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Abstract

We enhance the theory of asymptotic inference about predictive ability by con-

sidering the case when a set of variables used to construct predictions is sizable.

To this end, we consider an alternative asymptotic framework where the number of

predictors tends to infinity with the sample size, although more slowly. Depending

on the situation the asymptotic normal distribution of an average prediction crite-

rion either gains additional variance as in the few predictors case, or gains non-zero

bias which has no analogs in the few predictors case. By properly modifying con-

ventional test statistics it is possible to remove most size distortions when there are

many predictors, and improve test sizes even when there are few of them.

∗Address: Stanislav Anatolyev, New Economic School, Nakhimovsky Prospekt, 47, Moscow, 117418

Russia. E-mail: sanatoly@nes.ru.

1



1 Introduction

The theory of asymptotic inference about predictive ability (IPA) put forward in West

(1996), West and McCracken (1998, 2002), and other works, has proved to be useful in

asymptotically correct testing of various predictive qualities of models when forecasts are

regression-based and hence flawed by parameter estimation noise. In a nutshell, given that

the sizes of regression and prediction intervals asymptotically grow with the same rate,

this noise may (or may not) inflate the asymptotic variance of a t-test statistic based on

an average prediction criterion. The IPA theory, however, is developed for the case when

the dimensionality of regression parameters is asymptotically fixed in theory and small

in practice relative to the regression and prediction sample sizes. Sometimes, however,

researchers use large sets of predictors, each accompanied by an own unknown parameter.

In a recent survey, Stock and Watson (2006) mention macroeconomic studies that use

20, 30, 33, 43, 66, and even 135, 147, 215, or 447 predictors. As a result, the parameter

estimation noise may be less than that innocuous, and may asymptotically have a larger

impact on the asymptotic distribution of the statistic of interest than predicted by the

IPA theory.

In this paper, we take a close look at the situation when many predictors are used,

and determine how asymptotic distributions change and how test statistics have to be

modified. We develop an alternative “moderately many predictors” asymptotic frame-

work when the number of predictors is let go to infinity with the sample size, but more

slowly than proportionately. Indeed, as noted in Stock and Watson (2006, section 2),

equality of growth rates in the number of predictors and the sample size leads to fore-

casts being overwhelmed by estimation noise. Therefore, to keep testing meaningful, the

growth rate of number of predictors must be set at least smaller than the growth rate of

regression sample size, hence the qualifier “moderately many”.1 We find the bounds for

the relative growth of number of predictors and regression and prediction sample sizes

when the asymptotic distribution does not change at all, or, alternatively, when testing

stays meaningful but the asymptotic distribution changes. In cases when the asymptotic

1When there are “very many” predictors, dimension-reduction tools (e.g., Galbraith and Zinde-Walsh,

2006) seem more appropriate.
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distribution does change, we compute the changes and provide the ways to suitably mod-

ify the test statistic so that it has correct asymptotic size. The asymptotic framework we

consider is similar to one used in the recent literature on estimation with many instru-

ments or many moment conditions considered by various authors, e.g., Bekker (1994),

Koenker and Machado (1999), Newey and Windmeijer (2005), Chao and Swanson (2005),

Stock and Yogo (2005), and others.

To have a quick preview of asymptotic results, let us denote by R the length of the

regression sample, by P the length of the prediction sample, by m the number of predic-

tors. Asymptotically, R, P and m all diverge to infinity, and the growth of m is restricted

by a condition such as mκ/R→ 0 for κ equaling 2 or 3, reflecting the “moderately many

predictors” paradigm.2 It turns out that the average prediction criterion exhibits qual-

itatively different asymptotic behavior depending on whether the expected derivative of

the tested criterion with respect to parameters (the “expected score”) is zero or non-zero.

As a result, this factor determines the direction in which asymptotic distributions change

and test statistics should be modified.

When the expected score is zero (which includes, in particular, an empirically interest-

ing case of mean squared prediction errors from a regression; e.g., Diebold and Mariano,

1995), the original IPA theory predicts no change in the asymptotic distribution, and

no correction of test statistics is required. In our asymptotic framework, with Pm2/R2

converging to a finite positive constant, the asymptotic normal distribution stays normal

with the same variance, but gains a deterministic bias. This phenomenon has no analogs

in the original IPA theory. It is easy to correct for the asymptotic bias by subtracting its

empirical analog to have asymptotically correct inference. In practice, this bias correction

removes an overwhelming portion of size distortions.

When the expected score is non-zero (which includes, in particular, the case of mean

squared prediction errors when regressors are endogenous), the original IPA theory pre-

dicts no change in asymptotics in case P/R→ 0, and inflation of asymptotic variance in

case P and R grow at the same rate; in the latter case estimation of the inflated variance

2Koenker (1988) estimates that the number of predictors used in the (cross-sectional) wage determi-

nation literature is related to the sample size approximately as m ∼ R1/4 which satisfies the requirement

of “moderately many predictors”.
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constitutes the necessary adjustment. In our asymptotic framework, with Pm/R converg-

ing to a finite positive constant, there is an analogous phenomenon that the asymptotic

variance increases, although formally the asymptotics is different. Moreover, the variance

adjustment may be done in the same way that the original IPA theory prescribes, pro-

vided that a researcher exercises care in balancing the values of P and R in face of large

m. In a way, R is rescaled by division by m, and the rescaled regression sample size R/m

is balanced against P.

We illustrate our proposed framework with an application to determination of housing

starts in the US. We consider a variety of structural models with a sizable number of

predictors on the one hand, and a simple autoregression with a small number of lags

as predictors on the other hand. We test the hypotheses of forecast unbiasedness and

perform comparison of models on the basis of out-of-sample prediction errors using both

the original IPA theory and our many predictor modification. The results indicate that

sometimes the two theories yield different inference outcomes.

In order to concentrate on effects caused by numerosity of predictors, we assume that

the estimated model is linear and the hypothesis of interest contains one restriction, and

consider a “fixed scheme” of obtaining parameter estimates when the regression is run

once on the regression sample. Some remarks on notation used now follow. For any square

matrix B, denote by λi (B) its ith eigenvalue, and by λ (B) and λ̄ (B) its minimal and

maximal eigenvalues;
∣∣λ̄ (B)

∣∣ is understood as an absolute value of a maximal in absolute

value eigenvalue of B. For any matrix A define its minimal and maximal singular values

as σ(A) =
√
λ (A′A) and σ̄(A) =

√
λ̄ (A′A). Unless otherwise noted, we work with the

notion of spectral matrix norm ‖A‖ = σ̄(A) induced by the Euclidean vector norm.3

Next, tr (A) denoted the rank of A, and ιm is an m-vector of ones. Finally, c and C are

generic constants that do not depend on m and R. “MN” and “GV” are abbreviations

for Magnus and Neudecker (1988) and Golub and Van Loan (1996), respectively.

The paper is structured as follows. In section 2 the setup is presented, and assumptions

3We use the spectral norm in place of the more widely used Frobenius norm ‖A‖F =
√

tr (A′A)

because it is more convenient to use in the context of asymptotically expanding matrices, and because it

is more directly linked to eigenvalues.
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are discussed. In section 3 we tackle the case of zero expected score. In section 4, we

handle the case when some of elements of the expected score vector are not zeros. Section

5 contains an illustrative empirical application. We conclude in section 6.

2 Setup and asymptotic framework

Suppose we are interested in testing a null hypothesis about E [ft] , where ft is some

criterion of prediction quality, depending on prediction errors ut, ut+1, · · · , ut+τ−1, where

τ is the prediction horizon. Because the prediction errors are unobservable, they are

estimated from a parametric model. Let the estimated model be linear:

yt = x′tβ + ut,

where xt and β ∈ B ⊆ Rm are m× 1. The ut is an error which has mean zero conditional

on zt, the vector of instrumental variables (most often, zt = xt). For simplicity, we use

the fixed scheme is generating predictions, i.e. β is estimated once using the “regression

sample” t = 1, · · · , R.

Let the dimensionality of zt be m, which trivially holds when xt is exogenous and OLS

is used. When there is endogeneity, equality of dimensionality of xt and zt is a restriction

made for reducing algebra; the underlying motivating scenario is that for endogenous

right side variables (of which there may be many) a researcher (desperately) searches for

a minimally necessary number of extraneous instruments.4 Hence, β is estimated as

β̂ =

(
R∑
t=1

ztx
′
t

)−1 R∑
t=1

ztyt.

This estimate is used in making estimates of prediction errors ût = yt − x′tβ̂ for the

“prediction sample” t = R + 1, · · · , R + P , which are converted into values of a forecast

criterion of interest f̂t, t = R + 1, · · · , R + P (the total number of observations is larger

than R+P because τ > 0 and xt and/or zt may include lags of yt). These values are then

4The case of overidentification and 2SLS estimation does not provide new insights. The instrument

E [xtz′t]E [ztz′t]
−1
zt implied by 2SLS replaces the original overidentifying instrument zt.
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collected into the average criterion

f̂ =
1

P

R+P∑
t=R+1

f̂t.

This average is used to test the hypothesis about the value of Ef by constructing a t test

statistic from the difference f̂ −Ef. Note that for simplicity we treat the case of a scalar

criterion; vector criteria may well be allowed at the expense of more complicated proofs

with no new insights.

We consider the asymptotic framework where both P and R tend to infinity, possibly

with different rates, and simultaneously m → ∞, with a smaller rate than R → ∞, i.e.

m = o(R), which we name the “moderately many predictors” framework. The relative

growth rates will be discussed later more precisely. In practical applications, it is hoped

that the modified tests will be advantageous even when m is rather small.

We make the following assumptions about properties of the data.

Assumption 1 For some ν > 1,

(i) the sequence {(xt, zt, ut)} is strictly stationary and strongly mixing with mixing co-

efficients αi satisfying
∑∞

i=1 iα
1−1/ν
i < C,

(ii) E [u8ν
t ] < C, max1≤i≤mE

[
z8ν
t,i

]
< C, max1≤i≤mE

[
x4ν
t,i

]
< C,

(iii) E [ut|zt, ut−1, zt−1, ut−2, · · · ] = 0.

While assumptions 1(i,ii) are pretty standard, the martingale difference structure im-

posed in assumption 1(iii) seems necessary in the framework with growing m.5 Assump-

tion 1(iii) concerns the serial correlation properties of the error term in the predictive

regression, and not those of the prediction criterion ft which may well be serially corre-

lated. Introduce the familiar quantities

Qzx = E [ztx
′
t] ,

Vzu = var [ztut] ,

5We conjecture that if the prediction error is serially corelated of finite order, the results in the paper

are valid after obvious corrections, particularly in the definition of Vzu below.
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assuming that these objects exist and are finite, and

Σβ = Q−1
zx VzuQ

′−1
zx .

Note that we do not impose conditional homoskedasticity. In conditional homoskedasticity

does take place, moment assumptions in 1(ii) may be relaxed.

Assumption 2 For some c and C,

(i) c < σ (Qzx) and σ̄ (Qzx) < C,

(ii) λ̄ (Vzu) < C.

The first condition of assumption 2(i) says that all incoming instruments are relevant

for incoming predictors so that the inverse of the matrix of their cross-products is uni-

formly separated from zero.6 The second condition precludes trends in predictors and/or

instruments as m grows; if instruments are the same as predictors, this is equivalent to the

condition λ̄ (E [xtx
′
t]) < C. Assumption 2(ii) imposes a similar restriction on the variance

of ztut.

Assumption 3 The criterion ft is a Borel measurable function of b, xt and yt for all

b ∈ B and continuously differentiable in b as many times as needed for all b ∈ B and for

all xt and yt in their support.

Assumptions on moments of various derivatives of ft will be imposed later. Now define

the “expected score”

Q∂f = E

[
∂ft
∂β

]
,

and also introduce

Q∂2f = E

[
∂2ft
∂β∂β′

]
,

Vf = lim
P→∞

var

[
1√
P

R+P∑
t=R+1

ft

]
=

+∞∑
k=−∞

cov [ft, ft−k] ,

6This precludes use of weak instruments in the sense of asymptotically zero correlation between some

of instruments and some of predictors. However, this has nothing to do with the strength of predictors

which is allowed to be weak in the sense that the R2 of the predictive regression may be small.
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assuming that these objects exist and are finite. Note that the latter two are symmetric

by construction.

Given the fixed scheme, the original IPA theory concludes that the additional error

resulting from the estimation step asymptotically leads or does not lead to an increase of

asymptotic variance:

√
P (f̂ − Ef)

d→ N
(
0, Vf + πQ′∂fΣβQ∂f

)
, (1)

where π = limP,R→∞ P/R. The phenomenon of “asymptotic irrelevance” (West, 1996)

occurs when the additional variance equals zero, which is possible either when π = 0,

or Q∂f = 0. The former case means that the researcher sets the prediction interval to

be a negligible part of the whole sample, although still to a large number (as formally

P →∞). The latter condition is a property of the problem at hand. Below, when we take

m to grow asymptotically, whether this condition is satisfied or not will result in different

asymptotic distributions both differing from N (0, Vf ). In the original IPA framework,

when there is no asymptotic irrelevance, a t-statistic for testing the null can be properly

constructed as

t0 =

√
P
(
f̂ − Ef

)
√
V̂f + (P/R) Q̂′∂f Σ̂βQ̂∂f

,

where Q̂∂f and Σ̂β are consistent (e.g., analog) estimators of Q∂f and Σβ. The t-statistic

t0 is asymptotically N (0, 1) under the null.

Within our “moderately many predictors” asymptotic framework, the asymptotics

will be markedly different depending on whether Q∂f = 0 or Q∂f 6= 0.

3 Problem with zero expected score

In this section we consider such problems where the expected score is zero:

Q∂f = 0.

The leading example is the mean squared prediction error (MSPE) criterion ft = u2
t

when right side variables are exogenous. In this case Q∂f = −2E [utxt] = 0. Arguably

the most interesting application of this criterion is testing for equal forecasting accuracy
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in the style of Diebold and Mariano (1995). The latter test will be considered at some

length in empirical section 5. Using the mean quartic prediction error criterion ft = u4
t

with exogenous right side variables and conditionally symmetric errors so that Q∂f =

−4E [u3
txt] = 0 also fits this framework.

Define the matrix

V∂f = lim
P→∞

var

[
1√
P

R+P∑
t=R+1

∂ft
∂β

]
=

+∞∑
k=−∞

cov

[
∂ft
∂β

,
∂ft−k
∂β

]
,

Assumption 4 In addition to Q∂f = 0, the derivatives of ft satisfy:

(i) Q∂2f is such that ‖Q∂2f‖ < C,

(ii) for some stationary series dt with finite E [d2
t ], ‖∂2f ∗t /∂β∂β

′ − ∂2ft/∂β∂β
′‖ ≤

√
mdt

×‖β∗ − β‖ for all β∗ ∈ B,

(iii)
∥∥∥Q̂∂2f −Q∂2f

∥∥∥ is Op

(
m/
√
P
)
, where Q̂∂2f = P−1

∑R+P
t=R+1 ∂

2ft/∂β∂β
′,

(iv) max1≤i≤mE
[
(∂ft/∂βi)

2ν] < C for ν of assumption 1,

(v) λ̄ (V∂f ) < C.

The importance of assumption 4(i) will be discussed shortly. This requirement usually

(as in the examples above) reduces to an analogous condition placed on the variance of xt,

xtut, or the like, and essentially restricts predictors to be uniformly bounded in variance.

The conditions in assumptions 4(ii, iii, iv, v) are technical.

Define

ψ1 = lim
m→∞

tr (Q∂2fΣβ)

m
,

assuming that the limit exists. Note that

|tr (Q∂2fΣβ)|
m

=
|
∑m

i=1 λi (Q∂2fΣβ)|
m

≤
∣∣λ̄ (Q∂2fΣβ)

∣∣
≤

∣∣λ̄ (Q∂2f )
∣∣ λ̄ (Σβ) <∞,

because the trace of a square matrix equals a sum of its eigenvalues (MN, thm.17, p.19),

and by assumption 4(i) and Lemma 2(c). Therefore, the expression under the limit sign

in ψ1 is uniformly bounded.
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We start from the following important observation that sets the relative rate of diver-

gence of P, R and m. This result follows from the proof of Theorem 1 below.

Proposition 1 Suppose that P →∞, R→∞, m→∞, and ψ1 6= 0. (a) If Pm2/R2 →

∞, then in
√
P (f̂ − Ef) the estimation error noise asymptotically dominates the signal

from
√
P (f̄ − Ef). (b) If Pm2/R2 → 0, then

√
P (f̂ − Ef) has the same distribution as

if there is no estimation error noise.

Thus, for an emerging test to be asymptotically meaningful and non-trivial and the

asymptotic results to provide a better approximation, Pm2/R2 has to converge to a non-

zero constant. Hence, we make the following assumption.

Assumption 5 As P →∞, R→∞ and m→∞, we have

Pm2

R2
→ µ1 > 0

and
m2

R
→ 0.

Because of the second condition in Assumption 5, P has to grow faster than R,

which means that the prediction sample should be significantly bigger than the regression

sample, and the number of predictors, albeit large, should be small relative to the these

sizes. For example, we may have P ∝ R1+δ and m2 ∝ R1−δ for some 0 < δ < 1 so that

asymptotically Pm2/R2 = const 6= 0.

Theorem 1 Under the asymptotics of assumption 5 and conditions of assumptions 2, 3

and 4,
√
P (f̂ − Ef)

d→ N
(√

µ1

2
ψ1, Vf

)
As follows from this result, the presence of many predictors induces bias provided that

ψ1 6= 0. This asymptotic bias appears from the second order term in the Taylor expansion

of the average prediction criterion around the true value of the parameter (recall that the
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original IPA theory utilizes the first order Taylor expansion), while the first order term is

asymptotically negligible:

f̄ − Ef +
1

P

R+P∑
t=R

∂ft
∂β′

(
β̂ − β

)
+

1

2

(
β̂ − β

)′ 1

P

R+P∑
t=R

∂2ft
∂β∂β′

(
β̂ − β

)
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
relevant estimation noise estimation noise

uncertainty negligible term leading term

(contributes Vf ) (contributes nothing) (contributes
√
µ1ψ1/2)

In the original IPA theory, the second order term would yield a second-order bias which

is bound to be a higher order asymptotic phenomenon. In our asymptotic framework,

thanks to multiplicity of predictors, this term is of the same order as the zeroth order,

“relevant noise”, term.

Note that the asymptotic bias is necessarily positive or negative if ft is convex or

concave in parameters7 (as in the case of MSPE), and zero if ft is linear in parameters.

Technically, this is because (using a Choleski decomposition of the positive definite Σβ)

tr (Q∂2fΣβ) = tr (Q∂2fΛΛ′) = tr (Λ′Q∂2fΛ) =
m∑
i=1

e′iΛ
′Q∂2fΛei ≷ 0.

Remark. Note that ψ1, and thus the asymptotic bias, may be zero even when Q∂2f 6= 0

(of course, it is zero when Q∂2f = 0). This may happen if the rank of Q∂2f grows slowlier

than m, so that

|ψ1| = lim
m→∞

|
∑m

i=1 λi (Q∂2fΣβ)|
m

≤
∣∣λ̄ (Q∂2fΣβ)

∣∣ lim
m→∞

rk (Q∂2fΣβ)

m

≤
∣∣λ̄ (Q∂2f )

∣∣ λ̄ (Σβ) lim
m→∞

rk (Q∂2f )

m

= 0,

where it is used that the number of non-zero eigenvalues does not exceed the rank (MN,

thm.18, p.19), and that rk (AB) = rk (A) if B is square of full rank (MN, eqn.5, p.8).

7This is often the case because the criterion ft is used not only for prediction evaluation, but also for

parameter estimation in the same problem, and is concave or convex for the latter reason.
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Remark. Note that it is important to have eigenvalues of Q∂2f uniformly bounded from

above. If this was not the case, contrary to assumption 4(i), the additional bias might be

stochastic. For instance, if Q∂2f = ιmι
′
m with λ̄ (Q∂2f ) = m, we will have asymptotically

the stochastic bias having the same mean:

χ2
(1)

√
µ1

2
lim
m→∞

ι′mΣβ ιm
m

(cf. Lemma 8(a)). This scenario is, however, unrealistic; in examples at the beginning

of this section Q∂2f is proportional to the (positive definite) mean squared error matrix

of some variable like xt or xtut, in which case assumption 4(i) amounts to the require-

ment that the latter matrix have uniformly bounded eigenvalues (which may be already

guaranteed by assumption 2 if zt = xt).

The asymptotic result of Theorem 1 suggests that the test statistic can be constructed

by proper recentering and scaling the usual criterion. Let V̂f and ψ̂1 be usual analog

estimators for Vf and ψ̂1, then one may use the t statistic

t1 =

√
P
(
f̂ − Ef − m

2R
ψ̂1

)
√
V̂f

.

Theorem 2 Under the asymptotics of assumption 5,

t1
d→ N (0, 1) .

Note that if ψ̂1 is constructed using sample analogs Q̂∂2f and Σ̂β of Q∂2f and Σβ, the

numerator of t1 can be rewritten as
√
P
(
f̃ − Ef

)
, where f̃ = f̂−tr

(
Q̂∂2f Σ̂β

)
/2R is the

original estimated criterion adjusted for the bias caused by estimation of a large number

of parameters.

Next we look at an example where we can observe actual distributions, and rejection

frequencies in particular, of original and modified test statistics. In this and subsequent

examples we set some of unknown population quantities at their actual values rather

than estimate from a sample, in order to isolate size distortions associated with a large

number of predictors. Thus, in a full sense these are not Monte–Carlo experiments. The

computations are performed from 100,000 simulations.
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Example. Consider the MSPE criterion ft = u2
t from the linear regression yt = x′tβ+ut

with conditionally homoskedastic normal disturbance having variance σ2
u, so zt = xt.

Let for simplicity xt ∼ N (0, Im). Then Q∂f = 0, Vf = 2σ4
u, Q∂2f = 2Im, Σβ = σ2

uIm,

ψ1 = 2σ2
u, so

û2 − 1
A∼ N

(
m

R
σ2
u,

2σ4
u

P

)
,

and

t0 =

√
P
(
û2 − 1

)
√

2σ2
u

,

t1 =

√
P
(
û2 − 1− m

R
σ2
u

)
√

2σ2
u

.

The additional bias term induced by multiplicity of predictors is able to seriously

distort inference. For example, when the square of the t-statistic is used for two-sided

testing, neglecting multiplicity of predictors by using standard normal instead of the

biased asymptotic distribution leads to a shift in the concentration point from the value

1 by ∆ = Pm2/(2R2)→ 1
2
µ1.

We set β = %ιm, where % is set so that R2 = 50% (identical figures result for other

values of R2. This indicates that the theory does not depend of whether the predictors are

weak or strong). The following table presents actual rejection rates based on the nominal

rate of 5%. We in addition report µ1, m
2/R, and the concentration point shift ∆. The

accompanying graph presents the distributions of t0 and t1 for the case R = P = 200 and

m = 16. The positive bias in t0 is apparent from the figure, as well as its absence in t1

and approximately normal shapes of the distributions.

13



m µ1 m2/R ∆ t6=0 t6=1 t<0 t<1 t>0 t>1

R = P = 200

2 0.02 0.02 0.01 5.45 5.29 3.67 4.66 6.97 5.81

4 0.08 0.08 0.04 6.35 5.70 2.97 4.82 8.71 6.22

8 0.32 0.32 0.16 8.74 6.55 1.99 5.19 12.59 6.89

16 1.28 1.28 0.64 16.96 8.36 0.80 5.84 24.03 8.72

32 5.12 5.12 2.56 46.80 13.83 0.11 5.70 56.47 15.33

R = 300, P = 100

8 0.07 0.21 0.04 6.18 5.59 2.75 4.56 8.66 6.44

16 0.28 0.85 0.14 8.46 6.50 1.86 5.00 12.32 7.05

32 1.14 3.41 0.57 16.46 8.40 0.74 5.44 23.16 9.25

R = 100, P = 300

4 0.48 0.16 0.24 10.63 7.49 1.86 5.63 15.13 7.65

8 1.92 0.64 0.96 22.82 10.79 0.70 6.79 30.52 10.60

16 7.68 2.56 3.84 57.84 19.18 0.08 7.46 66.31 19.35

Figure 1: Densities of unadjusted and adjusted t-statistics

From the first panel of the table one can see that the unadjusted test statistic exhibits
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large size distortions, especially for one-sided tests,8 most of which can be removed by

removing the asymptotic bias. The asymptotic theory gives good approximations when

m2/R is small, say for m = 16 and smaller when P = R = 200, and worse approximations

whenm2/R is big as in the casem = 16 whenR = 100 and P = 300, although it is this case

when adjusting for the bias gives the maximal improvement in actual rejection frequencies

as ∆ is largest. The other two panels of the table present some evidence when P differs

from R significantly. Some tendencies are similar, while the quality of approximations

is better when R > P than when R < P, which may seem in contradiction with the

asymptotic presumption that P grows faster than R. The explanation is that one should

in fact compare lines with comparable levels of µ1 rather than with the same values of m.

For example, in the last line µ1 > 7 which is of a similar magnitude as m = 16, although

asymptotically m tends to infinity while µ1 stays fixed. Again, in this case adjusting for

the bias gives great improvement in actual rejection frequencies because ∆ is very large.

Note also that often rejection frequencies improve as a result of bias adjustment even in

case m is small, like 2 and 4, when no researcher thinks about such asymptotic effects.

To summarize, even though the bias-corrected t1 still exhibits some overrejection, size

distortions are much smaller than those displayed by t0. For the degree of overrejection,

the values of P/R and m2/R are not as critical as values of µ1 which should not be large

(larger than 2, say) for this degree to be moderate. However, the value P/R seems to be

most critical for size improvement: the improvement is more impressive the bigger P/R

is, other things equal.

4 Problem with non-zero expected score

Now we consider a problem that has non-zero “expected score”

Q∂f 6= 0.

The leading example is the mean prediction error (MPE) criterion ft = ut when (some

of) regressors are not centered, in which case Q∂f = −E [xt]. This choice corresponds to

8In their simulations, West (1996) and West and McCracken (1998, 2002) study the behavior of only

squared t-statistics, and therefore, only two-sided tests.
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the empirically interesting test of forecast unbiasedness, which will be considered at some

length in empirical section 5. Other examples are the MSPE criterion ft = u2
t when xt is

endogenous in which case Q∂f = −2E [utxt] , and mean linear-exponential prediction error

criterion ft = exp (αut)− αut − 1, α 6= 0, in which case Q∂f = −αE [(exp (αut)− 1)xt] .

Let us denote by m̊ the number of non-zero elements in Q∂f . In the MPE example

above, m is the dimension of xt, while m̊ is the number of non-centered variables in xt.

In the MSPE example, m is the dimension of xt, while m̊ is the number of endogenous

variables in xt. Of course, 1 ≤ m̊ ≤ m. We are most interested in the case where m̊→∞

asymptotically, because the case of fixed m̊ is very close to the original IPA theory even

when m→∞.

Assumption 6 The derivatives of ft satisfy:

(i) Q∂f is such that c
√
m̊ < ‖Q∂f‖ < C

√
m̊,

(ii) for some stationary series dt with finite E [d2
t ], ‖∂f ∗t /∂β − ∂ft/∂β‖ ≤

√
mdt ‖β∗ − β‖

for all β∗ ∈ B,

(iii)
∥∥∥Q̂∂f −Q∂f

∥∥∥ is Op

(
m̊/
√
P
)
, where Q̂∂f = P−1

∑R+P
t=R+1 ∂ft/∂β.

Assumption 6(i) reflects the previous discussion that when Q∂f 6= 0, its “volume” (i.e.

the effective number of non-zero elements) asymptotically grows at rate
√
m (at which,

for instance, ‖ιm‖ grows). The conditions in assumptions 6(ii, iii) are technical.

Define

ψ2 = lim
m̊→∞

Q′∂fΣβQ∂f

m̊
,

assuming that the limit exists. Note that by construction ψ2 ≥ 0, and that∣∣∣∣Q′∂fΣβQ∂f

m̊

∣∣∣∣ ≤ λ̄ (Σβ)
‖Q∂f‖2

m̊
<∞,

so the expression under the limit sign in ψ2 is uniformly bounded.

Remark. Most likely, ψ2 is positive because of scaling by m̊ instead of m, but still may be

zero because of a special structure of Σβ. Consider the case when zt = xt ∼ N (ιm, Im) and

ut is independent of xt, then E[xtx
′
t] = Im + ιmι

′
m, Σβ ∝ E[xtx

′
t]
−1 = Im− ιmι′m/ (m+ 1) ,
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and if Q∂f ∝ E [xt] = ιm, then m̊ = m and Q′∂fΣβQ∂f ∝ ι′m (Im − ιmι′m/ (m+ 1)) ιm =

m/ (m+ 1) , so ψ2 = 0. Here λ̄ (Σβ) = 1 and ‖Q∂f‖ =
√
m, but the structure of Σβ makes

ψ2 zero. Interestingly, this phenomenon is relevant to the case of MPE and corresponingly

testing for forecast unbiasedness; see also section 5.

We start from the following important observation that sets the relative rate of diver-

gence of P, R and m. This result follows from the proof of Theorem 3 below.

Proposition 2 Suppose that P →∞, R→∞, m̊→∞, and ψ2 6= 0. (a) If Pm̊/R→∞,

then in
√
P (f̂ −Ef) the estimation error noise asymptotically dominates the signal from

√
P (f̄ − Ef). (b) If Pm̊/R→ 0, then

√
P (f̂ − Ef) has the same distribution as if there

is no estimation error noise.

Thus, for an emerging test to be asymptotically meaningful and non-trivial and the

asymptotic results to provide a better approximation, Pm̊/R has to converge to a non-

zero constant. Intuitively, to have a balance between the uncertainty in mean criterion

and the estimation noise, the regression sample must be much larger than the prediction

sample. The balance is achieved when the following assumption holds.

Assumption 7 As P →∞, R→∞ and m̊→∞, we have

Pm̊

R
→ µ2 > 0

and
m3

R
→ 0.

Because of the first condition in Assumption 7, R has to grow faster than P (note

that the relation between relative growth rates of P and R is opposite to the case of

zero expected score), i.e. the regression sample should significantly exceed the prediction

sample compensating for the numerosity of parameters to be estimated, and the number of

predictors, albeit large, should be quite small relative to these sizes. For example, we may

have P ∝ R1−δ and m̊ = m ∝ Rδ for some 0 ≤ δ < 1
3

so that eventually Pm̊/R = const,

the case δ = 0 representing the original IPA.

As in West (1996) and West and McCracken (2002), the estimation error noise inflates

the asymptotic variance.
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Theorem 3 Under the asymptotics of assumption 7

√
P (f̂ − Ef)

d→ N (0, Vf + µ2ψ2) .

The additional asymptotic bias appears from the first term in the Taylor expansion of

the average prediction criterion around the true value of the parameter, as in the original

IPA theory:

f̄ − Ef +
1

P

R+P∑
t=R

∂ft
∂β′

(
β̂ − β

)
+

1

2

(
β̂ − β

)′ 1

P

R+P∑
t=R

∂2ft
∂β∂β′

(
β̂ − β

)
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
relevant estimation noise estimation noise

uncertainty leading term negligible term

(contributes Vf ) (contributes µ2ψ2) (contributes nothing)

Let now V̂f and ψ2 be usual analog estimators for Vf and ψ2, then one may use the t

statistic

t1 =

√
P (f̂ − Ef)√

V̂f + (Pm̊/R)ψ2

.

Theorem 4 Under the asymptotics of assumption 7,

t1
d→ N (0, 1) .

Suppose Q̂∂f and Σ̂β are constructed as consistent sample analogs of Q∂f and Σβ

From a practical perspective, one can construct a t statistic

t1 =

√
P (f̂ − Ef)√

V̂f + (P/R)Q̂′∂f Σ̂βQ̂∂f

,

as m̊ cancels out. Note now that t1 is exactly the t-statistic that would be constructed

by a researcher following West (1996) and West and McCracken (2002) relying on the

asymptotics with π = limP,R→∞(P/R) 6= 0 (cf. (1)).

We can conclude that our adjustment is equivalent to that suggested by original IPA

theory. Thus, a practitioner is welcome to use the original IPA theory when Q∂f 6= 0

despite the multiplicity of predictors, provided that care is exercised in that (a) Pm̊/R
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should not be allowed to be too large, and (b) even though P/R may be tiny, variance

adjustment still should be performed as Pm̊/R may be large.

The equivalence of modifications prescribed by the original IPA theory and by our

asymptotic framework in case Q∂f 6= 0 can be interpreted in the following way. According

to the original IPA theory, asymptotic variance inflates when P and R grow at the same

rate and m̊ is constant, implying in particular that P and R/m̊ grow at the same rate.

In our asymptotic framework, even though m̊ increases, P and R/m̊ still grow at the

same rate (see Assumption 7). That is, in all circumstances it is the balance of growth

rates of P and R/m̊ that matters asymptotically. In a way, the ratio R/m̊ measures the

degree of parameter estimation uncertainty, and higher numerosity of predictors should

be compensated by a proportionately larger regression sample used to form parameter

estimates.

Example. Consider the MSPE criterion ft = u2
t from the linear model yt = x′tβ + ut

with conditionally homoskedastic normal disturbance having variance σ2
u and endogenous

regressors

xt =
γ

σu
utιm + zt,

where zt ism×1 vector of instruments independent of ut, and for simplicity zt ∼ N (0, Im) .

Then Q∂f = −2γσuιm, m̊ = m, Vf = 2σ4
u, Σβ = σ2

uIm, ψ2 = 4γ2σ4
u, so

û2 − 1
A∼ N

(
0,

2σ4
u

P

(
1 + 2µ2γ

2
))

,

and

t0 =
û2 − 1√
2/Pσ2

u

,

t1 =
û2 − 1√

2/P + 4 (m/R) γ2σ2
u

.

In the first experiment we demonstrate that comparably long regression and prediction

intervals leads to testing failure when there are many predictors. We set R = P = 200

so that π = 1, β = %ιm with the value of % from the example on page 13, and γ = 0.5.

The following table shows rejection frequencies (RF) at the 5% nominal size using the

t-statistic t1.
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m µ2 t6=1 t<1 t>1

2 2 5.96 2.47 8.13

4 4 6.95 1.67 9.68

8 8 9.19 0.78 12.51

16 16 12.77 0.16 16.45

32 32 19.73 0.00 23.73

One can see that both the two-sided and especially one-sided RF differ appreciably

from the nominal levels even when m = 8, with severe underrejection at the left tail and

severe overrejection at the right tail.9 The reason is that µ2 which is supposed to stay

fixed asymptotically is too large and comparable (equal in this design) to m which is

supposed to grow asymptotically.

In the next experiment, we set R = 2000, P = 100 so that π = 0.05, β = %ιm with

the value of % from the example on page 13, and γ = 0.5. Here, the prediction sample

size is negligible relative to the regression sample size (π = 0.05), and for that reason

a researcher may decide to use the conventional unadjusted t-statistic t0. Alternatively,

a researcher may adjust for the extra variance and use t1. The following table presents

actual rejection rates based on the nominal rate of 5%.

m µ2 t6=0 t6=1 t<0 t<1 t>0 t>1

2 0.1 5.34 4.79 4.18 3.84 6.26 5.85

4 0.2 6.14 5.08 4.73 3.80 6.96 6.12

8 0.4 7.11 5.01 4.98 3.41 8.03 6.31

16 0.8 10.06 5.60 5.84 2.89 10.76 7.37

32 1.6 14.96 6.17 7.40 2.23 14.98 8.61

One can see that while the variance adjustment for estimation error noise does not

change the situation significantly when m is small, it does make good for the actual

rejection frequencies, especially two- and right-sided, when there are many predictors.

9Note that there are problems with one-sided testing even when m is tiny. See footnote 8.
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The left-sided tests, however, turn from being oversized to being undersized for large m,

which is a sort of undershooting phenomenon. This is, however, a purely finite sample

issue: values 32 and 16 and even 8 for m are not very much smaller that the value 100 of P.

In experiments where P gets larger and larger, the left-sided rejection frequency straighten

out eventually. The following graph presents the distributions of t0 and t1 when m = 16.

Apparently, variance adjustment is necessary when there are many predictors because µ2

is appreciable even though π is negligible.

Figure 2: Densities of unadjusted and adjusted t-statistics

5 Application

To illustrate, we compare two models for determination of housing starts in the US using

the dataset from Galbraith and Zinde-Walsh (2006) originaly drawn from the St. Louis

Federal Reserve Bank FRED database.10 All data are monthly dated from Jan 69 to Mar

04, seasonally adjusted, used in the first differences form, and contain 421 observations

in the raw form. The dependent variable is the first difference of housing starts (private

including farm, in $mln).
10I thank John Galbraith for sharing this dataset with me.
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Model 1 is a pure autoregressive model of order 2 having m = 3 parameters, with

R2 = 9.3% and R̄2 = 8.9%. Model 2 is structural, with the predictors (presumed exoge-

nous) representing various sectors of the US economy: national accounts, consumption,

real output, wholesale, retail & inventories, money and credit aggregates, price indexes,

employment, average hourly earnings, stock market, exchange rates, and interest rates.

The sets of predictors are found using the general-to-specific methodology by removing

regressors (apart from the constant term) having t-ratios smaller than 1.00, 1.50, or 2.00

(hence 3 sets of predictors) from the full sample regression estimated by OLS11. When

the t-ratio threshold is 1.00, the selection procedure resulted in m = 24 predictors, with

R2 = 22.3% and R̄2 = 17.8%. When the t-ratio threshold is 1.50, the selection procedure

resulted in m = 16 predictors, with R2 = 19.7% and R̄2 = 16.8%. When the t-ratio

threshold is 2.00, the selection procedure resulted in m = 12 predictors, with R2 = 17.5%

and R̄2 = 15.3%. These values of m may well be qualified as “moderately many” relative

to the given sample size. Note that the criteria based on the in-sample fit would prefer

the structural model with 24 predictors.

The first battery of tests verifies the hypothesis of unbiased one-step-ahead prediction,

where the null is H0 : E [ut] = 0. The expected score is Q∂f = −E [xt] , and all elements

of Q∂f are non-zero, hence the results of section 4 apply, with m̊ = m. The uncorrected

t-statistic equals

t0 =

√
P û√
û2
,

where û is an average of prediction errors over the prediction sample, and û2 is an average

of squared regression erros over the regression sample.

It is straightforward to derive using partioned matrix algebra and the fact of the

presence of the constant term that Q′∂fΣβQ∂f = σ2 (a similar relationship also holds at

the polulation level, i.e. Q̂′∂f Σ̂βQ̂∂f = û2 with Q̂∂f = −x̄, Σ̂β = û2(xx′)−1). Then the

variance-corrected t-statistic equals

t1 =

√
P û√

û2 (1 + P/R)
=

t0√
1 + P/R

.

11We do not view this procedure as a rigorous tool of model selection, but rather use it as an appealing

in practice algorithm in order to end up with several “structural” models.
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Interestingly, in this class of problems the value of m does not affect inference. This is

because ψ2 = lim (σ2/m) = 0, and the results of section 4 hold trivially. Recall that

Assumption 7 requires P/R → 0, so under it t0 and t1 are asymptotically equivalent.

However, in the original IPA theory framework P/R→ π, and if π 6= 0, the statistic t1 is

asymptotically correct while the statistic t0 is not.

The following tables contains the results for P/R ≈ 1
9
, 1

3
, 1, 3 and 9 (smaller or larger

values of P/R are hardly justifiable given the sample size). The slight difference in values

of R and P across the models is due to a different number of lags employed. All inference

conclusions are made at the 5% significance level.

R P P/R t0 t1

376 42 ≈ 1
9

0.93 0.89

313 105 ≈ 1
3

0.90 0.78

209 209 1 −0.03 −0.02

104 314 ≈ 3 −0.86 −0.44

42 376 ≈ 9 −5.10 −1.67

(A) Autoregressive model

m = 24 m = 16 m = 12

R P P/R t0 t1 t0 t1 t0 t1

378 42 ≈ 1
9
−0.66 −0.63 0.52 0.49 0.32 0.31

315 105 ≈ 1
3
−2.01 −1.74 0.16 0.14 0.09 0.08

210 210 1 −2.36 −1.67 −1.13 −0.80 −1.83 −1.29

105 315 ≈ 3 −2.67 −1.34 −1.89 −0.95 −0.93 −0.46

42 378 ≈ 9 −4.57 −1.46 −14.27 −4.56 −10.61 −3.39

(B) Structural model
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We classify the values 1
9
, 1

3
, 1, 3 for P/R as compatible with the original IPA theory

(where P/R → π < ∞, possibly π = 0), the value 1
9

compatible with our asymptotic

framework (where P/R → 0, Pm/R → µ2 < ∞, µ2 6= 0), and the value 9 incompatible

with both.

For the autoregressive model with few predictors, the values of t1 indicate that the

data support that the model generates unbiased forecasts, and this conclusion is consistent

across combinations of R and P. It can also be seen that the use of t0 may lead to the

wrongful rejection of the unbiasedness hypothesis when P/R is large (line 5) because of

a big estimation noise unaccounted for.

For the structural model with many predictors, in lines 1–4 compatible with the

original IPA theory, the variance-adjusted statistic t1 leads to the acceptance of the null,

while the unadjusted statistic t0 may reject it for a variety of combinations of P and

R when m = 24. In line 1 compatible with our framework both statistics agree on the

outcome for all three sets of predictors. Note that in line 5 incompatible with both

frameworks even the adjusted statistic t1 may lead to a wrong outcome.

The second battery of tests verifies the hypothesis of equal accuracy of one-step-

ahead prediction across the models (Diebold and Mariano, 1995), where the null is H0 :

E
[
u2

2,t − u2
1,t

]
= 0. Here u2

s,t is the one-step-ahead prediction error from model s (s = 1, 2),

and let us also denote by xs,t, ms and βs the predictors, their number, and the parameters

from model s. The full parameter vector is β = (β′1, β
′
2)
′
, and the expected score is

Q∂f = 2E
[
(u1,tx1,t,−u2,tx2,t)

′] = 0, hence the results of section 3 apply. The uncorrected

t-statistic equals

t0 =

√
P û2

2 − û2
1√

V̂∆u2

,

where ûs are estimated prediction errors from model s, û2
1 − û2

2 is an average of the

difference of their squares over the prediction sample, and V̂∆u2 is the HAC esimate of

the variance of u2
2,t − u2

1,t. This statistic is simply computed as a Newey–West corrected

t-ratio from a regression of û2
2 − û2

1 on a constant.

Now observe that Q∂2f is block-diaginal with blocks equalling −2E
[
x1,tx

′
1,t

]
and

2E
[
x2,tx

′
2,t

]
, and the diagonal blocks of Σβ equal σ2

1E
[
x1,tx

′
1,t

]−1
and σ2

2E
[
x2,tx

′
2,t

]−1
,
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thus tr (Q∂2fΣβ) = 2 (σ2
2m2 − σ2

1m1) , and the finite-sample version of ψ1 is ψ̂1 = 2(û2
2m2−

û2
1m1)/ (m1 +m2) . If by coincidence σ2

2m2 = σ2
1m1, then limm→∞ ψ̂1 = 0, and no bias

correction is needed. Bias correction is obviously needed in our case when one of the

two models (model 1) contains few predictors, and the other (model 2) contains many

predictors, in which case the appropriate asymptotics is m1 = const, m2 → ∞ so that

limm→∞ ψ̂1 = 2σ2
2 6= 0. The bias-corrected t-statistic equals

t1 =

√
P
(
û2

2 − û2
1 − b̂∆u2

)
√
V̂∆u2

, where b̂∆u2 =
û2

2m2 − û2
1m1

R
.

The statistic t1 is simply computed as a Newey–West corrected t-ratio from a regression

of û2
2 − û2

1 − b̂∆u2 on a constant.

The following tables contains the results for P/R ≈ 1
9
, 1

3
, 1, 3 and 9. All inference

conclusions are made at the 5% significance level. We in addition report values of Pm2/R2.

m2 = 24 m2 = 16 m2 = 12

R P P/R Pm2/R2 t0 t1 Pm2/R2 t0 t1 Pm2/R2 t0 t1

376 42 ≈ 1
9

0.22 0.59 0.11 0.11 −0.44 −0.82 0.07 −1.68 −2.05

313 105 ≈ 1
3

0.78 3.88 3.21 0.39 2.68 2.07 0.24 2.04 1.54

209 209 1 3.49 2.69 1.40 1.73 0.84 −0.27 1.08 0.61 −0.32

104 314 ≈ 3 21.16 2.83 1.49 10.48 1.98 1.05 6.53 0.86 0.08

42 376 ≈ 9 155.39 7.09 6.64 76.95 7.25 6.36 47.96 3.86 2.52

We classify the values 1
9
, 1

3
, 1, 3 for P/R as compatible with the original IPA theory

(where P/R → π < ∞, possibly π = 0), and recall that there is no need to adjust the

t-statistic. From the viewpoint of the original IPA theory using the unadjusted t0, the

results regarding the null hypothesis of equal prediction accuracy are contradictory for all

three sets of predictors: the null is rejected for some combinations of R and P and is not

rejected for others. There is no futher guide which of the results are more reliable.

From the viewpoint of our theory, we cannot trust line 1 because of too low value

of P/R (recall that Assumption 5 requires P/R → ∞) and lines 4 and 5 (recall that
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Assumption 5 requires Pm2/R2 → µ1 < ∞, and that simulations reported in section 3

show that for large values of µ1 there is severe overrejection). Therefore, when m2 = 24,

only line 2 can be trusted, line 3 being excluded for the reason of too big Pm2/R2, and

the bias-adjusted t-statistic t1 = 3.21 is able to reject equal prediction accuracy. Because

t1 > 0, the largest structural model may be deemed less accurate in terms of predictive

ability than the autoregressive model (recall though that the in-sample criterion R̄2 favors

it among all four models). When m2 = 16, most trustable is line 3, with a statistically

insignificant bias-adjusted t-statistic t1 = 0.84. Even in the less credible line 2, even

though there is rejection at the 5% level, it is marginal. Hence, for the medium structural

model we cannot reject the hypothesis that it is as accurate as the autoregressive model.

When m2 = 12, most trustworthy is line 3, with a statistically insignificant bias-adjusted

t-statistic t1 = −0.32; using line 2 leads to the same outcome that for the smallest

structural model we cannot reject the hypothesis of equal prediction accuracy.

Conclusion

This paper complements the theory of asymptotic inference about predictive ability of

West (1996) and West and McCracken (1998, 2002) by considering the case when a set

of variables used to construct predictions is sizable. Depending on the situation the

asymptotic normal distribution of an average prediction criterion either gains additional

variance as in the few predictors case, or gains non-zero bias which has no analogs in the

few predictors case. By properly modifying conventional test statistics it is possible to

remove most size distortions when there are many predictors, and improve test sizes even

when there are few of them.

One of methodological implications of our results for the time series analysis is that

testing of out-of-sample qualities of semi-nonparametric models such as ANN (intrinsically

having many parameters to estimate) often observed in empirical literature may not be

valid in their classical unadjusted form. This is one of potential topics of future research.

Another line of research may be devoted to comparison of nested models as in Clark and

McCracken (2001), Clark and West (2006) and McCracken (2006).
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A Appendix: auxiliary results

Let A be m×m matrix. By ‖A‖∞ we denote the L∞ matrix norm max1≤i≤m

(∑m
j=1 |aij|

)
,

by ‖A‖1 – the L1 norm max1≤j≤m (
∑m

i=1 |aij|) , and by ‖A‖F – the Frobenius norm√
tr (A′A).

Lemma 1 Let m be the dimension of square matrices A and B.

(a) Suppose B is symmetric. Then ‖B‖ =
∣∣λ̄ (B)

∣∣ .
(b) Suppose B1 and B2 are symmetric. Then

∣∣λ̄ (B1B2)
∣∣ ≤ ∣∣λ̄ (B1)

∣∣ ∣∣λ̄ (B2)
∣∣ .

(c) For any m×m matrix B,
∑

i

∑
j |bij| ≤ m3/2 ‖B‖ .

(d) For any m×m matrix B, ‖B‖F ≤
√
m ‖B‖ .

Proof. (a) Because B is symmetric, all eigenvalues of B′B are squared eigenvalues of

B because λ (B′B) = λ (B2) = λ (B)2 , so ‖B‖ =
√
λ̄ (B)2 =

∣∣λ̄ (B)
∣∣. (b) Take unit

norm eigenvector v (B1B2) of matrix B1B2 corresponding to eigenvalue λ (B1B2) , then

‖B1B2v (B1B2)‖ = ‖λ (B1B2) v (B1B2)‖ = |λ (B1B2)| .On the other hand, ‖B1B2v (B1B2)‖ ≤

‖B1‖ ‖B2‖ =
∣∣λ̄ (B1)

∣∣ ∣∣λ̄ (B2)
∣∣ by (a). Thus, we obtain |λ (B1B2)| ≤

∣∣λ̄ (B1)
∣∣ ∣∣λ̄ (B2)

∣∣ ,
which holds for any eigenvalue λ (B1B2) , hence for the maximal in absolute value too. (c)∑

i

∑
j |bij| ≤

∑
i maxi

∑
j |bij| = m ‖B‖1 ≤ m

√
m ‖B‖ (GV, eqn. 2.3.12). (d) See GV,

eqn. 2.3.7.

Lemma 2 Under assumption 2,

(a) c < ‖Qzx‖ < C and C−1 < ‖Q−1
zx ‖ < c−1,

(b)
∥∥∥V 1/2

zu

∥∥∥ < C1/2,

(c) λ̄ (Σβ) = ‖Σβ‖ < C/c2.

Proof. (a) Trivially, ‖Qzx‖ = σ̄ (Qzx) < C and ‖Qzx‖ ≥ σ (Qzx) > c. From the

properties of matrix norms, ‖Q−1
zx ‖ ≥ ‖Qzx‖−1 > C−1. Next, ‖Q−1

zx ‖ =
√
λ̄ (Q−1′

zx Q
−1
zx ) =√

λ̄
(
(QzxQ′zx)

−1) =
√
λ (QzxQ′zx)

−1 = σ (Qzx)
−1 < c−1. (b)

∥∥∥V 1/2
zu

∥∥∥ =

√
λ̄
(
V

1/2′
zu V

1/2
zu

)
=√

λ̄ (Vzu) < C1/2. (c) By Lemma 1(a) and because Σβ is symmetric and positive definite,

λ̄ (Σβ) = ‖Σβ‖ . Next, ‖Σβ‖ ≤ λ̄ (Vzu) ‖Q−1
zx ‖

2
< C/c2 using (a).
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Lemma 3 Let xt and yt be =t-measurable stationary α-mixing scalar processes with mix-

ing coefficients αi, E [|xt|2ν ] , E [|yt|2ν ] < ∞ for some ν > 1, and let xt have zero mean.

Then for all j > 0,

|E [xtxt+j]| ≤ 8α
1−1/ν
j

(
E
[
|xt|2ν

])1/ν
.

and

|E [xtyt+j]| ≤ 8α
1−1/ν
j

(
E
[
|xt|2ν

])1/2ν (
E
[
|yt|2ν

])1/2ν
.

Proof. Using the Cauchy–Schwartz and Ibragimov (1962) inequalities,

|E [xtyt+j]| = |E [xt (E [yt+j|=t]− E [yt])]|

≤
(
E
[
|xt|2ν

])1/2ν
(
E
[
|E [yt+j|=t]− E [yt]|2ν/(2ν−1)

])1−1/2ν

≤
(
E
[
|xt|2ν

])1/2ν · 8α1−1/ν
j

(
E
[
|yt|2ν

])1/2ν
.

The first inequality is a special case with yt = xt.

Denote

ξzu =
1√
R

R∑
t=1

ztut,

Q̂zx =
1

R

R∑
t=1

ztx
′
t.

Lemma 4 Under Assumption 1 and 2, as m→∞, R→∞ and m2/R→ 0,

(a)
∥∥∥Q̂zx −Qzx

∥∥∥ and
∥∥∥Q̂−1

zx −Q−1
zx

∥∥∥ are Op

(
m/
√
R
)
,

(b)
∥∥∥Q̂−1

zx

∥∥∥ < c−1 with probability approaching 1,

(c) ‖ξzu‖ is Op (
√
m) .
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Proof. (a) Observe that E

[∥∥∥Q̂zx −Qzx

∥∥∥2

F

]
is bounded by

≤ 1

R
E

[
m∑
i=1

m∑
j=1

(zt,ixt,j − E [zt,ixt,j])
2

]

+
2

R2

∑
1≤t<s≤R

E

[
m∑
i=1

m∑
j=1

|(zt,ixt,j − E [zt,ixt,j]) (zs,ixs,j − E [zs,ixs,j])|

]

≤ m2

R

(
max

1≤i≤m
E
[
z4
t,i

]
max

1≤j≤m
E
[
x4
t,j

]
+

(
max

1≤i≤m
E
[
z2
t,i

]
max

1≤j≤m
E
[
x2
t,j

])2
)

+
16m2

R2

((
max

1≤i≤m
E
[
z4ν
t,i

])1/2ν (
max

1≤j≤m
E
[
x4ν
t,j

])1/2ν

+ max
1≤i≤m

E
[
z2
t,i

]
max

1≤j≤m
E
[
x2
t,j

])2

×
∑

1≤t<s≤R

α
1−1/ν
s−t

≤ O

(
m2

R

)
,

using Lemma 3, Assumptions 1(i,ii) and the Minkowski and triangular inequalities. Be-

cause ‖B‖ ≤ ‖B‖F , we conclude that
∥∥∥Q̂zx −Qzx

∥∥∥ is Op

(
m/
√
R
)
. Now,

∥∥∥Q̂−1
zx −Q−1

zx

∥∥∥ ≤∥∥∥Q̂−1
zx

∥∥∥∥∥∥Q̂zx −Qzx

∥∥∥ ‖Q−1
zx ‖ ≤ Op

(
m/
√
R
)

using also the result in (b).

(b) Because Q̂−1
zx = Q−1

zx − Q̂−1
zx

(
Q̂zx −Qzx

)
Q−1
zx , we have∥∥∥Q̂−1

zx

∥∥∥ ≤ ∥∥Q−1
zx

∥∥+
∥∥∥Q̂−1

zx

∥∥∥∥∥∥Q̂zx −Qzx

∥∥∥∥∥Q−1
zx

∥∥
and hence∥∥∥Q̂−1

zx

∥∥∥ ≤ (1−
∥∥∥Q̂zx −Qzx

∥∥∥∥∥Q−1
zx

∥∥)−1 ∥∥Q−1
zx

∥∥ ≤ (1− op(1)c−1
)−1

c−1

from Lemma 2(a) and the first result in (a). The result follows.

(c) Observe that

E
[
‖ξzu‖

2] = E

 1

R

m∑
i=1

(
R∑
t=1

zt,iut

)2
 =

1

R

m∑
i=1

E

[
R∑
t=1

R∑
s=1

zt,izs,iutus

]
= tr (Vzu) ≤ mλ̄ (Vzu) = Op (m) ,

using 2(ii) and because the trace of a square matrix equals a sum of its eigenvalues (MN,

thm.17, p.19), and the conclusion follows.
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B Appendix: proofs related to case Q∂f = 0

Denote

Σ∂2f = Q′−1
zx Q∂2fQ

−1
zx ,

ξ∂f =
1√
P

R+P∑
t=R+1

∂ft
∂β

,

Q̂∗∂2f =
1

P

R+P∑
t=R+1

∂2f ∗t
∂β∂β′

.

Lemma 5 Under assumptions 2 and 4,

(a) ‖Σ∂2f‖ < C/c2 and
∥∥∥Σ

1/2

∂2f

∥∥∥ < √C/c,
(b)

∥∥ξ∂f∥∥ is Op (
√
m) .

Proof. (a) Because Q∂2f is symmetric, using Lemma 1(a),
∣∣λ̄ (Q∂2f )

∣∣ = ‖Q∂2f‖ < C. (b)

Note that Σ∂2f is symmetric, so by Lemmas 2(a) and 1(a) ‖Σ∂2f‖ ≤
∣∣λ̄ (Q∂2f )

∣∣ ‖Q−1
zx ‖

2
<

C/c2 using (a). Next,
∥∥∥Σ

1/2

∂2f

∥∥∥ = ‖Σ∂2f‖1/2 as in Lemma 2(b). (b) Observe that

E
[∥∥ξ∂f∥∥2

]
= E

 1

P

m∑
i=1

(
R+P∑
t=R+1

∂ft
∂β

)2
 =

1

P

m∑
i=1

E

[
R+P∑
t=R+1

R+P∑
s=R+1

∂ft
∂βi

∂fs
∂βi

]

=
m∑
i=1

E

[(
∂ft
∂βi

)2
]

+
2

P

∑
R+1≤t<s≤R+P

m∑
i=1

E

[
∂ft
∂βi

∂fs
∂βi

]

≤ tr (V∂f ) +
16

P

∑
R+1≤t<s≤R+P

α
1−1/ν
s−t

m∑
i=1

(
E

[∣∣∣∣∂fs∂βi

∣∣∣∣2ν
])1/ν

≤ mλ̄ (V∂f ) +O (m) = O (m) ,

using 4(iv, v) and because the trace of a square matrix equals a sum of its eigenvalues

(MN, thm.17, p.19). The conclusion follows.

Lemma 6 Under the asymptotics of assumption 5 and conditions of assumptions 2, 3

and 4,

(a)
ξ′zuQ

′−1
zx Q∂2fQ

−1
zx ξzu

m
= ψ1 + op (1) ,
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(b) ∣∣∣∣∣ξ′zuQ̂′−1
zx Q̂∂2fQ̂

−1
zx ξzu

m
−
ξ′zuQ

′−1
zx Q∂2fQ

−1
zx ξzu

m

∣∣∣∣∣ ≤ op(1),

(c) ∣∣∣∣∣ξ
′
zuQ̂

′−1
zx Q̂

∗
∂2fQ̂

−1
zx ξzu

m
−
ξ′zuQ̂

′−1
zx Q̂∂2fQ̂

−1
zx ξzu

m

∣∣∣∣∣ ≤ op(1).

Proof. (a) Note that

ξ′zuΣ∂2fξzu
m

=
1

mR

m∑
i=1

m∑
j=1

(Σ∂2f )ij

(
R∑
t=1

zi,tut

)(
R∑
s=1

zj,sus

)

=
1

R

R∑
t=1

(ztut)
′Σ∂2f (ztut)

m
+

2

R

∑
1≤t<s≤R

(ztut)
′Σ∂2f (zsus)

m

= A1 + 2A2,

say. Consider the first term

A1 =
1

R

R∑
t=1

(ztut)
′Σ∂2f (ztut)

m
.

Its expectation is

E [A1] = E

[
(ztut)

′Σ∂2f (ztut)

m

]
= E

[
tr (Σ∂2f (ztz

′
tu

2
t ))

m

]
=

tr (Q′−1
zx Q∂2fQ

−1
zx Vzu)

m
=

tr (Q∂2fQ
−1
zx VzuQ

′−1
zx )

m
→ ψ1,

and the variance is

V [A1] =
1

m2R2

R∑
t=1

R∑
s=1

E
[
tr
(
Σ∂2f

(
ztz
′
tu

2
t − Vzu

))
tr
(
Σ∂2f

(
zsz
′
su

2
s − Vzu

))]
=

1

m2R
E
[
tr
(
Σ∂2f

(
ztz
′
tu

2
t − Vzu

))2
]

+
2

m2R2

∑
1≤t<s≤R

E
[
tr
(
Σ∂2f

(
ztz
′
tu

2
t − Vzu

))
tr
(
Σ∂2f

(
zsz
′
su

2
s − Vzu

))]
= V1 + 2V2,
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say. Now,

V1 =
1

m2R
E

( m∑
i=1

m∑
j=1

[Σ∂2f ]ij

(
zt,jzt,iu

2
t − [Vzu]ji

))2


≤ 1

m2R

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

∣∣∣[Σ∂2f ]ij [Σ∂2f ]kl

∣∣∣ (E [∣∣zt,izt,jzt,kzt,lu4
t

∣∣]+
∣∣∣[Vzu]ij [Vzu]kl

∣∣∣)

≤ 1

m2R

(
max

1≤i≤m
E
[
z8
i,t

])1/2

E
[
u8
t

]1/2( m∑
i=1

m∑
j=1

∣∣∣[Σ∂2f ]ij

∣∣∣)2

+
1

m2R
tr (Σ∂2fVzu)

2

≤ 1

m2R
C
(
m3/2 ‖Σ∂2f‖

)2
+

1

m2R
(mψ1 + o(m))2

≤ O
(m
R

)
= o(1),

using Lemma 5(a) and Assumptions 1(i,ii), 2 and 6(i). The other term in V [A1] satisfies

|V2| ≤
1

m2R2

∑
1≤t<s≤R

(
E
[
tr
(
Σ∂2f

(
ztz
′
tu

2
t − Vzu

))
tr
(
Σ∂2f

(
zsz
′
su

2
s − Vzu

))])
≤ 8

m2R2
E
[∣∣tr (Σ∂2f

(
ztz
′
tu

2
t − Vzu

))∣∣2ν]1/ν ∑
1≤t<s≤R

α
1−1/ν
s−t

≤ 8

m2R2
E

∣∣∣∣∣
m∑
i=1

m∑
j=1

[Σ∂2f ]ij

(
zt,jzt,iu

2
t − [Vzu]ji

)∣∣∣∣∣
2ν
1/ν (

R
∞∑
k=1

α
1−1/ν
k

)

≤ 8

m2R

(m3/2 ‖Σ∂2f‖
(

max
1≤i≤m

E
[
z8ν
i,t

])1/4ν

E
[
u8ν
t

]1/4ν)2ν

+? |tr (Σ∂2fVzu)|2ν
1/ν

×
∞∑
k=1

α
1−1/ν
k

≤ O
(m
R

)
= o(1),

using in addition Lemmas 3 and 5(a) and the Minkowski and triangular inequalities.

The second term in ξ′zuΣ∂2fξzu/m equals twice

A2 =
1

R

∑
1≤t<s≤R

(zsus)
′ Σ∂2f

m
(ztut) .

Let us look at the MSE of this expression:

MSE = E

[
1

R2

∑
1≤t1<s1≤R

∑
1≤t2<s2≤R

(zs1us1)′
Σ∂2f

m
(zt1ut1) (zs2us2)′

Σ∂2f

m
(zt2ut2)

]

=
1

R2

∑
1≤t1<R

∑
t1<s1≤R

∑
1≤t2<s1

E

[
(zs1us1)′

Σ∂2f

m
(zt1ut1) (zs1us1)′

Σ∂2f

m
(zt2ut2)

]
,
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because all terms with s1 < s2 or s1 > s2 are zero because of the MDS structure of ut.

Next, the foregoing expression is a sum of two, the first of which is

MSE1 =
1

R2

∑
1≤t<s≤R

E

[(
(zsus)

′ Σ∂2f

m
(ztut)

)2
]
.

Denote ζt = Σ
1/2

∂2f (ztut) , then

MSE1 =
1

m2R2

∑
1≤t<s≤R

E
[
(ζ ′tζs)

2
]

=
1

m2R2

∑
1≤t<s≤R

E

[
m∑
i=1

m∑
j=1

ζt,iζt,jζs,iζs,j

]

=
1

m2R2

m∑
i=1

m∑
j=1

∑
1≤t<s≤R

E
[
ζt,iζt,j

]2
+

1

m2R2

m∑
i=1

m∑
j=1

∑
1≤t<s≤R

cov
[
ζt,iζt,j, ζs,iζs,j

]
= MSE1,1 +MSE1,2,

say. Now,

MSE1,1 =
1

m2R2

R(R− 1)

2

m∑
i=1

m∑
j=1

E
[
ζt,iζt,j

]2 ≤ 1

2m2
‖E [ζtζ

′
t]‖

2
F

≤ 1

2m2

(√
m
∥∥E [(zsus)′Σ∂2f (ztut)

]∥∥)2

≤ 1

2m
‖Σ∂2fVzu‖2 ≤ 1

2m
‖Σ∂2f‖2 λ̄ (Vzu)

2 = o (1) ,

using Assumptions 2(ii) and 4(i) and Lemma 1(d), and

|MSE1,2| ≤
1

m2R2

m∑
i=1

m∑
j=1

∑
1≤t<s≤R

∣∣cov [ζt,iζt,j, ζs,iζs,j]∣∣
≤ 8

m2R2

m∑
i=1

m∑
j=1

∑
1≤t<s≤R

α
1−1/ν
s−t E

[∣∣ζt,iζt,j∣∣2ν]1/ν

≤ 8

m2R2

m∑
i=1

m∑
j=1

∑
1≤t<s≤R

α
1−1/ν
s−t

(
m∑
k=1

m∑
l=1

∣∣∣∣(Σ
1/2

∂2f

)
ik

(
Σ

1/2

∂2f

)
jl

∣∣∣∣E [u4ν
t |zt,kzt,l|

2ν])2

≤ 8

m2R2
E
[
u8ν
t

]1/2ν (
max

1≤i≤m
E
[
z8ν
i,t

])1/2ν
(

m∑
i=1

m∑
k=1

∣∣∣(Σ
1/2

∂2f

)
ik

∣∣∣)2 ∑
1≤t<s≤R

α
1−1/ν
s−t

≤ 8

m2R2
E
[
u8ν
t

]1/2ν (
max

1≤i≤m
E
[
z8ν
i,t

])1/2ν (
m3/2

∥∥∥Σ
1/2

∂2f

∥∥∥)2
(
R

∞∑
i=1

α
1−1/ν
i

)
≤ O

(m
R

)
= o (1) ,

using in addition Assumption 1(i,ii), Lemmas 3 and 5(a), and the Minkowski and trian-

gular inequalities.
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The second ingredient of MSE is, using Assumption 1(i,ii) and Lemmas 3, 1(c) and

5(a),

MSE2 =
2

R2

∑
1≤t1<R

∑
t1<s1≤R

∑
t1<t2<s1

E

[
(zs1us1)′

Σ∂2f

m
(zt1ut1) (zs1us1)′

Σ∂2f

m
(zt2ut2)

]

≤ 2

m2R2

∑
1≤t1<R

∑
t1<s≤R

∑
t1<t2<s

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

∣∣∣(Σ∂2f )ij

∣∣∣ ∣∣(Σ∂2f )kl
∣∣E [∣∣zi,szj,t1zk,szl,t2u2

sut1ut2
∣∣]

≤ 16

m2R2

(
max

1≤i≤m
E
[
|zi,t|8ν

]
E
[
|ut|8ν

])1/2ν
(

m∑
i=1

m∑
j=1

∣∣∣(Σ∂2f )ij

∣∣∣)2

×
∑

1≤t1<R

∑
t1<s≤R

∑
t1<t2<s

α
1−1/ν
max(t2−t1,s−t2)

<
16

m2R2
C1/ν

(
m3/2 ‖Σ∂2f‖

)2

(
2R

∞∑
i=1

iα
1−1/ν
i

)
≤ O

(m
R

)
= o(1).

Summarizing,
ξ′zuΣ∂2fξzu

m

p→ ψ1.

(b) Consider the difference∣∣∣∣∣ξ′zuQ̂′−1
zx Q̂∂2fQ̂

−1
zx ξzu

m
−
ξ′zuQ

′−1
zx Q∂2fQ

−1
zx ξzu

m

∣∣∣∣∣
≤ 1

m

∥∥∥Q̂′−1
zx Q̂∂2fQ̂

−1
zx −Q′−1

zx Q∂2fQ
−1
zx

∥∥∥ ‖ξzu‖2

≤ 1

m
Op

(
m√
R

)
·Op (m)

= op(1),

using Lemma 4(c) and because∥∥∥Q̂′−1
zx Q̂∂2fQ̂

−1
zx −Q′−1

zx Q∂2fQ
−1
zx

∥∥∥
≤

∥∥∥∥(Q̂−1
zx −Q−1

zx

)′
Q̂∂2f

(
Q̂−1
zx +Q−1

zx

)∥∥∥∥+
∥∥∥Q′−1

zx

(
Q̂∂2f −Q∂2f

)
Q−1
zx

∥∥∥
≤

∥∥∥Q̂−1
zx −Q−1

zx

∥∥∥(∥∥∥Q̂∂2f −Q∂2f

∥∥∥+ ‖Q∂2f‖
)(∥∥∥Q̂−1

zx −Q−1
zx

∥∥∥+ 2
∥∥Q−1

zx

∥∥)
+
∥∥Q−1

zx

∥∥2
∥∥∥Q̂∂2f −Q∂2f

∥∥∥
≤ Op

(
m/
√
R
)(

Op

(
m/
√
P
)

+ C
)(

Op

(
m/
√
R
)

+ 2c−1
)

+ c−2Op

(
m/
√
P
)

= Op

(
m√
R

)
.
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using Lemma 4(a,b).

(c) Using assumption 4(iii),∥∥∥Q̂∗∂2f − Q̂∂2f

∥∥∥ ≤ ( 1

P

R+P∑
t=R

dt

)
‖β∗ − β‖ ≤

(
1

P

R+P∑
t=R

dt

)
Op

(
m√
R

)
= op(1),

because

‖β∗ − β‖ ≤
∥∥∥β̂ − β∥∥∥ ≤√ 1

R

∥∥∥Q̂−1
zx

∥∥∥ ‖ξzu‖ ≤ Op

(√
m

R

)
by Lemma 4(b,c), hence∣∣∣∣∣ξ

′
zuQ̂

′−1
zx Q̂

∗
∂2fQ̂

−1
zx ξzu

m
−
ξ′zuQ̂

′−1
zx Q̂∂2fQ̂

−1
zx ξzu

m

∣∣∣∣∣ ≤ 1

m
‖ξzu‖

2
∥∥∥Q̂−1

zx

∥∥∥2 ∥∥∥Q̂∗∂2f − Q̂∂2f

∥∥∥
≤ 1

m
Op (m)C2op(1) = op(1).

Proof of Theorem 1. Consider the Taylor expansion up to second order:

√
P (f̂ − Ef) =

√
P
(
f̄ − Ef

)
+
√
P

1

P

R+P∑
t=R+1

∂ft
∂β′

(
β̂ − β

)
+

√
P

2

(
β̂ − β

)′
Q̂∗∂2f

(
β̂ − β

)
=
√
P
(
f̄ − Ef

)
+

√
1

R
ξ′∂fQ̂

−1
zx ξzu +

1

2

√
Pm2

R2

ξ′zuQ̂
′−1
zx Q̂

∗
∂2fQ̂

−1
zx ξzu

m
.

Note first that, using the Cauchy–Schwartz inequality and Lemmas 4(b,c) and 5(b),∣∣∣ξ′∂fQ̂−1
zx ξzu

∣∣∣ =
∣∣∣ξ′∂fQ̂−1

zx ξzu

∣∣∣ ≤ ∥∥∥Q̂−1
zx

∥∥∥∥∥ξ∂f∥∥ ‖ξzu‖
< c−1

∥∥ξ∂f∥∥ ‖ξzu‖
≤ Op (m) .

Now using Lemma 6(a,b,c), rearranging and summarizing,

√
P (f̂ − Ef) =

√
P
(
f̄ − Ef

)
+
Op (m)√

R
+

1

2

√
Pm2

R2
(ψ1 + op(1)) +

1

6

√
Pm3

R3
Op

(
m3/2

)
.

Provided that ψ1 6= 0, if Pm2/R2 → ∞, the noise dominates the first signal term. If

Pm2/R2 → 0, all noise terms asymptotically vanishes. If Pm2/R2 → µ1 > 0,

√
P (f̂ − Ef) =

√
P
(
f̄ − Ef

)
+
Op (m)√

R
+

√
µ1 + o(1)

2
(ψ1 + op(1))

+

√
µ2 + o(1)

6

√
m

R
Op(1)

= ζf +

√
µ1

2
ψ1 + op(1)

d→ N
(√

µ1

2
ψ1, Vf

)
.

37



Proof of Theorem 2. From the proof of Theorem 1,

t1 =
1√

Vf + op (1)

(
ζf +

√
µ1

2
ψ1 + op (1)−

√
Pm

2R
ψ1

)

=
ζf√
Vf

+

√
µ1

2
√
Vf
ψ1 + op (1)− 1

2

√
µ1 + o(1)√
Vf + op (1)

(ψ1 + op (1))

=
ζf√
Vf

+ op (1)
p→ N (0, 1) .

C Appendix: proofs related to case Q∂f 6= 0

Denote

ã′ = Q′∂fQ
−1
zx .

Lemma 7 Under assumptions 2 and 6,

(a) ‖ã‖ <
√
m̊C2 and ‖ã‖1 <

√
mm̊C2,

(b)
∑m

i=1

∑m
j=1

∣∣∣ãiãj [Vzu]ij

∣∣∣ < C ‖ã‖2
1 .

Proof. (a) First, ‖ã‖ ≤ ‖Q−1
zx ‖ ‖Q∂f‖ <

√
m̊C2. Second, ‖ã‖1 ≤

√
m ‖ã‖ <

√
mm̊C2,

where the first inequality is GV, eqn. 2.3.12. (b)
∑m

i=1

∑m
j=1

∣∣∣ãiãj [Vzu]ij

∣∣∣ ≤ ‖ã‖2
1 maxi,j [Vzu]ij ≤

‖ã‖2
1 ‖Vzu‖ , where the second inequality is GV, eqn. 2.3.8.

Lemma 8 Under the asymptotics of assumption 7 and conditions of assumptions 2, 3

and 6,

(a)
Q′∂fQ

−1
zx ξzu√
m̊

d→ N (0, ψ2) ,

(b) ∣∣∣∣∣Q̂′∂fQ̂−1
zx ξzu√
m̊

−
Q′∂fQ

−1
zx ξzu√
m̊

∣∣∣∣∣ ≤ op(1),
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(c) ∣∣∣Q̂∗′∂fQ̂−1
zx ξzu − Q̂′∂fQ̂−1

zx ξzu

∣∣∣ ≤ op (1) .

Proof. (a) Denote a′ = ã′/
√
m̊R and xRt = a′ztut. Note that xRt is a martingale difference

array (MDS) with variance σ2
Rt = E [x2

Rt] = Q′∂fΣβQ∂f/(m̊R). Consider

s2
R =

R∑
t=1

σ2
Rt =

Q′∂fΣβQ∂f

m̊
→ ψ2.

We will now show that s−1
R

∑R
t=1 (x2

Rt − σ2
Rt)

p→ 0. Indeed,

R∑
t=1

(
x2
Rt − σ2

Rt

)
=

R∑
t=1

(
(ã′ztut)

2

m̊R
−
Q′∂fΣβQ∂f

m̊R

)
+ o(1)

=
1

m̊R
ã′

R∑
t=1

(
ztz
′
tu

2
t − Vzu

)
ã+ o(1).

The leading term has zero expectation, and the mean squared error

MSE =
1

m̊2R2
E

[
R∑
t=1

R∑
s=1

ã′
(
ztz
′
tu

2
t − Vzu

)
ãã′
(
zsz
′
su

2
s − Vzu

)
ã

]

=
1

m̊2R2

R∑
t=1

E
[(
ã′
(
ztz
′
tu

2
t − Vzu

)
ã
)2
]

+
2

m̊2R2

∑
1≤t<s≤R

E
[
ã′
(
ztz
′
tu

2
t − Vzu

)
ãã′
(
zsz
′
su

2
s − Vzu

)
ã
]

= MSE1 + 2MSE2,

say. Now,

MSE1 =
1

m̊2R
E
[(
ã′
(
ztz
′
tu

2
t − Vzu

)
ã
)2
]

=
1

m̊2R

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

ãiãj ãkãlE
[(
zt,izt,ju

2
t − [Vzu]ij

) (
zt,kzt,lu

2
t − [Vzu]kl

)]
≤ 1

m̊2R

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

|ãiãj ãkãl|
(
E
[∣∣zt,izt,jzt,kzt,lu4

t

∣∣]+
∣∣∣[Vzu]ij [Vzu]kl

∣∣∣)
≤ 1

m̊2R

((
max

1≤i≤m
E
[
|zi,t|8

])1/2

E
[
u8
t

]1/2
+

(
max
i,j

∣∣∣[Vzu]ij∣∣∣)2
)

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

|ãiãj ãkãl|

≤ 1

m̊2R

((
max

1≤i≤m
E
[
|zi,t|8

])1/2

E
[
u8
t

]1/2
+ ‖Vzu‖2

)
‖ã‖4

1

≤ O

(
m2

R

)
= o(1),
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using Lemma 7(a) and Assumptions 1(i,ii), 2 and 6(i). The other term in MSE satisfies

|MSE2| ≤
1

m̊2R2

∑
1≤t<s≤R

∣∣E [ã′ (ztz′tu2
t − Vzu

)
ãã′
(
zsz
′
su

2
s − Vzu

)
ã
]∣∣

≤ 8

m̊2R2
E
[∣∣ã′ (ztz′tu2

t − Vzu
)
ã
∣∣2ν]1/ν ∑

1≤t<s≤R

α
1−1/ν
s−t

≤ 8

m̊2R2

m∑
i=1

m∑
j=1

ãiãjE

[∣∣∣zt,izt,ju2
t − [Vzu]ij

∣∣∣2ν]1/ν
(
R
∞∑
k=1

α
1−1/ν
k

)

≤ 8

m̊2R

(
m∑
i=1

m∑
j=1

|ãiãj|

(
E
[
u8ν
t

]1/4ν (
max

1≤i≤m
E
[
|zi,t|8ν

])1/4ν

+
∣∣∣[Vzu]ij∣∣∣

))2 ∞∑
k=1

α
1−1/ν
k

≤ 8

m̊2R

(
C1/2ν ‖ã‖2

1 + C ‖ã‖2
1

)2
∞∑
k=1

α
1−1/ν
k

≤ O

(
m2

R

)
= o(1),

using in addition Lemmas 3 and 7(b), and the Minkowski and triangular inequalities.

To summarize, we have proved that s−1
R

∑R
t=1 (x2

Rt − σ2
Rt)

p→ 0, and hence the condi-

tion (a) of Theorem 12.4.1 of Davidson (2000) for MDS arrays is satisfied. The condition

(b)(i) is satisfied by the stationarity assumption 1(i). Indeed, the array xRt is strictly

stationary with respect to t for fixed R. In conclusion,

Ξzu =
Q′∂fQ

−1
zx ξzu√
m̊

= sR ·
1

sR

R∑
t=1

xRt
d→ lim

m→∞
sR · N (0, 1) = N (0, ψ2) .

(b) Consider the difference∣∣∣∣∣Q̂′∂fQ̂−1
zx ξzu√
m̊

−
Q′∂fQ

−1
zx ξzu√
m̊

∣∣∣∣∣ ≤ 1√
m̊

∣∣∣(Q̂′∂fQ̂−1
zx −Q′∂fQ−1

zx

)
ξzu

∣∣∣
≤ 1√

m̊

∥∥∥Q̂′∂fQ̂−1
zx −Q′∂fQ−1

zx

∥∥∥ ‖ξzu‖
≤ 1√

m̊
Op

(√
m2m̊

R

)
Op

(√
m
)

= op(1),
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because ∥∥∥Q̂′∂fQ̂−1
zx −Q′∂fQ−1

zx

∥∥∥
≤

∥∥∥Q̂′∂fQ̂−1
zx − Q̂′∂fQ−1

zx

∥∥∥+
∥∥∥Q̂′∂fQ−1

zx −Q′∂fQ−1
zx

∥∥∥
≤

∥∥∥Q̂−1
zx −Q−1

zx

∥∥∥(∥∥∥Q̂∂f −Q∂f

∥∥∥+ ‖Q∂f‖
)

+
∥∥∥Q̂∂f −Q∂f

∥∥∥∥∥Q−1
zx

∥∥
≤ Op

(
m/
√
R
)(

Op

(
m/
√
P
)

+O
(√

m̊
))

+Op

(
m̊/
√
P
)
c−1

= Op

(
m
√
m̊√
R

+
m̊√
P

)
= Op

(√
m2m̊

R

)
.

(c) Using assumption 6(ii),

∥∥∥Q̂∗∂f − Q̂∂f

∥∥∥ ≤ ( 1

P

R+P∑
t=R

dt

)
‖β∗ − β‖ ≤ Op

(
m√
R

)
,

because

‖β∗ − β‖ ≤
∥∥∥β̂ − β∥∥∥ ≤√ 1

R

∥∥∥Q̂−1
zx

∥∥∥ ‖ξzu‖ ≤ Op

(√
m

R

)
by Lemma 4(b,c), hence∣∣∣Q̂∗′∂fQ̂−1

zx ξzu − Q̂′∂fQ̂−1
zx ξzu

∣∣∣ ≤ ∥∥∥Q̂∗∂f − Q̂∂f

∥∥∥∥∥∥Q̂−1
zx

∥∥∥ ‖ξzu‖
≤ Op

(
m√
R

)
c−1Op

(√
m
)

≤ op (1) .

Proof of Theorem 3. Consider the Taylor expansion up to first order:∣∣∣Q̂∗′∂fQ̂−1
zx ξzu − Q̂′∂fQ̂−1

zx ξzu

∣∣∣ ≤ op (1) .

√
P (f̂ − Ef) =

√
P
(
f̄ − Ef

)
+
√
P

1

P

R+P∑
t=R

∂f ∗t
∂β′

(
β̂ − β

)
=
√
P
(
f̄ − Ef

)
+
√
P

1

P

R+P∑
t=R

∂ft
∂β′

√
1

R
Q̂−1
zx ξzu +

√
P

R

(
Q̂∗′∂fQ̂

−1
zx ξzu − Q̂′∂fQ̂−1

zx ξzu

)
.

Using Lemma 8(b,c), rearranging and summarizing,

√
P (f̂ − Ef) =

√
P
(
f̄ − Ef

)
+

√
Pm̊

R

(
Q′∂fQ

−1
zx ξzu√
m̊

+ op(1)

)
+

√
P

R
op(1).
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Provided that ψ2 6= 0 and m3/R→ 0, if Pm̊/R→∞, the noise dominates the first signal

term. If Pm̊/R→ 0, all noise terms asymptotically vanish. If Pm̊/R→ µ2 > 0,

√
P (f̂ − Ef) =

√
P
(
f̄ − Ef

)
+
(√

µ2 + o(1)
)(Q′∂fQ−1

zx ξzu√
m̊

+ op(1)

)
+ op(1)

= ζf +
√
µ2

Q′∂fQ
−1
zx ζzu√
m̊

+ op(1)

d→ N (0, Vf + µ2ψ2) .
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