversion (CARA) parameter A. At each period t = 1, 2, trader n’s problem
is to choose the optimal inventory Snt to maximize his expected exponential
utility function of terminal wealth at time t = 3,

En
t

[
−e−A Wn3

]
, (3)

where En
t [. . .] denotes trader n’s expectation conditional on all signals at period

t = 1, 2, and terminal wealth Wn3 is

Wn3 = Wn1 + (P2 − P1) Sn1 + (v − P2) Sn2. (4)

The prices P1 and P2 are set to clear markets each period.
Let varn

t [. . .] denote trader n’s variance operator conditional on all signals at
period t = 1, 2. The projection theorem for normally distributed random vari-
ables implies that the conditional error variance is related to signal precision

3 For expositional simplicity, we assume there are no public signals in the two-period model.
Including public signals does not change any of our main results.

4 We deviate from the standard approach in the literature, which assumes that a signal has
the form value-plus-noise and these informativeness is given by the variance of the noise term.
Instead, in equation (1), we rescale signals by the standard deviation of noise terms τ1/2

n , so that
the coefficient on the noise term is exactly one. If we assume int := (τn + 1)−1/2(τ1/2

n (τ1/2
v v) + ent

)
,

then it can be shown that var[int ] = 1 and thus traders do not disagree about the variance of
signals. We show that the dynamic dampening effect arises and returns still exhibit momentum
in this setting because traders disagree about the coefficient on v in the signals. To make the two-
period model comparable to our continuous-time setting where a trader can estimate the diffusion
variance (quadratic variation) with high accuracy (see Footnote 9), we rescale signals so that the
coefficient on the noise term is exactly one in the two-period setting.
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τt at time t = 1 and 2 by

τt := (
varn

t [v]
)−1 = τv

(
1 + (

τH + (N − 1) τL
)

t
)
. (5)

Trader n’s expected value of v at time t = 1, 2 is

En
t [v] = τ

1/2
v

τt

(
τ

1/2
H

t∑
s=1

ins + (N − 1) τ 1/2
L

t∑
s=1

i−ns

)
, (6)

which puts weight proportional to τ 1/2
H on trader n’s own private signals int and

to τ 1/2
L on others’ private signals imt , m �= n.

B. The Equilibrium with Myopic Conditional Mean-Variance Optimizers

Instead of maximizing terminal utility (3), we first solve for equilibrium
prices when myopic traders hold conditional mean-variance optimal portfolios
and have no hedging demand.5

THEOREM 1 (Equilibrium with Myopic Conditional Mean-Variance Optimiz-
ers): At t = 1, 2, (i) trader n’s myopic mean-variance optimal inventory is

Šn1 =
En

1

[
P̌2

]
− P̌1

A varn
1

[
P̌2

] , Šn2 = En
2[v] − P̌2

A varn
2[v]

, (7)

and (ii) the prices P̌1 and P̌2 are

P̌1 = 1
N

N∑
n=1

En
1

[
P̌2

]
= Čg

1
N

N∑
n=1

En
1[v], P̌2 = 1

N

N∑
n=1

En
2[v], (8)

where the coefficient Čg satisfies 0 < Čg < 1 and is given by

Čg := 1 − τv

τ2
(1 − 1

N )
(
τ

1/2
H − τ

1/2
L

)2
. (9)

PROOF: The proof is in Appendix subsection A. �
Since traders do not have any hedging demand, equation (7) implies that

each trader’s optimal inventory at t = 1 is his short-term speculative position.
Equation (8) implies that the equilibrium price at t = 1 is a weighted average
of traders’ expectations of the fundamental value v with weights summing to
a constant Čg that is less than one.

5 The results are equivalent to the results if we assume that traders must consume their period
t trading gains at period t (t = 2, 3), so they choose optimal inventory Snt (t = 1, 2) to maximize
En

1[−e−A Wn2 ] and En
2[−e−A Wn3 ], where Wn2 and Wn3 are Wn2 = Wn1 + (P2 − P1) Sn1 and Wn3 = (v −

P2) Sn2.
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Beliefs Aggregation and Return Predictability 433

In our setting, traders agree to disagree about the interpretation of signals in
the present, and they also agree to disagree about how to interpret the signals
arriving in the future. More specifically, each trader n observes both int and the
average of others’ signal i−nt (t = 1, 2), and he believes that both his current
and future signals have high precision and other traders’ current and future
signals have low precision. As a result, even if all traders happen to agree
about the fundamental value at time t = 1 (so En

1[v] = Em
1 [v] > 0 for all m �=

n), trader n’s current expectation of the average of others’ future expectations
En

1[E−n
2 [v]] is lower than his own current and future expectations En

t [v], t = 1,
2, where the average of others’ expectations at t, E−n

t [v], is defined as

E−n
t [v] := 1

N−1

N∑
m=1,m �=n

Em
t [v]. (10)

To see this, in Appendix subsection A we show that trader n’s expectations of
others’ expectations next period can be written as

En
1

[
E−n

2 [v]
] =

(
1 −

(
τ

1/2
H − τ

1/2
L

)2 τv

τ2

)
En

1[v] − τ1

τ2

(
En

1[v] − E−n
1 [v]

)
. (11)

At time t = 1, trader n’s estimate of P̌2 is

En
1

[
P̌2

]
= En

1

[
1
N

N∑
n=1

En
2[v]

]
= τ1

τ2

1
N

N∑
n=1

En
1[v] + τv

Nτ2

(
τ

1/2
H + (N − 1)τ 1/2

L

)2
En

1[v].

(12)
If all traders happen to agree about the fundamental value at time t = 1 (so
En

1[v] = Em
1 [v] > 0, for all m �= n), we obtain

En
1

[
P̌2

]
=
(

1 − τv

τ2

(
1 − 1

N

) (
τ

1/2
H − τ

1/2
L

)2
)

1
N

N∑
n=1

En
1[v] < 1

N

N∑
n=1

En
1[v]. (13)

Equation (13) implies that each trader n expects the price to fall below funda-
mental value in the next period. In addition, at t = 1, each trader n expects his
own optimal inventory next period to be

En
1

[
Šn2

]
= (N − 1)τv

A N

(
τ

1/2
H − τ

1/2
L

)2
En

1[v] + (N − 1)τ1

A N

(
En

1[v] − E−n
1 [v]

)
. (14)

Equation (14) implies that, if all traders happen to agree about the fun-
damental value at time t = 1 (so En

1[v] = Em
1 [v] > 0 for all m �= n), then each

trader expects to buy next period because each trader expects prices to fall
next period. Each trader believes that others make the mistake of attributing
too much precision to their current signals. Each trader expects that, upon
observing new information in the future, others will adjust their valuations
toward unconditional levels, and thus each trader expects others to sell and
prices to fall at t = 2.
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Therefore, even if the price at t = 1 were equal to the consensus fundamental
valuation (P̌1 = 1

N

∑N
n=1 En

1[v]), all traders would want to hold short positions
(Šn1 < 0) at t = 1 because they would all expect prices to fall below fundamen-
tal value in the next period. With myopic mean-variance optimizers, the equi-
librium price P̌1 is traders’ average expectations of next-period price P̌2. Since
all traders expect prices to fall below fundamental value in the next period
(equation (13)), it follows that

P̌1 = 1
N

N∑
n=1

En
1

[
P̌2

]
=
(

1 − τv
τ2

(
1 − 1

N

) (
τ

1/2
H − τ

1/2
L

)2
)

1
N

N∑
n=1

En
1[v]

= Čg
1
N

N∑
n=1

En
1[v],

(15)

where the dampening factor Čg defined in equation (9) satisfies 0 < Čg < 1.
To summarize, all traders internalize at t = 1 their perceived disagreement

about future valuations. If prices were equal to the consensus fundamental val-
uation, all traders would want to hold short positions at t = 1. As a result, the
equilibrium price is dampened in the first period relative to traders’ average
contemporaneous expectations about fundamental value, 1

N

∑N
n=1 En

1[v]. The
price-dampening effect increases (Čg falls) when the magnitude of disagree-
ment τH/τL increases. Since traders have no hedging demand in this setting
with myopic conditional mean-variance optimizers, the key driving force of
price dampening is traders’ short-term speculation due to their disagreement
about future valuations, not hedging demand.

C. The Equilibrium of the Two-Period Model

We now solve for the general two-period trading model where trader n
chooses the inventory Snt (t = 1,2) to maximize his expected utility (3). The
following theorem characterizes the equilibrium in the two-period model.

THEOREM 2 (Equilibrium of the Two-Period Model): (i) At t = 2, trader n’s op-
timal inventory Sn2 and the price P2 are

Sn2 = En
2[v] − P2

A varn
2[v]

, P2 = 1
N

N∑
n=1

En
2[v]. (16)

(ii) At t = 1, trader n’s optimal inventory is

Sn1 = varn
1[En

2 [v]−P2]+varn
2 [v]

A
(
varn

1 [P2](varn
1[En

2 [v]]+varn
2 [v])−(covn

1[P2 , En
2 [v]])2

)

×
((

En
1[P2] − P1

)− covn
1[P2 , En

2 [v]−P2]
varn

1[En
2 [v]−P2]+varn

2 [v]

(
En

1

[
En

2[v] − P2
]))
. (17)
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Beliefs Aggregation and Return Predictability 435

The price P1 is a weighted average of traders’ expectations of the fundamental
value v with weights summing to a constant Cg, which is less than one:

P1 = 1
N

N∑
n=1

En
1[P2] − covn

1[P2 , En
2 [v]−P2]

varn
1[En

2 [v]−P2]+varn
2 [v]

(
1
N

N∑
n=1

En
1[v] − 1

N

N∑
n=1

En
1[P2]

)

= Cg
1
N

N∑
n=1

En
1[v].

(18)

PROOF: The proof is in Appendix subsection B. Equation (A21) is a closed-form
expression for the dampening factor Cg. �

In equation (17), trader n’s short-term speculative position is increasing in
his short-term expected price change, En

1[P2] − P1. Hedging demand is decreas-
ing in his expectation at t = 1 of the next period’s return, En

1[En
2[v] − P2]. Math-

ematically, this monotonicity results from the two factors expressed as ratios
of variances and covariances both being positive:

varn
1[P2] varn

1

[
En

2[v]
]
>
(
covn

1

[
P2 , En

2[v]
])2
,

covn
1

[
P2 , En

2[v] − P2
] = τ 2

v (N−1)
τ1τ

2
2 N2

(
τ

1/2
H + (N − 1)τ 1/2

L

)2(
τ

1/2
H − τ

1/2
L

)2
> 0,

(19)

where the parameters τ1 and τ2 are defined as in equation (5). Economically,
at t = 1, disagreement about the precision of future signals (τH �= τL) gener-
ates positive perceived autocovariance of returns for trader n, covn

1[P2 , En
2[v] −

P2] > 0. Therefore, in trader n’s optimal demand of equation (17), the coeffi-
cient on next period’s return En

1[En
2[v] − P2] is negative. Assume that trader n

observes positive signals about the asset and thus would like to hold a long po-
sition. Due to disagreement about future valuation, each trader believes that
others make the mistake of attributing too much precision to their signals and
thus each trader expects the next period’s return En

1[En
2[v] − P2] to be posi-

tive. Therefore, the hedging component in equation (17) is negative. The nega-
tive hedging demand reduces traders’ demand, which, in equation (18), further
pushes down the price at t = 1 relative to the case with myopic traders.

Without disagreement, hedging demand does not generate price dampening
because a common prior (τH = τL) implies covn

1[P2 , En
2[v] − P2] = 0.

Equation (18) shows that the price P1 is a weighted average of traders’ esti-
mates of the fundamental value of the asset ( 1

N

∑N
n=1 En

1[v]) and traders’ esti-
mates of next period’s price ( 1

N

∑N
n=1 En

1[P2]). Because traders expect prices to
fall below fundamental value in the next period, the weight on 1

N

∑N
n=1 En

1[v] is
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436 The Journal of Finance®

Figure 1. CgCgCg and ČgČgČg against τH/τLτH/τLτH/τL. (Color figure can be viewed at wileyonlinelibrary.com)

negative while the weight on 1
N

∑N
n=1 En

1[P2] is greater than one. We have

P1 = 1
N

N∑
n=1

En
1[P2] − covn

1[P2 , En
2 [v]−P2]

varn
1[En

2 [v]−P2]+varn
2 [v]

(
1
N

N∑
n=1

En
1[v] − 1

N

N∑
n=1

En
1[P2]

)

=Čg
1
N

N∑
n=1

En
1[v] − τv

τ2

(
1 − 1

N

) (
τ

1/2
H − τ

1/2
L

)2 covn
1[P2 , En

2 [v]−P2]
varn

1[En
2 [v]−P2]+varn

2 [v]
1
N

N∑
n=1

En
1[v]

=Cg
1
N

N∑
n=1

En
1[v].

(20)

Different from the case with myopic mean-variance optimizers (equation (15)),
the first line of equation (20) states that price P1 is the average expectation of
the price P2, adjusted for the extra trading due to hedging demand related to
traders’ expectations at t = 1 of the next period’s return (En

1[En
2[v] − P2]). The

first term in the second line is the same as the second line of equation (15) in
the myopic case. It shows that the average expectation of P2 at t = 1 is damp-
ened relative to the average expectation of fundamentals, 1

N

∑N
n=1 En

1[v]. The
last line combines terms and shows that price P1 is further dampened relative
to the average expectations of fundamentals, 1

N

∑N
n=1 En

1[v], compared to the
myopic case; we prove analytically that the coefficient Cg satisfies 0 < Cg < 1.

PROPOSITION 1: The price-dampening factor Cg satisfies 0 < Cg < Čg < 1. In
addition, both Cg and Čg decrease in the disagreement level τH/τL, holding fixed
the total precision τH + (N − 1)τL.

PROOF: The proof is in Appendix subsection C. �
Figure 1 shows that price-dampening factors Cg and Čg decrease in the

disagreement level τH/τL.6 This is because traders trade more aggressively

6 Figures 1, 2, and 3 depend only on parameter values of τH , τL, and N. In all three figures, total
precision is fixed, with τH + (N − 1)τL = 4 and N = 100.
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Beliefs Aggregation and Return Predictability 437

against one another with greater disagreement. As illustrated in Figure 1, the
difference between Cg and Čg is quite small for a large range of parameter val-
ues. This suggests that the magnitude of the additional dampening effect from
hedging demand at t = 1 is small, and the main driving force of the dampening
effect comes from traders’ short-term speculation on their disagreement about
future valuation.

As in the simple myopic case, traders agree to disagree about the interpre-
tation of signals in the present, and also about how to interpret the signals
arriving in the future. All traders internalize in the present their perceived
disagreement about future valuations. In aggregate, the equilibrium price be-
comes dampened in the first period relative to traders’ average contempora-
neous expectations about the fundamental value, 1

N

∑N
n=1 En

1[v]. The price-
dampening effect increases (Cg decreases) in the magnitude of disagreement
τH/τL.

For example, even if all traders expect the fundamental value to be $30 at
t = 3, each trader also expects others to interpret new information incorrectly
and thus to revise expectations upon receiving a new signal. If prices were
equal to the consensus fundamental valuation of $30, all traders would expect
prices to fall in the short run and thus would trade on short-term profit op-
portunities by “selling” today to buy at better (lower) prices in the next round.
The internalization of future disagreement dampens the price today by driv-
ing it below $30, even when all traders correctly agree that $30 is an accurate
estimate of fundamental value.

There is also a static dampening effect. At t = 1, 2, traders’ average val-
uation in equations (8) and (18), 1

N

∑N
n=1 En

t [v], differs from what it would
be in a model with a common prior where the same amount of information
τH + (N − 1) τL is known to be split equally across traders. Each trader believes
that signals of others have lower precision, and this disagreement pushes
down the weight on each private signal in the average valuation 1

N

∑N
n=1 En

t [v].
Specifically, the average valuation can be expressed as

1
N

N∑
n=1

En
t [v] = τ

1/2
v
τt

(
1
N τ

1/2
H + N−1

N τ
1/2
L

) N∑
n=1

t∑
s=1

ins = τ
1/2
v
τt

CJ
( 1

N τH + N−1
N τL

)1/2 N∑
n=1

t∑
s=1

ins, (21)

where

CJ :=
(

1
N τ

1/2
H + N−1

N τ
1/2
L

)( 1
N τH + N−1

N τL
)−1/2

. (22)

When traders are relatively overconfident (τH > τL), Jensen’s inequality im-
plies CJ < 1. In Internet Appendix Section I, we show that static dampening of
private signals in the averages of expectations shows up in an analogous one-
period model; it is unrelated to dynamic trading. In Internet Appendix Sec-
tion VII, we develop a model in which static dampening does not occur but
prices are dampened and returns exhibit momentum patterns due to Cg < 1.
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D. Return Autocorrelations

D.1. The Myopic Case with τL = 0

To see how price dampening implies time-series return momentum, it is
helpful to first study the myopic case with τL = 0. In the special case of τL = 0,
the coefficient on v in the signal imt collapses to zero and the coefficient on the
noise term stays at one. This case implies that each trader believes that all
other traders trade on noise as if it were information. Using equation (11), it
can be shown that each trader n’s expectation at t = 1 of the average of others’
expectations at t = 2 is

En
1

[
E−n

2 [v]
] = τ1

τ2
E−n

1 [v]. (23)

Since τ1 = τv(1 + τH ) and τ2 = τv(1 + 2τH ), equation (23) implies that trader n
believes that others’ average valuations tend to mean-revert toward the un-
conditional level of zero. We have

En
1[P̌2] = En

1

[ 1
N En

2[v] + N−1
N E−n

2 [v]
] = 1

N En
1[v] + N−1

N
τ1
τ2

E−n
1 [v],

P̌1 = 1
N

N∑
n=1

En
1[P̌2] = ( 1

N + N−1
N

τ1
τ2

)( 1
N En

1[v] + N−1
N E−n

1 [v]
)
.

(24)

The coefficient on other traders’ valuation E−n
1 [v] in En

1[P̌2] is dampened by
a factor of τ1

τ2
, compared to the coefficient on E−n

1 [v] in the fundamental value
of the asset, 1

N En
1[v] + N−1

N E−n
1 [v]. The coefficient on trader n’s own valuation

En
1[v] in En

1[P̌2] is not dampened and is the same as the coefficient on En
1[v] in

the fundamental value 1
N En

1[v] + N−1
N E−n

1 [v]. In the myopic model, the equilib-
rium price at t = 1 is the average of all traders’ expectations of next period’s
price, P̌1 = 1

N

∑N
n=1 En

1[P̌2], and hence it follows that the price at t = 1 is damp-
ened relative to traders’ average expectations about the fundamental value,
1
N En

1[v] + N−1
N E−n

1 [v]. The dampening coefficient on 1
N En

1[v] + N−1
N E−n

1 [v] in P̌1

is 1
N + N−1

N
τ1
τ2

, which is greater than τ1
τ2

and less than one, implying that the
coefficient on other traders’ valuation E−n

1 [v] in P̌1 is dampened by a smaller
magnitude compared to that in En

1[P̌2]. It follows that trader n’s expectation of
the price change is

En
1[P̌2] − P̌1 = (N−1)(τ2−τ1 )

N2τ2
(En

1[v] − E−n
1 [v]). (25)
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Beliefs Aggregation and Return Predictability 439

Since traders are ex ante identical and the prior mean of v is zero, it follows
that P̌0 = 0. Under trader n’s belief, it is straightforward to show that

covn
[
P̌2 − P̌1 , P̌1 − P̌0

]
= En

0

[
(En

1[P̌2] − P̌1)(P̌1 − P̌0)
]− En

0

[
P̌2 − P̌1

]
En

0

[
P̌1 − P̌0

]
= En

0

[
(En

1[P̌2] − P̌1)P̌1
]

= (N−1)(τ2−τ1 )((N−1)τ1+τ2 )
N4τ 2

2
En

0

[(
En

1[v] − E−n
1 [v]

)(
En

1[v] + (N − 1)E−n
1 [v]

)]
.

(26)

The second line of equation (26) follows from the law of iterated expectations
and En

0

[
P̌2 − P̌1

] = 0. The third line of equation (26) follows from equation (25).
Since each trader n believes that his signals have high precision and other
traders’ signals have low precision, the coefficient on v in the difference be-
tween trader n’s valuation and the average of other traders’ valuations is pos-
itive,

En
1[v] − E−n

1 [v] = τ
1/2
v τ

1/2
H

τ1
(in1 − i−n1) = τ

1/2
v τ

1/2
H

τ1

(
τ

1/2
H τ 1/2

v v + en1 − 1
N−1

N∑
m=1,m �=n

em1

)
.

(27)

Equation (27) implies that the difference between traders’ valuations En
1[v] −

E−n
1 [v] increases in v. In addition, En

1[v] + (N − 1)E−n
1 [v] also increases in the

fundamental value v. As a result, the covariance between En
1[v] − E−n

1 [v] and
En

1[v] + (N − 1)E−n
1 [v] is positive,

En
0

[(
En

1[v] − E−n
1 [v]

)(
En

1[v] + (N − 1)E−n
1 [v]

)] = τvτ
2
H

τ 2
1
> 0. (28)

Substituting equation (28) into (26) yields

covn
[
P̌2 − P̌1 , P̌1 − P̌0

]
= (N−1)(τ2−τ1 )((N−1)τ1+τ2 )τ 2

Hτv

N4τ 2
1 τ

2
2

> 0. (29)

To summarize, agreement to disagree about future valuations dampens the
price in the first period relative to traders’ average expectations about the fun-
damental value. In the simple myopic case, the price dampening implies that
trader n’s expectation at date 1 of the price change from date 1 to date 2 is pro-
portional to the difference between traders’ valuations En

1[v] − E−n
1 [v], which

tends to be positively correlated with the fundamental value v as well as with
the price at date 1, implying time-series return momentum.

D.2. The General Case

Traders use models with correct structure but with possibly incorrect param-
eters. While traders’ possibly incorrect parameters affect prices, the properties
of return dynamics, such as autocorrelations at different horizons, also depend
on empirically correct model specification of private information. Therefore,
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440 The Journal of Finance®

the properties of return dynamics are functions of both traders’ (subjective)
parameters and empirically correct (objective) parameters.

In this subsection, we first show that each trader believes that returns ex-
hibit momentum in the general case in which traders may not be myopic and
τL may not be zero. We then show that there is also positive return autocorrela-
tion under empirically correct beliefs that traders are symmetrically informed
and correct on average.

PROPOSITION 2: Each trader believes that prices exhibit momentum, defined
as the covariance of price changes being positive in both the myopic model and
the general two-period model:

covn
[
P̌2 − P̌1 , P̌1 − P̌0

]
> 0, covn

[
v − P̌2 , P̌2 − P̌1

]
> 0,

covn[P2 − P1 , P1 − P0] > 0, covn[v − P2 , P2 − P1] > 0.
(30)

If traders are “correct on average” in the sense that the empirically correct pre-
cision of each trader’s signal is τ̂n := 1

N τH + N−1
N τL, then returns exhibit momen-

tum:

cov
[
P̌2 − P̌1 , P̌1 − P̌0

]
> 0, cov

[
v − P̌2 , P̌2 − P̌1

]
> 0,

cov[P2 − P1 , P1 − P0] > 0, cov[v − P2 , P2 − P1] > 0.
(31)

PROOF: We include the proof of covn[P̌2 − P̌1 , P̌1 − P̌0] > 0 and covn[P2 −
P1 , P1 − P0] > 0 below. The proof of covn[v − P̌2 , P̌2 − P̌1] > 0 and covn[v −
P2 , P2 − P1] > 0 is similar and is in Appendix subsection D. Equations (A29)
and (A30) present closed-form expressions for return covariances under empir-
ically correct beliefs. �

Positive return autocovariance comes from the dampening factor Cg in the
equation for price P1 satisfying 0 < Cg < 1, not Cg = 1. Assume traders observe
positive signals. Each trader n anticipates that the price at t = 2 is lower than
his own valuation (En

2[v]) and expects to buy at t = 2 since trader n believes
that others make the mistake of attributing too much precision to their sig-
nals. In aggregate, the equilibrium price becomes dampened in the first period
relative to traders’ average expectations about the fundamental value.

In the myopic case, using equation (12), it can be shown that

En
1[P̌2] − P̌1 = (N−1)

(
τ

1/2
H +(N−1)τ 1/2

L

)2
τv

N2τ2

(
En

1[v] − E−n
1 [v]

)
. (32)

Substituting equation (32) into the second line of equation (26), we have

covn
[
P̌2 − P̌1 , P̌1 − P̌0

]
= Čg(N−1)

(
τ

1/2
H +(N−1)τ 1/2

L

)2
τv

N3τ2
En

0

[(
En

1[v] − E−n
1 [v]

)(
En

1[v] + (N − 1)E−n
1 [v]

)]
.

(33)
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Beliefs Aggregation and Return Predictability 441

Similar to the special case τL = 0, the coefficient on v in the difference be-
tween trader n’s valuation and the average of other traders’ valuations is
positive. The covariance between En

1[v] − E−n
1 [v] and En

1[v] + (N − 1)E−n
1 [v] is

positive:

En
0

[(
En

1[v] − E−n
1 [v]

)(
En

1[v] + (N − 1)E−n
1 [v]

)] = τv
τ 2

1

(
τ

1/2
H − τ

1/2
L

)2(
τ

1/2
H + (N − 1)τ 1/2

L

)2
> 0.

(34)
Substituting equation (34) into (33) yields

covn
[
P̌2 − P̌1 , P̌1 − P̌0

]
= Čg(N−1)

(
τ

1/2
H +(N−1)τ 1/2

L

)4(
τ

1/2
H −τ 1/2

L

)2
τ 2

v

N3τ 2
1 τ2

> 0. (35)

In the general two-period model, due to the negative hedging demand, the
equilibrium price P1 is further dampened relative to the average expectations
of fundamentals, compared to the myopic case. It follows that

En
1[P2] − P1 = En

1[P̌2] − P̌1 + τv
τ2

(
1 − 1

N

) (
τ

1/2
H − τ

1/2
L

)2 covn
1[P2 , En

2 [v]−P2]
varn

1[En
2 [v]−P2]+varn

2 [v]
1
N

N∑
n=1

En
1[v].

(36)
At t = 1, disagreement about the precision of future signals (τH �= τL) gener-
ates positive perceived autocovariance of returns for trader n, covn

1[P2 , En
2[v] −

P2] > 0. Therefore, the coefficient on v in En
1[P2] − P1 is a larger positive num-

ber than that of the myopic model. Similar to the myopic case, we show that
covn[P2 − P1 , P1 − P0] = En

0

[
(En

1[P2] − P1)P1
]
. Using equation (36), we show

that the autocovariance of returns in the general two-period model is

covn[P2 − P1 , P1 − P0]

= Cg

Čg
covn

[
P̌2 − P̌1 , P̌1 − P̌0

]
+ Cg(N−1)

(
τ

1/2
H −τ 1/2

L

)2
τv

N3τ2

covn
1[P2 , En

2 [v]−P2]
varn

1[En
2 [v]−P2]+varn

2 [v]
varn

0

[
En

1[v]

+ (N − 1)E−n
1 [v]

]
.

(37)

From the myopic case, the first term of the second line of equation (37) is posi-
tive. The second term of the second line of equation (37) is also positive because
the perceived autocovariance of returns for trader n, covn

1[P2 , En
2[v] − P2], is

positive. Therefore, the return covariance in the general two-period model,
covn[P2 − P1 , P1 − P0], is positive.

To summarize, in the general two-period model, the price at date 1 is further
dampened due to hedging demand. This implies that trader n’s expectation at
date 1 of the price change from date 1 to date 2 increases in v with a larger
coefficient on v than in the myopic model. Therefore, trader n’s expectation at
date 1 of the price change from date 1 to date 2 is positively correlated with
the price at date 1, implying time-series return momentum in the general two-
period model.
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442 The Journal of Finance®

Figure 2. Autocorrelation of returns for different disagreement levels τH/τL.τH/τL.τH/τL. (Color figure
can be viewed at wileyonlinelibrary.com)

The equilibrium prices and trading strategies are determined by traders’
expectations based on their beliefs. Prices are the same functions of signals int
under both traders’ (subjective) parameters and empirically correct (objective)
parameters:

P1 = Cg
1
N

N∑
n=1

En
1[v] = Cg

τ
1/2
v

τ1

(
τ

1/2
H + (N − 1)τ 1/2

L

)
1
N

N∑
i=1

in1,

P2 = 1
N

N∑
n=1

En
2[v] = τ

1/2
v

τ2

(
τ

1/2
H + (N − 1)τ 1/2

L

)(
1
N

N∑
i=1

in1 + 1
N

N∑
i=1

in2

)
.

(38)

Traders’ distributions for signals are different from the objective distribution
of signals. Under the empirically correct parameters that all private signals
have the same precision, the average of private signals under the empirically
correct belief is

1
N

N∑
n=1

înt =
(
τH+(N−1)τL

N

)1/2
τ 1/2

v v + 1
N

N∑
n=1

ent . (39)

Substituting equation (39) into (38), we show analytically that, under empiri-
cally correct parameters, return covariances cov[v − P2 , P2 − P1] and cov[P2 −
P1 , P1 − P0] are also positive.

Figures 2 and 3 depict how return autocorrelation changes with the disagree-
ment level τH/τL while holding fixed the total precision of the signals. Since the
price-dampening effect increases (Cg decreases) in the magnitude of disagree-
ment τH/τL, return autocorrelation tends to increase in the disagreement level
under both traders’ beliefs and the empirically correct beliefs, as illustrated in
Figures 2 and 3.

E. Iterated Average Expectations

In this subsection, we discuss how price dampening is related to iterating
average expectations. Let Ēt denote the average expectations operator Ēt[·] :=
1
N

∑N
n=1 En

t [·]. We say that “average expectations iterate” if Ē1
[
Ē2[v]

] = Ē1[v].
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Beliefs Aggregation and Return Predictability 443

Figure 3. Autocorrelation of returns under empirically correct parameters for differ-
ent τH/τL.τH/τL.τH/τL. (Color figure can be viewed at wileyonlinelibrary.com)

With myopic mean-variance optimizers, equation (8) implies that average
expectations do not iterate when there is price dampening (Čg < 1):

P̌1 = 1
N

N∑
n=1

En
1

[
P̌2

]
= Ē1

[
Ē2[v]

] = ČgĒ1[v] < Ē1[v]. (40)

In the general two-period model, equation (20) similarly implies that average
expectations do not iterate when there is price dampening (Cg < 1):

P1 = Ē1
[
Ē2[v]

]− covn
1[P2 , En

2 [v]−P2]
varn

1[En
2 [v]−P2]+varn

2 [v]

(
Ē1[v] − Ē1

[
Ē2[v]

]) = CgĒ1[v] < Ē1[v].
(41)

For expectations to iterate in equations (40) and (41), it must be the case
that Čg = Cg = 1 and thus P̌1 = P1 = Ē1[v]. This requires τH = τL, which im-
plies that traders share a common prior and also share common information
because each trader infers sufficient statistics for other traders’ information
from prices. Allen, Morris, and Shin (2006) find that average expectations do
not iterate when traders condition on different noisy signals. In their noisy
rational expectations model, returns exhibit mean reversion, not momentum.

In models without a common prior, the following proposition provides condi-
tions under which average expectations do iterate.

PROPOSITION 3:

(i) If traders agree about the conditional distribution of v given signals,
then En

1

[
Em

2 [v]
] = En

1[v] for any m and n and thus average expectations
iterate, Ē1

[
Ē2[v]

] = Ē1[v].
(ii) If traders agree about the joint distribution of signals, then En

1

[
Em

2 [v]
] =

Em
1 [v] for any m and n and thus average expectations iterate, Ē1

[
Ē2[v]

] =
Ē1[v].

(iii) If traders agree about the conditional distribution of v given signals
or they agree about the joint distribution of signals, then we have
P1 = En

1[P2] for any n and thus traders believe that there is no return
predictability.

PROOF: The proof is in Appendix subsection E. �
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444 The Journal of Finance®

Proposition 3 is similar to proposition 2 of Banerjee, Kaniel, and Kremer
(2009, p. 3716), which says that if traders have correct beliefs about the joint
distribution of signals but disagree about the joint distribution of signals and
prices, then there is no price drift. Our Proposition 3 provides conditions un-
der which traders believe there is no drift. If traders’ beliefs are correct, this
trivially also implies no autocorrelation under correct beliefs.

In general, when expectations do not iterate, there may or may not be price
dampening and drift. In Internet Appendix Section VI, we construct a model
in which the average of expectations do not iterate, but under some conditions
there is no price dampening or price drift.

II. A Dynamic Model

We next describe a competitive model in which information arrives continu-
ously but trading takes place at discrete intervals. The dynamic steady-state
model can be calibrated to generate quantitatively realistic empirical patterns
of return dynamics. In addition, extending to a dynamic trading model allows
us to show that return momentum is more pronounced when traders trade
more frequently.

The price aggregates traders’ heterogeneous beliefs and private information.
Given their beliefs, traders behave in a rational manner. They collect pub-
lic and private information, construct signals from available information, ap-
ply Bayes’ Law to predict returns, and calculate optimal holdings. However,
traders are collectively irrational in that each of them is relatively overconfi-
dent, believing that the precision of his own private information flow is greater
than other traders believe it to be.

A. Model Setup

Both fundamentals and information evolve continuously over the time in-
terval t ∈ (−∞,∞). Trading takes place at discrete dates t = kh, where h > 0
is the time interval between each round of trading, and k indexes time peri-
ods k = · · · , −2, −1, 0, 1, 2, . . . . Varying h allows us to examine how trading
frequency affects equilibrium prices and quantities, with continuous informa-
tion flows remaining the same. There are N risk-averse perfect competitors
who trade a risky asset against a risk-free asset at price Pk at times t = kh.
The risky security is in zero net supply, and the risk-free asset earns constant
risk-free rate r > 0.

The risky asset pays dividends at continuous rate D(t). Dividends follow a
stochastic process with mean-reverting stochastic growth rate G∗(t), constant
instantaneous volatility σD > 0, and constant rate of mean reversion αD > 0,

dD(t) := −αD D(t) dt + G∗(t) dt + σD dBD(t). (42)
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Beliefs Aggregation and Return Predictability 445

The growth rate G∗(t) follows an AR-1 process with mean reversion αG and
volatility σG:7

dG∗(t) := −αG G∗(t) dt + σG dBG(t). (43)

The dividend stream D(t) is publicly observable. The growth rate G∗(t), marked
with a star superscript, is not observed by traders. Each trader uses available
information to estimate its value. The model parameters αD, σD, αG, and σG are
all common knowledge among traders.

If the dividend D(t) and the growth rate G∗(t) were observable, then the price
would equal its fundamental value from a generalization of Gordon’s growth
formula,

F (t) = D(t)
r + αD

+ G∗(t)
(r + αD)(r + αG)

. (44)

Since traders do not observe G∗(t), their valuations replace G∗(t) with an esti-
mate based on available information.

Each trader n observes a continuous stream of private information dIn(t),
with precision τn, about the unobservable growth rate G∗(t),

dIn(t) := τ 1/2
n

G∗(t)
σG �

1/2 dt + dBn(t). (45)

Each increment dIn(t) in equation (45) is a noisy observation of the unobserved
scaled growth rate G∗(t). The scaling factor �1/2 is defined in equation (51) so
that τn can be interpreted as the rate at which traders learn from signal dIn(t).
Since our model is stationary, � is constant. Since traders learn from prices
that reveal other traders’ signals, the definition of � depends on how traders
learn from both signals and prices.8

The symmetry of the model implies that traders infer from the equilibrium
price the average of other traders’ information flow about the growth rate,

dI−n(t) := 1
N−1

N∑
m=1,m �=n

dIm(t). (46)

Each trader n is certain that his own private information In(t) has high
precision τn = τH , and the other traders’ private information has low preci-

7 We use a CARA-normal setting and thus G∗(t) can be described as a growth rate in dollar
terms (not a percentage growth rate). The unit of the dividend D(t) is dollars per share per time
($/s/T) and the unit of the growth rate G∗(t) is dollar per share per time squared ($/s/T2).

8 In addition to scaling the drift term by σG, we scale it by �1/2. The scaling is chosen so that
linear regression of G∗(t) on dIn(t) has constant incremental instantaneous R2 equal to τn dt.
Traders learn from their own private signal at a constant rate τn, which measures the percentage
rate at which new information reduces variance, reflected in equation (60). Without this scaling, if
our model were nonstationary, traders would learn more about G∗(t) in markets in which the prior
variance of G∗(t) is large and less in markets in which it is small.
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446 The Journal of Finance®

sion τm = τL, for m �= n, with τH > τL ≥ 0.9 Since this disagreement is common
knowledge, relatively overconfident traders agree to disagree about the pre-
cisions of their signals. This disagreement generates trading. Traders believe
that they can make profits at the expense of others, even though it is common
knowledge that aggregate profits are equal to zero.

Each trader also makes inferences about the growth rate G∗(t) from
the publicly observable dividend stream D(t) modeled in equation (42). To
streamline notation for the information content of dividends, define dI0(t) :=
(αD D(t) dt + dD(t))/σD, where dB0 := dBD and

τ0 := � σ 2
G

σ 2
D

. (47)

Then, the stochastic process

dI0(t) := τ
1/2
0

G∗(t)
σG �

1/2 dt + dB0(t) (48)

is informationally equivalent to the dividend process D(t) in equation (42).
Assume that it is common knowledge that the Brownian motions dB0, dBG,
dB1, …, dBN are independently distributed. Traders agree on the precision τ0
of public information in equation (48).

Since each trader believes his own signal has high precision τH and others’
signals have low precision τL, the symmetry implies that traders agree on the
total precision τ of information flows in the model,

τ := τ0 + τH + (N − 1) τL. (49)

Let En
kh[· · · ] denote the expectation of trader n calculated with respect to his

beliefs about parameter values using information at time t = kh. This infor-
mation consists of the history of continuous flows of public signals dI0( j), con-
tinuous flows of private signals dIn( j) with j ∈ [−∞, t], and discrete sequence
of prices Pj, where j ≤ k. Let

Gn(t) := En
t

[
G∗(t)

]
and Gn,k := En

kh

[
G∗(kh)

]
(50)

9 A typical way of modeling private information, dIn(t) = G∗(t) dt + τ
−1/2
n dBn(t), would multi-

ply the diffusion term dBn(t) by τ−1/2
n , which measures both the standard deviation of noise and

the precision of the signal. Our approach in equation (45) instead multiplies the drift term by its
reciprocal τ1/2

n . Rescaling signals by the factor τ1/2
n does not affect the equilibrium when traders

agree about τ1/2
n but does affect the equilibrium when traders disagree about its value. Using the

typical approach in continuous time, a trader can estimate the diffusion variance, and therefore
τn, with high accuracy by measuring the quadratic variation of dIn(t) over short time intervals.
This would conflict with our assumption that traders always disagree about the precision of their
private signals. The information structure defined in equation (45) has the appealing feature that
traders infer the correct diffusion variance var[ dBn(t)] = dt. By assuming that τ1/2

n multiplies the
drift term in equation (45), traders disagree about how to interpret parameters of the drift terms,
which are much more difficult to estimate empirically.
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Beliefs Aggregation and Return Predictability 447

denote trader n’s estimate of the growth rate at time t and at discrete times
t = kh, respectively. We use similar notation for other continuous and dis-
crete variables.

Define � as the steady-state error variance of trader n’s estimate of G∗(t),
scaled in units of the standard deviation of its innovation σG,

� := var
[

G∗(t) − Gn(t)
σG

]
. (51)

The variable � has no time subscript k because it is constant in our steady-
state model, where the total precision of traders’ private information flow is
fixed. Except for symmetrically disagreeing about the precisions τH and τL of
signals, traders agree about all parameter values. Since symmetry implies that
all traders agree about the variance �, it has no subscript n.

Each trader chooses optimal consumption and portfolio holdings to maximize
an additively separable exponential utility function with risk aversion A and
time preference ρ:

En
kh

[∫ ∞

t=kh
e−ρ(t−kh) U (cn(t)) dt

]
. (52)

The optimization problem is complicated by the fact that consumption cn(t) is
chosen continuously while portfolio holdings Sn,k change only at discrete trad-
ing times t = kh. For analytical tractability, we simplify the problem slightly
by assuming that when trading occurs at round j, each trader chooses both
portfolio holdings Sn, j and a consumption budget hcn, j, which do not change
until the next trading round. Thus, traders do not use new public or private
information unfolding between trading rounds to adjust consumption between
rounds. They cannot use other traders’ private information between trading
rounds either because there are no updated prices from which to infer the av-
erage of other traders’ signals.

With these assumptions, the optimization problem becomes the discrete-
time problem of choosing consumption budget hcn, j and holdings Sn, j at trading
times t = jh to solve

max
[cn, j,Sn, j], j=k,k+1,...,∞

En
kh

⎡
⎣ ∞∑

j=k

e−ρ( j−k)hUn, j(cn, j )

⎤
⎦, (53)

subject to the budget constraint at each trading round j + 1,

Wn, j+1 = erh(Wn, j − hcn, j − Sn, jPj
)+ Sn, jD̆ j+1 + Sn, jPj+1, (54)

where D̆ j+1 defines the future value of dividends between trading rounds j and
j + 1,

D̆ j+1 = erh
∫ ( j+1)h

jh
e−r(t− jh)D(t) dt, (55)
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448 The Journal of Finance®

and Un, j(cn j ) solves the nested consumption subproblem between trading
rounds j and j + 1,

Un, j(cn, j ) := max
cn(·)

En
jh

[
−
∫ h

0
e−ρu e−Acn( jh+u) du

]
(56)

subject to consumption budget hcn, j allocated for the period between rounds j
and j + 1,

hcn, j =
∫ h

0
e−rucn( jh + u) du. (57)

Equations (53) to (57) summarize the optimization problem. As we prove in
Lemma A1, Stratonovich-Kalman-Bucy filtering implies that trader n’s esti-
mate Gn,k of the growth rate at period k can be conveniently written as the
weighted sum of the three sufficient statistics H0,k, Hn,k, and H−n,k, which
summarize the information content of dividends, trader n’s private informa-
tion, and other traders’ private information, respectively, with

Hn,k :=
∫ kh

t=−∞
e−(αG+τ ) (kh−t) dIn(t), n = 0,1, . . . ,N, (58)

H−n,k := 1
N−1

N∑
m=1,m �=n

Hm,k, n = 1, . . . ,N. (59)

These formulas for sufficient statistics have an intuitive interpretation. The
signal Hn,k is a sufficient statistic for trader n’s own information flow. The av-
erage signal H−n,k is a sufficient statistic for other traders’ information flow.
The importance of each bit of information dIn decays exponentially at rate
αG + τ , the sum of the natural decay rate αG of the growth rate and the speed
τ at which traders learn about it. Although trader n does not observe other
traders’ private signals directly, the sufficient statistic H−n,k can be inferred
from prices.

This filtering also implies that the steady-state error variance is

� = var
[

G∗(t) − Gn(t)
σG

]
= 1

2 αG + τ
, (60)

and trader n’s expected growth rate at t = kh is

Gn,k := En
kh

[
G∗(kh)

] = σG �
1/2
(
τ

1/2
0 H0,k + τ

1/2
H Hn,k + (N − 1) τ 1/2

L H−n,k

)
.

(61)
When forming his estimate, trader n assigns weight τ 1/2

0 to the public signal
H0,k, weight τ 1/2

H to his own signal Hn,k, and a smaller weight τ 1/2
L to each of the
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Beliefs Aggregation and Return Predictability 449

other traders’ signals Hm,k, for m �= n. Trade occurs as a result of the symmet-
rically different weights used by traders in construction of their estimates.

Define the aggregate sufficient statistic Hk at period k, with common weights
τ

1/2
I , as

Hk := τ
1/2
0 H0,k +

N∑
n=1

τ
1/2
I Hn,k, where τ

1/2
I := 1

N τ
1/2
H + N − 1

N
τ

1/2
L . (62)

Then the average estimate of the growth rate Ḡk in period k is proportional to
Hk:

Ḡk := 1
N

N∑
n=1

Gn,k = σG �
1/2 Hk. (63)

B. The Equilibrium of the Dynamic Trading Model

As in the two-period model, in Appendix subsection G, we solve for the equi-
librium prices where myopic traders hold conditional mean-variance optimal
portfolios. In this subsection, we solve for the dynamic trading model in which
trader n chooses consumption and holdings to solve his optimal optimization
problem (52). Each trader’s optimal inventory is proportional to his own risk
tolerance and the difference between his valuation and the average valuation
of other traders, which he infers from prices. The following theorem character-
izes equilibrium for the discrete-time dynamic model.

THEOREM 3 (Equilibrium of the Dynamic Trading Model): There exists a
steady-state competitive equilibrium with symmetric linear strategies and with
positive trading volume if and only if the three polynomial equations (A85) to
(A87) have a solution, and traders’ demand curves are downward sloping. Such
an equilibrium has the following properties:

(i) There is an endogenously determined constant CL > 0, defined in equa-
tion (A82), such that trader n’s optimal inventories Sn,k at period k are

Sn,k = CL (Hn,k − H−n,k). (64)

(ii) There is an endogenously determined constant CG > 0, defined in equa-
tion (A80), such that the equilibrium price at period k is

Pk = Dk

r + αD
+ CG

Ḡk

(r + αD)(r + αG)
. (65)
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450 The Journal of Finance®

Figure 4. Present value of dividends and liquidation value from the perspective of a
trader. The thick (thin) solid curve PVn, f (PV−n, f ) is the present value when trader n sells the
stock at price equal to his own valuation of fundamentals (the average of other traders’ valuations).
The dashed curves PVp, f are the present values when trader n sells the stock at the market price
at time T = fh for trading frequencies h = 0.1, 1, 2, and 5.

PROOF: The dynamics of main state variables Hn,k and H−n,k and the proof of
Theorem 3 are presented in Appendix subsection H. �

Competitive traders immediately adjust inventories to optimal levels. With
relative overconfidence (τH > τL), extensive numerical analysis suggests CG <

1 in the dynamic model. In the limit h → 0, we prove CG < 1 when τH > τL.
Pricing formula (65) implies that the price is dampened relative to traders’
average valuation. Under trader n’s information set, the stochastic processes
for estimates Gn(t) and G−n(t) := 1

N−1

∑N
m=1,m �=n Gm(t) are

dGn(t) = −αG Gn(t) dt + “dB-terms”, (66)

dG−n(t) = −
(
αG +

(
τ

1/2
H − τ

1/2
L

)2
)

G−n(t) dt (67)

+
(
τ0 + τ

1/2
L

(
2τ 1/2

H + (N − 2)τ 1/2
L

))(
Gn(t) − G−n(t)

)
dt + “dB-terms”.

Trader n believes that his own growth rate estimate Gn(t) will mean-revert
to zero at rate αG; his expectations satisfy the law of iterated expectations.
Trader n believes that other traders’ growth rate estimates G−n(t) follow a
more complicated path, namely, that they will mean-revert to zero at rate αG +
(τ 1/2

H − τ
1/2
L )2 > αG and they will tend to drift toward trader n’s estimate Gn(t).

If Gn(t) = G−n(t), then trader n believes that other traders’ estimates G−n(t)
will mean-revert to zero at rate αG + (τ 1/2

H − τ
1/2
L )2 > αG.

Figure 4 illustrates the intuition behind the dynamic price-dampening ef-
fect. For simplicity, we assume that at t = 0 all traders have the same

 15406261, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13195 by C

uny - B
aruch C

ollege, W
iley O

nline L
ibrary on [11/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Beliefs Aggregation and Return Predictability 451

buy-and-hold valuations of $30.10 However, the price is lower than the aver-
age of their valuations due to the dampening effect. The figure shows trader
n’s hypothetical expected buy-and-hold valuation at t = 0 under the assump-
tion that he buys the asset at t = 0, holds it until time T = fh, and then sells
it at some hypothetical price. While calculations are made under trader n’s be-
liefs, they are symmetrically identical for all traders. Different buy-and-hold
valuations PVn, f , PV−n, f , and PVp, f on the vertical axis are plotted against var-
ious holding horizons T = fh on the horizontal axis (for trading frequencies
h = 0.1, 1, 2, and 5). A formal analysis of expectations dynamics is provided in
Internet Appendix Section II.

The thick solid horizontal line PVn, f is based on the assumption that trader n
holds the risky asset until date T = fh and then sells it for what he expects
at t = 0 that his valuation of fundamentals will be at time T . Since, given
his beliefs, trader n correctly applies Bayes’ law, the martingale property of
his valuation (the law of iterated expectations) implies that the present value
PVn, f is a constant equal to $30 for any horizon T .

The thin solid curve PV−n, f , just below the line for PVn, f , is the present value
of the risky asset based on the assumption that trader n holds the asset until
time T = fh and then liquidates his position at what he expects at t = 0 the
average of the other N − 1 traders’ valuations of the fundamental value will
be at time T . Trader n believes that the other traders’ estimates of the growth
rate will mean-revert to zero at rate αG + (τ 1/2

H − τ
1/2
L )2, which is faster than the

mean-reversion rate αG that he attributes to his own estimate. Thus, PV−n, f
will first fall toward its unconditional level (of zero) and then in the long run
rise back to catch up with trader n’s own (correct, in his opinion) estimate of
the fundamental value equal to $30. These buy-and-hold valuations deviate
from the horizontal line at $30.

Figure 4 shows that prices are dampened relative to traders’ valuations. The
four dashed curves PVp, f correspond to the present values of the risky asset
when trader n holds the risky asset until time T = fh and then sells it at
the market price at time T assuming trading frequencies h = 0.1, 1, 2, and 5.
Consistent with the equilibrium result 0 < CG < 1, the initial price P0 := PVp,0
is lower than the consensus valuation of $30, even if all traders agree about
this valuation at t = 0. Indeed, if prices were equal to the consensus funda-
mental valuation of $30, all traders would expect prices to fall in the short
run and thus would want to hold short positions. As a result, the price P0 at
t = 0 is dampened relative to the average of traders’ estimates of fundamental
valuations. Traders agree to disagree about the dynamics of their future val-
uations, and internalization of this future disagreement dampens the market
price in the present. Figure 4 also shows that price dampening becomes more
pronounced with more frequent trading. When h becomes smaller, traders ex-
ploit profitable trading opportunities more frequently. In contrast, if h → ∞

10 The buy-and-hold value of $30 corresponds to Gn(0) = G−n(0) = 0.105, D(0) = 1. Parameter
values r, A, N, αD, αG, σD, σG, τH , and τL are given in Table II. Details of present-value calculations
are given in equations (IA14), (IA15), and (IA18) in Internet Appendix Section II.
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Figure 5. CJCJCJ and CGCGCG against time interval ln[h]ln[h]ln[h]. (Color figure can be viewed at wileyonlineli-
brary.com)

and traders can only buy and hold the risky asset, then CG = 1 and the price
is exactly equal to traders’ average valuation of fundamentals.

As in the two-period model of Section I (see equation (22)), there is also a
static dampening effect. The average valuation without a common prior differs
from what it would be if the same precision τH + (N − 1) τL were known to be
split equally across traders. The average of traders’ estimates of the growth
rate Ḡk, defined in (63) and related to equilibrium prices (65), can then be
expressed as

Ḡk = σG �
1/2

(
τ

1/2
0 H0,k + CJ

( 1
N τH + N−1

N τL
)1/2 N∑

n=1

Hn,k

)
, (68)

where CJ is as defined in equation (22). The constant CJ measures the bias in
how the weight of each private (but not public) signal is dampened in the aver-
age valuation Ḡk due to relative overconfidence among traders; it is defined as
the ratio of the average of the square roots to the square root of the average pre-
cision. When traders are relatively overconfident (τH > τL), Jensen’s inequality
implies CJ < 1. The dynamic dampening due to CG < 1 is quantitatively more
important than the static dampening due to CJ < 1.

Figure 5 shows how the constants CJ and CG depend on the time interval h
between trading rounds.11 The coefficient CG increases with h and ultimately
converges to one, as trading opportunities occur at less frequent intervals (h
gets large) and it becomes more difficult for traders to take advantage of short-
term opportunities. When h approaches zero, traders trade more aggressively
against each other’s perceived mistakes. The coefficient CG becomes flat when
ln(h) < −2. Thus, the results of the discrete-time model converge to those of the
continuous-time model approximately when h < 0.135 years, corresponding to
about seven weeks in this example. As expected from its definition (22), the
static coefficient CJ does not depend on h.

11 In Figures 5 and 6, parameter values r, A, N, αD, αG, σD, and σG are given in Table II. In
Figure 5, τH and τL are given in Table II. In Figure 6, τ = 2.2, h = 0.01, 0.5, and 2.
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Beliefs Aggregation and Return Predictability 453

Figure 6. CJCJCJ and CGCGCG against τH/τLτH/τLτH/τL holding fixed τ.τ.τ. (Color figure can be viewed at wileyon-
linelibrary.com)

Figure 6 illustrates how constants CJ and CG depend on the level of dis-
agreement τH/τL. Holding total precision fixed, CJ and CG gradually decrease
as disagreement τH/τL increases. Both more disagreement and more trading
opportunities lead to more pronounced price dampening CG < 1 since traders
have greater incentives to engage in short-term speculation. Figures 5 and 6
show that more disagreement also amplifies the effect of CJ < 1, since it mag-
nifies the effect of Jensen’s inequality. The price-dampening effect of CG < 1 is
usually much greater than the effect of CJ < 1.

PROPOSITION 4: A common prior (τH = τL) implies no price dampening, with
CG = 1 and CJ = 1. Relative overconfidence (τH > τL) implies

0 < lim
h→0

CG ≤
(

1 + N−1
N

(
τ

1/2
H −τ 1/2

L

)2

r+αG

)−1

< 1, and 0 < CJ < 1. (69)

PROOF: The proof is in Appendix subsection J. �

PROPOSITION 5: The risk-tolerance parameter 1/A scales trading volume but
has no effect on prices or on the constants CG and CJ.

PROOF: The proof is in Appendix subsection K. This proposition implies
that price dampening arises due to specific features of information processing
rather than risk-sharing. �

III. Return Predictability

We next derive a structural model for return dynamics and examine its time-
series properties. To study return dynamics empirically, we introduce a set of
empirically “correct” beliefs describing the true data-generating process.
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A. Inference under Correct Beliefs

We first introduce empirically correct parameters. Let “hats” distinguish em-
pirically correct parameter values from the possibly incorrect beliefs of traders.

In a symmetric model, it is natural to assume that all signals have the same
precision, and thus no trader interprets information flow correctly. Therefore,
assume traders correctly believe that total private precision is τ and public
precision is τ0, but—in contrast to traders’ overconfident beliefs that their own
signals have precision τH and other traders’ signals have precision τL —all
private signals n = 1, …, N have symmetrically the same empirically correct
precision

τ̂n = τ̂I := τH + (N − 1) τL

N
. (70)

In the general case, the empirically correct total precision is τ̂ = τ̂0 + N τ̂I;
this may differ from what traders believe the total precision to be,
τ = τ0 + τH + (N − 1) τL. In Section III.C, we calibrate the model to generate
both short-term momentum and long-run mean reversion by considering the
more general case in which traders may have incorrect beliefs about the decay
rate of the signal. Below we show that αG + τ < α̂G + τ̂ implies long-run mean
reversion in returns.

In this subsection, except for τn, n = 1, …, N, we assume that traders
have empirically correct beliefs about all other model parameters (τ̂ = τ and
α̂G = αG). In Appendix subsection L, we derive filtering formulas using an ap-
proach similar to that in Section II.A. The mathematical formulas are different
because the analysis distinguishes between the true precision of signals τ̂I and
traders’ incorrect beliefs τH and τL. The history of each information flow In(t)
can be summarized by the same sufficient statistic Hn,k as in equation (58)
because traders use the correct decay rate αG + τ to deflate past information
(Ĥn,k = Hn,k). We can also define the aggregate sufficient statistic Ĥk as a linear
combination of Hn,k, n = 0, …, N,

Ĥk = τ
1/2
0 H0,k +

N∑
n=1

τ̂
1/2
I Hn,k. (71)

The aggregate sufficient statistic Ĥk is defined similarly to Hk in equa-
tion (62), but the coefficient on Hn,k is τ̂ 1/2

I in (70) rather than τ 1/2
I in (62).

Let Êkh[. . .] denote the empirically correct expectation operator given all in-
formation at time t = kh. Under correct beliefs, the estimate of the steady-state
error variance is the same � as in equation (60), but the estimate of the growth
rate at time t = kh is

Ĝk := Êkh
[
G∗(kh)

] = σG �
1/2 Ĥk. (72)
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Beliefs Aggregation and Return Predictability 455

The estimate of the growth rate Ĝk is defined like Ḡk in equation (63), but
it depends on the aggregate sufficient statistic Ĥk rather than the aggregate
sufficient statistic Hk.

Even though equilibrium prices and strategies depend only on traders’ ex-
pectations based on their inconsistent beliefs, the objective empirical prop-
erties of prices also depend on empirically correct parameters. From equa-
tion (65), the price Pk at time kh depends on the dividend Dk and traders’
sufficient statistics Hk about the growth rate; it does not depend on Ĥk. But,
to construct returns, one must project the dynamics of Dk and Hk into the fu-
ture by modeling how information flows dIn(t), n = 0, 1, . . ., N, will unfold
after time kh. This projection must be done under correct parameter values for
precisions. The true evolution of these processes also depends on the correct
forecasts of growth rate Ĝk from equation (72), which themselves depend on
the sufficient statistics Ĥk, defined in (71), not on Hk. Since the model is sym-
metric, the sufficient statistic Ĥk can be obtained from traders’ statistics H0,k
and Hk, which in turn can be inferred from current dividends and prices.

B. Return Autocorrelations

Let Rk,k+ f denote the cumulative net holding-period excess return, measured
in dollars per share, from buying one share at trade date t = kh, financing the
purchase at the risk-free rate, and selling the asset f trades dates later at
t + T = (k + f )h,

Rk,k+ f = Pk+ f − erTPk + erT
∫ kh+T

t=kh
e−r(t−kh)D(t) dt. (73)

The holding-period return sums capital gains and dividends. It can be ex-
pressed as a linear combination of current and past dividends and prices.

As explained in Section I.D of the two-period model, the properties of return
dynamics are functions of both traders’ (subjective) parameters and empiri-
cally correct (objective) parameters.12

THEOREM 4 (Expected Holding-Period Returns for the Case α̂G = αG and τ̂ =
τ ): Assume α̂G = αG and τ̂ = τ . The expected holding-period return over period
T = fh from time t = kh to (k + f )h is

Êkh
[
Rk,k+ f

] = β1(T )
(

Pk − Dk

r + αD

)
− β0(T ) H0,k. (74)

(i) If traders have a common prior (τH = τL), then coefficients satisfy β0(T ) =
β1(T ) = 0. The price is a martingale, and the expected return is zero.

12 In Internet Appendix Section VIII, we examine return autocorrelation as a function of traders’
beliefs. We show that dynamic price dampening leads to time-series return momentum, and mo-
mentum is more substantial when traders can trade more frequently.
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456 The Journal of Finance®

Figure 7. Autocorrelations and variance of holding-period returns. Autocorrelations of
holding-period returns, corr[Rk−l,k , Rk,k+l ], over holding periods T = lh and variance of holding-
period returns, var[Rk,k+ f ], against CG for T = fh. (Color figure can be viewed at wileyonlineli-
brary.com)

(ii) If traders are relatively overconfident (τH > τL), then coefficients satisfy
β0(T ) > 0, and β1(T ) > 0 is monotonically increasing in the horizon T.

PROOF: The proof is in Appendix subsection L. In the benchmark case with
common prior τH = τL, expected returns are zero for all horizons. �

Otherwise, holding-period excess returns Êkh[Rk,k+ f ] depend on two terms
capturing (i) time-series momentum related to the deviation of the current
price Pk from its unconditional value Dk/(r + αD), and (ii) overreaction to the
history of public information.

The first term in equation (74) is related to price dampening and time-series
momentum. In Appendix subsection L, we prove that the coefficient β1(T ) is
positive and can be decomposed into two terms, where the first term is positive
due to static dampening (CJ < 1) and the second term is positive due to dy-
namic dampening (CG < 1). Since β1(T ) is positive, future returns are expected
to be positive when the current price Pk in (65) is above its unconditional expec-
tation, which suggests positive past returns, and future returns are expected
to be negative when the price is below its unconditional expectation, which
suggests negative past returns.

The second term is proportional to the public signal. Traders put too much
weight on public signals relative to the dampened weights on private signals.
This overreaction to public information H0,k, aggregated over a long period of
positive or negative news, is expected to be corrected going forward.

We next examine return autocorrelations corr[Rk−l,k , Rk,k+ f ], assuming
for simplicity equal leads and lags f = l or T = Tl = Tf . Derivations are in
Internet Appendix Section V. The left panel of Figure 7 depicts return autocor-
relations corr[Rk−l,k , Rk,k+l] for horizons T = lh; plots are presented for differ-
ent trading intervals.13 The return autocorrelations are positive and decreas-
ing with trading frequency h, implying that the short-run momentum is more

13 In Figure 7, parameter values r, A, N, αD, αG, σD, and σG are given in Table II. Parameters
τH and τL are given in Table II and trading intervals are h = 0.1, 0.2, 0.5, and 1 in the left panel.
Parameter τ = 2.2 and the holding period is T = 1/12 in the right panel.
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Beliefs Aggregation and Return Predictability 457

significant when traders trade more frequently. This result is consistent with
Figures 4 and 6, where price dampening is also more substantial for smaller
h. In Internet Appendix Section IV, we present empirical results showing that
time-series momentum tends to be more pronounced in securities with higher
trading volume. Lee and Swaminathan (2000) point out that momentum tends
to be stronger for stocks with higher turnover. Cremers and Pareek (2014) find
more substantial time-series momentum in stocks with more short-term trad-
ing. Moskowitz, Ooi, and Pedersen (2012) show that more liquid contracts in
equity index, currency, commodity, and bond futures markets exhibit greater
momentum. Zhang (2006) and Verardo (2009) find that momentum returns
are larger for stocks with higher analyst disagreement. The predictions of our
model are consistent with these stylized facts.

The right panel of Figure 7 plots the variance of holding-period returns
var[Rk,k+ f ] against CG by varying the disagreement level τH/τL while hold-
ing τ fixed. The panel shows that return volatility is smaller when investors
become more overconfident (τH/τL increases and thus CG decreases).14 This
implies that traders’ short-term speculative trading tends to dampen, rather
than magnify, price fluctuations.

C. Model Calibration

In this subsection, we calibrate model parameter values to fit empirical re-
turn dynamics. To generate both short-term momentum and long-run mean
reversion, we assume that traders may have incorrect beliefs about the de-
cay rate of the signal (α̂G + τ̂ �= αG + τ ), and they agree about the instanta-
neous volatility of the growth rate (σG = σ̂G). In this general case, the expected
holding-period excess return from time t to t + T is presented in the following
theorem.15

THEOREM 5 (Expected Holding-Period Return for the Case α̂G + τ̂ �= αG + τ ):
Assume α̂G + τ̂ �= αG + τ . The expected holding-period return over period T =
fh from time t = kh to (k + f )h is

Êt
[
R(t, t + T )

] = β1(T )
(

P(t) − D(t)
r + αD

)
− β0(T )

∫ t

u=−∞
e−(α̂G+τ̂ ) (t−u) dI0(u)

+ β2(T )
∫ t

u=−∞

(
P(u) − D(u)

r + αD

)
e−(α̂G+τ̂ )(t−u) du. (75)

14 It can be shown analytically that the instantaneous return variance increases in CG from
equation (A102).

15 If α̂G + τ̂ �= αG + τ , then Ĥn(t) �= Hn(t) and the relationship between the two sufficient statis-
tics depends on the entire history of information flow (the history of publicly observable dividends
and prices), as shown in equation (A95). Therefore, we assume a trading interval h → 0 for the
calibration.
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Coefficients β1(T ), β2(T ), and β0(T ) in equation (75) are defined as

β1(T ) : =
(
ζ2(T )

τ̂
1/2
I

τ
1/2
I

− ζ1(T )

)
(r + αD) (r + αG)

CG σG �
1/2 ,

β0(T ) : = ζ2(T )
τ̂

1/2
I τ

1/2
0 − τ

1/2
I τ̂

1/2
0

τ
1/2
I

, (76)

β2(T ) := ζ2(T )
τ̂

1/2
I

τ
1/2
I

(αG + τ − α̂G − τ̂ ) (r + αD) (r + αG)
CG σG �

1/2 , (77)

where ζ1(T ) > 0 and ζ2(T ) > 0 are defined in equation (A107).

The coefficient β1(T ) might be positive or negative depending on parameter
values. The coefficient β0(T ) is positive if and only if τ̂ 1/2

I τ
1/2
0 > τ

1/2
I τ̂

1/2
0 . In ad-

dition, the coefficient β2(T ) is negative if and only if αG + τ < α̂G + τ̂ . A positive
β1(T ) or a positive β2(T ) is related to time-series return momentum. A negative
β1(T ), a negative β2(T ), or a positive β0(T ) implies mean reversion in returns.
Therefore, different from the case in which α̂G + τ̂ = αG + τ and thus β2(T ) = 0
(equation (74)), in the general case, the expected holding-period excess return
also depends on the past deviations of prices from the unconditional valuation
(β2(T ) �= 0); the importance of each past component decays exponentially at
rate α̂G + τ̂ . As a result, the general case can generate rich patterns of return
dynamics.16

We next calibrate model parameter values to fit well-known empirical re-
turn autocorrelations. We consider a sample of all common stocks listed on the
NYSE and Amex during the period January 1965 through December 2006 with
at least two years of prior data.17

Let i subscript stocks and k subscript months. Let Rk−12,k,i denote the annual
return for the year prior to the end of month k, and Rk+ f−12,k+ f,i denote the
annual return over the year ending at the end of month k + f .

Column (1) of Table I presents time-series average slope coefficients from
monthly cross-sectional regressions of one-year returns for one to five years
ahead ( f = 12, 24, 36, 48, 60 months) on lagged one-year returns,

Model A Rk+ f−12,k+ f,i = af,12 + bf,12Rk−12,k,i + εk+ f−12,k+ f,i. (78)

16 Our structural model essentially imposes testable nonlinear microfounded economic restric-
tions on VAR models of expected returns such as Goyal and Welch (2003), Ang and Bekaert (2007),
Cochrane (2008), Van Binsbergen and Koijen (2010), and Rytchkov (2012). These restrictions are
sufficiently flexible to be consistent with the rich patterns of short-term momentum and long-term
mean reversion.

17 We conduct our analysis using the sample period of 1965 to 2006 to exclude the financial
crisis period. We also exclude companies incorporated outside the United States, Americus Trust
Components (Primes and Scores), closed-end funds, and real estate investment trusts.
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Beliefs Aggregation and Return Predictability 459

Table I
Regression Tests of Return Momentum and Reversal

This table reports time-series averages of slope coefficients estimated from monthly Fama-
MacBeth cross-sectional regressions of Models A and B over 444 months from January 1965 to
December 2001 (k = 1, . . . , 444). Model A is a regression of one-year returns from month k + f − 12
to k + f on one-year lagged returns from month k − 12 to k. Model B is a regression of cumulative
returns over f months from month k to k + f on lagged one-year returns from month k − 12 to
k. The coefficients are time-series means. The t-statistics in parentheses use the Hansen-Hodrick
correction.

Time-Series Average Slope Coefficients bf,12

Model A Model B

Coeff t-Stat Coeff t-Stat
f (months) (1) (2) (3) (4)

12 0.0463 (2.9338) 0.0463 (2.9338)
24 −0.0302 (−1.6528) 0.0109 (0.3326)
36 −0.0190 (−1.0088) −0.0110 (−0.2509)
48 −0.0265 (−1.5759) −0.0549 (−1.1776)
60 −0.0366 (−2.1726) −0.1076 (−1.5957)

The methodology follows Fama and MacBeth (1973). Standard errors are
computed using the correction of Hansen and Hodrick (1980). Estimated slope
coefficients are positive and significant for 12 months, negative and insignifi-
cant for 24, 36, 48 months, and negative and significant for 60 months. These
results are similar to the estimates of Lee and Swaminathan (2000) (column
(1) of table VIII). They suggest time-series momentum in year 1 and reversal
by year 5.

Column (3) of Table I presents time-series average slope coefficients from
monthly Fama-MacBeth cross-sectional regressions of cumulative returns
Rk,k+ f,i for one to five years ( f = 12, 24, 36, 48, 60 months) on lagged one-year
returns Rk−12,k,i,

Model B Rk,k+ f,i = af,12 + bf,12Rk−12,k,i + εk,k+ f,i. (79)

The coefficients reveal similar short-run time-series momentum and long-run
mean reversion.

To calibrate the structural model, we find model parameters that match the-
oretical regression coefficients to corresponding empirically estimated values
in column (3) of Table I.

Proposition 5 implies that the risk-aversion parameter A scales trading
volume but has no effect on prices; we therefore assume A = 1. We assume
r = 0.01 and αD = 0.04, implying 1/(r + αD) = 20.18 We also assume dividend
volatility σD = 0.5 and instantaneous volatility of the growth rate σG = σ̂G =

18 If the growth rate is zero, then P(t) = D(t)/(r + αD ). We assume that a firm pays out all
earnings as dividends, then the P/E ratio is approximately 1/(r + αD ). If r = 0.01 and αD = 0.04,
and hence the implied P/E ratio is 20. The median of the Shiller P/E ratio for the S&P 500 is
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Table II
List of Given and Estimated Parameters

The table reports the given parameter values for r , A , N, αD, σD, αG, σG, τH , and τL. The bottom
two lines report the estimated parameters α̂G and τ̂ .

Parameter Description Value

r Risk-free rate 0.01
A Risk aversion 1
N Numbers of traders 100
αD Mean-reversion rate of dividend 0.04
σD Instantaneous volatility of dividend 0.5
αG Traders’ mean-reversion rate of G(t) 0.2
σG Instantaneous volatility of G(t) 0.1
τH Precision of trader n’s signal 0.3
τL Precision of others’ signal 0.02
α̂G Empirically correct mean-reversion rate of G(t) 0.292
τ̂ Empirically correct total precision 6.034

0.1.19 There remain six parameters: N, τH , τL, αG, α̂G, and τ̂ . As intuition sug-
gests, the magnitude and horizon of return momentum and reversal are de-
termined by the level of disagreement τH/τL and the difference between em-
pirically correct beliefs and traders’ beliefs about the information decay rate
(α̂G − αG and τ̂ − τ ).

To further reduce the number of free parameters, we assume N = 100,
τH = 0.3, τL = 0.02, and αG = 0.2; traders are overconfident and they actively
engage in short-term trading against others in a Keynesian beauty contest.
The mean-reversion rate αG = 0.2 implies that the growth rate G(t) mean-
reverts about ln(2)/0.2 ≈ 3.5 years.20 We calibrate the two remaining param-
eters by matching empirically estimated values in column (3) of Table I to
theoretically predicted regression coefficients. The calibrated parameter val-
ues are α̂G = 0.292 and τ̂ = 6.034. The calibrated parameter values imply that
β1(T ) > 0, β2(T ) < 0, and β0(T ) > 0 in equation (75). Consistent with our pre-
vious discussion, a positive β1(T ) is related to time-series return momentum,
and a negative β2(T ) and a positive β0(T ) imply mean reversion in returns. The
implied values of the two price-dampening factors are CJ = 0.96 and CG = 0.54.
Time-series momentum arises from both effects, but the dynamic dampening
effect of CG is much larger than the static dampening effect of CJ. Time-series
mean reversion arises because traders think that the signals decay at a slower
rate than the empirically correct parameter (αG + τ < α̂G + τ̂ ). Table II sum-
marizes the exogenously given and calibrated parameter values.

15.76 and the current Shiller P/E ratio is 30.2. As illustrated in Internet Appendix Section III, the
calibration results are not sensitive to the particular choice of αD.

19 Rountree, Weston, and Allayannis (2008) document that the average (median) standard devi-
ation of quarterly earnings per share is 0.72 (0.19). Koren and Tenreyro (2007) document that the
standard deviation of growth rates varies between 0.02 and 0.15.

20 In Internet Appendix Section III, we also calibrate the model assuming αG = 0.1, implying
that the growth rate mean-reverts in about ln(2)/0.1 ≈ 7 years.
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Beliefs Aggregation and Return Predictability 461

Figure 8. Theoretical regression coefficients and empirically estimated coefficients.
Theoretical regression coefficients (solid curve) and empirically estimated coefficients (dots) for
different holding periods of Tf = f/12 years (or f months). (Color figure can be viewed at wileyon-
linelibrary.com)

Figure 8 shows that the regression coefficients in our calibrated model
closely match the empirical numbers. The 10 dots correspond to 10 empiri-
cal slope estimates from regression Model B for f = 6, 12, 18, 24, 30, 36, 42,
48, 54, and 60 months. The solid curve depicts the theoretical regression coef-
ficients for the calibrated model for f = 6, 12, 18, 24, 30, 36, 42, 48, 54, and 60
months. These theoretical predictions closely track all 10 empirical estimates.

In Internet Appendix Section III, we discuss how our calibration results are
affected by parameter values. The calibrated parameter values for α̂G and τ̂

are affected by different values of disagreement τH/τL, αG, and σG as expected.
When exogenous values of τH , τL, N, αG, and σG change, we show that the
model can still generate empirically realistic patterns with different calibrated
parameter values for α̂G and τ̂ .

IV. Conclusion

When traders disagree about future valuations, a competitive market ag-
gregates this disagreement in a manner that induces time-series momentum
in returns. We clarify the underlying mechanism by first using a two-period
model and then developing a dynamic trading model in which traders have
heterogeneous beliefs about how to interpret continuous flows of privately ob-
served information and trade at discrete trading rounds.

Even though all traders apply Bayes’ law consistently, they believe that
they regularly spot opportunities at the expense of others. Even though prices
fully reflect the average of all signals at each point in time, the prices are
dampened relative to the average of traders’ buy-and-hold valuations. Price
dampening occurs as a result of traders taking advantage of perceived short-
term speculative trading opportunities rather than trading solely on long-term
valuations of fundamentals. Contrary to the Keynesian intuition, this short-
term speculative trading, when internalized by the market, leads to price
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dampening, not excessive volatility. When trading rounds occur less frequently,
opportunities to engage in short-term speculation are reduced, and there is
less dampening. We calibrate model parameter values to demonstrate that
our model can generate quantitatively realistic empirical patterns of return
dynamics.

Initial submission: August 3, 2016; Accepted: May 18, 2021
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix A: Proofs

A. Proof of Theorem 1

If each trader holds conditional mean-variance optimal portfolio at each pe-
riod, then

Šn1 = En
1

[
P̌2

]
−P̌1

A varn
1

[
P̌2

] , Šn2 = En
2 [v]−P̌2

A varn
2 [v] . (A1)

The market-clearing condition
∑N

n=1 Šnt = 0 (t = 1,2) implies equilibrium
prices

P̌1 = 1
N

N∑
n=1

En
1

[
P̌2

]
, P̌2 = 1

N

N∑
n=1

En
2[v]. (A2)

Simple calculation shows that En
1[P̌2] is given by

En
1

[
P̌2

]
= En

1

[
1
N

N∑
n=1

En
2[v]

]
= τ1

τ2

1
N

N∑
n=1

En
1[v] + τv

Nτ2

(
τ

1/2
H + (N − 1)τ 1/2

L

)2
En

1[v].

(A3)
It follows that

P̌1 = 1
N

N∑
n=1

En
1

[
P̌2

]
=
(

1 − τv
τ2

(
1 − 1

N

) (
τ

1/2
H − τ

1/2
L

)2
)

1
N

N∑
n=1

En
1[v] = Čg

1
N

N∑
n=1

En
1[v],

(A4)
where the coefficient Čg satisfies 0 < Čg < 1 and is given as in equation (9).

At t = 1, trader n’s estimate of his own next-period estimate and the sum of
all traders’ next-period estimates are

En
1

[
En

2[v]
] = τ1

τ2
En

1[v] + (τH + (N − 1)τL)τv

τ2
En

1[v] = En
1[v], (A5)
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En
1
[ N∑
n=1

En
2
[
v
]] = En

1
[
En

2[v] +
N∑

m=1,m �=n

Em
2 [v]

] = En
1[v] + (N − 1)En

1
[ 1

N−1

N∑
m=1,m �=n

Em
2 [v]

]
.

(A6)
In addition, since

∑N
n=1 En

2

[
v
] = τ

1/2
v
τ2

(τ 1/2
H + (N − 1) τ 1/2

L )
∑N

n=1(in1 + in2), we
have

En
1

[ N∑
n=1

En
2

[
v
]] = τ

1/2
v

τ2

(
τ

1/2
H + (N − 1) τ 1/2

L

)( N∑
n=1

in1 + En
1

[ N∑
n=1

in2
])

= τ1

τ2

N∑
n=1

En
1[v] + τv

τ2

(
τ

1/2
H + (N − 1) τ 1/2

L

)2
En

1[v].

(A7)

Equation (A6) and the last line of equation (A7) imply

En
1

[
E−n

2 [v]
] = 1

N−1
τ1

τ2

(
En

1[v] +
N∑

m=1,m�=n

Em
1 [v]

)+ 1
N−1

( τv

τ2

(
τ

1/2
H + (N − 1) τ 1/2

L

)2
− 1

)
En

1[v]

=
(
1 −

(
τ

1/2
H − τ

1/2
L

)2 τv

τ2

)
En

1[v] − τ1

τ2

(
En

1[v] − E−n
1 [v]

)
.

(A8)

This completes the proof of equation (11).

B. Proof of Theorem 2

At t = 1, 2, trader n chooses quantity Snt to maximize the expected utility of
terminal wealth En

t [−e−A Wn3 ]. At t = 2, the optimal inventory is Sn2 = (En
2[v] −

P2)/(A varn
2[v]). The market-clearing condition

∑N
n=1 Sn2 = 0 yields the market-

clearing price at t = 2:

P2 = 1
N

N∑
n=1

En
2[v] = τ

1/2
v
τ2

(
τ

1/2
H + (N − 1) τ 1/2

L

)
1
N

N∑
n=1

(in1 + in2). (A9)

At t = 1, trader n chooses optimal demand Sn1 to maximize

En
1

[
− exp

(
−A

(
Wn1 + (P2 − P1) Sn1 +

(
En

2[v] − P2
)2

2A varn
2[v]

))]
, (A10)

where P2 − P1 and En
2[v] − P2 can be expressed as

P2 − P1 = (P2 − En
1[P2]) + (En

1[P2] − P1),

En
2[v] − P2 = (En

2[v] − En
1[v]) − (P2 − En

1[P2]) + (En
1[v] − En

1[P2]).
(A11)
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Defining

y := [
P2 − En

1[P2] , En
2[v] − En

1[v]
]′
, (A12)

the solution for problem (A10) can be obtained using

En
1

[
e

−α
(

Ā+B′y+ 1
2 y′Cy

)]
= 1√

|I + αC
|e
−α

(
Ā− 1

2 αB′
(I+αC
)−1B
)
, (A13)

where y is a 2 × 1 vector of zero-mean normally distributed random variables
with covariance matrix 
,


 :=
[

varn
1[P2] covn

1

[
P2 , En

2[v]
]

covn
1

[
P2 , En

2[v]
]

varn
1

[
En

2[v]
]

]
, (A14)

Ā is a scalar, B is a 2 × 1 vector, C is a 2 × 2 symmetric matrix, and I is the
2 × 2 identity matrix. Define α, Ā, B, and C as follows:

α := A, Ā := Wn1 + (
En

1[P2] − P1
)

Sn1 +
(
En

1[v] − En
1[P2]

)2
2A varn

2[v]
, (A15)

B := ψBSn1 + En
1[v] − En

1[P2]
A varn

2[v]
φB, C := 1

A varn
2[v]

×
[

1 −1
−1 1

]
, (A16)

where ψB := [1 , 0]′ and φB := [−1 , 1]′. The first-order condition for Sn1 im-
plies

Sn1 =
En

1 [P2]−P1− En
1 [v]−En

1 [P2]
varn

2 [v]
ψ ′

B
(I+AC
)−1φB

Aψ ′
B
(I+AC
)−1ψB

. (A17)

It can be shown that

ψ ′
B
(I+AC
)−1φB

varn
2 [v] = covn

1[P2 , En
2 [v]−P2]

varn
1[En

2 [v]−P2]+varn
2 [v]
,

ψ ′
B
(I + AC
)−1ψB = varn

1 [P2](varn
1[En

2 [v]]+varn
2 [v])−(covn

1[P2 , En
2 [v]])2

varn
1[En

2 [v]−P2]+varn
2 [v]

.

(A18)

Substituting equation (A18) into (A17) yields trader n’s optimal inventory as
given in equation (17) in Theorem 2. The market-clearing condition

∑N
n=1 Sn1 =

0 yields

P1 = 1
N

N∑
n=1

En
1[P2] + covn

1[P2 , En
2 [v]−P2]

varn
1[En

2 [v]−P2]+varn
2 [v]

(
1
N

N∑
n=1

En
1[P2] − 1

N

N∑
n=1

En
1[v]

)
. (A19)

It can be shown that P1 can be written as Cg × 1
N

∑N
n=1 En

1[v], where the coeffi-
cient Cg is
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Cg = τ1

τ2
+ τv

τ2

1
N

(
τ

1/2
H + (N − 1)τ 1/2

L

)2 Nτ1

(
Nτ2+(N−1)τv

(
τ

1/2
H −τ 1/2

L

)2
)

Nτ1

(
Nτ2+(N−1)τv

(
τ

1/2
H −τ 1/2

L

)2
)

+(N−1)2τ 2
v

(
τ

1/2
H −τ 1/2

L

)4

(A20)

≤ τ1

τ2
+ τv

τ2

1
N

(
τ

1/2
H + (N − 1)τ 1/2

L

)2
≤ τ1

τ2
+ τv

τ2

(
τH + (N − 1)τL

) = 1. (A21)

Equation (A21) implies that Cg < 1 if τH > τL and Cg = 1 if τH = τL. Thus, P1
is a weighted average of traders’ valuations, with weights summing to less
than one.

C. Proof of Proposition 1

From equation (20), we have

Cg = Čg − τv
τ2

(
1 − 1

N

) (
τ

1/2
H − τ

1/2
L

)2 covn
1[P2 , En

2 [v]−P2]
varn

1[En
2 [v]−P2]+varn

2 [v]
, (A22)

where covn
1[P2 , En

2[v] − P2] > 0 from equation (19). This implies Cg < Čg. From
equation (A21), it is straightforward to see that Cg satisfies 0 < Cg < 1 for
τH �= τL. Using direct calculation, we show analytically that dCg/ dτH < 0 and
dČg/ dτH < 0, holding the total precision τH + (N − 1)τL fixed. This implies that
both Cg and Čg decrease in τH/τL holding the total precision fixed.

D. Proof of Proposition 2

Equations (35) and (37) of the paper present closed-form expressions for re-
turn covariance of the myopic model covn[P̌2 − P̌1 , P̌1 − P̌0] and return covari-
ance of the general two-period model covn[P2 − P1 , P1 − P0].

Under traders’ beliefs, the return autocovariance is given by

covn[v − P2,P2 − P1] = En
0

[
(En

2[v] − P2)(P2 − P1)
]− En

0[v − P2]En
0[P2 − P1]

= N−1
N2 En

0

[
(En

2[v] − E−n
2 [v])(En

2[v] + (N − 1)E−n
2 [v]

−Cg(En
1[v] + (N − 1)E−n

1 [v])
]
. (A23)

The coefficient on v is positive in En
2[v] − E−n

2 [v],

En
2[v] − E−n

2 [v] = τ
1/2
v
τ2

(
τ

1/2
H − τ

1/2
L

)
(in1 − i−n1 + in2 − i−n2)

= τ
1/2
v
τ2

(
τ

1/2
H − τ

1/2
L

)(
2
(
τ

1/2
H − τ

1/2
L

)
τ

1/2
v v + (en1 + en2) − 1

N−1

N∑
m=1,m�=n

(em1 + em2)
)
.

(A24)
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In addition, En
2[v] + (N − 1)E−n

2 [v] increases in the fundamental value v. There-
fore, the covariance between En

2[v] − E−n
2 [v] and En

2[v] + (N − 1)E−n
2 [v] is posi-

tive,

En
0

[(
En

2[v] − E−n
2 [v]

)(
En

2[v] + (N − 1)E−n
2 [v]

)] = 4τv
τ2

2

(
τ

1/2
H − τ

1/2
L

)2(
τ

1/2
H + (N − 1)τ 1/2

L

)2
> 0,

En
0

[(
En

2[v] − E−n
2 [v]

)(
En

1[v] + (N − 1)E−n
1 [v]

)] = 2τv
τ1τ2

(
τ

1/2
H − τ

1/2
L

)2(
τ

1/2
H + (N − 1)τ 1/2

L

)2
.

(A25)

Substituting equation (A25) into (A23) yields

covn[v − P2 , P2 − P1] = 2τv

N2τ2

(
2
τ2

− Cg

τ1

)(
τ

1/2
H + (N − 1)τ 1/2

L

)2
(N − 1)

(
τ

1/2
H − τ

1/2
L

)2
.

(A26)

In the myopic model, we replace Cg by Čg in equation (A26) and show that

covn
[
v − P̌2, P̌2 − P̌1

]
= 2τ 2

v (N−1)
N3τ1τ

2
2

(
N + (N − 1)

(
τ

1/2
H − τ

1/2
L

)2) (
τ

1/2
H

+ (N − 1)τ 1/2
L

)2 (
τ

1/2
H − τ

1/2
L

)2
> 0. (A27)

Under the empirically correct parameters that all private signals have the
same precision, prices have the same expressions as those under traders’ be-
liefs (equation (38)), but traders’ private signals are

înt =
(
τH+(N−1)τL

N

)1/2
(τ 1/2

v v) + ent,

îmt =
(
τH+(N−1)τL

N

)1/2
(τ 1/2

v v) + emt, for all m �= n. (A28)

Using the empirically correct parameters, the return autocovariances are

cov[P2 − P1,P1 − P0] = τvCg

τ1

((
2
τ2

− Cg

τ1

)(
τ

1/2
H +(N−1)τ 1/2

L

)2
(τH+(N−1)τL)

N

+
(

1
τ2

− Cg

τ1

)(
τ

1/2
H +(N−1)τ 1/2

L

)2

N

)
,

cov[v − P2,P2 − P1] =
(

2
τ2

− Cg

τ1

)
τv

Nτ2

(
N1/2(τH + (N − 1)τL

)1/2
−
(
τ

1/2
H + (N − 1)τ1/2

L

))
×
(
τ

1/2
H + (N − 1)τ1/2

L

)(
1 + 2

(
τH + (N − 1)τL

))
. (A29)

Simple calculation shows that cov[v − P2 , P2 − P1] > 0 and cov[P2 − P1 , P1 −
P0] > 0. In the myopic model, we replace Cg by Čg in equation (A29) and show
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that the return autocovariances are given by

cov
[
P̌2 − P̌1 , P̌1 − P̌0

]

=
(N−1)

(
τ

1/2
H −τ 1/2

L

)2(
τ

1/2
H +(N−1)τ 1/2

L

)2
(

N+2τH+2(N−1)2τL+(N−1)
(
τ

1/2
H +τ 1/2

L

)2
)
τ 2

v

N3τ1τ
2
2

> 0,

cov
[
v − P̌2 , P̌2 − P̌1

]

=
τv

(
N+(N−1)

(
τ

1/2
H −τ 1/2

L

)2
)(
τ

1/2
H +(N−1)τ 1/2

L

)(
N1/2(τH+(N−1)τL )1/2−

(
τ

1/2
H +(N−1)τ 1/2

L

))
N2τ1τ2

> 0.

(A30)

E. Proof of Proposition 3

If traders agree about the conditional distribution of v given signals, then for
t = 1, 2, we have En

t [v] = Em
t [v]. Thus, En

1

[
Em

2 [v]
] = En

1

[
En

2[v]
] = En

1[v], where
the last equation follows from iteration of trader n’s expectations. It follows
that En

1

[ 1
N

∑N
m=1 Em

2 [v]
] = En

1[v] = 1
N

∑N
m=1 Em

1 [v], and thus P1 = En
1[P2].

If traders agree about the joint distribution of signals, then
En

1

[
Em

2 [v]
] = Em

1

[
Em

2 [v]
]

because Em
2 [v] is some known function of ob-

served signals that trader m uses in his filtering. It follows that
En

1

[
Em

2 [v]
] = Em

1

[
Em

2 [v]
] = Em

1 [v], where the last equation follows from iter-
ation of trader m’s expectations. We thus have that En

1

[ 1
N

∑N
m=1 Em

2 [v]
] =

1
N

∑N
m=1 Em

1 [v], and hence P1 = En
1[P2].

F. Filtering Formulas for the Dynamic Model

In this subsection, we derive Stratonovich-Kalman-Bucy filtering formulas
for � and Gn,k.

LEMMA A1: Define the total precision of information flows as τ := τ0 + τH +
(N − 1)τL. Then the scaled steady-state error variance � and trader n’s estimate
Gn,k of the growth rate at time t are

�−1 := var−1
[

G∗(t) − Gn(t)
σG

]
= 2 αG + τ, (A31)

Gn(t) := En
t

[
G∗(t)

] = σG �
1/2
(
τ

1/2
0 H0(t) + τ

1/2
H Hn(t) + (N − 1)τ 1/2

L H−n(t)
)
.

(A32)
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468 The Journal of Finance®

PROOF: The stochastic process dG∗(t), dIn(t), dI−n(t), and dI0(t) can be
rewritten as

dG∗(t) := −αGGn(t) dt − αG
(
G∗(t) − Gn(t)

)
dt + σG dBG(t),

dIn(t) := τ
1/2
H

Gn(t)
σG �

1/2 dt + τ
1/2
H

G∗(t)−Gn(t)
σG �

1/2 dt + dBn(t),
(A33)

dI0(t) := τ
1/2
0

Gn(t)
σG �

1/2 dt + τ
1/2
0

G∗(t)−Gn(t)
σG �

1/2 dt + dB0(t),

dI−n(t) := τ
1/2
L

Gn(t)
σG �

1/2 dt + τ
1/2
L

G∗(t)−Gn(t)
σG �

1/2 dt + 1
N−1

N∑
m=1,m �=n

dBm(t).
(A34)

Since trader n’s forecast of the error G∗(t) − Gn(t) is zero given his infor-
mation set, the last two terms in the information processes are indepen-
dently distributed Brownian motions from the perspective of trader n. Let
I(u) denote trader n’s information set. Trader n’s estimate at time t + dt,
Gn(t + dt) := En[G∗(t + dt) | I(u)|t+ dt

u=−∞], can be decomposed into two terms:

Gn(t + dt) = En
[
G∗(t) | I(u)

∣∣t+ dt
u=−∞

]
+ En

[
dG∗(t) | I(u)

∣∣t+ dt
u=−∞

]
. (A35)

The first term reflects the expectation about the past growth rate G∗(t) at time
t given new information dI0(t), dIn(t), and dI−n(t). The second term reflects
the expectation about the change in growth rate dG∗(t) = G∗(t + dt) − G∗(t)
at time t given new information dI0(t), dIn(t), and dI−n(t). The first term
En[G∗(t) | I(u)|t+ dt

u=−∞] can be calculated as follows:

En
[
G∗(t) | I(u)

∣∣t+ dt
u=−∞

]
= En[Gn(t) + (G∗(t) − Gn(t)) | Gn(t) , dI0(t),

dIn(t) , dI−n(t)
]

= Gn(t) + En

[
G∗(t) − Gn(t) | dI0(t) − τ

1/2
0 Gn(t)
σG �

1/2 dt , dIn(t) − τ
1/2
H Gn(t)
σG �

1/2 dt,

dI−n(t) − τ
1/2
L Gn(t)
σG �

1/2 dt

]

(A36)
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Beliefs Aggregation and Return Predictability 469

= Gn(t) + σG�
1/2τ

1/2
0

(
dI0(t) − τ

1/2
0 Gn(t)
σG �

1/2 dt

)

+ σG�
1/2τ

1/2
H

(
dIn(t) − τ

1/2
H Gn(t)
σG �

1/2 dt

)

+ σG�
1/2(N − 1)τ 1/2

L

(
dI−n(t) − τ

1/2
L Gn(t)
σG �

1/2 dt

)
.

(A37)

The last equation is obtained using the projection theorem for normal variables
and equation (A34). The second term En[ dG∗(t) | I(u)|t+ dt

u=−∞] can be calculated
as follows:

En
[

dG∗(t) | I(u)
∣∣t+ dt
u=−∞

]
= En[−αGGn(t) dt + dG∗(t) + αGGn(t) dt | Gn(t),

dI0(t), dIn(t) , dI−n(t)
]

= −αGGn(t) dt − αGEn[(G∗(t) − Gn(t)) dt | Gn(t),

dI0(t) , dIn(t), dI−n(t)
]
.

(A38)

The second term in equation (A38) is as calculated in equation (A37). It can be
ignored since it is of order smaller than dt. Plugging equations (A37) and (A38)
into equation (A35), we find that the estimate Gn(t) is defined by the Itô differ-
ential equation

dGn(t) = −αG Gn(t) dt +
N∑

n=0

σG �
1/2 τ 1/2

n

(
dIn(t) − Gn(t)

τ
1/2
n

σG �
1/2 dt

)
. (A39)

Rearranging terms yields

dGn(t) = −(αG + τ ) Gn(t) dt + σG �
1/2
(
τ

1/2
0 dI0 + τ

1/2
H dIn + (N − 1)τ 1/2

L dI−n

)
.

(A40)
From equation (A40), we obtain the solution for the estimate Gn(t):

Gn(t) = σG�
1/2
∫ t

u=−∞
e−(αG+τ ) (t−u) (τ 1/2

0 dI0(u) + τ
1/2
H dIn(u)

+ (N − 1)τ 1/2
L dI−n(u)) du. (A41)
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470 The Journal of Finance®

Define the sufficient statistics or “signals” Hn(t) by

Hn(t) :=
∫ t

u=−∞
e−(αG+τ ) (t−u) dIn(u), n = 0,1, . . . ,N. (A42)

The estimate Gn(t) can be conveniently written as the weighted sum of these
sufficient statistics as in equation (A32). The mean-square filtering error of
the estimate Gn(t), denoted by σ 2

G �(t), is defined by the Riccati differential
equation

σ 2
G

d�(t)
dt

= −2αG σ
2
G �(t) + σ 2

G − σ 4
G �(t)2

N∑
n=0

(
τ

1/2
n

σG �(t)1/2

)2

. (A43)

Using the steady-state assumption d�(t)/ dt = 0, solve this equation for
the steady-state value � defined by � = �(t) to obtain equation (A31). Equa-
tion (A32) implies that, in discrete notation, trader n’s estimate of the growth
rate at time t = kh is

Gn,k := En
kh

[
G∗(kh)

] = σG�
1/2
(
τ

1/2
0 H0,k + τ

1/2
H Hn,k + (N − 1)τ 1/2

L H−n,k

)
. (A44)

�

G. The Equilibrium with Myopic Conditional Mean-Variance Optimizers

Similar to the two-period model, we first solve for the equilibrium prices
when traders are myopic and hold the conditional mean-variance optimal
portfolio:

Šn,k =
En

kh

[
P̌k+1 + D̆k+1

]
− erhP̌k

A varn
kh

[
P̌k+1 + D̆k+1

] . (A45)

The equilibrium price P̌k is given in the following theorem.

THEOREM A1 (Prices with Myopic Conditional Mean-Variance Optimizers):
Suppose each trader holds the conditional mean-variance optimal portfolio at
each period. Then the price P̌k is

P̌k = Dk

r + αD
+ ČG

Ḡk

(r + αD)(r + αG)
, (A46)

where Ḡk, defined in equation (63), is the average of traders’ expected growth
rates at time kh. The coefficient ČG satisfies 0 < ČG < 1 and is given by

ČG :=
(

1 + 1 − e−τh

e(r+αG )h − 1
N − 1

N

(
τ

1/2
H − τ

1/2
L

)2
/τ

)−1

. (A47)
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Beliefs Aggregation and Return Predictability 471

PROOF: The proof of Theorem A1 is presented in Appendix subsection H. �

The pricing formula (A46) resembles an average of traders’ valuations of
fundamentals (44), with one important difference. The coefficient CG satisfies
0 < ČG < 1. This dampens prices relative to traders’ average valuation. The
endogenous parameter CG measures price dampening just like the coefficients
Čg < 1 and Cg < 1 in the two-period model in Section I.

PROPOSITION A1: A common prior (τH = τL) implies no price dampening, with
ČG = 1. Relative overconfidence (τH > τL) implies 0 < ČG < 1. The coefficient CG
increases in the trading interval h and decreases in the disagreement τH/τL
(holding total precision τ fixed).

PROOF: The proof of Proposition A1 is in Appendix subsection I. �

Proposition A1 implies that price dampening becomes more pronounced with
more frequent trading. When h becomes smaller, traders exploit profitable
trading opportunities more frequently. If h → ∞, then ČG = 1. This implies
that if traders can only buy and hold the risky asset, then the price is ex-
actly equal to traders’ average valuations of fundamentals. The dampening
effect ČG < 1 occurs because traders internalize their future disagreement
about the growth rate. Each trader agrees to disagree with others about how
to interpret private signals in the present and how to interpret private sig-
nals in the future. When internalized, this future disagreement dampens the
current market price relative to average valuation. Each trader expects that,
as time passes, other traders will revise their mistaken current valuations of
fundamentals toward unconditional levels, before they eventually converge to-
ward his own “correct” valuation. He tries to profit by trading ahead of antici-
pated short-term revisions of others’ expectations, even when this means trad-
ing against his own long-term valuation. This short-term speculative trading
dampens current prices relative to the average of traders’ valuations. In equi-
librium, this leads to a Keynesian beauty contest. Yet, contrary to common
intuition, this short-term speculative trading tends to dampen, rather than
magnify, price fluctuations.

We next discuss trader n’s expectations about his and others’ stock positions
in the next period. Suppose trader n thinks that he can sell the stock at time
(k + 1)h at price equal to his own valuation of fundamentals, Fn,k+1 = Dk+1

r+αD
+

Gn,k+1
(r+αD )(r+αG ) . Then his conditional mean-variance optimal portfolio at time kh is

given as in equation (A45), replacing the price P̌k+1 with Fn,k+1. It can be shown
that the price at time kh is P̌k = Dk

r+αD
+ Ḡk

(r+αD )(r+αG ) . At time (k − 1)h, trader

n expects his conditional mean-variance position at time kh, En
(k−1)h[Šn,k], is

proportional to

En
(k−1)h[Gn,k − G−n,k] = e−αGh

(
1
τ

(
τ

1/2
H − τ

1/2
L

)2(
1 − e−τh

)
Gn,k−1
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472 The Journal of Finance®

+ e−τh(Gn,k−1 − G−n,k−1)
)
. (A48)

If all traders happen to agree about the fundamental valuation at time (k − 1)h
(i.e., Gn,k−1 = G−n,k−1 > 0), then equation (A48) is reduced to

En
(k−1)h[Gn,k − G−n,k] = 1

τ

(
τ

1/2
H − τ

1/2
L

)2
e−αGh(1 − e−τh)Gn,k−1 > 0. (A49)

Each trader n expects to buy (En
(k−1)h[Šn,k] > 0), and others to sell, next period.

The reason is that each trader expects prices to fall in the next period, each
trader believes that others make the mistake of attributing too much preci-
sion to their current and future signals, and each trader expects that, upon
observing new information in the future, others will adjust their valuations to-
ward unconditional levels. Thus, each trader expects others to sell and prices
to fall.

Trader n’s conditional mean-variance optimal portfolio, Šn,k−1 is proportional
to

En
(k−1)h

[
e−rh

(
Dk

r + αD
+ Ḡk

(r + αD)(r + αG)
+ D̆k+1

)]
− P̌k−1

= Dk−1

r + αD
+ Gn,k−1

(r + αD)(r + αG)
− N − 1

N
e−rh En

k−1[Gn,k − G−n,k]
(r + αD)(r + αG)

− P̌k−1. (A50)

Equations (A49) and (A50) imply that, if traders agree about the fundamental
valuation at time (k − 1)h (so Gn,k−1 = G−n,k−1 > 0) and the price P̌k−1 is equal
to their consensus fundamental valuation, P̌k−1 = Dk−1

r+αD
+ Ḡk−1

(r+αD )(r+αG ) , then all
traders would want to hold short positions at time (k − 1)h because all traders
would expect prices to fall below fundamental value at time kh. In equilibrium,
this short-term speculative trading dampens current prices relative to the av-
erage of traders’ valuations. The price dampening becomes more pronounced
when traders exploit profitable trading opportunities more frequently.

H. Proof of Theorems 3 and A1

We first derive the dynamics of key state variables. We then solve for
the equilibrium.

H.1. The Dynamics of Key State Variables

We next derive conditional expectations of key state variables and their
variance-covariance matrix. Define N + 1 processes dBn

0 (t), dBn
n(t), and
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Beliefs Aggregation and Return Predictability 473

dBn
m(t), m = 1, …, N, m �= n, by

dBn
0 (t) = τ

1/2
0

G∗(t) − Gn(t)
σG �

1/2 dt + dBD(t),

dBn
n(t) = τ

1/2
H

G∗(t) − Gn(t)
σG �

1/2 dt + dBn(t),

dBn
m(t) = τ

1/2
L

G∗(t) − Gn(t)
σG �

1/2 dt + dBm(t).

(A51)

The superscript n indicates conditioning on beliefs of trader n. Since trader n’s
forecast of the error G∗(t) − Gn(t) is zero given his information set, these N + 1
processes are independently distributed Brownian motions from the perspec-
tive of trader n. In terms of these Brownian motions, trader n believes that
sufficient statistics H0(t),Hn(t), and H−n(t) change as follows:

dH0(t) = −(αG + τ ) H0(t) dt + τ
1/2
0

Gn(t)
σG �

1/2 dt + dBn
0 (t),

dHn(t) = −(αG + τ ) Hn(t) dt + τ
1/2
H

Gn(t)
σG �

1/2 dt + dBn
n(t),

(A52)

dH−n(t) = −(αG + τ ) H−n(t) dt + τ
1/2
L

Gn(t)
σG �

1/2 dt + 1
N−1

N∑
m=1,m �=n

dBn
m(t).

(A53)

Combine the three sufficient statistics into the two sufficient statistics

Hc
n(t) : = Hn(t) + â H0(t), Hc

−n(t) := H−n(t) + â H0(t), with

â := τ
1/2
0

τ
1/2
H +(N−1)τ 1/2

L

. (A54)

Define y(t) = [D(t) , Hc
n(t) , Hc

−n(t)]′ as a continuous three-vector stochastic
process of all state variables. Using equation (A52), write this stochastic vector
in matrix form as

dy(t) = K y(t) dt + Cz dZ(t), (A55)

where K is a 3 × 3 matrix and Cz is a 3 × 3 matrix given by

K =

⎡
⎢⎢⎣

−αD σG�
1/2τ

1/2
H σG�

1/2(N − 1)τ 1/2
L

0 −αG − τ + τ
1/2
H (τ 1/2

H + âτ 1/2
0 ) (N − 1)τ 1/2

L (τ 1/2
H + âτ 1/2

0 )

0 τ
1/2
H (τ 1/2

L + âτ 1/2
0 ) −αG − τ + (N − 1)τ 1/2

L (τ 1/2
L + âτ 1/2

0 )

⎤
⎥⎥⎦,
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474 The Journal of Finance®

Cz =

⎡
⎢⎢⎣
σD 0 0

â 1 0

â 0 1√
N−1

⎤
⎥⎥⎦, (A56)

and dZ(t) = [ dBn
0 (t), dBn

n(t), 1√
N−1

∑N
m=1,m �=n dBn

m(t)]′ is a three-dimensional
Brownian motion.

We can also represent the process yk+1 = [Dk+1,Hc
n,k+1,H

c
−n,k+1]′ as an inte-

gral,

yk+1 = eKh yk +
∫ (k+1)h

kh
eK((k+1)h−t) Cz dZ(t). (A57)

This yields the following equations for conditional expectations and the vari-
ance of yk+1:

En
kh

[
yk+1

] = eKh[Dk,Hc
n,k,H

c
−n,k

]′
, varkh

[
yk+1

] =
∫ h

0
eK(h−t)CzC′

ze
K ′(h−t) dt.

(A58)

Since trading is discrete, we also need to derive dynamics for variable D̆k+1,
defined in equation (55). In particular, we solve for En

kh[D̆k+1], varkh[D̆k+1], and
cov[D̆k+1 , yk+1]. Define

y̆k+1 := erh
∫ (k+1)h

kh
e−r(t−kh)y(t) dt. (A59)

It can be shown that

y̆k+1 = (K − rI)−1

((
e(K−rI)h − I

)
erhyk +

∫ (k+1)h

kh
eK((k+1)h−t)Cz dZ(t)

−
∫ (k+1)h

kh
e−r(t−(k+1)h)Cz dZ(t)

)
. (A60)

The expectation En
kh[D̆k+1] is given by the first element in the 4 × 1 vector

erh(K − rI)−1(e(K−rI)h − I)yk in the equation above. We can then derive

cov
[
yk+1 , y̆k+1

] =varkh
[
yk+1

]
(K ′ − rI)−1 − (K + rI)−1

(
e(K+rI)h − I

)
CzC′

z(K ′ − rI)−1,

cov
[
y̆k+1 , y̆k+1

] =
(

(K − rI)−1varkh
[
yk+1

]− (K − rI)−1CzC′
z(e(K+rI)h − I)′(K ′ + rI)−1

)
(K ′ − rI)−1

−
(

(K2 − r2I)−1(e(K+rI)h − I) + 1 − e2rh

2r
(K − rI)−1

)
CzC′

z(K ′ − rI)−1.

(A61)
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Beliefs Aggregation and Return Predictability 475

It follows that vark[D̆k+1] is the (1,1) entry of the matrix cov[y̆k+1 , y̆k+1], and
cov[D̆k+1 , yk+1] is given by the first column of the matrix cov[yk+1 , y̆k+1].

H.2. Solution of the General Dynamic Model

We next solve for the equilibrium. We conjecture that the price in period k is
a linear function of Dk and Ḡk, of the form

Pk = Dk

r + αD
+ CG

Ḡk

(r + αD)(r + αG)
. (A62)

Trader n’s problem (52) can be rewritten in discrete-time form as (53), where
Un, j is obtained by solving the maximization problem (56) subject to con-
straint (57). The first-order condition yields

c( jh + t) = − 1
A

(
(ρ − r)t + ln

λ

A

)
, (A63)

where λ is the Lagrange multiplier. If t = 0 in equation (A63), then c( jh) =
− 1

A ln λ
A . Thus,

c( jh + t) = c( jh) + 1
A

(r − ρ)t. (A64)

Substituting (A64) into constraint (57), we have

c( jh) = rh
1 − e−rh

cn, j − r − ρ

Ar(1 − e−rh)

(
1 − (rh + 1)e−rh

)
. (A65)

From equations (A64), (A65), and (56), we get

Un, j = −h exp
(

−A
rh

1 − e−rh
cn, j

)
φ(r, ρ,h), (A66)

where φ(r, ρ,h) is defined as

φ(r, ρ,h) = 1 − e−rh

rh
exp

(
r − ρ

r(1 − e−rh)

(
1 − (1 + rh)e−rh

))
= 1 − 1

2ρh + O(h2).

(A67)
Trader n’s problem (53) is then equivalent to

max
[cn, j], j=k,k+1,...,∞
[Sn, j], j=k,k+1,...,∞

En
kh

∑
j=k

−he−ρ( j−k)h exp
(

−A
rh

1 − e−rh
cn, j

)
(A68)

subject to the budget constraint (54).
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476 The Journal of Finance®

We conjecture and verify that the value function has the quadratic exponen-
tial form

Vk(Wn,k , Hc
n,k , Hc

−n,k) = − exp
(
ψ0 + ψWWn,k + 1

2ψnn(Hc
n,k)2 + 1

2ψxx(Hc
−n,k)2

+ ψnxHc
n,kHc

−n,k

)
. (A69)

The five constants ψ0, ψW , ψnn, ψxx, and ψnx have values consistent with a
steady-state equilibrium. The terms ψnn, ψxx, and ψnx capture the value of fu-
ture trading opportunities based on current public and private information.
The value of trading on innovations to future information is built into the con-
stant term ψ0.

The Hamilton-Jacobi-Bellman (HJB) equation for the discrete problem is

Vk(Wn,k , Hc
n,k , Hc

−n,k) = max
cn,kSn,k

[
−h exp

(
− Arh

1 − e−rh
cn,k

)
+ e−ρhEn

khVk+1

(Wn,k+1 , Hc
n,k+1 , Hc

−n,k+1)
]
, (A70)

where the dynamics of wealth satisfies (54) and the dynamics of Hc
n,k and Hc

−n,k
can be obtained from equations (A52) and (A54). Define

xk+1 : =
[
Dk+1 , D̆k+1 , Hc

n,k+1,H
c
−n,k+1

]′
−
[
En

kh

[
Dk+1

]
, En

kh

[
D̆k+1

]
,

En
kh

[
Hc

n,k+1

]
, En

kh

[
Hc

−n,k+1

]]′
, (A71)

where D̆k+1 is as defined in equation (55). Then, En
kh[Vk+1] can be obtained

using

En
kh

[
e

−α
(

Ā+B′x+ 1
2 x′Cx

)]
= 1√

|I + αC
|e
−α

(
Ā− 1

2αB′
(I+αC
)−1B
)
, (A72)

where x is an n × 1 normal vector with mean zero and covariance matrix
, Ā is
a scalar, B is an n × 1 vector, C is an n × n symmetric matrix, and I is the n × n
identity matrix. The value of 
 can be obtained from the previous section.
More specifically, vark[D̆k+1] is the (1,1) entry of the matrix cov[y̆k+1 , y̆k+1]
in equation (A61), cov[D̆k+1 , yk+1] is given by the first column of the matrix
cov[yk+1 , y̆k+1] in equation (A61), and vark[yk+1] is given in equation (A58).
Define α, Ā, B, and C by

Ā =ψ0 + ψW erh(Wn,k − hcn,k − Sn,kPk
)+ ψW Sn,k

(
En

kh

[
D̆k+1

]
+ En

kh[Dk+1]
r+αD

+CGσG�
1/2(τ 1/2

H +(N−1)τ 1/2
L )

N(r+αD )(r+αG )

(
En

kh

[
Hc

n,k+1

]+ (N − 1)En
kh

[
Hc

−n,k+1

]))

+ 1
2ψnn

(
En

kh

[
Hc

n,k+1

])2 + 1
2ψxx

(
En

kh

[
Hc

−n,k+1

])2 + ψnxHc
n,k+1Hc

−n,k+1,

(A73)
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Beliefs Aggregation and Return Predictability 477

α = − 1, B = ψWψBSn,k + ϕB, C =
[

02×2 02×2

02×2 c2×2

]
, where

c2×2 =
[
ψnn ψnx

ψnx ψxx

]
, ψB = ψB1 + CGσG�

1/2(τ 1/2
H +(N−1)τ 1/2

L )
N(r+αD )(r+αG ) ψB2,

ψB1 =
[

1
r+αD

, 1 , 0 , 0
]′
, ψB2 = [0 , 0 , 1 , N − 1]′,

(A74)

ϕB =
[
0 , 0 , ψnnEn

kh

[
Hc

n,k+1

]+ ψnxEn
kh

[
Hc

−n,k+1

]
, ψxxEn

kh

[
Hc

−n,k+1

]+ ψnxEn
kh

[
Hc

n,k+1

]]′
.

(A75)

Taking the first-order condition with respect to cn,k in the HJB equation (A70)
yields

c∗
n,k = − 1−e−rh

Arh

(
(r − ρ)h + ln

(
ψW (1−e−rh )

Arh En
khVk+1

))
. (A76)

Substituting (A76) into the HJB equation (A70) yields

Vk = e−ρh
(
1 − ψW (erh−1)

Ar

)
En

kh

[
Vk+1

]
. (A77)

Taking the first-order condition with respect to Sn,k yields

S∗
n,k =

En
kh

[
Pk+1 + D̆k+1

]
− erhPk + ϕ′

B
(I − C
)−1ψB

−ψWψ
′
B
(I − C
)−1ψB

. (A78)

It can be shown that optimal quantity S∗
n,k is linear in the state variables Hc

n,k
and Hc

−n,k. Define constants cd1, cd2, cn1, cx1, cn2, and cx2 by

cd1 := σG�
1/2
(
e−αGh−e−αDh

)
αD−αG

, cd2 := σG�
1/2
(

(r+αG )e−(r+αD )h−(r+αD )e−(r+αG )h+αD−αG

)
(αD−αG )(r+αD )(r+αG ) ,

cn1 := e−(αG+τ )h
(
eτh

(
τ

1/2
H (τ0+τH )+(N−1)τHτ

1/2
L

)
+(N−1)τ 1/2

L

(
τ0+τ 1/2

H τ
1/2
L +(N−1)τL

))
(
τ

1/2
H +(N−1)τ 1/2

L

)
τ

,

(A79)
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478 The Journal of Finance®

cn2 := e−(αG+τ )h(eτh−1)τ 1/2
H

(
τ0+τ 1/2

H τ
1/2
L +(N−1)τL

)
(
τ

1/2
H +(N−1)τ 1/2

L

)
τ

,

cx1 := e−(αG+τ )h(eτh−1)(N−1)τ 1/2
L

(
τ0+(N−1)τ 1/2

H τ
1/2
L +τH

)
(
τ

1/2
H +(N−1)τ 1/2

L

)
τ

,

cx2 := e−(αG+τ )h
(
eτh(N−1)τ 1/2

L

(
τ0+τ 1/2

H τ
1/2
L +(N−1)τL

)
+τ 1/2

H (τ0+τH )+(N−1)τHτ
1/2
L

)
(
τ

1/2
H +(N−1)τ 1/2

L

)
τ

.

Then ϕB, defined in equation (A75), can be written as ϕB = ϕB1Hc
n,k +

ϕB2Hc
−n,k, where ϕB1 := [0 , 0 , ψnncn1 + ψnxcn2 , ψxxcn2 + ψnxcn1]′ and

ϕB2 := [0 , 0 , ψnncx1 + ψnxcx2 , ψxxcx2 + ψnxcx1]′. The market-clearing con-
dition

∑N
n=1 S∗

n,k = 0 and equation (A78) imply

CG =
e−αGh−erh− (r+αD )(r+αG )

σG�
1/2

(
τ
1/2
H +(N−1)τ1/2

L

) (ϕ′
B1+ϕ′

B2 )
(I−C
)−1ψB1

Nτ0+
(
τ
1/2
H +(N−1)τ1/2

L

)2

Nτ e−αGh−erh+
(N−1)

(
τ
1/2
H −τ1/2

L

)2

Nτ e−(αG+τ )h+ 1
N (ϕ′

B1+ϕ′
B2 )
(I−C
)−1ψB2

. (A80)

Then, from equations (A78) and (A80), the optimal inventory for trader n is
given by

S∗
n,k = CL

(
Hc

n,k − Hc
−n,k

)
, (A81)

where the constant CL is defined as

CL = 1
rANτ (r + αD)(r + αG)ψ ′

B
(I − C
)−1ψB

(
Nτ

(
σG�

1/2τ
1/2
H (erh − e−αGh)

+(r + αD)(r + αG)ϕ′
B1
(I − C
)−1ψB1

)
+ CGσG�

1/2
(
τ
(
τ

1/2
H + (N − 1)τ 1/2

L

)
ϕ′

B1
(I − C
)−1ψB2 + e−αGhτ
1/2
H(

Nτ0 +
(
τ

1/2
H + (N − 1)τ 1/2

L

)2
)

− erh
(
τ

1/2
H + (N − 1)τ 1/2

L

)
τ − e−(αG+τ )h(N − 1)

(
τ

1/2
H − τ

1/2
L

)
(
τ0 + τ

1/2
H τ

1/2
L + (N − 1)τL

)))
.

(A82)

Equations (A77) and (A69) imply

ln(−En
khVk+1) = ψ0 + ψWWn,k + 1

2ψnn(Hc
n,k)2 + 1

2ψxx(Hc
−n,k)2 + ψnxHc

n,kHc
−n,k

+ρh − ln

(
1 − ψW (erh − 1)

Ar

)
. (A83)
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Beliefs Aggregation and Return Predictability 479

Substituting (54), (A58), (A62), value function (A69), (A76), (A81), and (A83)
into the HJB equation (A70) and setting the constant term and the coefficients
on Wn,k, (Hc

n,k)2, (Hc
−n,k)2, and Hc

n,k Hc
−n,k to zero yields five equations, which can

be solved for the five unknown parameters ψ0, ψW , ψnn, ψnx, and ψxx. Setting
the constant term and coefficient on Wn,k to zero yields

ψW = −rA, ψ0 = (r−ρ)h−(erh−1) ln 1−e−rh
h −ln

√
|I−C
|

erh−1 . (A84)

By setting the coefficients on (Hc
n,k)2, (Hc

−n,k)2, and Hc
n,k Hc

−n,k to zero, we obtain
three polynomial equations in the three unknowns ψnn, ψxx, and ψnx. These
three equations in three unknowns can be written as the following system of
equations:

0 = − 1
2 erhψnn + rACLCG

(
erh − cn1 − (N − 1)cn2

)
σG�

1/2(τ 1/2
H +(N−1)τ 1/2

L )
N(r+αD )(r+αG )

− rACL

(
erhcd2 + cd1

r+αD

)
τ

1/2
H + 1

2ψnnc2
n1 + 1

2ψxxc2
n2 + ψnxcn1cn2

+ 1
2 r2A2C2

Lψ
′
B
(I − C
)−1ψB − rACLψ

′
B
(I − C
)−1ϕB1 + 1

2ϕ
′
B1
(I − C
)−1ϕB1,

(A85)

0 = − 1
2 erhψxx + rACLCG

(
−erh(N − 1) + cx1 + (N − 1)cx2

)
σG�

1/2(τ 1/2
H +(N−1)τ 1/2

L )
N(r+αD )(r+αG )

+ rACL

(
erhcd2 + cd1

r+αD

)
(N − 1)τ 1/2

L + 1
2ψxxc2

x2 + ψnxcx1cx2

+ 1
2 r2A2C2

Lψ
′
B
(I − C
)−1ψB + rACLψ

′
B
(I − C
)−1ϕB2 + 1

2ϕ
′
B2
(I − C
)−1ϕB2,

(A86)

0 = erhψnx + rACLCG

(
erh(N − 2) − cx1 − (N − 1)cx2 + cn1 + (N − 1)cn2

)
σG�

1/2(τ 1/2
H + (N − 1)τ 1/2

L )
N(r + αD)(r + αG)

− rACL

(
erhcd2 + cd1

r+αD

)(
(N − 1)τ 1/2

L − τ
1/2
H

)
+ ψnncn1cx1 + ψxxcn2cx2

+ ψnx(cn1cx2 + cx1cn2)

− r2A2C2
Lψ

′
B
(I − C
)−1ψB − rACLψ

′
B
(I − C
)−1(ϕB2 − ϕB1)

+ ϕ′
B1
(I − C
)−1ϕB2.

(A87)

To summarize, optimal consumption is defined in (A76), the optimal strat-
egy is defined in (A81), and the endogenous coefficient CL is defined in (A82).
The equilibrium price is defined in (A62), and the endogenous coefficient CG
is defined in (A80). The quadratic value function is defined by five parame-
ters. Parameters ψW and ψ0 are presented in (A84). Parameters ψnn, ψnx, and
ψxx are solved numerically from the system of equations (A85) to (A87). This
concludes the proof of Theorem 3.
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480 The Journal of Finance®

H.3. The Case with Myopic Conditional Mean-Variance Optimizers

Trader n’s myopic conditional mean-variance optimal holding at time kh is
given in equation (A45). Similar to the proof of the general dynamic model case
(equation (A78)), it can be shown that optimal quantity Šn,k is linear in the
state variables Hc

n,k and Hc
−n,k. The market-clearing condition

∑N
n=1 Šn,k = 0

and equation (A45) imply

ČG = e−αGh−erh(
τ0
τ

+ 1
Nτ

(
τ

1/2
H +(N−1)τ 1/2

L

)2
)

e−αGh−erh+ N−1
Nτ

(
τ

1/2
H −τ 1/2

L

)2
e−(αG+τ )h

, (A88)

which can be simplified as equation (A47). This completes the proof of Theo-
rem A1.

I. Proof of Proposition A1

The endogenous parameter ČG is defined in equation (A47). From equa-
tion (A47), we can see that a common prior (τH = τL) implies ČG = 1. Rela-
tive overconfidence (τH > τL) implies 0 < ČG < 1. Fixing the total precision τ ,
we have that ČG decreases in the disagreement τH/τL. Using a Taylor series
expansion, it can be shown that 1−e−τh

e(r+αG )h−1
decreases in trading interval h. It

follows that ČG increases in the trading interval h.

J. Proof of Proposition 4

Assuming τH = τL, then ψnn = ψnx = ψxx = 0 solves equations (A85) to (A87).
We also get CG = 1 and CL = 0 from equations (A80) and (A82). There is no
trading. If τH = τL, then CJ = 1 in equation (22); if τH > τL, then Jensen’s in-
equality implies 0 < CJ < 1.

In the case with relative overconfidence of τH > τL, information cannot have
negative value in the value function (A69) since traders can always ignore it.
Therefore, the 2 × 2 matrix

[
ψnn ψnx

ψnx ψxx

]
(A89)

must be negative semidefinite. This implies ψnn ≤ 0, ψxx ≤ 0, and ψ2
nx ≤ ψnnψxx.

It follows that ψnn + ψxx + 2ψnx ≤ 0. In the continuous-time model (h → 0), we
can show

CG =
N(r+αG )

(
σG�

1/2+ σDâ(ψnn+ψxx+2ψnx )

τ
1/2
H +(N−1)τ1/2

L

)

σG�
1/2

(
N(r+αG )+(N−1)

(
τ

1/2
H −τ 1/2

L

)2−(1+Nâ2 )(ψnn+ψxx+2ψnx )
) . (A90)

It can then be shown that limh→0 CG ≤ limh→0 ČG < 1. This concludes the proof.
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Beliefs Aggregation and Return Predictability 481

K. Proof of Proposition 5

Let a vector [ψ∗
nn , ψ

∗
nx , ψ

∗
xx] be a solution to the system (A85) to (A87) for

exogenous parameters A, σD, σG, r, αG, αD, τ0, τL, and τH . If risk aversion is
rescaled by factor F from A to A/F and other exogenous parameters are kept
unchanged, then it is straightforward to show that the vector [ψ∗

nn , ψ
∗
nx , ψ

∗
xx]

is still the solution to the system (A85) to (A87). From equations (A80) and
(A82), it then follows that CL becomes CL F , but CG remains the same.

L. Proof of Theorems 4 and 5

We first calculate the empirically correct estimate of the growth rate. We
then derive the holding-period excess return. In terms of true parameters, the
growth rate in equation (43) becomes

dG∗(t) := −α̂G G∗(t) dt + σ̂G dBG(t). (A91)

Similarly, using true parameters, the process for signals dIn(t) and dI0(t) in
equations (45) and (48) becomes

dIn(t) := τ̂
1/2
I

G∗(t)
σ̂G �̂

1/2
dt + dB̂n(t), n = 1, . . . ,N,

dI0(t) := τ̂
1/2
0

G∗(t)
σ̂G �̂

1/2
dt + dB0(t), (A92)

with τ̂0 := �̂ σ̂ 2
G

σ 2
D

and dB̂n(t) = dBn(t) +
(

τ
1/2
n

σG�
1/2 − τ̂

1/2
n

σ̂G�̂
1/2

)
G∗(t) dt,

(A93)
and dBG(t), dB0(t), dB̂1(t), …, dB̂N (t) are independent Brownian motions.

The sufficient statistic under the correct parameters is defined as

Ĥn(t) :=
∫ t

u=−∞
e−(α̂G+τ̂ ) (t−u) dIn(u), n = 0,1, . . . ,N. (A94)

The sufficient statistic Ĥn(t) and Hn(t) relate to each other as follows:

Ĥn(t) = Hn(t) + (αG + τ − α̂G − τ̂ )
∫ t

u=−∞
e−(α̂G+τ̂ ) (t−u) Hn(u) du. (A95)

If traders use the empirically correct parameters (αG = α̂G) and empirically
correct total precisions of signals (τ = τ̂ ), then we obtain Ĥn(t) = Hn(t). If αG +
τ �= α̂G + τ̂ , then Ĥn(t) �= Hn(t). Define the aggregate sufficient statistic as the
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482 The Journal of Finance®

linear combination of Ĥn(t), n = 0,1, . . . ,N,

Ĥ(t) := τ̂
1/2
0 Ĥ0(t) +

N∑
n=1

τ̂
1/2
I Ĥn(t). (A96)

We then redo the calculation of Lemma A1 in Appendix subsection F to de-
rive Stratonovich-Kalman-Bucy filtering formulas using empirically correct
parameters. The empirically correct estimate of the growth rate at t = kh is
Ĝk := Êkh[G∗(kh)] = σG �̂

1/2 Ĥk, and the steady-state error variance is

�̂ := ˆvar
[

G∗(t)−Ĝ(t)
σ̂G

]
= 1

2 α̂G+τ̂ . (A97)

Plugging equation (63) into the continuous version of equation (65) yields price
P(t) at time t:

P(t) = D(t)
r + αD

+ CG
σG �

1/2

(r + αD)(r + αG)
H(t). (A98)

The price depends on dividend D(t) and traders’ sufficient statistics H(t) about
the growth rate; it does not depend on empirically correct sufficient statis-
tics Ĥ(t). The dynamics of state variables is determined by empirically cor-
rect parameters. The return dynamics thus also depend on both traders’ suffi-
cient statistics H(t) and empirically correct sufficient statistics Ĥ(t). Specially,
when we calculate dP(t) using equation (A98), we plug in dHn(t) using equa-
tion (58), and plug in the correct empirical specification of the dynamics of
dIn(t) from equation (A92) and the correct estimate Ĝ(t) from equation (72).
We can show that the equilibrium instantaneous return process is a linear
combination of the two statistics H(t) and Ĥ(t),

dP(t) + D(t) dt − r P(t) dt =
(
b Ĥ(t) − a H(t)

)
dt + dB̂r(t), (A99)

where constants a, b, and dB̂r(t) are defined as follows:

a := σG CG �
1/2

(r + αD)(r + αG)
(αG + r + τ ), b := σG �̂

1/2

r + αD
+ σG CG �

1/2

(r + αD)(r + αG)(
τ

1/2
0 τ̂

1/2
0 + Nτ 1/2

I τ̂
1/2
I

)
,

dB̂r(t) := σD

r + αD
dB∗

0(t) + σG CG �
1/2

(r + αD)(r + αG)

(
τ

1/2
0 dB∗

0(t) + τ
1/2
I N dB̄∗(t)

)
.

(A100)
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The diffusion term dB̂r(t) depends on the processes dB̄∗(t) and dB∗
0(t):

dB̄∗(t) := τ̂
1/2
I

(
σG �̂

1/2)−1
(
G∗(t) − Ĝ(t)

)
dt + 1

N

N∑
n=1

dB̂n(t),

dB∗
0(t) := τ̂

1/2
0

(
σG �̂

1/2)−1
(
G∗(t) − Ĝ(t)

)
dt + dB0(t).

(A101)

Since Ĝ(t) is the best estimate of G∗(t), both dB̄∗(t) and dB0 are Brownian
motions under empirically correct beliefs, with variances var[ dB∗

0(t)] = dt and
var[ dB̄∗(t)] = 1/N. So the instantaneous variance of the excess return is given
by

ˆvar

[
dB̂r(t)
dt1/2

]
=
(

σD
r+αD

+ σG �
1/2 CG τ

1/2
0

(r+αD )(r+αG )

)2

+ (σG �
1/2 CG )2 N τI

(r+αD )2(r+αG )2 . (A102)

Define a continuous two-vector stochastic process yH (t) = [H(t) , Ĥ(t)]′. Us-
ing the definitions of H(t) and Ĥ(t) in equations (62) and (71), yH (t) can be
shown to satisfy the linear stochastic differential equation

dyH (t) = KH yH (t) dt + CH dZH (t), (A103)

where KH is a 2 × 2 matrix and CH is a 2 × 2 matrix given by

KH =
[−αG − τ τ̂

1/2
0 τ

1/2
0 + N τ̂

1/2
I τ

1/2
I

0 −α̂G

]
, CH =

[
τ

1/2
0

√
N τ

1/2
I

τ̂
1/2
0

√
N τ̂

1/2
I

]
.

(A104)
Under empirically correct beliefs, the vector dZH (t) = [ dB∗

0(t) ,
√

N dB̄∗(t)]′

is a 2 × 1-dimensional Brownian motion, with var[ dB∗
0(t)] = dt and

var[ dB̄∗(t)] = dt/N. Integrating equation (A99) over time yields the holding-
period return over f periods from t = kh to t + T = (k + f )h:

Rk,k+ f =
∫ kh+T

u=kh
er(kh+T−u)( dP(u) + D(u) du − rP(u) du

)

= Pk+ f − erTPk + erT
∫ kh+T

u=kh
e−r(u−kh)D(u) du. (A105)

Using equation (A103), we can obtain recursive formulas for the stochastic vec-
tor yH (u) = [H(u) , Ĥ(u)]′ for time u ≥ kh as a function of yH (kh) = [Hk , Ĥk]′.
Plugging these recursive formulas into equation (A105), we obtain the cumu-
lative holding-period return Rk,k+ f over period T = fh between time kh and
(k + f )h as a linear function of Hk and Ĥk:

Rk,k+ f = ζ2(T ) Ĥk − ζ1(T ) Hk + B̄k,k+ f . (A106)
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The coefficients ζ1(T ) > 0 and ζ2(T ) > 0 in the equation above are defined as

ζ1(T ) := σG CG �
1/2

(r + αD)(r + αG)
erT

(
1 − e−(r+αG+τ )T

)
> 0,

ζ2(T ) :=erT − e−α̂GT

r + α̂G

σ̂G �̂
1/2

r + αD
+
σGCG�

1/2
(
τ

1/2
0 τ̂

1/2
0 + Nτ̂ 1/2

I τ
1/2
I

)
(τ + αG − α̂G) (r + αG)(r + αD)(

e−α̂GT − e−(αG+τ )T
)
> 0,

(A107)

and the Brownian motion term B̄k,k+ f is defined as

B̄k,k+ f :=
∫ kh+T

s=kh

∫ kh+T

u=s
[−a,b]er(kh+T−u)+KH (u−s)CH du dZH (s)

+
∫ kh+T

s=kh
er(kh+T−s) dB̂r(s). (A108)

If traders have correct model parameters α̂G = αG, σ̂G = σG, and τ̂ = τ , then
ζ1(T ) and ζ2(T ) defined in equation (A107) can be written as

ζ1(T ) = CGσG�
1/2

(r + αG)(r + αD)

(
erT − e−(αG+τ )T

)
, (A109)

ζ2(T ) = σG�
1/2e−(αG+τ )T

(r + αG) (r + αD)τ

((
e(r+αG+τ )T − eτT

)
τ + CG

(
τ0 + Nτ̂ 1/2

I τ
1/2
I

)(
eτT − 1

))
.

(A110)

Since both H(t) and Ĥ(t) can be recovered from the history of prices P(t)
and dividends D(t), the expected holding-period return Êkh[Rk,k+ f ] can be ex-
pressed as a linear combination of Pk, Dk, and H0,k, as in equation (74), with
corresponding coefficients β0(T ) and β1(T ):

β1(T ) :=
(
ζ2(T )

τ̂
1/2
I

τ
1/2
I

− ζ1(T )

)
(r + αD) (r + αG)

CG σG �
1/2 , β0(T ) := ζ2(T )

(
τ̂

1/2
I

τ
1/2
I

− 1

)
τ

1/2
0 .

(A111)
A common prior (τH = τL) implies CG = CJ = 1 and τ̂

1/2
I = τ

1/2
I = 0, and thus

β0(T ) = 0 and β1(T ) = 0. Direct computations show that relative overconfi-
dence (τH > τL) implies β1(T ) > 0, dβ1(T )/ dT > 0, and β0(T ) > 0. It can also
be shown that the term ζ2(T )τ̂ 1/2

I − ζ1(T )τ 1/2
I in the definition of β1(T ) in equa-

tion (A111) can be written as

ζ2(T )τ̂ 1/2
I − ζ1(T )τ 1/2

I = σG�
1/2erT

(r + αD)(r + αG)

(
τ̂

1/2
I (1 − CG)

(
1 − e−(r+αG )T

)
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+CG
τ̂

1/2
I − τ

1/2
I

τ

(
Nτ̂I

(
1 − e−(r+αG )T

)
+ τ0

(
1 − e−(r+αG+τ )T

)))
. (A112)

Thus, the coefficient β1(T ) > 0 can be decomposed into two terms. The first
term in large parenthesis with 1 − CG > 0 results from the price-dampening
effect of the Keynesian beauty contest, and the second term with τ̂ 1/2

I − τ
1/2
I > 0

results from the price-dampening effect of CJ < 1. This concludes the proof of
Theorem 4.

In the continuous-trading limit h → 0, both H(t) and Ĥ(t) can be recovered
from the history of prices P(t) and dividends D(t). If traders have incorrect
model parameters and total precisions of signals (αG �= α̂G and τ̂ �= τ ), then the
continuous version of equation (A106) implies that the expected holding-period
excess return, Êt[R(t, t + T )], can be expressed as in equation (75). The coeffi-
cients ζ1(T ) > 0 and ζ2(T ) > 0 are defined in equation (A107). In this general
case, there are four possible patterns of the return dynamics: (i) only momen-
tum, (ii) first momentum and then mean reversion, (iii) first mean reversion
and then momentum, and (iv) only mean reversion for four specific combina-
tions of different parameter values.
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