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Abstract

While the predictability of excess stock returns is detected by traditional predictive regressions as statistically
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regression.
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1 Introduction

It is now widely believed that excess stock returns exhibit a certain degree of predictability over
time (Cochrane, 2005). For instance, valuation (dividend-price and earnings-price) ratios (Fama
and French, 1988; Campbell and Shiller, 1988) and yields on short- and long-term Treasury and
corporate bonds (Campbell, 1987) appear to possess statistically small but economically meaning-
ful predictive power at short horizons that can be exploited for timing the market and active asset
allocation (Campbell and Thompson, 2007). Given the great practical importance of predictability
of excess stock returns, there is a growing recent literature in search of new variables with incre-
mental predictive power such as share of equity issues in total new equity and debt issues (Baker
and Wurgler, 2000), consumption-wealth ratio (Lettau and Ludvingson, 2001), relative valuations
of high- and low-beta stocks (Polk, Thompson and Vuolteenaho, 2006) etc. In this paper, we take
an alternative approach to predicting excess returns: instead of trying to identify better predic-
tors, we look for better ways of using these predictors. We accomplish this by modeling individual
multiplicative components of excess stock returns and combining the components’ information to
recover the conditional expectation of the original variable of interest.

To fix ideas, suppose that we are interested in predicting excess stock returns based on past

data and let r; denote the excess return at period ¢. The return can be factored as
Ty = |r¢| sign(ry),

which is called “an intriguing decomposition” in Christoffersen and Diebold (2006). The conditional
mean of r; is then given by
Eyr1(re) = Ep1 (|re| sign(ry)) ,

where E;_; (.) denotes the expectation taken with respect to the available information up to time
t — 1. Our aim is to model the joint distribution of absolute values |r;| and signs sign(r;) in order
to pin down the conditional expectation E;_; (r;). The approach we adopt to achieve this involves
joint usage of a multiplicative error model for absolute values, a dynamic binary choice model for
signs, and a copula for their interaction. We expect this detour to be successful for the following
reasons.

First, the joint modeling of the multiplicative components is able to incorporate important

hidden nonlinearities in excess return dynamics that cannot be captured in the standard predictive



regression setup. In fact, we argue that a conventional predictive regression lacks predictive power
when the data are generated by our decomposition model. Second, the absolute values and signs
exhibit a substantial degree of dependence over time while the predictability of returns seems to
be statistically small as detected by conventional tools. Indeed, volatility (as measured by absolute
values of returns) persistence and predictability has been extensively studied and documented in
the literature (e.g., Andersen et al., 2006). As far as signs are concerned, Christoffersen and Diebold
(2006), Hong and Chung (2003) and Linton and Whang (2007) find convincing evidence of sign
predictability of US stock returns for different data frequencies. Christoffersen and Diebold (2006)
reconcile the standard finding of weak conditional mean predictability with possibly strong sign
and volatility dependence.

Note that the joint predictive distribution of absolute values and signs provides a more gen-
eral inference procedure than modeling directly the conditional expectation of returns as in the
predictive regression literature. Studying the dependence between the sign and absolute value
components over time is interesting in its own right and can be used for various other purposes.
For example, the joint modeling would allow the researcher to explore trading strategies and eval-
uate their profitability (Satchell and Timmermann, 1996; Qi, 1999; Anatolyev and Gerko, 2005).
In our empirical analysis of US stock return data we perform a similar portfolio allocation ex-
ercise, where an investment strategy requires information only about the predicted direction of
returns. Another interesting aspect of the bivariate analysis is an important conclusion that in
spite of a large unconditional correlation between the multiplicative components, they appear to
be conditionally very weakly dependent.

The rest of the paper is organized as follows. Section 2 introduces our return decomposition,
discusses the marginal density specifications and construction of the joint predictive density of sign
and absolute value components, and demonstrates how mean predictions can be generated. Section
3 contains the empirical analysis of predictability of US excess returns using Campbell and Yogo’s
(2006) data set. The first two subsections describe the data and report the main findings from
the commonly used linear predictive regression. Sections 3.3 and 3.4 present the results from the
joint modeling and provides some in-sample and out-of-sample statistical comparisons with the
benchmark predictive regression. Section 3.5 evaluates the performance of different models in the

context of a portfolio allocation exercise, and Section 3.6 reports some simulation evidence about



the inability of the linear regression to detect predictability when the data are generated by the

decomposition model. Section 4 concludes.

2 Methodological Framework

2.1 Decomposition and its motivation
The key identity that lies in the heart of our technique is the return decomposition
re=c+ |ry —c|sign(ry —¢) =c+ |ry — | 2L [ry > ] — 1), (1)

where I[.] is the indicator function and c is an arbitrary constant. Our decomposition model will
be based on the joint dynamic modeling of the two ingredients entering (1), the absolute values
|re — ¢| and indicators L[r; > c| (or, equivalently, signs sign(r; — c¢) related linearly to indicators).

In case the interest lies in the mean prediction of returns, one can infer from (1) that
Ei_ 4 (Tt) =c—FE;q (’Tt — C|) +2F; 4 (‘Tt — C‘H [Tt > CD ,

and the decomposition model can be used to generate optimal predictions of returns because it
allows to deduce, among other things, the conditional mean of |r; — ¢| and conditional expected
cross-product of |r;—c| and I [r; > ¢] (for details, see subsection 2.4). In a different context, Rydberg
and Shephard (2003) use a decomposition similar to (1) to model the dynamics of the trade-by-
trade price movements. The potential usefulness of decomposition (1) is also stressed in Granger
(1998) and Anatolyev and Gerko (2005).

Recall that ¢ is an arbitrary constant. Although our empirical analysis only considers the
leading case ¢ = 0, we develop the theory for arbitrary ¢ for greater generality. The choice of ¢ is
dictated primarily by the application at hand. In the context of financial returns, Christoffersen and
Diebold (2006) analyze the case when ¢ = 0 while Hong and Chung (2003) and Linton and Whang
(2007) use threshold values for ¢ that are multiples of the standard deviation of r; or quantiles of
the marginal distribution of r,. The non-zero thresholds may reflect the presence of transaction
costs and capture possible different dynamics of small, large positive and large negative returns
(Chung and Hong, 2006). In macroeconomic applications, in particular modeling GDP growth
rates, ¢ may be set to 0 if one is interested in recession/expansion analysis, or to 3%, for instance,
if one is interested in modeling and forecasting a potential output gap. Likewise, it seems natural

to set ¢ to 2% if one considers modeling and forecasting inflation.



To provide further intuition and demonstrate the advantages of the decomposition model,
consider an example in which we try to predict excess returns r; with the lagged realized volatility
RV;_1. A linear predictive regression of r; on RV;_1, estimated on data from our empirical section,
gives an in-sample R? = 0.39%. Now suppose that we employ a simple version of the decomposition
model where the same predictor is used linearly for absolute values, i.e. Ey_1 (|r¢]) = ajp+ 8 RVi-1,
and for indicators in a linear probability model Pr,_; (r; > 0) = a4+ RV;—1. Assume for simplicity
that the shocks in the two components are stochastically independent. Then, it is easy to see from
identity (1) that Ey_1 (r;) = o + 3, RVi_1 + 7, RV}, for certain constants a., (3, and 7,. Running
a linear predictive regression on both RV;_; and RV}? | yields a much better fit with R? = 0.72%.
Even a linear predictive regression on RV,? | alone gives R? = 0.69%, which indicates that RV;2 | is a
much better predictor than RV;_;. This clearly suggests that the conventional predictive regression
may miss important nonlinearities that are easily captured by the decomposition model.

Alternatively, suppose that the true model for indicators is trivial, i.e. Pr;_; (r; > 0) = oy # %,
and the components are conditionally independent. Then, using again identity (1), it is straight-
forward to see that any parameterization of expected absolute values E;_1 (|r¢|) leads to the same
form of parameterization of the predictive regression E;_1 (). Augmenting the parameterization
for indicators and accounting for the dependence between the multiplicative components then au-
tomatically delivers an improvement in the prediction of r, by capturing hidden nonlinearities in
its dynamics.

While the model setup used in the above example is fairly simplified (indeed, the regressor
RV? is quite easy to find), the arguments that favor the decomposition model naturally extend
to more complex settings. In particular, when the component models are quite involved and the
components themselves are conditionally dependent, we find some simulation evidence that the
standard linear regression framework has difficulties detecting any perceivable predictability as
judged by the conventional criteria (see subsection 3.6). The driving force behind the predictive
ability of the decomposition model is the predictability in the two components, documented in
previous studies. Note also that, unlike the example above, the models for absolute values and

indicators may in fact use different information variables.



2.2 Marginal distributions

Consider first the model specification for absolute returns. Since |r; — ¢| is a positively valued
variable, the dynamics of absolute returns is specified using the multiplicative error modeling

(MEM) framework of Engle (2002)!
e — ¢l = Yy,

where ¢, = E;_; (|r+ — ¢|) and 7, is a positive multiplicative error with E;_; (n,) = 1 and conditional
distribution D. The conditional expectation v, and conditional distribution D can be parameterized
following the suggestions in the MEM and ACD literatures (Engle and Russell, 1998; Engle, 2002).
A convenient dynamic specification for 1, is the logarithmic autoregressive conditional duration
(LACD) model of Bauwens and Giot (2000) whose main advantage, especially when (weakly)
exogenous predictors are present, is that no parameter restrictions are needed to enforce positivity
of Ey_1(|rt — ¢|). Possible candidates for D include exponential, Weibull, Burr and Generalized
Gamma distributions, and potentially the parameters of D may be parameterized as functions of
the past. In the empirical section, we use the constant parameter Weibull distribution as it turns
out that its flexibility is sufficient to provide adequate description of the conditional density of
absolute excess returns. Let us denote the vector of shape parameters of D by .

The conditional expectation v, is parameterized as
Iy = wy + B, v,y + 3,10 [ree — ol + p I rey > o + 7,6, (2)

If only the first three terms on the right-hand side of (2) are included, the structure of the model
is analogous to the LACD model of Bauwens and Giot (2000) and log GARCH model of Geweke
(1986) where the persistence of the process is measured by the parameter |v, + 3,|. We also
allow for regime-specific mean volatility depending on whether r;_; > c or r;_; < c.2 Finally, the
term x;_,0, accounts for the possibility that macroeconomic predictors such as valuation ratios
and interest rates variables may have an effect on volatility dynamics proxied by |ry — ¢|. In what

follows, we refer to model (2) as the wvolatility model.

!The leading application of the MEM approach in the econometrics literature is that to durations between suc-
cessive transactions in a high frequency financial market (Engle and Russel, 1998). There are other occasional
applications of the MEM approach. Engle (2002) illustrates the MEM methodology using exchange rate realized
volatilities. Chou (2005) models a high/low range of asset prices in the MEM framework.

*We also interacted In,_; and In |r;—1 —c| terms with T[r;—; > ] but the estimated coefficients on these variables
were statistically insignificant.



Now we turn our attention to the dynamic specification of the indicator I[r¢ > ¢]. The condi-
tional distribution of I [r; > ¢|, given past information, is necessarily Bernoulli B (p;) with probabil-
ity mass function fy,,~q (v) = py (1 — p)' Y, v € {0,1}, where p; denotes the conditional “success
probability” Pry_i(ry > ¢) = Ey_1 (I[r > ¢]).

If the data are generated by 7, = ju, + o4&, where p, = Ey_1(ry), 07 = vary_1(r) and &; is a ho-
moskedastic martingale difference with unit variance and distribution function F.(.), Christoffersen

and Diebold (2006) show that

Pl"tfl(?“t > C) =1-—F, (ﬂ> .

27
This expression suggests that time-varying volatility can generate sign predictability as long as
c¢—p; # 0. Furthermore, Christoffersen et al. (2006) derive a Gram—Charlier expansion of F(.) and
show that Pr;_q(r; > ¢) depend on the third and fourth conditional cumulants of the standardized
errors ;. As aresult, sign predictability would arise from time variability in second and higher-order

moments. We use these insights and parameterize p; using the dynamic logit model

Dy = exp (0)
"7 T+ exp (6y)
with
0 = ws + ¢l [re—1 > ] + y;_10s, (3)

where the set of predictors y;—; includes macroeconomic variables (valuation ratios and interest
rates) as well as realized measures such as realized variance (RV'), bipower variation (BPV),
realized third (RS) and fourth (RK) moments of returns as suggested above.> We include both
RV and BPV as proxies for the unobserved volatility process since the former is an estimator of
integrated variance plus a jump component while the latter is unaffected by the presence of jumps
(Barndorff-Nielsen and Shephard, 2004). In what follows, we refer to model (2) as the direction
model.*

Of course, in other applications of the decomposition method, different specifications for ., D

and p; are possibly necessary, depending on the empirical context.

3We experimented with some flexible nonlinear specifications of ; in order to capture the possible interaction
between volatility and higher-order moments (Christoffersen et al., 2006) but the nonlinear terms did not deliver
incremental predictive power and are omitted from the final specification.

4de Jong and Woutersen (2005) provide conditions for the consistency and asymptotic normality of the parameters
estimates in dynamic binary choice models.



2.3 Joint distribution using copulas

This section discusses the construction of the bivariate conditional distribution of Ry = (|r; —

c|,I[ry > c])’ whose domain is Ry x {0, 1}. Up to now we have dealt with the marginals® of the two
(1)~ (2)
Ire > ] B(pt) )’
(frs) £ (ul) )
Jireq (V) Py (1=p)' ")

@ff;j] ) =Go0)

If the two marginals were normal, a reasonable thing to do would be to postulate bivariate

components
with marginal PDF/PMFs

and marginal CDF/CMFs

normality. If the two were exponential, a reasonable parameterization would be joint exponentiality.
However, even though the literature documents a number of bivariate distributions with marginals
from different families (e.g., Marshall and Olkin, 1985), it does not suggest a bivariate distribution
whose marginals are Bernoulli and, say, exponential. Therefore, we use the copula theory to
generate the joint distribution from the specified marginals. For introduction to copulas, see Nelson
(1999) and Trivedi and Zimmer (2005), among others. Let Frg, (u,v) and fg, (u,v) denote the joint

CDF/CMEF and joint density/mass of Ry, respectively. Then,

FFg, (u7 U) =C (ﬂT‘t*C‘ (u) 7F]I[rt>c} (U)) )

where C(wq,ws) is a copula, a bivariate CDF on [0, 1] x [0, 1].

The unusual feature of the copula in our case is the continuity of one marginal and the discrete-
ness of the other. The typical case in bivariate modeling are two continuous marginals (for example,
Patton, 2006) and much more rarely two discrete marginals (Cameron et al., 2004). Because the
first component is continuously distributed while the second component is a discrete binary random
variable, the joint density/mass function can be obtained as a partial derivative with respect to the

continuous entry and a finite difference with respect to the binary entry:

OFR, (u,v)  OFR, (u,v—1)

th (U7 ’U) - 8’11}1 (9’11}1

SFor brevity we use the terms “marginal distribution”, “joint distribution” and the like, although a more correct

terminology would be “conditional marginal distribution”, “conditional joint distribution”, etc., where the qualifier
“conditional” refers to conditioning on the past.



Theorem. The joint density/mass function fg, (u,v) can be represented as

fre (u,0) = FP(uly)o, (FP(ul))” (1 — o (FP(ultsy)))' ", (4)
where
() 1= 2Lm)

Proof. Differentiation of Fg, (u,v) yields

oC (FD(uW)t)a F]I[rt>c] (U)) . oC (FD(u|wt)7F]I[n>c] (U - 1))
owq ow

th (u> U) = f|1”t—c| (u)

Note that 0C (wy, 1) /Ow; = 1 and OC (w1,0) /Ow; = 0 due to the copula properties C (wq,1) = w;
and C (wy,0) = 0 for all wy € [0,1]. Then the expression in the square brackets when evaluated at

v = 0 is equal to
oC (FD(th), 1- pt)
8w1

while when evaluated at v = 1 it is equal to

1— oC (FD(UWt)u 1 —Pt)
6w1

Now the conclusion easily follows. B

The representation (4) for the joint density/mass function has the form of a product of the
marginal density of |r; — ¢| and the “deformed” Bernoulli mass of I[r; > ¢]. The “deformed”
Bernoulli success probability parameter o, (FD(th)) does not, in general, equal to the success
probability parameter of the marginal distribution p; (equality holds in the case of conditional
independence between |r; — ¢| and I[r; > ¢]); it depends not only on p;, but also on FP(ult,),
inducing dependence between the marginals of |r; — ¢| and I[r; > ¢|. Interestingly, the form of
representation (4) does not depend on the marginal distribution of |r; — ¢|, although the joint
density/mass function itself does.

Below we list three choices of copulas that will be used in the empirical section. The literature
contains other examples (Trivedi and Zimmer, 2005). Let us denote the vector of copula parameters

by «; usually « is one-dimensional and indexes dependence between the two marginals.



Frank copula. The Frank copula is

1 —awi _ ] —awz _ 1
C’(wl,wz):—alog <1+(6 )(8 )>,

where a € [—00,+00] and a@ < 0 (o > 0) implies negative (positive) dependence. The joint

density /mass function is given in (4) with

1

—e—a(l—p¢) :
1-1 i—:ampt ea(1=2)

0t (2) =

Note that a — 0 implies independence between the marginals and o, — p;.

Clayton copula. The Clayton copula is

Q=

Clwy,wy) = (wy® +wy®—1)" =,

where o > 0. The joint density/mass is as (4) with
-1

Z—Oé

o(x) =1~ (1+w>i

Note that o — 40 implies independence between the marginals and g, — p;. Also note that this
copula permits only positive dependence between the marginals, which should not be restrictive

for our application.

Farlie-Gumbel-Morgenstern copula. The Farlie-Gumbel-Morgenstern (FGM) copula is
C’(wl,wg) = W1W2 (1 + « (1 - w1) (1 — wg)) y

where o € [—1,+1] and a < 0 (o > 0) implies negative (positive) dependence. Note that this
copula is useful only when the dependence between the marginals is modest, which again turns out

not to be restrictive for our application. The joint density /mass is as (4) with
o1 (2) =1—(L—p) (1 +ap (1 -22)).
Finally, o = 0 implies independence between the marginals and o, = p;.

Once all the three ingredients of the joint distribution of Ry, i.e. the volatility model, the

direction model, and the copula, are specified, the vector (wy, B,, Yy, Pr, Ony 6’5 Ws, G, 0s, 6"y ) can



be estimated by maximum likelihood. From (4), the sample log-likelihood function to be maximized

is given by
T
Z {H[Tt > c|ln g, (FD(‘rt - CH%)) + (1 —I[ry >c])In (1 — O (FDOTt - CH%)))}
=1
t T
+ 2 I fP(lre = clly).
t=1

2.4 Conditional mean prediction in decomposition model
In many cases, the interest lies in the mean prediction of returns that can be expressed as
Eiq1(ry) = c+E_1(jre—c|(20[ry > ] — 1))
= c—E_1(lre—c))+2E1 (Jry — c|l[ry > ().
Hence, the prediction of returns at time ¢ is given by
Ty = C_'Q/Z\}t"i_QEta (5)

where 1), is the conditional expectation of |r; — ¢|, £, is the conditional expected cross-product of
Ire — ¢| and I[ry > ¢], and ¢, and &, are feasible analogs of 1, and &;.

If |ry — ¢| and I(r; > ¢) happen to be conditionally independent, then

& =FEi 1 (re —c]) Beo1 (Lry > ¢]) = ¥ype,

o)
Ei 1 (1) =c+ (2pe — 1) 9y,

and the returns can be predicted by
Fi=c+ (2P — 1) ¢y, (6)

where p; denotes the predicted value of p;. Note that one may ignore the dependence and use
forecasts constructed as (6) even under conditional dependence between the components, but such
forecasts will not be optimal. However, as it happens in our empirical illustration, if this conditional
dependence is weak, the feasible forecasts (6) may well dominate the feasible optimal forecasts (5).

In the rest of this subsection, we discuss a technical subtlety of computing the conditional

expected cross-product &, = FEi_; (Jr — c|L[r¢ > ¢]) in the general case of conditional dependence.
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The conditional distributions of I[r; > ¢] given |ry — ¢| is

fl[n>c] [|re—c] (v|u) = % = 0 (FD(“W%))U (1 — O (FD(UWt)))liv.

Then, the conditional expectation function of I[r; > ¢| given |ry — ¢ is

Ep-1 (Lre > ¢ | Ire — cl) = oy (FP(Ire — el [4y)) ,

and the expectation of the cross-product is given by
D D
&= Ba(r—cllle> ) = [ wrPulo (FP(uli) du. ()
0
In general, the integral (7) cannot be computed analytically (even in the simple case when f7 (ult),)
is exponential), but can be easily evaluated numerically, keeping in mind that the domain of

integration is infinite. Note that the change of variables z = FP (uly,) yields

1
= D VA z)laz
&—AQ(MAM, (8)

where QP(2) is a quantile function of the distribution D. Hence, the returns can be predicted by
(5), where Et is obtained by numerically evaluating integral (8) with a fitted quantile function and
fitted function g,(z). In the empirical section, we apply the Gauss—Chebyshev quadrature formulas

(Judd, 1998, section 7.2) to evaluate (8).

3 Empirical Analysis

3.1 Data

In our empirical study, we use Campbell and Yogo’s (2006) data set that covers the period January
1952 — December 2002 at monthly frequency.® While monthly observations for the period 1927-
2002 are also available, we consider the subsample 1952-2002 for which the data, especially the
interest rate variables after the Federal Reserve-Treasury Accord in 1951, are more reliable. This
also roughly corresponds to the period that is most extensively studied in the empirical studies on
predictability of stock returns.

The excess stock returns and dividend-price ratio (dp) are constructed from the NYSE/AMEX
value-weighted index and one-month T-bill rate from the Center for Research in Security Prices

(CRSP) database. The earnings-price ratio (ep) is computed from S&P500 data and Moody’s Aaa

5We would like to thank Moto Yogo for making the data available on his website.

11



corporate bond yield data are used to obtain the yield spread (irs). We also use the three-month
T-bill rate (ir3) from CRSP as a predictor variable. The dividend-price and earnings-price ratios
are in logs.

The realized measures of second and higher-order moments of stock returns are constructed
from daily data on the NYSE/AMEX value-weighted index from CRSP. Let m be the number of
daily observations per month and 7;; denote the demeaned daily log stock return for day j in
period t. Then, the realized variance RV; (Andersen and Bollerslev, 1998; Andersen et al., 2006),
bipower variation BPV; (Barndorff-Nielsen and Shephard, 2004), realized third moment RS; and

realized fourth moment RK; for period ¢ are computed as

m

§ ~2
R‘/Yt — T‘t7s,

s=1

rom
BPV; = o ———= > [Fis| [Fts11l
2m—1

m
RS, => 7,
s=1
m
RE, =) 7,

s=1

3.2 Predictive regressions for excess returns

In this section, we present some empirical evidence on conditional mean predictability of excess
stock returns from a linear predictive regression model estimated by OLS. In addition to the
macroeconomic predictors that are commonly used in the literature, we follow Guo (2006) and
include a proxy for stock market volatility (RV') as a predictor of future returns. We also attempted
to match exactly the information variables that we use later in the decomposition model but the
inclusion of the other realized measures generated large outliers in the predicted returns that
deteriorated significantly the predictive ability of the linear model.

It is now well known that if the predictor variables are highly persistent, which is the case with
the four macroeconomic predictors dp, ep, ir3 and irs, the coefficients in the predictive regression
are biased (Stambaugh, 1999) and their limiting distribution is non-standard (Elliott and Stock,
1994) when the innovations of the predictor variable are correlated with returns. For example,

Campbell and Yogo (2006) report that these correlations are —0.967 and —0.982 for dividend-price
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and earnings-price ratios while the innovations of the three-month T-bill rate and the long-short
interest rate spread are only weakly correlated with returns (correlation coefficients of —0.07).
A number of recent papers propose inference procedures that take these data characteristics into
account when evaluating the predictive power of the different regressors (Campbell and Yogo, 2006;

Torous and Valkanov, 2000; Torous, Valkanov and Yan, 2004; among others).
k% Table 1 *¥¥*

Table 1 reports some regression statistics when all the predictors are included in the regression.
As argued above, the distribution theory for the t-statistics of the dividend-price and earnings-price
ratios is non-standard whereas the t-statistics for the interest rates variables and realized volatility
can be roughly compared to the standard normal critical values due to their near-zero correlation
with the returns innovations and low persistence, respectively. The results in the last two columns
of Table 1 suggest some in-sample predictability with a value of the LR test statistic for joint
significance of 27.8 and an R? of 4.45%. Even though the value of the R? coefficient is statistically
small, Campbell and Thompson (2007) argue that it can still be economically meaningful when
compared to the squared Sharpe ratio. Also, while some of the predictors (realized volatility, 3-
month rate and earning-price ratio) do not appear statistically significant, they help to improve
the out-of-sample predictability of the model as will be seen in the out-of-sample forecasting and

the portfolio management exercises presented below.
3.3 Decomposition model for excess returns

Before we present the results from the decomposition model, we provide some details regarding
the selected specification and estimation procedure. We postulate D to be Weibull with shape

parameter ¢ > 0 (the exponential distribution corresponds to the special case ¢ = 1),
FP(ultp;) = 1—exp (— (wt_lf‘ (1+ g_l) u)C) ,
I ) = sl (1457w exp (= (07T (147 w))
where I' (+) is the gamma function. Then, the sample log-likelihood function is

T
D ALlre > cJlngy (1 —exp (—¢,)) + (1= I[re > ) In (1 — g, (1 — exp (=¢;)))}
t=1

T
+Y A{In(¢) = Infre — ¢| = ¢, +1In ¢y},
t=1

13



where (, = (1/1;1]71 — T (14 g_l))g.

The results from the return decomposition model are reported for the case ¢ = 0. Note that even
though the results pertaining to the direction and volatility specifications are discussed separately,
all estimates are obtained from maximizing the sample log-likelihood of the full decomposition

model with Clayton copula.”
ko Table 2 kokok

Table 2 presents the estimation results from the direction model. Several observations regarding
the estimated dynamic logit specification are in order. First, the persistence in the indicator variable
over time is relatively weak once we control for other factors such as macroeconomic predictors and
realized high-order moments of returns. The estimated signs of the macroeconomic predictors are
the same as in the linear predictive regression but the combined effect of the two realized volatility
measures, RV and BPV, on the direction of the market is positive. The realized measures of the
higher moments of returns do not appear to have a statistically significant effect on the direction

of excess returns although they still turn out to be important in the out-of-sample exercise below.
*k% Table 3 *¥*

Table 3 reports the results from the volatility model. The adequacy of the Weibull specification
is tested using the excess dispersion and Pearson’s goodness-of-fit tests. The excess dispersion test
compares the residual variance to the estimated variance of a random variable distributed according

to the normalized Weibull distribution:

DTV "0

(@, —1)2 32

where 3% =T (1 + 2?‘1) /T (1 +E_1)2 — 1, hats denote estimated values, and bars denote sample
averages. Under the null of correct Weibull specification, ED is distributed as a standard normal
random variable. The Pearson goodness-of-fit test (e.g., Kendall and Stuart, 1973, chapter 30)
compares the multinomial distribution induced by standardized residuals and that implied by the
normalized Weibull density. We set the number of equiprobable classes to 20, so the null dis-

tribution of the Pearson statistic is bounded between y3g and X%, because of the presence of an

"The results in Table 4 suggest that the Clayton copula leads to most precise estimates of the dependence between
the components.
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additional shape parameter (Kendall and Stuart, 1973, sect. 30.11-30.19), under the null of correct
distributional specification.

The high persistence in absolute returns that is evident from our results is well documented in
the literature. The nonlinear term p,I[r,—; > ¢| suggests that positive returns correspond to low-
volatility periods and negative returns tend to occur in high volatility periods where the difference
in the average volatility of the two regimes is statistically significant. The higher interest rates and
earnings-price ratio appear to increase volatility while higher dividend-price ratio and yield spread
tend to have the opposite effect although none of these effects is statistically significant.

Table 3 also shows the statistically significant departure of ¢ from 1 implying exponentiality
of the density. On the other hand, further generalization of the density is not required because

neither the excess dispersion nor Pearson tests reject the null of Weibull density.
% Figures 1 and 2 ***

In order to visualize the outcome of our estimation procedure, Figures 1 and 2 plot the predicted
probabilities from the direction model and the actual and predicted absolute returns from the
volatility model. The predicted probabilities inherit the high persistence of volatility dynamics
and are clearly inversely related to volatility movements: negative predicted returns tend to be
associated with periods of high volatility and positive returns are predicted when volatility is low.

The predicted absolute returns appear to follow closely the dynamics of stock return volatility.
k%% Table 4 *¥*

Now we consider the dependence between the two components — absolute values |r; — ¢| and
indicators I[r; > ¢]. The dependence between these components is expected to be positive and
big, and indeed, from the raw data, the estimated coefficient of unconditional correlation between
them equals 0.768. Interestingly, though, after conditioning on the past, the two variables no
longer exhibit any dependence. The results for the Frank, Clayton and FGM copulas are reported
in Table 4 and show that the dependence parameter « is not significantly different from zero in
any of the copula specifications. Insignificance aside, the point estimates are close to zero and
imply near independence. The insignificance of the dependence parameter is compatible with the
estimated conditional correlation between standardized residuals in the two submodels, ¥, !|r; — |

and p; ' [r; > ¢|, which is another indicator of dependence. These conditional correlations are
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close to zero and are statistically insignificant. The result on conditional weak dependence, if
any, between the components is quite surprising: once the absolute values and indicators are
appropriately modeled conditionally on the past, the uncertainties left in both are statistically
unrelated to each other. Furthermore, the fact of (near) independence is somewhat relieving because
it facilitates the computation of the conditional mean of future returns: as discussed in section 2.4,
under conditional independence (or even conditional uncorrelatedness) between the components
there is no need to compute the most effort-consuming ingredient, the numerical integral (7).
For illustration, however, we report later the results obtained when the conditional dependence is
shut down, or equivalently, « is set to zero (ignoring dependence), and when no independence is
presumed using the estimated value of o from the full model (exploiting dependence).

Table 4 also reports the values of mean log-likelihood and pseudo-R? goodness-of-fit measure.
The log-likelihood values for the different copula specifications are of similar magnitude with a slight
edge for the Clayton copula which holds also in terms of t-ratios of the dependence parameter. The
LR test for joint significance of the predictor variables strongly rejects the null using the asymptotic
x? approximation with 16 degrees of freedom. The pseudo-R? goodness-of-fit measure is computed
as the squared correlation coefficient between the actual and fitted excess returns from different
copula specifications. A rough comparison with the R? from the predictive regression in Table 1
indicates an economically large improvement in the in-sample performance of the decomposition

model over the linear predictive regression.
% Pigure 3 %

Furthermore, an inspection of the fitted returns reveals some interesting differences across
models. Figure 3 plots the in-sample predicted returns from our model and the predictive regression.
We see that the decomposition model is able to predict large volatility movements which is not the
case for the predictive regression model. Moreover, there are substantial differences in the predicted

returns in the beginning of the sample and especially in the post-1990.
3.4 Out-of-sample forecasting results

While there is some consensus in the finance literature on a certain degree of in-sample predictability
of excess returns (Cochrane, 2005), the evidence on out-of-sample predictability is mixed. Goyal

and Welch (2003, 2007) find that the commonly used predictive regressions would not help an
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investor to profitably time the market. Campbell and Thompson (2007), however, show that the
out-of-sample predictive performance of the models is improved after imposing restrictions on the
sign of the estimated coeflicients and the equity premium forecast.

In our out-of-sample experiments, we compare the one-step ahead forecasting performance of
the decomposition model proposed in this paper, predictive regression and unconditional mean
(historical average) model. The forecasts are obtained from a rolling sample scheme with a fixed
sample size R = 360. The results are reported using an out-of-sample coefficient of predictive
performance OS (Campbell and Thompson, 2007) computed as

St 95 =)

0§ — 1 _ 2i=T—R+1
Z?:T—R—l—l 9 (r; —75)

where 0 (u) = u? if it is based on squared errors and 9 (u) = |u] if it is based on absolute errors, 7

is the one-step forecast of r; from the conditional (decomposition or predictive regression) model
and 7; denotes the unconditional mean of ; computed from the last R observations in the rolling
scheme. If the value of OS is equal to zero, the conditional model and the unconditional mean
predict equally well the next period excess return; if OS < 0, the unconditional mean performs

better; and if OS > 0, the conditional model dominates.

k¥ Figure 4 *4*

Figure 4 plots the one-step ahead forecasts of returns from the predictive regression and the
decomposition model with Clayton copula. As in the in-sample analysis, the predicted return series
reveal substantial differences between the two models over time. The largest disagreement between
the forecasts from the two models occurs in the 1990’s when the linear regression completely misses
the bull market by predicting predominantly negative returns while our model is able to capture

the upward trend in the market and the increased volatility in the early 2000’s.
kkk Table 5 ko

Table 5 presents the results from the out-of-sample forecast evaluation. As in Goyal and Welch
(2003, 2007) and Campbell and Thompson (2007), we find that the unconditional model based
on the historical average performs better out-of-sample than the conditional linear model and the
difference in the relative forecasting performance is close to 5%.

The results from the decomposition model estimated with the three copulas are reported sep-

arately for the cases of ignoring dependence and exploiting dependence. In all specifications, our

17



model dominates the unconditional mean forecast with forecast gains of 1.33 — 2.42% for absolute
errors and 1.80 — 2.64% for squared errors. Although these forecast gains do not seem statisti-
cally large, Campbell and Thompson (2007) argue that a 1% increase in the out-of-sample statistic
OS implies economically large increases in portfolio returns. This forecasting superiority over the
unconditional mean forecast is even further reinforced by the fact that our model is overly param-
eterized compared to the benchmark model.

The results from the decomposition model when ignoring and exploiting dependence reveal
little difference although the specification with o = 0 appears to dominate in the case with absolute
forecast errors and is outperformed by the full model in the case of squared losses. Interestingly,
the Clayton copula does not show best out-of-sample performance among the three copulas, even
though it fares best in-sample. Nonetheless, we will only report the findings using the Clayton
copula in the decomposition model in all empirical experiments in the remainder of the paper; the
other two choices of copulas deliver similar results.

It is well documented that the performance of the predictive regression deteriorates in the
post-1990 period (Campbell and Yogo, 2006; Goyal and Welch, 2003; among others). To see if
the decomposition model suffers from a similar forecast breakdown, we report separately the latest
sample period January 1995 — December 2002. The OS statistics for this period are presented
in the bottom part of Table 5. The forecasts from the linear model are highly inaccurate as the
decreasing valuation ratios predict negative returns while the actual stock index continues to soar.
In contrast, the forecast performance of the decomposition model tends to be rather stable over
time even though it uses the same set of macroeconomic predictors.

To gain some intuition about the source of the forecasting improvements, we considered two
nested versions of our model: one that contains only the own dynamics of the indicator variable
and the absolute returns and a model that includes only macroeconomic predictors and realized
measures without any autoregressive structure (the results are not reported to preserve space). In-
terestingly, the forecasting gains of the full model appear to have been generated by the information
contained in the predictors and not in the dynamic behavior of the sign and volatility components.
While the pure dynamic model is outperformed by the structural specification, it still dominates the
linear predictive regression and the deterioration in its forecasting performance appears to be due

to poor sign predictability that arises from the weak persistence in the indicator variable mentioned

18



above.

Test of predictive ability. To determine the statistical significance of the differences in the
out-of-sample performance of the decomposition model, predictive regression and historical aver-
age reported in Table 5, we adopt Giacomini and White’s (2006) conditional predictive ability
framework. Let L} ; and Lg 41 denote the loss functions (quadratic or absolute losses) of models
i and j (for example, the predictive regression and the decomposition model) correspondingly, at
time t + 1, and let AL;yq = L} — L{. Then, the null of equal predictive ability of two models can
be expressed as Hy : Fy (ALiyq) = 0 almost surely for all t = R, ..., T — 1.
For all ¢ x 1 vectors h; that belong to the information set at time ¢, the null can be rewritten
as Ho : E (hy A Ly11) = 0 and can be tested using the test statistic
T—1 ! T—1
Wi, = <n—1/2 > s Lm) Q! (n_1/2 > s Lm) ,
t=R t=R
where ﬁn is a consistent estimator of lim,, ., var (n_1/2 ZtT:_}% hy A Lt+1) andn=T—-R-—1.1If R
is assumed fixed as n — oo and some weak regularity conditions are satisfied (Giacomini and White,
2006), W; ; —d xﬁ under the null of equal predictive ability. In our empirical application, ﬁn is a
HAC estimator of Q,, and hy = (1, AL;)'. The relative performance of the models over time can be
visualized by plotting the predicted loss differences {hﬁ}tT:_Rl , where 7 are the OLS estimates from
a regression of AL;y1 on hy (Giacomini and White, 2006). Finally, model i is preferred to model
jif Ij = n 'S4 1{h}7 > 0} < 0.5. That is, a value of I; ; that is close to one indicates that

model j dominates model 4, while a value close to zero gives preference for model i over model j.
%% Table 6 ¥**

Table 6 presents the values of the W ; test of equal conditional predictive ability of two models
along with the corresponding p-values and the indicators I; ;. The tests computed from the squared
errors do not reveal any statistically significant differences across models although the indicator
variable suggests that the decomposition model dominates both the historical average and predic-
tive regression and the historical average in turn outperforms the linear model. The test based
on the absolute errors, however, provides a convincing statistical evidence of superior predictive
performance of the decomposition model and historical average over the predictive regression. The

differences between the decomposition model and historical average are not statistically significant
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although the indicator again suggests some out-of-sample superiority of the decomposition model.
Consistent with the results in Table 5, exploiting dependence between the two components is a bit

better in terms of squared forecast errors but a bit worse in terms of absolute losses.
R Figure 5 *4F

Figure 5 plots the relative performance of the predictive regression and decomposition model
over time in terms of absolute forecast errors. Since all of the predicted absolute differences are
positive, the decomposition model forecasts dominate uniformly the forecasts from the predictive
regression for the entire out-of-sample period. The largest gains in terms of forecast accuracy

appear to occur in the second part of the 1990’s.

Mincer—Zarnowitz regressions. Another convenient approach to evaluating forecasts from
competing models is 