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Do Mistakes Provoke New Mistakes?
Evidence from Chess

Akash Adhikari, Stanislav Anatolyev, and Dmitry Dagaev

Abstract—We investigate how the mistakes of professional
chess players affect the quality of their further moves in the
same game. Using a database of games played by top chess
players, Stockfish chess engine evaluations, and an ordered
probit regression analysis, we found clear evidence that small
inaccuracies lead to less accurate play in future, while more
severe mistakes have a weaker effect on the quality of play in
the same direction.

Index Terms—Chess, tilt, hot hand, mistakes.

I. INTRODUCTION

IT follows from Zermelo’s ideas [1] and formally stated and
proved by Kalmár [2] that in a finite version of chess (a

game necessarily ends after the third repetition of a position),
either White can guarantee a win, or Black can guarantee a
win, or both White and Black can guarantee a draw. Therefore,
if two rational players with sufficient search capacities play
100 games, there should be either 100 wins by White, or 100
wins by Black, or 100 draws. In 2022, the search capacities
of modern computers are still not enough to identify which
of the three alternatives holds. Ewerhart [3] demonstrated that
the infinite version of chess (players can claim a draw after
the third repetition of a position but are not obliged to do so)
is equivalent to the finite version in the sense that the same of
three alternatives takes place.

Various sources indicate that the actual White’s winning per-
centage is higher than Black’s; the Chessgame database, which
contains more than 900000 games, consists of approximately
38% wins by White, 34% draws, and 28% wins by Black.1

It follows from [2] that the difference in outcomes results
from players’ suboptimal moves. One can subjectively evaluate
their position on the board based on the set of seemingly
achievable positions, material on the board, positional advan-
tages, and other criteria. There are many common knowledge
strategic principles in chess; disregarding some of them leads
to worse chances and ignoring others can lead to a loss.
Chess players make mistakes that differ in severity: from slight
inaccuracies to game-deciding blunders. Empirical evidence
shows that humans make worse mistakes in positions with the
same evaluation than computer programs do [4], [5]. Recent

We thank Alena Skolkova for excellent research assistance and Petr
Parshakov for helpful comments.

Akash Adhikari was with Indian Institute of Technology (ISM), Dhanbad,
Jharkhand, India (e-mail: rajaadhikari23@gmail.com).

Stanislav Anatolyev is with CERGE-EI, Prague, Czech Republic, and New
Economic School, Moscow, Russia (e-mail: stanislav.anatolyev@cerge-ei.cz).

Dmitry Dagaev is with HSE University, Moscow, Russia (e-mail:
ddagaev@gmail.com).

1See http://www.chessgames.com/chessstats.html. Retrieved April 1, 2021.

developments in computer technologies has made it impossible
for humans to compete with the best computer programs in
strategic games such as chess and go, not to mention the solved
game of checkers [6].

The realization of having made a mistake can put a human
player into the state known as tilt, which is an emotional state
of mind that leads to repeatedly suboptimal strategic decisions
and may result in a loss. This is an additional disadvantage for
human players compared to computer programs. In this article,
we aim to uncover the sequential patterns of mistakes made
during a game of chess. Using a database of games played
by top chess players, we empirically confirm the presence
of tilt in chess. We find that recent small inaccuracies lead
to less accurate play in future. Small, moderate and severe
mistakes have a weaker effect in the same direction. At the
same time, blunders surprisingly tend to discipline players.
We confirm previous findings that the historical average level
of mistakes matters [4], and demonstrate that mistakes made
in the previous move and overall previous erroneous play are
both strong predictors of suboptimal move.

The term ‘tilt’ originated in poker. There is a strong con-
sensus among both the poker community and academics that
tilt exists in poker [7]–[11]. According to Browne [8], tilt
starts from a tilt-inducing situation followed by an internal
emotional struggle to retain control and deterioration of the
player’s decision making. Browne [8] describes many possible
tilt-inducing forces such as bad beats (unfavorable realizations
of random events), needling, problems at work or home, and
consumption of drugs and/or alcohol. All of these forces are
linked to bad luck or external factors. If a player feels that
they have lost due to bad luck, they can try to compensate
for the loss by subsequently increasing the pot. Such behavior
can be consistent with the Kahneman-Tversky prospect theory
that postulates that people are risk-loving when they are in
the zone of losses compared to the initial reference point [11],
[12]. At the same time, overbets lead to deviations from the
Nash equilibrium and opponents can potentially exploit them.
Smith, Levere, and Kurtzman [12] confirm that poker players
behave less cautiously after losses. For a more detailed survey
on poker players’ behavior we refer the reader to [13].

In contrast to poker, which is regarded by many as a game
of both skill and chance [14], chess is a purely strategic game
with no random elements. Chess players never experience bad
beats. If bad luck was the only cause of tilt, one would imagine
that chess players never experience it. The results of this article
show that this is not the case.

The behavior of chess players is a notable area of study
in cognitive science. In general, better chess players have
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stronger mental abilities [15] and choose better moves [16].
Chabris and Hearst [17] demonstrate that grandmasters make
many more mistakes in rapid chess than in classical games.
Moreover, the magnitude of the mistakes made in rapid chess
is larger. At the same time, no difference has been found
in blindfold and rapid chess variations. Burns [18] shows
that beyond a minimal threshold, extra time does not help in
making better decisions. On the contrary, in a chess problem-
solving setting, additional time is helpful in finding better
moves [19].

To the best of our knowledge, the effect of previous mistakes
and their severity on the probability of making future mistakes
of different severities has not been econometrically evaluated
before for the game of chess. The most relevant topic that
attracted a lot of researchers’ attention is the so called ‘Hot
Hand’ phenomenon. In their classical article, Gilovich, Val-
lone, and Tversky [20] tested a popular belief that basketball
players experience streak shooting, so that the probability of
scoring a goal increases after another successful shot. The
authors disproved the hot hand hypothesis and attributed the
myth to the wrong perception of chance. Despite the negative
result, the work started a series of articles on the existence
of hot hand in various environments. Most of the empirical
articles supported the conclusions of [20] for the game of
basketball and some other sports (see, for example, [21]–[23]).
Seemingly less frequently analyzed concept of a cold hand, the
existence of disproportionately often streak failures, is closely
connected to the concept of tilting. The principal difference
between basketball and chess is that shots in basketball can be
considered as an iterated exercise (especially in the case of free
throws), whereas each position in chess is unique. Therefore,
we avoid to make a clear link between making moves in chess
and iterated throws in basketball. Instead, we prefer to use the
concept of tilt which allows to carry over the negative emotions
from realizing of making a mistake to the subsequent moves.

The article is organized as follows. Section 2 describes the
data. Section 3 discusses the econometric model and empirical
strategy. Section 4 contains the results. Finally, Section 5
concludes.

II. DATA

We collected all games of the main Tata Steel Chess
Tournament that takes place annually in Wijk aan Zee (The
Netherlands). In total, 885 games were played between 2011
(the first year when the tournament in Wijk aan Zee was
named Tata Steel Chess Tournament) and 2020 (the last year
in our database). The tournament is organized in a round-robin
format – each player plays against each other player once. In
2014, there were 12 players and 66 games in total, whereas in
all other 9 years there were 14 players and 91 games. Notation
for the games is available in Portable Game Notation (PGN)
format which is a standard designed for representing chess
game data. In chess, FIDE2 rating is used to evaluate a player’s
relative skill level. It is based on the Elo rating principles
proposed by Arpad Elo. When two chess players who already
have the rating play each other, a certain number of rating

2International Chess Federation.

points is transferred from the loser to the winner; in case of
a draw, points are transferred from the higher rated player to
the lower rated player. The exact number of points transferred
from one player to the opponent is a function of their ratings
and the outcome of a game. For each game in our dataset, we
collected the FIDE ratings of both opponents at the time when
the game was played. All games were played by highly-rated
professionals whose FIDE rating ranged from 2603 to 2872.

In order to evaluate chess positions, we use the open
source chess engine Stockfish 12 [24] which was also used
in some other behavioral and socio-economic performance-
related studies [4], [25]–[27]. As of 2022, Stockfish is widely
regarded as the strongest open source computer chess pro-
gram.3 Historically, Stockfish evaluated a position by looking
through a game tree starting at the current position as deeply
as the time limit allows. A limited number of apparently
good lines are looked through more deeply than others. In
September 2020, a new version Stockfish 12 was released,
and it was announced that Stockfish had absorbed a neural
network project.4 We manually set the number of good lines
to 9 and the time limit to 7 seconds per move which leads
to the search depth of at least 17 half-moves.5 As the time
limit expires, Stockfish suggests the best possible line and a
numerical evaluation of the position corresponding to that line.
If at some position one of the opponents has a guaranteed
win by checkmate, Stockfish provides ‘White/Black mates in
k moves’ instead of a numerical value. The evaluator takes
into account various factors: existence of a forced checkmate,
material advantage, positional weaknesses (isolated pawns,
doubled pawns etc.) and positional advantages (two bishops,
rooks on open lines etc.). All scores are normalized so that
an extra pawn for White leads to the score of +1.00 given all
else equal. Since chess is an antagonistic game, the score of
some position for Black is simply the score of that position
for White with the opposite sign.

The website www.chess.com is a popular online chess
platform that uses the Stockfish 12 engine. We uploaded
our PGN files to www.chess.com one by one in order to
obtain Stockfish evaluations. The data were extracted as .txt
files by web scraping using javascript. For each position, we
collected a numerical evaluation suggested by Stockfish. Now,
for each move mg = 1, 2, . . . played by one of the players in
game g, we define the so-called centipawn loss variable clg,mg

that shows the quality of this move:

clg,mg
=

{
eag,mg − ebg,mg for White,
−(eag,mg − ebg,mg ) for Black,

(1)

where eag,mg is the evaluation of the position after the move
mg and ebg,mg is the evaluation of the position before the
move mg . Similar metrics for quality of moves are used in the
literature [4], [26]. If a player chooses the best possible move,
clg,mg

is expected to be 0 (the optimal line after the move is
the same as before the move). If a player fails to choose the

3https://ccrl.chessdom.com/ . Retrieved January 1, 2023.
4https://www.chess.com/terms/stockfish-chess-engine . Retrieved February

23, 2021.
5A half-move is a move of White or a move of Black.
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best move, clg,mg
is expected to be negative. However, note

that after a move is made, Stockfish starts its analysis from the
next opponent’s move. Due to this discrepancy in the search
depths before and after a move, evaluation of the position can
be changed (in both directions) after the move even if the best
move was played. It explains why there do exist moves with
positive value of clg,mg

. Finally, we refer to [27] where it
was shown that the engine set at the search depth of 17 half-
moves chooses a move with an average error of less than 3
centipawns (or 0.03). This can also be interpreted as an upper
bound for the average evaluation error of a position due to the
limited search time. We think that such error is acceptable for
the purposes of this research.

We also made the following adjustments to the dataset.
First of all, we excluded from the dataset the first five moves
of each game. This step removes most spurious evaluations
associated with the White’s first-mover advantage and forms
minimal play history for the current game. However, these
first five moves are still used to generate “lagged” variables
related to previous play for moves 6 through 10 (see the next
section). Next, in chess, there are many ways to win a decided
game. Usually, chess players prefer to use a safe one. For
example, reduction to a theoretically winning position would
be preferred to a fast but rather complex combination, even
if the safe way would be much longer. From the Stockfish
perspective, using safe ways is sometimes interpreted as a
mistake or even as a blunder. In order to account for this,
we excluded decided positions from our dataset. Particularly,
suppose that move pg is the first move of game g such that
the absolute value of evaluation is higher than 5.00 (such
advantage corresponds to an extra rook, and for a strong chess
player, it is more than enough for a win, see [27] for statistics),
or a checkmate. We have deleted all observations from this
game starting from this move, so move pg − 1 will be the last
move of this game. As a result of these adjustments, the moves
in game g are indexed now by mg = 6, 7, . . . , pg − 1. Finally,
for all games in our dataset we excluded the last half-move due
to technical issues related to extraction of the position score
before switching to another game. For the whole sample of
885 games, this leads to 64,404 moves and hence observations.
Figure 1 shows a distribution of these moves across games.
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Fig. 1. Distribution of the number of moves in games from the sample. The
number of moves is represented on X-axis, the number of games in the dataset
with a particular number of moves is represented on Y-axis.

The database contains only games from very strong inter-
national level chess players. We make a plausible assumption
that the players do not intentionally choose suboptimal moves
because opponents can exploit even small suboptimality at this
level.

III. ECONOMETRIC MODEL

Let

−∞ = bB+1 < bB < . . . < b2 < b1 = 0 < b0 = ∞ (2)

be the score thresholds that define levels of mistakes of
different severity. The variable representing the mistake of
severity level j = 1, . . . , B made at move mg in game g
is equal to

Ij,g,mg = I
{
bj+1 ≤ clg,mg < bj

}
, (3)

where I{·} is an indicator function. By convention, values j =
0 and b0 = ∞ correspond to no mistake made (mistake of level
0); in this case clg,mg

≥ 0.
As a practical matter, we consider B = 5 levels of mistakes

of the following severity levels. Table I shows their cutoffs,
characterizations, and in what fraction of moves these mistakes
are made in the database we consider.

TABLE I
CHARACTERISTICS OF MISTAKES.

level lower upper mistake fraction
threshold threshold description of moves

0 0.0 — no mistake 29.88%
1 −0.5 −0.0 an inaccuracy 57.36%
2 −1.0 −0.5 a small mistake 9.40%
3 −1.5 −1.0 a moderate mistake 1.97%
4 −2.0 −1.5 a severe mistake 0.70%
5 — −2.0 a blunder 0.69%

Our econometric model is based on the ordered multiple
choice regression where the left-side variable is a type of a
mistake made (or not made) after each move, and the right-side
variables describe the quality of the same player’s previous
play in the game, in addition to a number of covariates that
characterize the player and the game. Specifically, we define a
latent variable pmg,mg

, which we call a propensity to misplay:

pmg,mg = z′g,mg
γ + x′

g,mg
β + αg + εg,mg . (4)

Here, the vector of covariates zg,mg
contains controls specific

to move mg in game g or to game g alone, and not directly
related to the player’s past performance in the game, while
xg,mg contains predictors that describe the previous play in
game g before move mg. The next component, αg , is a game-
specific move-independent random effect. Finally, εg,mg

is an
idiosyncratic random component not explained by the included
regressors.

A mistake of type j = 0, 1, . . . , B (recall that 0 stands for
no mistake, and an increasing j corresponds to more severe
mistakes) occurs when the propensity to misplay pmg,mg falls
in the region [Aj+1, Aj), where AB+1 = −∞, A0 = ∞, and
Aj , j = 1, . . . , B, are unknown cutoffs. Under the assumption
that αg and εg,mg

are normally distributed independently of
included regressors, the mistake of type j = 0, . . . , B has
conditional probability

Pr
{
bj+1 ≤ clg,mg < bj

}
= (5)

= Φ
(
Aj − z′g,mg

γ−x′
g,mg

β
)
−Φ

(
Aj+1− z′g,mg

γ−x′
g,mg

β
)
,
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where Φ is a standard normal cumulative distribution function.
Such an ordered probit model means that the probability of a
mistake of level j depends on the characteristics of the player,
of the move, of the game, and of the previous play.

We include the following variables to zg,mg
, in addition to

a constant:
• elog , an Elo rating of the player making move mg in

game g;
• evg,mg

, an evaluation before the move:

evg,mg =

{
ebg,mg

for White,
−ebg,mg

for Black,
(6)

• takeng,mg
, a number of pieces gone from the board

before move mg in game g;
• whiteg,mg , an indicator that the move mg in game g is

made by White.
The variable elog depends only on parameters of the player

making the move in the game, and is meant to capture the
direct effect of the players’ strength on the sequential pattern
of mistakes: a weaker player’s more serious mistake may
increase the probability of this player’s next more serious
mistake. The variable takeng,mg

is a proxy for a stage of
the game,6 which may affect tilt formation. The variable
whiteg,mg is meant to capture the heterogeneity from the
color of pieces, as this may affect the psychological state and
strategy of the player.

While it is interesting to see the effects of the above
covariates, our primary interest is analyzing the effects of
the previous play. Because the previous mistakes may be
characterized by many different variables, we adopt simple
empirical strategies to select the most influential predictors
from a limited set of possibilities. Specifically, the list of
candidates to include in xg,mg

is:

6A chess game is characterized by three stages: Début (beginning), Mit-
telspiel (middle game), and Endspiel (endgame). All stages have their own
specifics and gradually transform one into another. However, by which move
the stages transit from one to another is not predetermined but depends on
the style of a particular game.

• Ij,g,mg−ℓ, the fact of making a mistake of jth severity
at move mg − ℓ in game g, for j = 1, . . . , B and ℓ =
1, . . . , L;

• ab−g,mg
, a historical average of one’s mistakes of any

level, in game g before move mg during L previous
moves:

ab−g,mg
=

1

L

L∑
ℓ=1

∣∣clg,mg−ℓ

∣∣ B∑
j=1

Ij,g,mg−ℓ; (7)

• xb−g,mg
, one’s move with worst centipawn loss in game

g before move mg during L previous moves:

xb−g,mg
= max

ℓ=1,...,L
(−clg,mg−ℓ). (8)

The first type of predictors is Ij,g,mg−ℓ, the indicator of
a mistake of level j in one of L most recent moves. These
indicators are meant to absorb the short term effects during
a recent play. In total, we have BL predictors of such ‘indi-
vidual’ move-to-move type. The other two predictors are of
‘aggregate’ type, as they index how, on average or in extreme
terms, erroneous the play have been up until the current move
is made. These two variables are meant to absorb the long
term effects during the whole play in a game. The variable
ab−g,mg

indicates how large the errors have been on average,
and is meant to capture the overall psychological state of a
player based on previous mistakes made. The variable xb−g,mg

indicates how big the maximal mistake in recent previous play
has been, and is meant to capture the emotional distress caused
by this mistake on the following play. As a practical matter,
we set L to 5, which is arguably sufficient to capture the
psychological state resulting from a recent play. In total, when
B = 5 and L = 5, there are 27 mistake-related predictors.

We now address a few econometric issues and how we han-
dle them. We perform quasi-maximum likelihood estimation of
the ordered probit model. The influence of ‘serial’ correlation
across moves within the same game on the asymptotic variance
of parameter estimates is taken care of by clustering by the

TABLE II
ORDERED PROBIT REGRESSION, COEFFICIENTS ON PREDICTORS BASED ON PREVIOUS PLAY.

mistake indicators

lag I1 I2 I3 I4 I5
1 0.200∗∗∗

(0.014)
0.043∗∗
(0.018)

0.137∗
(0.077)

−0.242∗∗
(0.119)

2 0.126∗∗∗
(0.013)

0.073∗
(0.038)

−0.407∗∗∗
(0.104)

3 0.119∗∗∗
(0.013)

0.085∗
(0.044)

−0.401∗∗∗
(0.125)

4 0.101∗∗∗
(0.013)

−0.369∗∗∗
(0.118)

5 0.061∗∗∗
(0.013)

−0.504∗∗∗
(0.117)

aggregate mistakes

ab− xb−

0.562∗∗∗
(0.117)

0.143∗∗∗
(0.042)

Robust clustered standard errors in parentheses; ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.
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game (see, e.g., [28]). The within-game ‘color effect’ in each
game is automatically taken care of by including the indicator
of White among the covariates. To select only a few from the
list of ‘previous mistakes’ predictors, we implement a general-
to-specific step-wise selection procedure [29]. Specifically, we
fix the list of included covariates zg,mg

, and set the tolerance
level to statistical significance of selected predictors from the
above list of potential xg,mg ’s to 10%, i.e. we stop removing
predictors when none of those that are left has a coefficient
with a p-value exceeding 10%.7

IV. EMPIRICAL RESULTS

We now look at the pattern of how the quality of previous
play affects the propensity to make errors in further play. Table
II reports the results of running the ordered probit regression
on the included covariates and significant predictors selected as
described in the previous section.8 The coefficients in the table
represent the marginal effects of each predictor on the latent
propensity to misplay, and are eventually related to the proba-
bilities of making mistakes.9 In particular, a positive sign of a
covariate/predictor implies its positive effect on the propensity
to misplay and hence a negative effect on a quality of play.
Conversely, a negative sign of a covariate/predictor implies its
positive effect on a quality of play. The figures in the “mistake
indicators” subpanel are regression coefficients for the short
term predictors – the indicators Ij,g,mg−ℓ corresponding to the
fact of making a mistake of jth severity for “lag” ℓ = 1, . . . , 5.
Analogously, the figures in the “aggregate mistakes” subpanel
are regression coefficients for the long term predictors – a
historical average of mistakes ab−g,mg

and historical maximal
mistake xb−g,mg

.
First, let us look at the effects of selected lagged mistake

indicators on the propensity to misplay. It is striking that
different levels of mistake severity may make impact of
a different strength and even a different sign. While the
mistakes of moderate severity are statistically less significant,
the small inaccuracies and big blunders are statistically most
significant for all five included lags. They also tend to have
more pronounced numerical effects but those effects are of
opposite signs. Small inaccuracies, especially their most recent
occurrences, increase the propensity to misplay, provoking
the tilt. The same is true, although less strongly,10 for small,
moderate and severe mistakes; however, their effects seem to
be shorter-lived.

In contrast, the estimates coefficients of blunder indicators
are starkly different: all negative and relatively large in ab-
solute value. This brings a conclusion that, in reaction to
their blunders, players tend instead to discipline their play.

7Our preference for 10% is motivated by a desire to end up with a more
liberal post-selection specification so that not to miss important predictors.

8In Table II, we intentionally remove predictors’ indexes to reduce clutter.
9A reader should keep in mind that the absolute values of the marginal

effects do not carry much information, because the composite error is
normalized to have unit variance for the purpose of identification. Thus, it
is their values relative to each other, taking the predictor scales into account
when those scales are different, that is meaningful and interpretable.

10Note that with the significance threshold of 5% for the step-wise selection
procedure, the I3 and I4 predictors would not be selected at all, with no
noticeable changes in the rest of the results.

Moreover, in addition to its bigger size, this effect turns out
to be longer-lived than the tilting effect of less severe mistakes.

Next, the last two columns of Table II show the effect of the
two aggregated measures of previous erroneous play during the
last five moves, which may cause overall emotional distress.
Notice that these measures are statistically significant even
though all the individual mistake indicators for the same five
periods are already included in the regression. Hence, there
is strong predictive information in the average and maximal
mistakes made in the previous play, on top of occurrences of
each mistake. Both effects are positive for the propensity of
further misplay, and strongly confirm the presence of tilt.

TABLE III
ORDERED PROBIT REGRESSION, COEFFICIENTS ON INCLUDED

COVARIATES.

covariate coefficient estimate, ×10−2 covariate scale

elo −0.0726∗∗∗
(0.0096)

54.4

ev 3.71∗∗∗
(0.52)

1.20

taken −1.45∗∗∗
(0.11)

7.15

white −2.84∗∗∗
(0.87)

0.50

Robust clustered standard errors below point estimates; ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01. Last column lists standard deviations.

It is also interesting to examine how the quality of play
is influenced by the characteristics of the game, the moves,
and the players. Table III reports the estimates on included
covariates except for a constant (we again remove regressors’
indexes to reduce clutter). All of the coefficients of included
covariates are strongly statistically significant and have intu-
itively sensible signs. One can see that a player’s Elo rating
has a positive, although small in value, effect on the quality
of play, which is intuitive. The current evaluation positively
influences the propensity to misplay, meaning that a player
is more likely to become careless and possibly reckless in
a better position. Next, the proxy for the stage of the game
perhaps affects the quality of play – the tree of a subgame
becomes less deep closer to an endgame. Finally, being White
has a favorable effect on preventing mistakes.

We would like to emphasize that even though all these
covariates are strongly statistically significant, their numer-
ical effects (accounting for variables’ scales; see standard
deviations in the last column of Table III) are appreciably
smaller than those of the indicators or aggregate measures
of previous play documented in Table II. Among the four
covariates, the variable taken has the greatest impact on the
quality of play, given its biggest product of the coefficient
and variable’s standard deviation among all, the variable ev
coming the second.

Even though the presented regression results give a strong
evidence of influence of mistakes on the quality of further play,
we perform a formal test for inclusion of all BL+2 previous
mistake related predictors. The Wald test statistic for their
joint significance equals 1062, with an essentially zero p-value
relative to the χ2

(27) distribution. A similar outcome results
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if we jointly test the exclusion restrictions for the included
‘previous mistakes’ predictors only.

Moreover, it is interesting to compare the measures of
regression fit from the ordered probit models with and without
the previous mistake related predictors. The difference will
show a relative contribution of the mistake-related predictors
to the explanatory power of covariates. For the full model
with all predictors included, the pseudo-R2 equals 3.11%, and
in the full model with only step-wise-selected predictors, the
pseudo-R2 equals 3.10%, an almost identical figure. At the
same time, the ordered probit model with all the predictors
excluded and only the covariates left, the pseudo-R2 equals
0.93%. This shows that previous mistakes have a much larger
role in determining the quality of further play than explanatory
variables from Table III, at least among the top players.

V. CONCLUSION

In this paper, we have uncovered sequential patterns of
mistakes of human players in the game of chess. We have
found clear evidence that small inaccuracies lead to less
accurate play in future; more severe mistakes have a weaker
effect on the quality of play in the same direction, while
blunders tend to discipline players. Inaccuracies and blunders
have more long-lived effect than mistakes of moderate size do.

One should have in mind that our database contains games
played by strong chess players. The pattern could be different
for lower-ranked players due to their lower ability to find best
moves. On the one hand, higher variance of their quality of
play could dominate psychological effects. On the other hand,
lower ranking can potentially incorporate information about
the resistance to tilt. Therefore, a further careful analysis is
required for that cohort of players.

We acknowledge that one should be careful in interpreting
the findings of this study. Though tilt seems to be the most
obvious explanation for the fact that some types of mistakes
increase the probability of a new mistake, our methodology
does not allow to exclude other possible explanations not
related to the psychological state of mind. Alternative theories
include the changing attitude towards risk (chess players may
look for complications in worse positions) and peculiarities
of the Stockfish evaluation algorithm (the difference between
the scores +4 and +5 in the decided positions can be due to
the arguments that are not taken into account by human play-
ers). We hope that future research will allow to differentiate
between these theories.
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