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1 Introduction

The symmetric quadratic (Quad) loss function

Q(u) = u2 (1)

is prevailing in econometrics because of its convenience and tractability. These are conse-
quences of the linearity of the first derivative of Q(u). In particular, this leads to a simple
form of optimal predictor of variable yt given its past It−1 = {yt−1, yt−2, · · · , y1}, which is

qt = E [yt|It−1] . (2)

The use of Quad loss, however, often contradicts reality, where economic agents put
different weights on overprediction and underprediction. For example, macroeconomic
forecasters often prefer to underpredict GNP growth because inventory holding costs
exceed stockout costs (Elliott, Komunjer, and Timmermann, 2004); the IMF, OECD,
and EC tend to systematically overpredict government budget deficits (Artis and Mar-
cellino, 2001; Elliott, Komunjer, and Timmermann, 2005); and the Fed has systematically
underpredicted or overpredicted inflation during different historical periods (Capistrán-
Carmona, 2005). In financial markets, volatility underestimation leads to lower expected
utility than its overestimation in making asset allocation decisions (West, Edison, and
Cho, 1993); that investors are more sensitive to losses than to gains may help explain the
equity premium puzzle (Benartzi and Thaler, 1995).
A tractable example of an asymmetric loss function is linear exponential (Linex), which

has the form
L(u) = exp (αu)− αu− 1, (3)

where the known parameter α indexes the degree of asymmetry. When α > 0, the loss
is nearly exponential for positive errors and nearly linear for negative errors; thus the
loss is smaller for overprediction than for underprediction, and the reverse is true when
α < 0. The convenience of the Linex loss function is primarily due to its everywhere
differentiability and continuity of its derivative, properties that are not shared by the
Linlin

¡
(1− θ) I{u<0} + θI{u>0}

¢
|u| and Quadquad

¡
(1− ϕ) I{u<0} + ϕI{u>0}

¢
u2 loss func-

tions, although, of course, it is not as convenient as the Quad loss function because of
nonlinearity of the first derivative.
The Linex loss function was initially introduced by Varian (1974) in the context of

real estate assessment; estimation under the Linex loss from the Bayesian perspective was
studied by Zellner (1986). Subsequently, the Linex loss became a workhorse in the liter-
ature on asymmetric loss. Christoffersen and Diebold (1997) used Linex as an example
of asymmetric loss for comparison of optimal, conventional, and intermediate predictors.
Batchelor and Peel (1998) developed a valid test for unbiasedness of forecasts under the
Linex loss. Hwang, Knight, and Satchell (2001) derived optimal forecasts for some con-
ventional volatility models under Linex, and Knight, Satchell, and Wang (2003) adapted
the value-at-risk methodology to the case of Linex. Patton and Timmermann (2004) used
as an example the Linex loss coupled with the Markov Switching DGP to derive some
interesting properties of optimal forecasts. Anatolyev (2006) discussed nonparametric
estimation under Linex loss.
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In this paper, we propose a “direct” approach of parsimonious modeling under Linex.
We directly model the dynamics of the conditional expectation that determines the op-
timal predictor, hence avoiding having to specify the whole conditional distribution. We
emphasize that the proposed models are not aimed at fitting the data better than the
conventional time series models. Rather, they are better suited to construct optimal pre-
dictions when the underlying loss function is Linex. In effect, our approach lies within the
“decisionmetrics” paradigm of Skouras (2001), where an econometric model is developed
so that it serves a particular purpose rather than being used in a variety of contexts.
Forceful arguments in favor of agreement between the loss function and model specifica-
tion can be found in Christoffersen and Jacobs (2004). A methodology close in spirit to
ours has been encountered in the value-at-risk literature: while main parametric method-
ologies concentrate on modeling the dynamics and shape of the conditional distribution,
the CAViaR model of Engle and Manganelli (2004) is based on directly modeling the
dynamics of conditional quantiles.
Our method rests on the exponential quasi-maximum likelihood interpretation of the

Linex loss function. As a result, it is convenient to decompose a suitably transformed
original variable into a product of its conditional mean and a multiplicative disturbance,
with the conditional mean following an autoregressive process. This nicely fits into the
multiplicative error model (MEM) framework of Engle (2002, section 4), in which the
class of autoregressive conditional duration (ACD) models originated in Engle and Russell
(1998) is a leading example. Thus, we are able to draw many conclusions directly from
results already available in the MEM, ACD, and other literatures. In particular, they
suggest various forms of dynamic specifications and asymptotic results for estimators of
parameters in these specifications.
The paper is structured as follows. In section 2 the modeling framework is presented,

dynamic models are described, and forecasting is briefly discussed. In section 3 we tackle
estimation issues, including asymptotic theory and the possibilities of improving estima-
tion efficiency. In section 4, the proposed methodology is illustrated using data on US
GNP growth and Treasury bill returns. We conclude in section 5.

2 Modeling under Linex

We take as a starting point the well-known result that under the Linex loss, the optimal
predictor of stationary series yt given It−1 is (e.g., Zellner, 1986)

gt = α−1 logE [exp (αyt) |It−1] . (4)

Note that for gt to be well-defined, E [exp (αyt) |It−1] should exist for (almost) any real-
ization of the history. This requires the conditional distribution of yt to be sufficiently
slim-tailed. If yt is conditionally normal, gt exists for any α; if yt is conditionally lep-
tokurtic, gt may be well-defined only for small values of α, while for larger α optimal
prediction under Linex may be unavailable. When yt is a log-difference of some variable
xt (for example, when it represents a growth rate or log-return), gt is well-defined when
suptE [(xt/xt−1)

α |It−1] is finite.
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Wewill use the following terminology throughout. We call the predictor qt defined in (2)
Quad-optimal for yt, the predictor gt Linex-optimal for yt, and the function u 7→ exp (αu)
the Linex transformation. Let us also denote

ht = E [exp (αyt) |It−1] .

Now, instead of postulating the dynamics of the conditional distribution of yt given It−1,
or of its first and/or second conditional moments, we intend to model the dynamics of ht
directly, because it is the description of its dynamics that is sufficient for formulating the
Linex objective function.
Suppose that an econometrician is equipped with the Quad loss, and the dynamics

of qt is parameterized as some function of a finite-dimensional parameter vector. The
expected minimal Quad loss corresponding to one observation equals

E [Q (yt − qt)] = E
£
(yt − qt)2

¤
,

whose minimization is equivalent to the maximization of expected conditional log-density
of a normal distribution with mean qt and fixed variance. Hence, estimation under Quad
can be interpreted as quasi-maximum likelihood (QML) estimation based on the normal
density (White, 1982; Gourieroux, Monfort, and Trognon, 1984). Similarly, estimation
under absolute loss is associated with QML estimation based on the Laplace density
(Jung, 1996).
Let us consider the Linex loss. Denote by β the true value of the k× 1 parameter b in

a dynamic parameterization of ht constrained to yield positive values for all allowable b.
The expected minimal Linex loss corresponding to one observation equals

E [L (yt − gt)] = E [exp (α (yt − gt))− α (yt − gt)− 1]
= E

£
exp

¡
α
¡
yt − α−1 log ht

¢¢
− α

¡
yt − α−1 log ht

¢
− 1
¤

= const + E

∙
exp (αyt)

ht
+ log ht

¸
.

The key to the following development is that E [L (yt − gt)] is, up to a constant term,
the (minus) expected conditional log-density of the random variable exp (αyt) distributed
exponentially with mean ht. That is, minimization of the expected Linex loss is equivalent
to, or can be interpreted as, QML estimation on the basis of exponential density.
This key observation leads to the following implication. In contrast to the usual de-

composition of the dependent variable into a sum of a regression function and an additive
regression error

yt = qt + et (5)

with the property E [et|It−1] = 0, which is convenient under Quad loss, under Linex it is
more convenient to handle the model in the multiplicative form

exp (αyt) = htηt, (6)

where ηt is the multiplicative Linex-regression error with the propertyE [ηt|It−1] = 1. This
alternative decomposition is a particular case of a “multiplicative error model” (MEM) of
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Engle (2002, section 4). The MEM approach is a convenient tool for building models of
non-negative valued time series, and here the series exp (αyt) is positive by construction.
According to Engle (2002), MEM modeling allows one to avoid the dependence of the
range of the disturbance on the mean that is a feature of a corresponding additive model1,
and it is more convenient than alternatives in terms of estimation.
The leading application of the MEM approach in the econometrics literature is to

durations between successive transactions in a high-frequency financial market.2 Such
durations typically exhibit clustering of high and low values in time. The temporal clus-
tering property of durations has led to the class of autoregressive conditional durations
(ACD) models proposed by Engle and Russell (1998)3, which spurred a vast literature in
modeling duration dynamics. Many important results and ideas may be borrowed from
it, in particular regarding the dynamic parameterization of ht. Although this literature is
relatively novel, it is noticed that ACD modeling turns out to be surprisingly isomorphic
to ARCH modeling (Engle and Russell, 1998; Engle, 2002), and thus the broad ARCH
literature may also be utilized.
The classical ACD specification is ACD1(q, p) (Engle and Russell, 1998)

ht = ω +

pX
j=1

φj exp (αyt−j) +

qX
j=1

ψjht−j. (7)

Here, the forcing variables are lagged values of the modelled variable, exp (αyt) in our
case. In a simple modification, these lagged values are standardized by the conditional
mean so that the forcing variables are lagged multiplicative errors:

ht = ω +

pX
j=1

χjηt−j +

qX
j=1

ψjht−j. (8)

This specification will be referred to as ACD2(q, p). It is called “Additive ACD” in Hautsch
(2002).
A disadvantage of specifications (7) and (8) is a need to impose positivity constraints

on the coefficients in order to ensure positivity on ht for all t. This may be restrictive
if the original variable yt is only weakly or negatively autocorrelated. Two logarithmic
modifications proposed in Bauwens and Giot (2000) do not require restrictions on coeffi-
cients. Like the ACD1 and ACD2 models, these differ from each other by what is set to

1The additive model for exp (αyt) is exp (αyt) = µt + ωt, where µt = E [exp (αyt) |It−1] and
E [ωt|It−1] = 0. Indeed, the range of ωt has to be [−µt,+∞) , i.e., time dependent, with unpleasant
consequences for maximum likelihood estimation.

2There are other applications of the MEM approach. Engle (2002) illustrates the MEM methodology
using exchange rate realized volatilities. Chou (2005) models a high/low range of asset prices in the MEM
framework. Engle and Gallo (2006) analyze the dynamics of three volatility indexes using a multivariate
version of the MEM.

3Hence, exponential QML estimation of ACD models for durations implicitly minimizes the Linex loss
with α = 1 for log-durations. This, in particular, helps motivate the use of the EXP accuracy measure
in Dufour and Engle (2000).
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be a forcing variable:

log ht = ω + α

pX
j=1

φjyt−j +

qX
j=1

ψj log ht−j, (9)

log ht = ω +

pX
j=1

χjηt−j +

qX
j=1

ψj log ht−j. (10)

We call these specifications LACD1(q, p) and LACD2(q, p), respectively. A priori, LACD
specifications seemmore logical to use given our exponential transformation of the original
variable.4

Modifications of specifications (7)—(10) are possible, of course. Consider, for example,
the following flexible specification:

ht = ω + τ exp

Ã
α

pX
j=1

λjyt−j

!
+

qX
j=1

ψjht−j. (11)

When the original variable yt follows a linear homoskedastic normal autoregression of order
p, the true model for ht is (11) with zero restrictions put on some coefficients, and the
Linex errors ηt are IID lognormal. If the autoregression is conditionally heteroskedastic,
the true model for ht is the same, but the Linex errors are not IID. The same is true of
the LACD1 model (9).
Other possible specifications can be found in Hautsch (2002), Fernandes and Grammig

(2006), andMeitz and Teräsvirta (2006); which model is most sensible depends on the data
at hand. A reasonable specification may also contain exogenous variables at the right-hand
side, including deterministic ones such as seasonal components. To make sure that the
mean equation is correctly specified, one may use the LM-type test for no remaining ACD
described in Meitz and Teräsvirta (2006, cor. 9 and proc. 3). The Meitz—Teräsvirta test
is an asymptotically valid analog of the Ljung—Box test for no autocorrelation applicable
to ACD-type models, and it is robust to misspecification of conditional density.
Now we will briefly discuss forecasting. When the autoregressive dynamics of ht is

parameterized, one-step Linex-optimal forecasts can be generated straightforwardly,5

ŷLt+1|t = α−1 log ht+1,

because exp (αyt+1) = ht+1ηt+1 and E
£
ηt+1|It

¤
= 1. Generation of multistep Linex-

optimal forecasts generally requires the knowledge of the unknown multistep transition
distribution; hence, simulation-based methods are called for (e.g., Franses and van Dijk,
2000, section 3.5). However, in case the dynamic model for ht is linear, which includes

4Bauwens and Giot (2000) discover that empirically the LACD2 equation describes typical duration
data better than the ACD1 and LACD1 models.

5Alternatively, in addition to modeling the whole conditional distribution as in Hwang, Knight, and
Satchell (2001); Knight, Satchell, and Wang (2003); and Patton and Timmermann (2004), various (com-
putationally tedious) approximations to the optimal forecast are suggested in Weiss (1996) and Christof-
fersen and Diebold (1996, 1997).
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ACD1 and ACD2 specifications (7)—(8), the multistep point forecasts can be deduced by
iterating the MEM model (Dufour and Engle, 2000). For example, in the ACD1(0, 1)
case, the point forecast is

ŷLt+s|t = α−1 log

µ
ω
1− φs1
1− φ1

+ φs1 exp (αyt)

¶
,

whereas in the ACD2(0, 1) case,

ŷLt+s|t = α−1

⎧⎨⎩ log

µ
ω + χ1

exp (αyt)

ht

¶
if s = 1,

log (ω + χ1) if s > 1,

where s > 1 is the horizon (of course, in practice consistent estimates are used in place of
true parameters). This is a phenomenon familiar from Quad-optimal forecasting: when
the model for conditional mean is linear ARMA, multistep point forecasts can be deduced
analytically (e.g., Franses and van Dijk, 2000, section 2.2).
Concluding this section, let us note that the modeling of ht under Linex is analogous

to the modeling of conditional θ-quantiles inf {u : Pr [yt ≤ u|It−1] ≥ θ} under the Linlin
loss function

¡
(1− θ) I{u<0} + θI{u>0}

¢
|u|. It is well known that the conditional quantile

function is the optimal predictor under Linlin. Whereas earlier parametric methodologies
of evaluating conditional quantiles, and hence of value-at-risk (VaR) measures popular in
finance, concentrated on modeling the dynamics and shape of the conditional distribution
or of its tails, the recently proposed CAViaR methodology (Engle and Manganelli, 2004)
is based on modeling the dynamics of conditional quantiles directly in the GARCH/ACD
spirit.

3 Estimation under Linex

The exponential density belongs to the linear exponential family of distributions. The
theory of quasi (or pseudo) maximum likelihood estimation (e.g., Gourieroux, Monfort

and Trognon, 1984) implies that under suitable conditions β̂
L
is consistent for β and as-

ymptotically normal. Exact suitable conditions under which this asymptotics occurs are
established in the ACD literature. Most general is the result in Theorem 1 in Engle (2000),
which is a direct implication of a result in Bollerslev and Wooldridge (1992); see also
Wooldridge (1994, section 4). Let hβt = ∂ht/∂b and st = − (exp (αyt) /ht − 1) (∂ht/∂b) /ht,
and let us denote by h0t , h

0
βt, and s

0
t the functions ht, hβt, and st, respectively, evaluated

at β. In addition, let

V̂ L = n

Ã
nX
t=1

ĥβtĥ
0
βt

ĥ2t

!−1Ã nX
t=1

µ
exp (αyt)

ĥt
− 1
¶2 ĥβtĥ0βt

ĥ2t

!Ã
nX
t=1

ĥβtĥ
0
βt

ĥ2t

!−1
,

where n is the sample size, and

ĥt = ht|b=β̂L , ĥβt = hβt|b=β̂L .

Below, ULLN and CLT are acronyms for the uniform weak law of large numbers and
central limit theorem, respectively.
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Proposition 1 Suppose that

(i) the process yt is strictly stationary and ergodic, the parameter space B is compact,
and β lies in its interior;

(ii) the function ht is measurable and twice continuously differentiable in b in the interior
of B;

(iii) {exp (αyt) /ht + log (ht)}∞t=1 satisfies the ULLN, and β is unique minimizer of
limn→∞ n

−1Pn
t=1E [h

0
t/ht + log ht].

Then β̂
L p→ β. Suppose further that

(iv) {∂st/∂b0}∞t=1 satisfies the ULLN, and J ≡ limn→∞ n−1
Pn

t=1E[h
0
βth

00
βt/ (h

0
t )
2
] is pos-

itive definite;

(v) {s0t}
∞
t=1 satisfies the CLT, and I ≡ limn→∞ n

−1Pn
t=1E[(ηt − 1)

2 h0βth
00
βt/ (h

0
t )
2
] is

positive definite.

Then
√
n(β̂

L − β)
d→ N

¡
0, V L

¢
, where V L = J−1IJ−1. Suppose further that

(vi) {(∂ht/∂b) (∂ht/∂b0) /h2t}
∞
t=1 and {sts0t}

∞
t=1 satisfy the ULLN.

Then V̂ L
p→ V L.

Note that in the special case when ηt is conditionally (on It−1) homoskedastic, the
asymptotic variance simplifies to V L = J−1var (ηt) .
The conditions given in proposition 1 are high-level and are usually hard to verify.

More primitive conditions may be established on a case-by-case basis for specific ACD
models. Engle and Russell (1998) and Engle (2002) give a set of sufficient conditions for
consistency and asymptotic normality for the stationary ACD1(1,1) model. The proof is
based on a similar result for the GARCH(1,1) model given in Lee and Hansen (1994). More
generally, the isomorphism between ACD and ARCH structures mentioned above allows
one to utilize asymptotic results on normal QML estimation from the ARCH literature.
In particular, conditions for consistency and asymptotic normality of QML estimates are
established by Francq and Zakoïan (2004) for a linear GARCH(q, p) model (an analog of
our ACD(q, p)); by Kristensen and Rahbek (2005) for some nonlinear ARCH(p) models;
by McAleer, Chan, and Marinova (2002) for the GJR—GARCH(1, 1) model (Glosten,
Jagannathan, and Runkle, 1993); and by Shephard (1996) and Ling and McAleer (2000)
for the EGARCH(1, 1) model (including an analog of our LACD2(1, 1)).
Most asymptotic results do not constrain the shape of the density of standardized

errors but restrict them to be IID; many authors note, however, that this assumption
is not critical. Other substantive restrictions are moment conditions that tighten the
requirement of sufficient slim-tailedness of the conditional distribution of yt. The moment
conditions are specific for each parameterization: in the ACD(1, 1) case, for example, they
require that suptE

£
η2+δt |It−1

¤
< ∞ for some δ > 0 and suptE [log (ψ1 + φ1ηt) |It−1] < 0

(Engle, 2002).
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The Linex estimator is a true maximum likelihood estimator if exp (αyt) is condi-
tionally exponentially distributed, which is equivalent to ytsign (α) being conditionally
distributed as Gumbel with location parameter |α|−1 log ht and scale parameter |α|−1. If
this condition does not hold, and it is not likely to hold in reality, the Linex estimator is
not asymptotically efficient; in the same way least squares estimation is not asymptoti-
cally efficient under conditional non-normality. It is possible to increase the efficiency of
estimation by using maximum likelihood estimation based on the true distribution. Of
course, as it happens under Quad loss, a wrong specification of the density may lead to
inconsistent estimation.
Natural candidates for the distributional assumption for ηt are the Weibull density as

in Engle and Russell (1998) with the standard exponential as a special case, and the Burr
density as in Grammig and Maurer (2000) with Weibull as a limiting case; other choices
are also possible. When the Weibull distribution is chosen, the conditional density of ηt
given It−1 is

f (η; ς) =
ς

χς
ης−1 exp

µ
−
µ
η

χ

¶ς¶
, χ =

1

Γ (1 + ς−1)
, ς > 0.

When ς = 1, the Weibull distribution reduces to the standard exponential. When the
Burr distribution is chosen, the conditional density of ηt given It−1 is

f (η; ς, %) =
ς

χς
ης−1

µ
1 + %

µ
η

χ

¶ς¶−1−%−1
, χ =

Γ (1 + %−1) %1+ς
−1

Γ (1 + ς−1)Γ (%−1 − ς−1)
ς > % > 0.

When % → 0, the Burr distribution reduces to Weibull, and when % = 1, it reduces to
log-logistic. It is also possible to use positive distributions not containing the exponential.
One option is a lognormal distribution

f (η;κ) =
ς

η
√
2πκ

exp

Ã
−(log η + κ/2)2

2κ

!
, κ > 0,

which is a true distribution for η if the original variable yt is conditionally homoskedastic
normal. The densities on the previous three displays are normalized to have the expecta-
tion of unity.
If the conditional density f (η; q) is correctly specified, where q contains additional

shape parameters whose true value is θ, the estimateµ
β̂
f

θ̂
f

¶
= arg max

(bq)∈B×Θ

nX
t=1

`t,

where

`t = log f

µ
exp (αyt)

ht
; q

¶
− log ht,

will be consistent, asymptotically normal, and asymptotically efficient. Denote st =
∂ log ft/∂ (b

0 q0)0 and let s0t and ŝt be st evaluated at (β
0 θ0)

0 and (β̂
f 0
θ̂
f 0
), respectively. In
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addition, let V̂ f equal the k × k upper left submatrix of

n

Ã
nX
t=1

ŝtŝ
0
t

!−1
.

The following analog of proposition 1 holds (Wooldridge, 1994, section 5).

Proposition 2 Suppose that

(i) the process yt is strictly stationary and ergodic, with support not depending on (b0 q0)
0 ,

the parameter space B×Θ is compact, and (β0 θ0)0 lies in its interior;

(ii) the function `t is measurable and twice continuously differentiable in (b0 q0)
0 in the

interior of B×Θ;

(iii) {`t}∞t=1 satisfies the ULLN, and (β0 θ0)
0 is unique maximizer of limn→∞ n−1

Pn
t=1E [`t].

Then β̂
f p→ β. Suppose further that

(iv)
©
∂2`t/∂ (b

0 q0) ∂ (b0 q0)0
ª∞
t=1

satisfies the ULLN;

(v) {s0t}
∞
t=1 satisfies the CLT, and J ≡ limn→∞ n−1

Pn
t=1E[s

0
ts
00
t ] is positive definite.

Then
√
n(β̂

f − β)
d→ N

¡
0, V f

¢
, where V f is the k× k upper left submatrix of J−1.

Suppose further that

(vi) {sts0t}
∞
t=1 satisfies the ULLN.

Then V̂ f
p→ V f .

4 Empirical illustrations

In this section, we illustrate the proposed methodology using data on two time series,
GNP growth and Treasury bill returns. There is empirical evidence that macroeconomic
forecasters often prefer to underpredict GNP growth (Elliott, Komunjer, and Timmer-
mann, 2004), presumably because additional inventory holding costs resulting from GNP
overprediction exceed stockout costs resulting from GNP underprediction. This corre-
sponds to negative α. On the other hand, financial investors may tend to overpredict
the Treasury bill rate when evaluating projects because they are more sensitive to losses
than to gains (Benartzi and Thaler, 1995); monetary authorities may also find it more
beneficial to overpredict the T-bill rate considering future debt repayments and facing a
restricted budget. This corresponds to positive α. In the illustrative empirical analysis,
however, for the sake of symmetry we consider α of both signs for both series.
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Figure 1: Scatterplot of GNP growth against its first lag.
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The GNP growth series is a log-difference of seasonally adjusted quarterly US GNP6

from Q1:1947 to Q3:2005 totaling 234 observations. Figure 1 presents a scatterplot of
GNP growth against its lagged value. The T-bill returns series is a log-difference of weekly
3-month US Treasury bill rates7 from Jan:1954 to Feb:2005 totaling 2,667 observations.
For the latter series, we use the first 1,000 observations for modeling, and the rest for
forecasting purposes. The loss function parameter α is set in absolute value to 30 for
GNP growth and to 3 for T-bill returns. This is convenient for illustrative purposes
because such values make the asymmetry of the Linex loss function pronounced yet not
extremely severe. Such |α| imply values of 1.25 in the case of GNP growth and 1.27 in
the case of T-bill returns for the ratio of Linex losses for positive and negative prediction
errors of one standard deviation. Figure 2 presents scatterplots of Linex-transformed
GNP growth against its lagged value. These diagrams illustrate how the Linex-optimal
predictor puts different weights on errors of different sign after the Linex-transformation
inflates or deflates data points differently (cf. Figure 1).

Figure 2: Scatterplots of Linex transformed GNP growth against its first lag,
α = 30 (left panel) and α = −30 (right panel).
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6Source: U.S. Department of Commerce: Bureau of Economic Analysis; downloadable from the
FRED R° database of St. Louis Fed at http://research.stlouisfed.org/fred2/series/GNP/106.

7Source: Board of Governors of the Federal Reserve System; downloadable from the FRED R° database
of St. Louis Fed at http://research.stlouisfed.org/fred2/series/WTB3MS/116.
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Tables 1a and 1b present estimation results of fitting exponential ACD models (7)—(10)
to GNP growth and T-bill returns, accompanied by various diagnostic statistics. The lat-
ter are: average loglikelihood values labelled “LogL”, values of the Meitz—Teräsvirta test
statistic labelled “Q(3)”, values of the excess dispersion test statistic labelled “Disp”, and
values of the Pearson goodness-of-fit test statistic labelled “Pear”. The Meitz—Teräsvirta
test statistic is asymptotically distributed as χ2(3) under the null of correct mean specifica-
tion, where 3 is the number of additional lags specified under the alternative. The excess
dispersion test for exponential distribution is described in Engle and Russell (1998, p.
1144). The corresponding statistic is asymptotically distributed as N (0, 1) under the null
of exponential distribution. The Pearson goodness-of-fit test (e.g., Kendall and Stuart,
1973, chapter 30) compares the multinomial distribution induced by Linex residuals and
that implied by the standard exponential distribution. We set the number of equiprobable
classes to 10, so the corresponding statistic is asymptotically distributed as χ2(9) under the
null of correct distributional specification.

Table 1a. Results of fitting exponential ACD models to Linex-transformed GNP growth

ACD1 ACD2 LACD1 LACD2
α = 30

ω 0.831
(0.158)

0.606
(0.185)

0.292
(0.053)

−0.044
(0.097)

φ1 0.371
(0.091)

0.385
(0.088)

φ2 0.159
(0.067)

0.134
(0.079)

χ1 0.651
(0.167)

0.331
(0.073)

χ2 0.513
(0.118)

0.273
(0.058)

LogL −1.5557 −1.5551∗ −1.5560 −1.5555
Q(3) 2.59 1.79 2.78 5.51
Disp −4.78 −4.80 −4.77 −4.80
Pear 462.9 451.2 452.7 447.2

α = −30
ω 0.281

(0.055)
0.196
(0.075)

−0.187
(0.048)

−1.125
(0.119)

φ1 0.451
(0.087)

0.419
(0.079)

φ2 0.108
(0.092)

0.130
(0.081)

χ1 0.269
(0.066)

0.414
(0.105)

χ2 0.167
(0.038)

0.242
(0.063)

LogL −0.5330 −0.5333 −0.5329∗ −0.5335
Q(3) 3.15 1.01 3.85 6.38
Disp −4.92 −4.91 −4.91 −4.91
Pear 477.5 492.8 479.0 468.0

Note: robust standard errors are in parentheses.
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Table 1b. Results of fitting exponential ACD models to Linex-transformed T-bill returns

ACD1 ACD2 LACD1 LACD2
α = 3

ω 0.783
(0.052)

0.772
(0.047)

0.071
(0.012)

−0.198
(0.050)

φ1 0.276
(0.050)

0.249
(0.048)

χ1 0.308
(0.047)

0.270
(0.049)

LogL −1.0724 −1.0721∗ −1.0729 −1.0722
Q(3) 3.45 0.12 3.17 1.00
Disp −9.62 −9.61 −9.57 −9.63
Pear 1620.4 1685.1 1622.8 1701.5

α = −3
ω 0.738

(0.054)
0.772
(0.044)

0.052
(0.013)

−0.170
(0.042)

φ1 0.302
(0.057)

0.291
(0.052)

χ1 0.283
(0.047)

0.219
(0.042)

LogL −1.0480∗ −1.0487 −1.0481 −1.0493
Q(3) 2.69 6.24 0.60 6.35
Disp −9.38 −9.29 −9.33 −9.27
Pear 1664.7 1683.8 1654.6 1699.0

Note: robust standard errors are in parentheses.

The lag polynomial orders of ACD models are selected so that coefficients for more
lagged values would yield insignificant estimates. As a result, for both series the order q
equals 0, and the order p equals 2 for GNP growth and 1 for T-bill returns. The adequacy
of selected orders is confirmed by the Meitz—Teräsvirta test for no remaining ACD. The
Linex residuals exhibit severe underdispersion (in contrast to overdispersion in ACD appli-
cations to duration data) and do not conform to the exponential distribution in all models,
in a larger degree in the case of T-bill returns. A comparison of loglikelihood values al-
lows one to determine which dynamic model fits better to the data; the corresponding
LogL values are marked with an asterisk. In two out of four cases the ACD2 model fares
best, whereas the LACD2 model wins in none, contrary to what happens with duration
data (Bauwens and Giot, 2000). Along with the four ACD models (7)—(10), we have fit-
ted the data to the flexible model (11) and also (7)—(10) augmented with threshold-type
asymmetries in the spirit of a GJR—GARCH model (Glosten, Jagannathan, and Runkle,
1993). None of these models has proved to be more successful: the additional parameters
are statistically insignificant, and their presence pushes information criteria such as AIC
upward.
Because diagnostic tests signal misspecification of the conditional density, we try to use

the Weibull, Burr, and lognormal distributions in place of the exponential. In doing this,
we use those models for the conditional mean that showed to advantage under the expo-
nential specification. The results are presented in Tables 2a and 2b in columns “Weib”
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(standing for “Weibull”), “Burr”, and “Lnorm” (standing for “lognormal”); columns
“Exp” (standing for “exponential”) reproduce corresponding results from Tables 1a and
1b. Because the distributions differ in the degree of parameterization, we also show values
of the Akaike information criterion (line “AIC”). The excess dispersion test (line “Disp”)
and Pearson goodness-of-fit test (line “Pear”) are adapted to the use of Weibull, Burr,
and lognormal densities. In particular, the null distribution of the Pearson statistic is
bounded between χ2(9) and χ2(8) in case of Weibull and lognormal, and between χ2(9) and
χ2(7) in case of Burr, because of the presence of additional shape parameters (Kendall and
Stuart, 1973, section 30.11—30.19).

Table 2a. Results of fitting best ACD models with various distributions to
Linex-transformed GNP growth

ACD2, α = 30 LACD1, α = −30
Exp Weib Burr Lnorm Exp Weib Burr Lnorm

ω 0.606
(0.185)

0.591
(0.262)

0.673
(0.163)

0.605
(0.168)

−0.187
(0.048)

−0.175
(0.053)

−0.200
(0.045)

−0.194
(0.048)

φ1 0.419
(0.079)

0.479
(0.092)

0.375
(0.073)

0.401
(0.079)

φ2 0.130
(0.081)

0.105
(0.105)

0.149
(0.081)

0.132
(0.078)

χ1 0.651
(0.167)

0.632
(0.201)

0.582
(0.181)

0.657
(0.163)

χ2 0.513
(0.118)

0.530
(0.158)

0.507
(0.129)

0.497
(0.109)

ς 2.905
(0.242)

7.106
(0.778)

3.366
(0.223)

6.134
(0.624)

% 1.289
(0.267)

0.868
(0.192)

κ 0.093
(0.013)

0.088
(0.012)

LogL −1.555 −0.888 −0.663 −0.751 −0.533 0.237 0.352 0.308
AIC 3.136 1.811 1.370 1.537 1.092 −0.439 −0.660 −0.581
Disp −4.80 −1.25 0.47 0.52 −4.91 −1.40 0.35 −0.278
Pear 451.2 61.0 3.6 21.7 479.0 30.3 8.3 15.1

Note: robust standard errors are in parentheses.

In all cases, the additional parameter ς in the Weibull distribution shows statistically
significant departures from the value of 1 implied by the exponential distribution. The
values of ς are close to (or slightly larger than) those in the CARR model of Chou (2005)
for high/low ranges of asset prices; the values of ς in ACD applications are typically
smaller than 1. The dispersion test signals no underdispersion, but the Pearson test still
indicates inappropriateness of the Weibull density. The Burr conditional density improves
the fit, even more boosting the likelihood and appreciably reducing the AIC. The Pearson
test statistic also goes down significantly, so that in the case of GNP growth the Burr
density is appropriate. In the case of T-bill returns, the Burr distribution is still rejected.
Interestingly, in all cases the estimates of the additional shape parameter % are about
or closer than one standard deviation from the value of 1 implied by the log-logistic
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distribution. The use of the lognormal conditional density leads to a better fit than the
use of Weibull, but it does not do as good a job as the Burr density.

Table 2b. Results of fitting best ACD models with various distributions to
Linex-transformed T-bill returns

ACD2, α = 3 ACD1, α = −3
Exp Weib Burr Lnorm Exp Weib Burr Lnorm

ω 0.772
(0.047)

0.780
(0.046)

0.766
(0.049)

0.774
(0.051)

0.738
(0.054)

0.629
(0.064)

0.808
(0.060)

0.798
(0.058)

φ1 0.302
(0.057)

0.404
(0.068)

0.228
(0.059)

0.240
(0.058)

χ1 0.308
(0.047)

0.287
(0.046)

0.311
(0.050)

0.307
(0.053)

ς 2.555
(0.200)

5.674
(0.304)

2.445
(0.139)

5.809
(0.282)

% 0.990
(0.107)

1.084
(0.109)

κ 0.117
(0.009)

0.119
(0.009)

LogL −1.072 −0.505 −0.301 −0.362 −1.048 −0.521 −0.282 −0.341
AIC 2.148 1.016 0.610 0.730 2.100 1.047 0.573 0.688
Disp −9.61 −1.45 1.10 0.65 −9.38 −1.27 1.60 1.43
Pear 1685.1 323.9 50.0 125.7 1664.7 338.1 54.7 127.8

Note: robust standard errors are in parentheses.

Table 3 contains values of the average Linex prediction error for s-step forecasting of
T-bill returns, where s = 1, 2, and 4, from four series of forecasts that avoid modeling
the whole conditional distribution. The rolling scheme is used, with a window of width
1, 000; the number of out-of-sample forecasts is 1, 667. Estimates from each Linex es-
timation round are used as initial values for minimization of the Linex criterion in the
next estimation round. Two of the four series of forecasts are computed using a linear
AR(1) Quad-autoregression: one forecast labelled “AR” is set equal to the conditional
mean, while the other, labelled “AR+bias”, is set equal to the conditional mean plus
a constant bias term (namely, 1

2
α times the estimate of innovation’s unconditional vari-

ance) that makes the forecast Linex-optimal under conditional homoskedasticity (Granger,
1969; such a forecast is called “pseudo-optimal” in Christoffersen and Diebold, 1997). The
other two of the four series of forecasts are generated from the ACD1(0, 1) and ACD2(0, 1)
Linex-autoregressions.

Table 3. Values of average Linex prediction error for T-bill returns

α = 3 α = −3
Model s = 1 s = 2 s = 4 s = 1 s = 2 s = 4

AR 0.476 0.619 0.636 0.681 0.896 0.858
AR+bias 0.425 0.537 0.553 0.562 0.733 0.705
ACD1 0.360 0.499 0.539 0.503 0.667 0.784
ACD2 0.428 0.562 0.565 0.576 0.732 0.735
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The ACD1 model generates on average much better forecasts than a mean model. The
ACD2 model turns out much worse, and sometimes even the pseudo-optimal predictor
is more advantageous. It is quite possible that careful modeling of the conditional dis-
tribution would provide better forecasts than ACD models do; similarly, the CAViaR
models (Engle and Manganelli, 2004) are inferior to fully parametric models in terms of
forecasting ability (Kuester, Mittnik and Paolella, 2006). However, such an investigation
is outside the scope of the present paper.

5 Conclusion

We have proposed a convenient framework to model the dynamics and construct optimal
forecasts when the underlying loss function is linear-exponential. Most components of this
framework are borrowed from the existing econometric literature. The procedure hinges on
the exponential quasi maximum likelihood interpretation of the Linex loss and the multiple
error modeling framework. The discovered parallelism between the conventional (under
Quad) and proposed (under Linex) time series analyses may potentially be extended, for
example, to modeling volatility in the two frameworks. Such extensions are a subject of
future research.
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