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Abstract
I study money creation in versions of the Trejos-Wright (1995)

and Shi (1995) models with indivisible money and individual holdings
bounded at two units. I work with the same class of policies as in De-
viatov and Wallace (2001), who study money creation in that model.
However, I consider an alternative notion of implementability–the ex
ante pairwise core. I compute a set of numerical examples to determine
whether money creation is beneficial. I find beneficial effects of money
creation if individuals are sufficiently risk averse (obtain sufficiently
high utility gains from trade) and impatient.

JEL classification: E31.
Keywords: inflation; Friedman rule; optimal monetary policy.

1 Introduction

The welfare effects of lump-sum money creation differ depending on the
model used. In particular, there seems to be a sharp contrast in results de-
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pending on whether or not the model contains heterogeneous agents. Representative-
agent models tend to yield results in line with the Friedman rule: the optimal
monetary policy is not creation, but destruction financed by taxes. Models
with heterogeneous agents do not give a general answer: in some the opti-
mal monetary policy is contractionary, in others it is expansionary.1 This
paper confirms that result in a somewhat new model–actually, the familiar
matching model setting of Trejos-Wright (1995) and Shi (1995), but with a
notion of implementability that has not been used before to study the effects
of money creation. Here a lottery allocation is implementable if it is in the
pairwise core (in every meeting).
My work is most closely related to Molico (2006) and to Deviatov and

Wallace (2001) who study money creation in versions of the same model.
Molico (2006) approximates divisible money and proceeds numerically us-
ing a particular bargaining solution–take-it-or leave-it offers by consumers.
Hence, his work leaves open whether the results are special to that bargaining
solution. Deviatov and Wallace (2001) allow for any outcome which satisfies
ex post individual rationality in meetings and work with money holdings in
the set {0, 1, 2}, the smallest set that gives money creation a role in determin-
ing the distribution of money holdings. They get an analytical result–money
creation is beneficial whenever agents are sufficiently patient–but only be-
cause they do not permit those in a meeting to commit to lotteries. Here, I
adopt the same set of individual holdings but allow people in a meeting to
commit to lotteries, while at the same time requiring that the lottery trades
be in the pairwise core for every meeting.
I cannot get analytical results, and, therefore, proceed numerically. For

each example studied, I find both the best rate of money creation and the best
pairwise-core lottery allocation. In other words, I allow the division of the
gains from trade in a meeting to depend both on the money creation rate and
on the money holdings of the consumer and producer in the meeting. I find
that in general optima do not have take-it-or leave-it offers or any other fixed
bargaining rule except in settings where individuals are sufficiently impatient.
In that case the optima have binding producer participation constraints in
all meetings, which implies take-it-or leave-it offers by consumers.
For many settings I cannot find beneficial money creation. However, when
1Examples of models where it is expansionary include Imrohoroglu (1992), Levine

(1991) and a generalization by Kehoe, Levine and Woodford (1992), Deviatov and Wallace
(2001), Berentsen, Camera, and Waller (2005), Bhattacharya, Haslag, and Martin (2005),
and Molico (2006).
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people are both sufficiently impatient and risk averse (obtain sufficiently high
utility gains from trade), I find that money creation is beneficial. That is
quite different from Deviatov and Wallace (2001), whose results apply only
if individuals are sufficiently patient. In all examples where money creation
is beneficial there is no randomization in meetings.
The rest of the paper is organized as follows. The next section provides

the description of the environment; in section 3 I define implementable allo-
cations; section 4 contains a discussion of some general properties of imple-
mentable allocations; in section 5 I describe the algorithm; section 6 presents
numerical examples; and section 7 concludes.

2 Environment

The background environment is a simple random matching model of money
due to Shi (1995) and Trejos and Wright (1995). Time is discrete and the
horizon is infinite. There are N ≥ 3 perishable consumption goods at each
date and a [0, 1] continuum of each of N types of agents. A type n person
consumes only good n and produces good n + 1 (modulo N). Each person
maximizes expected discounted utility with discount parameter β ∈ (0, 1).
Utility in a period is given by u(y)− c(x), where y denotes consumption and
x denotes production of an individual (x, y ∈ R+). The function u is strictly
concave, strictly increasing and satisfies u(0) = 0, while the function c is
convex with c(0) = 0 and is strictly increasing. Also, there exists ŷ > 0 such
that u(ŷ) = c(ŷ). In addition, u and c are twice continuously differentiable.
At each date, each agent meets one other person at random.
There is only one asset in this economy which can be stored across pe-

riods: fiat money. Money is indivisible and no individual can have more
than two units of money at any given time. Agents cannot commit to fu-
ture actions (except commitment to outcomes of randomized trades). Finally,
each agent’s specialization type and individual money holdings are observable
within each meeting, but the agent’s history, except as revealed by money
holdings, is private.
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3 Implementable allocations and the optimum
problem

The timing in a period is the following. First, there are meetings and trades.
Then, the monetary policy is applied. The policy is a probabilistic version of
the proverbial helicopter drops of money. Then, the next period begins and
the above sequence of actions is repeated.
The pairwise meetings, the inability to commit, the privacy of individual

histories, and the perishable nature of the goods imply that any production
must be accompanied by a positive probability of receiving money. A trade
meeting is a meeting between a potential producer with i ∈ {0, 1} units of
money and a potential consumer with j ∈ {1, 2} units of money.
For each trade meeting, a general lottery trade is represented by a prob-

ability measure on R+ × {0, 1, 2} with the interpretation that if (y, k) is
randomly drawn from that measure, then y is produced and consumed and
k units of money are transferred from the consumer to the producer. As is
obvious and spelled out below, only measures that are degenerate on output
can be in the pairwise core. Consequently, any trade in the pairwise core
can be described by the quantity of goods, yij, traded in meetings between
producers with i units of money and consumers with j units and by a prob-
ability distribution

¡
λ0ij,λ
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2
ij

¢
, where λkij is the probability that k units of

money are transferred and where λkij = 0 if k > min{j, 2 − i}. Finally, let
pi be the fraction of agents in each specialization type who start a date with
i units of money and let p = (p0, p1, p2). Then, in terms of pi and λkij, the
transition matrix T for money holdings (implied by the trades) is given by:
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 , (1)

where tmm denotes a diagonal element of T (the probability that an individual
leaves the meeting with the same quantity m of money she brought into that
meeting). Because T is a transition matrix, tmm can be recovered from the
condition that each row of T sums to unity.
I use the formulation of policy introduced by Deviatov andWallace (2001).

As I said, the policy constitutes a probabilistic version of the proverbial heli-
copter drops of money at a rate. Under policy (α, δ), at each date each person
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not at the upper bound receives a unit of money with probability α and then
each unit of money disintegrates with probability δ. As now explained, the
α part of the policy resembles lump-sum money creation, while the δ part is
a stand-in for the normalization that is equivalent to inflation.
With divisible money and no bound on individual holdings, the standard

policy is creation at a rate where money is handed out lump-sum to people.
In a broad class of settings, this policy is equivalent to such creation followed
by a proportional reduction in individual money holdings (see e.g. Lucas and
Woodford, 1994). The proportional reduction is nothing but a normalization
of individual holdings. Here, because individual holdings are bounded, such a
normalization is necessary. Moreover, because money holdings are indivisible,
both parts of the policy must be probabilistic. Also, because of the bound,
the α part only approximates lump-sum creation because a person at the
upper bound cannot receive such a transfer.
The standard policy (regardless of whether it is followed by a proportional

reduction in holdings or not) has two effects. It shifts the distribution of real
money balances towards the mean and makes money less desirable to acquire
or retain. The above (α, δ)-policy also has these effects. In particular, pro-
ducers are less willing to produce for money (because they may get a transfer
without production and may lose any money acquired) and consumers are
more willing to part with money (because they may get a transfer and may
lose money they retain).
I also followDeviatov andWallace (2001) in their interpretation of sequen-

tial individual rationality (which here is a part of the pairwise core notion)
as precluding direct taxes. That, among other things, implies that it is not
feasible to simply take money from people or to force producers to produce.
For that reason I consider only non-negative (α, δ)-policies.
Similar to trades, the creation and destruction parts of the policy yield a

pair of transition matrices for money holdings, denoted A andD respectively.
According to my description of the policy, they are

A =

 1− α α 0
0 1− α α
0 0 1

 ,
and

D =

 1 0 0
δ 1− δ 0

δ2 2δ(1− δ) (1− δ)2

 .
5



Then, our sequence of actions implies that the stationarity requirement is
pTAD = p.
It is convenient to express individual rationality and pairwise core con-

straints in terms of discounted expected utilities. Given a meeting of a pro-
ducer with i and a consumer with j units of money, let µij ≡

©¡
λ0ij,λ

1
ij,λ

2
ij

¢
, yij

ª
.

Also, let µ denote the collection of all µij. For an allocation (p, µ,α, δ) that is
stationary, discounted expected utility of an agent who ends up with i units
of money at the end of the period, denoted vi, is constant. Then, the vec-
tor v ≡ (v0, v1, v2) satisfies the following three-equation system of Bellman
equations:

v0 = β(q0 + TAD v0), (2)

where q, the vector of (expected) one period returns from trade, is given by:

q0 =


−p1
N
λ101c(y01)− p2

N

¡
λ102 + λ202

¢
c(y02)

−p2
N
λ112c(y12) +

p1
N
λ111 [u(y11)− c(y11)] + p0

N
λ101u(y01)

p0
N

¡
λ102 + λ202

¢
u(y02) +

p1
N
λ112u(y12)

 . (3)

Note that an individual with no money can only expect to be a producer,
an individual with two units can only be a consumer, and a person with one
unit of money can be either a consumer or a producer.
Because T , A, and D are transition matrices and β ∈ (0, 1), the mapping

G(x) ≡ β(q0+TADx0) is a contraction. Therefore, (2) has a unique solution
which can be expressed as

v0 =
µ
1

β
I − TAD

¶−1
q0, (4)

where I is the 3× 3 identity matrix.
Let

Πpij ≡
X
k

λkij (ei+k − ei)ADv0 − c(yij) (5)

be the expected gain from trade for the producer with i units of money in a
meeting with a consumer with j units and let

Πcij ≡
X
k

λkij(ej−k − ej)ADv0 + u(yij) (6)
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be the gain from the same trade for the consumer (where el is the three-
component coordinate vector with indices running from 0 to 2).
The ex ante pairwise core notion of implementability gives rise to the

following definition:

Definition 1. An allocation (p, µ,α, δ) is called ex ante pairwise core
implementable if (i) pTAD = p, (ii) v (given by 4) is non-decreasing, (iii)
the participation constraints

Πpij ≥ 0 and Πcij ≥ 0 (7)

hold for all i and j, and (iv) for every pair (i, j) that corresponds to a trade
meeting, µij solves

max
µij

Πcij (8)

subject to Πpij ≥ γ

for some γ consistent with the participation constraints (7), where the policy
(α, δ) and the value function v are taken as given.

In Definition 1, γ can depend on the meeting (i, j) and on the policy (α, δ).
Definition 1 says that an allocation is implementable if (i) it is stationary,
(ii) satisfies free disposal of money, (iii) satisfies individual rationality, and
(iv) there is no incentive for defections by pairs in meetings.
Finally, my optimum problem is to maximize ex ante utility. That is,

the optimum problem is to choose (p, µ,α, δ) from among those that are
implementable to maximize pv0 ≡W .
It is useful to express the objective W in terms of returns. If I multiply

(2) by p and use the fact that pTAD = p, then I obtain

W = pv0 =
β

1− β
pq0.

Then, by writing out the product pq0, I get

W =
β

1− β

1

N

1X
i=0

2X
j=1

pipj [u(yij)− c(yij)] . (9)

As one would expect, because for every consumer there is a producer, welfare
is equal to the net expected discounted utility in all trade meetings.
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4 General results

Because Πcij and Πpij are strictly concave functions of y, randomization over
output cannot be a solution to (8).2 The proof proceeds by replacing any non-
degenerate distribution over output by its mean, which increases the objective
Πcij and relaxes the constraint Π

p
ij ≥ γ. Such degeneracy implies that my

optimum problem is finite dimensional. This allows me to characterize the
ex ante pairwise core in terms of the necessary first order conditions. Because
of concavity of Πpij and Πcij these necessary conditions are also sufficient. If
an allocation (p, µ,α, δ) has yij > 0 in all trade meetings,3 then the first order
conditions can be conveniently written as·

(ej−k − ej) + u
0(yij)
c0(yij)

(ei+k − ei)
¸
ADv0

≥ 0 if λkij = λ
k

ij

= 0 if 0 < λkij < λ
k

ij

≤ 0 if λkij = 0
(10)

for all pairs (i, j) corresponding to trade meetings and transfers of positive
amounts of money k, where λ

k

ij ≡ 1−
P
s6=k

λsij.

The first order conditions (10) yield a set of constraints which an ex
ante pairwise core implementable allocation must satisfy in addition to the
participation constraints in Definition 1. If the value function ADv0 implied
by an implementable allocation (p, µ,α, δ) is strictly concave, then (10) has
implications for the level of output in some meetings. In particular, if λkij > 0
and k ≥ j−i for some positive k, then yij ≤ y∗, the unconstrained maximizer
of u(y) − c(y). Because the bound on individual holdings is two units, the
only meetings in which output can exceed y∗ are those between a producer
with zero and a consumer with two units of money.

5 The algorithm

Because the beneficial external margin and harmful internal margin effects
of money creation are at balance in any optimum, the optima always have

2Berentsen, Molico, and Wright (2002) introduce lotteries in a random matching model
of money and give a complete characterization of the ex ante pairwise core for the case of
one-unit bound on holdings.

3A sufficient condition for this is that ADv0, where v is the value function implied
by an implementable allocation (p, µ,α, δ), is strictly increasing and that u0(0) = ∞ and
c0(0) = 0.
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some binding participation constraints. If individuals are patient enough, in
addition to binding participation constraints the optima have randomization
over how much money is transferred in meetings. This implies that some
of the constraints in (10) are also binding. Because these constraints are
complicated functions of an allocation, closed-form solutions for the optima
are out of reach even for the case of a two-unit bound on holdings. For this
reason I compute a set of examples.
My optimization problem falls within the class of problems generally re-

ferred to as “nonlinear programming problems”, for which many standard
routines are available. However, as one can see, the constraints in (10) are
discontinuous.4 Another difficulty is that the mapping F (p) ≡ pTAD − p
is ill-behaved at α = δ = 0.5 This precludes application of routines which
require continuous differentiability of the objective and constraints, such as
sequential quadratic programming. I overcome this difficulty by designing a
hybrid algorithm which combines genetic and conventional smooth optimiza-
tion techniques.
There are three main steps in this algorithm. First, create an initial

population of allocations. Second, amend the population by replacing the
worst allocations by better ones. Third, check if the termination criterion is
satisfied for the best allocation in the population. If yes, then terminate; if
no, then return to the second step.
In the first step, I create a matrix where each row is an allocation. Alloca-

tions in the initial population are picked randomly among those which satisfy
ex ante individual rationality. The size of the population is a parameter of
the algorithm.
To amend the population (the second step), I use several genetic oper-

ators. These operators are called selection, crossover, and mutation. I use
standard selection and crossover operators, a subset of those described in
Houck, Joines and Kay (1996). However, I modify the standard mutation

4Each constraint in (10) is equivalent to·
(ej−k − ej) + u

0(yij)
c0(yij)

(ei+k − ei)
¸
ADv0 + (sign(λkij)− sign(λ

k

ij − λkij))ϑ
k
ij = 0

and
ϑkij ≤ 0,

where sign(x) is the sign function, and ϑkij is a slack variable.
5See Deviatov and Wallace (2001), who study the properties of that mapping.
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operator. The standard operator alters a single allocation (called “the par-
ent”) to produce another allocation (called “the child”). The operator I use
is a composition of two independent operators.
The first one is applied only if the parent has at least one of the transfer

probabilities λkij at its upper or lower bound or if it has α = δ = 0. The
operator pushes a random subset of these variables into the interior. If a
better allocation is produced, it replaces the parent in the population. This
simple mutation deals with discontinuity of the constraints in (10) and with
ill behavior of the mapping F (p) at zero.
The second operator alters only those of the transfer probabilities and

policy pairs which are already in the interior. There, because all constraints
are twice continuously differentiable, application of smooth methods is possi-
ble. This leaves a range of possibilities for what this second operator can be.
In particular, one can run a few iterations of a sequential quadratic routine
or of the BFGS algorithm6 (as long as these iterations remain in the interior).
The operator I adopt makes use of the gradients in the following way.
First, I compute (reduced) gradients of the objective and of all active

constraints. Then I compute an orthogonal projection of the gradient of the
objective onto the subspace orthogonal to the one spanned by the gradients
of the active constraints. After that I randomly pick a search direction in the
neighborhood (small cone) of that projection. Going in that search direction
is likely to improve the objective and does not violate (at least by much)
the active constraints. The child is obtained from the parent by moving
along the search direction. However, this procedure often leads to a violation
of some constraints even if the parent satisfies all the constraints. In this
case the objective implied by the child is reduced by some value which is
proportional to the amount by which the constraints are violated. If the
penalty parameter is large, even a small violation is costly, and the child dies
out of the population quickly. If the parent itself violates the constraints by
large amounts, then the search direction is chosen to move the child closer to
the feasible region regardless of what happens to the objective. Because the
initial population is chosen randomly, this is important in the beginning of
search. In other words, the second operator first pushes allocations towards
satisfaction of the pairwise core conditions; then it drives the population to
the optimum.
The termination criterion in the third step is based on the first order
6See Judd (1998) for further details.
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conditions for the Kuhn-Tucker theorem. If the length of the projection of
the gradient of the objective onto the subspace orthogonal to that spanned
by the gradients of the active constraints is less than the tolerance value, the
necessary conditions for the theorem are (approximately) satisfied. Because
the probability of selection of parents in the population is an increasing func-
tion of the objective, this is sufficient to guarantee that every terminal point
is a (local) maximum.

6 The examples

I use the above algorithm to compute examples of optimal allocations. In all
the examples, u(y) = yκ, c(y) = y, and N = 3. The examples are computed
for various κ and various degrees of patience, r, where r ≡ 1

β
− 1.

I find examples where money creation is beneficial provided that individu-
als are sufficiently risk averse and impatient. However, an interesting finding
is that there are no examples where money creation is beneficial and indi-
viduals randomize in meetings. It seems that when randomization is a part
of optimal trades, randomization itself produces beneficial extensive margin
effects that in some sense dominate those of a policy. To see why this con-
jecture seems plausible, consider allocations under no policy. If α = δ = 0,
then stationarity requirements pTAD = p collapse to a single equation:

λ111p
2
1 = λ102p0p2, (11)

which along with:

p0 + p1 + p2 = 1, and pi ≥ 0, (12)

yields the set of all stationary distributions. Then, if randomization is not
feasible, equation (11) defines a one-dimensional family of stationary distrib-
utions on the simplex (12). If the policy is applied, then it shifts the locus of
stationary distributions on that simplex. Deviatov and Wallace (2001) show
that under some parameters it is feasible to reach out distributions consistent
with an increased frequency of trades. That external margin (distribution)
effect gives rise to higher ex ante utility in their model.
However, if randomization is feasible, there exist many randomization

schemes consistent with any distribution p being a stationary distribution.
Thus, an (α, δ)-policy no longer enlarges the set of feasible distributions.
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However, an expansionary policy tends to tighten producer participation
constraints. Because the optima tend to have binding producer participa-
tion constraints–and, hence, yij ≤ y∗–in many meetings (in all meetings
if individuals are sufficiently impatient), the policy tends to reduce welfare
and, therefore, cannot be optimal.
There are two other features that are common to every example. First,

there are no binding consumer participation constraints. (This, however, is
not surprising because, as demonstrated in Berentsen, Molico and Wright
(2002), money has no value if the gain from trade for consumers is zero.)
Second, in a meeting of a producer with no money and a consumer with
two units, one unit of money changes hands with probability one. I take
advantage of these common features to simplify the description of results in
the tables below. I omit the probabilities of transfer of money in meetings of
producers with nothing and consumers with two units (λ102 and λ202). I also
suppress superscripts in the notation for the other transfer probabilities (λ101,
λ112 and λ111). I attach stars (

∗) to outputs which correspond to binding pro-
ducer participation constraints and daggers (†) to the transfer probabilities
which correspond to binding first order constraints in (10).
I compute two sets of examples. In the first set I compute examples for

moderate risk aversion and patience, i.e. for all combinations of κ and r
from κ ∈ {0.2, 0.3, 0.4, 0.5, 0.6} and r ∈ {0.01, 0.02, 0.03, ..., 0.25, 0.30,
0.35, 0.40, 0.50, 1.00}. Because I keep the cost function constant in all
examples, more risk averse individuals derive higher utility gains from trade
(i.e. u(y) − c(y) = yκ − y is a strictly decreasing function of κ for all y,
0 < y < by = 1).
I report a subset of these examples in Tables 1-3 (one table for each value

of risk aversion κ). All the results are consistent with the existence of four
different regions with respect to the degree of patience r. If r is small enough,
then the optima have randomization over the transfers of money in all three
trade meetings where transfers of only one unit are feasible. If r belongs to
the second region, then the optima have randomization over the transfers of
money only in meetings where the consumers have one unit. In meetings
of producers with one and consumers with two units, money changes hands
with probability one. In the next region the optima have randomization over
the transfers of money in meetings where both producers and consumers have
one unit. Finally, if r is big enough, one unit of money changes hands with
probability one in all trade meetings.
The examples are consistent with the transfer probabilities λ12, λ01, and
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λ11 being decreasing functions of patience. On the other hand, the optimum
quantity of money, p1 + 2p2, is an increasing function of patience, which is
not surprising because less money loosens producer participation constraints
(less money implies a higher probability of meeting other producers without
money in the future). In all examples where money creation is not beneficial,
the fraction of individuals with one unit of money, p1, is an increasing function
of patience and increasing function of risk aversion. That leads me to surmise
that higher (utility) gains from trade and greater patience seem to increase
the extent to which external margin (distribution) effect is beneficial for
trade. However, when money creation is beneficial, the optimal policy is not
a monotone function of patience, so that p1 is not monotone too. Also, there
is an increase in p1 when one moves from the region in parameter space where
money creation is not beneficial to the region where it is beneficial.
Examples in the first set are consistent with the optima having at most

one nonbinding producer participation constraint, the one in meetings of
producers with nothing and consumers with two units of money. In a meeting
of a producer with one unit and a consumer with two, lowering the probability
of handing over money raises v2. That is helpful because it loosens producer
constraint in the (1, 1) meeting, which, in turn, allows a decrease in λ11 and,
thus, an increase in p1 (and, thereby, in the frequency of trade). Because
λ11 is low, the participation constraint in the (1, 1) meeting is binding and
the output is low. Likewise, a smaller probability of giving up money in the
(0, 1) meeting lowers v0 which helps to relax the producer constraint in the
(0, 2) meeting. This allows a higher y02 which, again, pushes up v2. This
accounts for why y02 is so high in some examples. The same kind of effect
on v2 could be achieved with a positive λ

0
02, but that would reduce λ

1
02 and,

hence, the inflow into p1.
The second set of examples (reported in Table 4) shows optima for low

patience and high risk aversion (high utility gains from trade). Here I com-
pute examples for κ = 0.2 and r ∈ {0.80, 0.85, 0.90, 0.95, 1.00, 1.10, 1.20,
1.50, 2.00, 3.00}. If r is low, then the optima have randomization in meetings
and no policy. If r is high, then the optima have no randomization because
provided that individuals are highly impatient randomization becomes too
costly. In that case the optima have large (α, δ)-policies needed to sustain
distributions which imply high frequency of trade in meetings. Large (α, δ)
is incentive feasible when risk aversion κ is high because given higher util-
ity gains from trade, risk averse individuals are willing to trade money even
if acquisition of money is risky due to a high risk δ of subsequent loss of
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money. Also, in all examples where money creation is beneficial, the optima
have take-it-or-leave-it offers in all meetings – the bargaining rule assumed
by Molico (2006).

7 Concluding remarks

This paper adds to the list of models where money creation is beneficial.
Because I work with fully decentralized environment, analytical solutions are
not feasible, so I do a series of numerical examples. I compute examples
for a case of two-unit bound on individual money holdings. That bound is
the lowest for which money creation can have a beneficial role. A natural
question is what happens for all higher bounds. It is intuitive that as the
bound gets larger, randomization plays a smaller and smaller role and, in the
limit, no role. The absence of examples where money creation is beneficial
and individuals randomize in meetings leads me to surmise that beneficial ef-
fects of money creation persist for all higher bounds. Moreover, as the bound
becomes large, it seems plausible that money creation will be beneficial for
lower risk aversion and greater patience than in case of two-unit bound. That
conjecture seems somewhat difficult to verify because the dimensionality of
the optimization problem is proportional to the cube of the bound and even
for a case of a three-unit bound numerical analysis is demanding. One way
to get around the curse of dimensionality is to work with environments with
partially centralized markets, where the distribution of money is “manage-
able”.7 However, that should be done with caution because the external
margin beneficial effect of money creation depends on having heterogeneity
in the model.

7See e.g. Lagos and Wright (2003) and Berentsen, Camera, and Waller (2005).
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Table 1: Optima when u(y) = x0.6. argmax [u(y)− y] = 0.2789.

r 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00
α 0 0 0 0 0 0 0 0 0 0

δ 0 0 0 0 0 0 0 0 0 0

p0 .2307 .2689 .3241 .3822 .4285 .4629 .4895 .5222 .5454 .6043

p1 .5593 .4936 .4263 .3894 .3628 .3417 .3246 .3025 .2950 .2727

p2 .2100 .2374 .2496 .2284 .2087 .1954 .1859 .1753 .1596 .1230

λ01 .2693† .4492† .8033† 1 1 1 1 1 1 1

λ12 .3896† .6435† 1 1 1 1 1 1 1 1

λ11 .1548† .2620† .4452† .5758† .6796† .7749† .8640† 1 1 1

y01 .2789∗ .2789∗ .2789∗ .2345∗ .1730∗ .1331∗ .1055∗ .0699∗ .0498∗ .0147∗

y12 .2789∗ .2789∗ .2342∗ .1445∗ .0973∗ .0686∗ .0501∗ .0285∗ .0179∗ .0033∗

y11 .1108∗ .1136∗ .1043∗ .0832∗ .0661∗ .0531∗ .0432∗ .0285∗ .0179∗ .0033∗

y02 .6945 .5769 .3472∗ .2345∗ .1730∗ .1331∗ .1055∗ .0699∗ .0498∗ .0147∗

Table 2: Optima when u(y) = x0.4. argmax [u(y)− y] = 0.2172.

r 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00
α 0 0 0 0 0 0 0 0 0 0

δ 0 0 0 0 0 0 0 0 0 0

p0 .2022 .2437 .2715 .2892 .3197 .3448 .3660 .4046 .4327 .4834

p1 .6240 .5542 .5012 .4647 .4316 .4079 .3898 .3623 .3411 .3134

p2 .1738 .2021 .2273 .2461 .2487 .2473 .2442 .2331 .2262 .2032

λ01 .1419† .2495† .3793† .5081† .6756† .8439† 1 1 1 1

λ12 .2795† .4837† .7280† .9735† 1 1 1 1 1 1

λ11 .0903† .1604† .2456† .3294† .4267† .5125† .5884† .7188† .8412† 1

y01 .2172∗ .2172∗ .2172∗ .2172∗ .2172∗ .2172∗ .2142∗ .1600∗ .1255∗ .0529∗

y12 .2172∗ .2172∗ .2172∗ .2172∗ .1614∗ .1218∗ .0946∗ .0616∗ .0426∗ .0111∗

y11 .0702∗ .0720∗ .0733∗ .0735∗ .0689∗ .0624∗ .0556∗ .0442∗ .0358∗ .0111∗

y02 .6720 .5491 .4738 .4247∗ .3215∗ .2573∗ .2142∗ .1600∗ .1255∗ .0529∗

Note that for r = 0.01 the set of binding first order constraints (10) includes binding inequality constraint

for λ102 which is not shown in the table.
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Table 3: Optima when u(y) = x0.2. argmax [u(y)− y] = 0.1337.

r 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00
α 0 0 0 0 0 0 0 0 0 .2498

δ 0 0 0 0 0 0 0 0 0 .1763

p0 .1494 .1925 .2244 .2448 .2600 .2721 .2824 .3022 .3232 .3686

p1 .7309 .6563 .5992 .5608 .5314 .5077 .4888 .4572 .4302 .3970

p2 .1197 .1512 .1764 .1944 .2086 .2202 .2288 .2406 .2466 .2344

λ01 .0453† .0908† .1475† .2021† .2565† .3106† .3611† .4668† .5872† 1

λ12 .1525† .2943† .4722† .6435† .8154† .9886† 1 1 1 1

λ11 .0335† .0676† .1103† .1513† .1921† .2326† .2704† .3477† .4306† 1

y01 .1337∗ .1337∗ .1337∗ .1337∗ .1337∗ .1337∗ .1337∗ .1337∗ .1337∗ .0582∗

y12 .1337∗ .1337∗ .1337∗ .1337∗ .1337∗ .1337∗ .1165∗ .0882∗ .0659∗ .0162∗

y11 .0294∗ .0307∗ .0312∗ .0315∗ .0315∗ .0315∗ .0315∗ .0307∗ .0284∗ .0162∗

y02 .6087 .5243 .4097 .3647 .3338 .3127 .3113 .2865∗ .2277∗ .0582∗

Note that for r = 0.01 the set of binding first order constraints (10) includes binding inequality constraint

for λ102 which is not shown in the table.

Table 4: Optima when u(y) = x0.2 (continued). argmax [u(y)− y] = 0.1337.

r 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.50 2.00 3.00
α 0 0 .2483 .2489 .2498 .2522 .2551 .2647 .2795 .2321

δ 0 0 .1741 .1751 .1763 .1789 .1818 .1901 .2018 .1762

p0 .3689 .3739 .3660 .3674 .3686 .3708 .3727 .3768 .3810 .3920

p1 .3770 .3705 .3970 .3970 .3970 .3974 .3977 .3993 .4016 .3908

p2 .2551 .2556 .2370 .2356 .2344 .2318 .2296 .2239 .2174 .2172

λ01 .9538† 1 1 1 1 1 1 1 1 1

λ12 1 1 1 1 1 1 1 1 1 1

λ11 .6608† .6963† 1 1 1 1 1 1 1 1

y01 .1337∗ .1317∗ .0640∗ .0610∗ .0582∗ .0531∗ .0488∗ .0387∗ .0282∗ .0201∗

y12 .0323∗ .0291∗ .0181∗ .0171∗ .0162∗ .0145∗ .0131∗ .0100∗ .0071∗ .0044∗

y11 .0213∗ .0203∗ .0181∗ .0171∗ .0162∗ .0145∗ .0131∗ .0100∗ .0071∗ .0044∗

y02 .1402∗ .1317∗ .0640∗ .0610∗ .0582∗ .0531∗ .0488∗ .0387∗ .0282∗ .0201∗
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