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Applied researchers often use tests based on contingency tables in preliminary data analysis

and diagnostic testing. We show that many of such tests may be alternatively implemented

by testing for coefficient restrictions in linear regression systems (as a rule, employing the
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1 Introduction

Often in their research applied economists and financiers use tests associated with contin-

gency tables (see a review in Kendall and Stuart 1973, chapter 33). Such tests are designed

for verifying independence or homogeneity properties of original data or regression residuals,

and are heavily used in preliminary data analysis and diagnostic testing. For example, the

phrase “contingency table” leads to 184 and 58 hits in the “advance search” (performed in

2006) in JSTOR economics (24 journals) and finance (5 journals) collections, respectively.

Some of associated tests are even more frequently mentioned.

The tests related to contingency tables are performed by utilizing particular often com-

plex formulas and a table of (usually) the χ2 critical values. In this paper, we show that

typically they may be alternatively implemented via a system of linear regressions. The

χ2 tests are asymptotically equivalent to Wald tests, while standard normal tests (which is

a rarer situation) are asymptotically equivalent to t tests, performed in certain regression

systems. Such reformulation is useful for a number of reasons, both for econometric theory

and econometric practice. First, this unifies the regression analysis with the theory of con-

tingency tables. Second, the bridge between the two theories sheds more light on intuitive

contents of contingency table tests and test statistics. Third, running regressions may be

more convenient and familiar for econometric practitioners.

Some remarks on notation used now follow. The sample size is denoted by n. Bars denote

taking sample averages, i.e., for example, aij = n−1
∑n

t=1 aij. By ‖ai‖`i=1 we mean a column

` × 1 vector with ith element ai. By ‖ai,j‖`1i=1

`2

j=1
we mean an `1 × `2 matrix whose ith, jth

element equals ai,j.

The paper is structured as follows. Section 2 describes notation specific for contingency

tables. The most widely used test for independence and its variations are presented in section

3. Tests for accordance with distributions including the famous Pearson goodness-of-fit test

are discussed in section 4. More rarely used tests for a symmetry in contingency tables are
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examined in section 5. Section 6 is devoted to popular tests based on ranks, such as the

Kruskal–Wallis and Spearman tests. All proofs are relegated to appendix A, while appendix

B contains some supplementary material.

2 Two-way contingency tables

We consider a two-way (`x + 1) × (`y + 1) contingency table. The state space Ωx of one

variable, x, is partitioned into the cover {Ki}`x+1
i=1 ; similarly, the state space Ωy of the other

variable, y, is partitioned into the cover {Λj}`y+1
j=1 . Let us denote

Ii,· = I (x ∈ Ki) , I·,j = I (y ∈ Λj) , Ii,j = I (x ∈ Ki) I (y ∈ Λj)

where I (·) denotes the indicator function. Let

πi,· = Pr {x ∈ Ki} , π·,j = Pr {y ∈ Λj} , πi,j = Pr {x ∈ Ki, y ∈ Λj} ,

and define

πx = ‖πi,·‖`xi=1 , πy = ‖π·,j‖`yj=1 π = ‖πi,j‖`xi=1

`y

j=1
.

We assume that πi,j > 0 for all i and j.

The contingency table looks as follows:

y

Λ1 Λ2 · · · Λ`y Λ`y+1 Ωy

K1 p1,1 p1,2 · · · p1,`y p1,`y+1 p1,·

K2 p2,1 p2,2 · · · p2,`y p2,`y+1 p2,·

x
...

...
...

. . .
...

...
...

K`x p`x,1 p`x,2 · · · p`x,`y p`x,`y+1 p`x,·

K`x+1 p`x+1,1 p`x+1,2 · · · p`x+1,`y p`x+1,`y+1 p`x+1,·

Ωx p·,1 p·,2 · · · p·,`y p·,`y+1 1
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The figures in the tables are empirical probabilities of falling into corresponding cells

pi,j = Ii,j

and marginal empirical probabilities

pi,· = Ii,·, p·,j = I·,j.

In many applications, each Ki is an interval [κi−1, κi) and each Λj is an interval [λj−1, λj) ,

where −∞ = κ0 < κ1 < · · · < κ`x < κ`x+1 = +∞ and −∞ = λ0 < λ1 < · · · < λ`y < λ`y+1 =

+∞. When `x = `y and Ki = Λi for all i, the contingency table is referred to as one

with identical categorizations. However, rows and columns of a contingency table need not

correspond to partitionings of a real axis, and categorizations need not be identical.

3 Tests for independence

The classical χ2-test statistic for independence between the variables x and y (to be more

precise, for no association between x and y) is equal to

X2 = n
`x+1∑
i=1

`y+1∑
j=1

(pi,j − pi,·p·,j)2

pi,·p·,j
, (3.1)

and is asymptotically distributed as χ2 (`x`y) .

Theorem 1 The χ2 test (3.1) is asymptotically equivalent to an OLS-based Wald test for

the nullity of all slope coefficients in a linear multiple regression of I·,j on Ii,· with a constant

in each equation, i.e. for the null

H0 : βji = 0, i = 1, · · · , `x, j = 1, · · · , `y

in the regression system

I·,j = αj +
`x∑
i=1

βjiIi,· + ηj, j = 1, · · · , `y. (3.2)

Alternatively, Ii,· may be regressed on I·,j rather than I·,j are regressed on Ii,·.
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When the contingency table is 2× 2, the test for independence can be run using only one

bivariate regression. In the economics and finance literatures, the test for independence is

usually applied to 2× 2 tables, for example, in Knetsch and Sinden (1984), Greenwood et al

(1991), Brown et al (1996), Artis et al (1997), Pecorino and van Boening (2001). In some

studies, however, larger tables are considered, e.g., and 3× 2 tables in Battalio et al (2001),

2× 5 and 2× 4 tables in Eckel and Grossman (1998), 5× 3 in Russo et al (2001), and 5× 2

and 5× 4 tables in Bouckaerta and Dhaene (2004).

Pesaran and Timmermann (1992, Section 2; 1994) suggest another test of independence

in an (`+ 1)× (`+ 1) contingency table with identical categorizations (i.e. when {Ki}`i=1 =

{Λj}`j=1) in the context of testing for directional time series predictability. Their test statistic

is the suitably normalized quantity

Sn =
`+1∑
i=1

(pi,i − pi,·p·,i) , (3.3)

and is asymptotically standard normal under no association between x and y. Pesaran and

Timmermann (1992) point out that their test is particularly appropriate when the focus is

on predicting overall changes in y by x rather than on statistical independence between x

and y. This test is applied, aside from Pesaran and Timmermann (1992, 1994), in Lane et

al (1996).

The Pesaran–Timmermann test can be made regression-based as follows.

Theorem 2 The Pesaran–Timmermann Sn test is asymptotically equivalent to an OLS-

based t test for the null

H0 : α = 0

in the simple regression
`+1∑
i=1

(
Ii,i − Ii,·I·,i − I·,iIi,·

)
= α + η. (3.4)
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Note to the editor and referees: Appendix B contains more straightforward versions of the

regression-based Sn test which however have certain drawbacks spelled out in appendix B. If

this material is not, we will gladly remove it.

4 Tests for accordance with distribution

The previous χ2 test may be also interpreted as a test for homogeneity of `x + 1 subsamples

y|x ∈ Ki, i.e. that the conditional distribution of y does not depend on x. Suppose now

that the marginals {π·,j}`y+1
j=1 are known a priori. Then the χ2 test, whose statistic can be

modified to take account of this knowledge, may be interpreted as a test for accordance of

`x + 1 independent subsamples with a known multinomial distribution. The modified test

statistic is equal to

X2 = n
`x+1∑
i=1

`y+1∑
j=1

(pi,j − pi,·π·,j)2

pi,·π·,j
, (4.5)

and is asymptotically distributed as χ2 ((`x + 1) `y) .

Theorem 3 The χ2 test (4.5) is asymptotically equivalent to an OLS-based Wald test for

the nullity of all coefficients in a linear multiple regression of I·,j−π·,j on Ii,· with a constant

in each equation, i.e. for the null

H0 : αj = βji = 0, i = 1, · · · , `x, j = 1, · · · , `y

in the regression system

I·,j − π·,j = αj +
`x∑
i=1

βjiIi,· + ηj, j = 1, · · · , `y. (4.6)

Remark 1 The regression from theorem 3 is the same as that from theorem 1. However,

the set of restrictions is expanded by additional `y restrictions of equality of the intercepts in

(3.2) to the known a priori y-marginals. This explains the additional `y degrees of freedom

in the asymptotic χ2 distribution.
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When `x = 0, the contingency table essentially becomes one-way, and there is only one

subsample y|x ∈ Ωx. Then the test is called the Pearson (1900) test for goodness of fit,

and it simply verifies if the sample is drawn from a given multinomial distribution. The test

statistic becomes Pearson’s

X2 = n

`y+1∑
j=1

(p·,j − π·,j)2

π·,j
, (4.7)

and is asymptotically distributed as χ2 (`y) .

Corollary 1 The Pearson test (4.7) is asymptotically equivalent to an OLS-based Wald test

for the nullity of all coefficients in a linear multiple regression of I·,j − π·,j on a constant in

each equation, i.e. for the null

H0 : αj = 0, j = 1, · · · , `y

in the regression system

I·,j − π·,j = αj + ηj, j = 1, · · · , `y. (4.8)

Applications of the Pearson test in economics can be divided into two categories. In

the first category, frequencies of simulated values from an estimated model falling into pre-

specified bins are compared to a multinomial distribution implied by an assumed continuous

distribution, the latter possibly having shape parameters estimated. For example, Hsieh

(1989), compares his model’s residuals to normal, Student’s and generalized error distribu-

tions; Alaouze (1987) compares them to one- and two-parameter beta distributions using 10

bins. Most often, however, the reference distribution is uniform so that π·,j = 1/ (`y + 1) ,

and the leading application is evaluation of conditional density forecasts (see, for example,

Chan and Maheu 2002 who use 100 and 70 bins; Bauwens et al. 2004 who use 20 bins). In

the second category of applications, one compares frequencies of model-generated predictions

falling into pre-specified bins to a multinomial distribution implied by an empirical density.

Examples are Merlo (1997) who uses 18 and 10 bins, Moffitt (1989) who uses 101 and 81
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bins, Keane and Moffitt (1998) who use 112 and 24 bins, and Hyslop (1999) who uses 148

bins.

When the reference distribution has p ≥ 1 nuisance shape parameters, applied researchers

follow the recommendation of the statistical literature which yields that the asymptotic

distribution of the Pearson statistic is unknown, but is bounded between two chi-squared

distributions, one with `y, and the other with `y − p degrees of freedom. Below we show

(i) that it is not necessary to estimate the nuisance parameters beforehand, and (ii) how to

modify the regression (4.8) to avoid their preliminary estimation. The resulting Wald test

statistic on the modified regression will have a chi-squared distributions with `y − p degrees

of freedom.

Note that the regression system (4.8) can be rewritten as

I·,j = αj + π·,j + ηj, j = 1, · · · , `y.

Let us rewrite this system in a vector form as

‖I·,j‖`yj=1 = ‖αj‖`yj=1 + ‖π·,j‖`yj=1 +
∥∥ηj∥∥`yj=1

,

and the associated test as H0 : ‖αj‖`yj=1 = 0. Suppose now that there is parameterization

π·,j = π·,j (θ) , where θ is a p × 1 vector of unknown parameters indexing the shape of the

reference distribution.

Assume first that π·,j (θ) is linear in θ, i.e. ‖π·,j (θ)‖`yj=1 = Π0 + Π1θ, where Π0 is `y × 1

known vector, and Π1 is `y × p known matrix with full rank p. Substituting this into the

regression system yields

‖I·,j‖`yj=1 = ‖αj‖`yj=1 + Π0 + Π1θ +
∥∥ηj∥∥`yj=1

. (4.9)

Estimation of αj’s and θ jointly is not possible because they are not separately identified.

Let us denote by Φ the (`y − p) × `y matrix whose rows are the basis of the kernel of Π1,

and pre-map both sides of (4.9) by Φ. Then the system (4.9) becomes

Φ
(
‖I·,j‖`yj=1 − Π0

)
= Φ ‖αj‖`yj=1 + Φ

∥∥ηj∥∥`yj=1
,

8



because Φ annihilates Π1θ, and the null becomes Φ ‖αj‖`yj=1 = 0, which contains `y−p restric-

tions placed on αj’s. The associated Wald statistic therefore is distributed as χ2 (`y − p) . In

a simple example with `y = 2 and p = 1, let Π0 = (0, 0)′ , Π1 = (1, 1)′ . Then θ is just added

to right sides of both equations of the system, and obviously α1, α2 and θ are not separately

identified. The matrix Φ is (1,−1) , which pre-maps by subtracting the second equation from

the first, so the left side of the only emerging equation becomes I·,1 − I·,2, while the right

side consists only of the (identified) intercept α1 − α2, so the null restriction is α1 − α2 = 0.

The associated Wald test is asymptotically χ2 (1) . To summarize, when π·,j (θ) is linear in

θ, one needs to exclude θ from the system by taking a suitable linear transformation of its

equations and the null restriction, losing p degrees of freedom in the way.

Now consider the general case when π·,j (θ) may be nonlinear in θ, and its Jacobian Π1 is

of full rank at θ0, where θ0 is the true value of θ. Substituting the known functional form of

‖π·,j (θ)‖`yj=1 into the regression system yields

‖I·,j‖`yj=1 = ‖αj‖`yj=1 + ‖π·,j (θ)‖`yj=1 +
∥∥ηj∥∥`yj=1

. (4.10)

Because π·,j (θ) is nonlinear, αj’s and θ are identified and may be estimated jointly from

(4.10) by using Nonlinear least squares (NLLS). The null hypothesis is still ‖αj‖`yj=1 = 0,

which contains `y restrictions. The associated Wald test, however, asymptotically behaves

as a χ2 (`y − p) random variable rather than a χ2 (`y) one, because α̂j’s and θ̂ are asymp-

totically linearly dependent so that the asymptotic variance has a rank of only `y − p. This

happens because the linearization of ‖π·,j (θ)‖`yj=1 in a vicinity of θ0 yields ‖π·,j (θ)‖`yj=1 =

‖π·,j (θ0)‖`yj=1 + Π1 (θ − θ0) + o (θ − θ0). The rest of the logic remains as in the linear case.

This requires that the Wald statistic be constructed using the generalized inverse of the

asymptotic variance of estimates. To summarize, when π·,j (θ) is nonlinear in θ, one needs

to jointly estimate α̂j’s and θ̂ and test the original null, remembering the loss of p degrees

of freedom.
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5 Tests of symmetry

In this subsection we analyze two tests for symmetry in contingency tables with identical

categorizations. We have not found any examples of their use in applied econometric practice,

so we consider these tests partly for completeness, partly in hope that they will eventually

be used by economists.

Stuart (1955) suggested a test for homogeneity of the marginal distributions of x and y.

Formally, the null is

H0 : πi,· = π·,i, i = 1, · · · , `,

which automatically implies also π`+1,· = π·,`+1. The test is based on the ` × 1 vector of

differences pi,· − p·,i, i = 1, · · · , `. Let dn = ‖pi,· − p·,i‖`i=1 . The test statistic is

Qn = nd′nV
−1dn,

where V = ‖Vi,j‖`i=1

`

j=1
, and Vi,i = pi,· + p·,i − 2pi,i − (pi,· − p·,i)2 , Vi,j = −pi,j − pj,i −

(pi,· − p·,i) (pj,· − p·,j) , i 6= j. Under H0, Qn is asymptotically distributed as χ2 (`) .

Theorem 4 The Stuart Qn test is asymptotically equivalent to an OLS-based Wald test for

the nullity of all intercepts in a linear multiple regression of Ii,· − I·,i on a constant, i.e. for

the null

H0 : αi = 0, i = 1, · · · , `

in the regression system

Ii,· − I·,i = αi + ηi, i = 1, · · · , `. (5.11)

Bowker (1948) suggested a test for complete symmetry of the contingency table. Such

symmetry implies a stronger equivalence between the two classifications than equality of

marginal distributions. In fact, it is the two conditional distributions that are compared.

Formally, the null is

H0 : πi,j = πj,i, i = 2, · · · , `+ 1, j = 1, · · · , i− 1.
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The test is based on ` (`+ 1) /2 differences pi,j − pj,i, i = 2, · · · , `+ 1, j = 1, · · · , i− 1. The

test statistic is

Un = n

`+1∑
i=2

i−1∑
j=1

(pi,j − pj,i)2

pi,j + pj,i
.

Under H0, Un is asymptotically distributed as χ2 (` (`+ 1) /2) .

Theorem 5 The Bowker Un test is asymptotically equivalent to an OLS-based Wald test for

the nullity of all intercepts in a linear multiple regression of Ii,j − Ij,i on a constant, i.e. for

the null

H0 : αij = 0, i = 2, · · · , `+ 1, j = 1, · · · , i− 1

in the regression system

Ii,j − Ij,i = αij + ηij, i = 2, · · · , `+ 1, j = 1, · · · , i− 1. (5.12)

6 Tests based on ranks

Often researchers carry out testing for independence or homogeneity using rank transformed

data rather than the original data, the idea being to compare more objective “ordinal”

data characteristics instead of “cardinal” ones. Below we review two class of tests based on

ranks – the Kruskal–Wallis test and the Spearman rank test. Both are used in a number

of economic and financial applications: for example, Bizjak and Coles (1995), Theodossiou

(1996), Krigman et al (1999), Moel and Tufano (2002) use the Kruskal–Wallis test, and

Selten et al (1997), Attanasio et al (2000), Dickens (2000), Chance and Hemler (2001) and

many others use the Spearman rank correlation coefficient.

Suppose that k random samples of size n1, ..., nk are tested for identity of distributions

they come from. Let the vector of ranks (r1,1, ..., r1,n1 , ..., rk,1, ..., rk,nk)
′ correspond to the

pooled sample (of length n =
∑k

j=1 nj). Let j index samples, while i index observations

within a sample. The sums of ranks for the separate samples is denoted by Rj =
∑nj

i=1 rj,i.
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The Kruskal–Wallis test statistic is

KW =
12

(n− 1)n

k∑
j=1

1

nj

(
Rj −

n+ 1

2
nj

)2

.

Let asymptotically n → ∞ and minj nj → ∞ so that λj ≡ limminj nj→∞ nj/n 6= 0 for

j = 1, ..., k. Under these circumstances, KW is asymptotically distributed as χ2 (k − 1) .

The Kruskal–Wallis test may be run via a linear regression.

Theorem 6 The Kruskal–Wallis KW test is asymptotically equivalent to an OLS-based

Wald test for the nullity of all intercepts in a linear multiple regression of rj,i − n+1
2
, j =

1, · · · , k − 1, on a constant, i.e. for the null

H0 : αj = 0, j = 1, · · · , k − 1

in the regression system

rj,i −
n+ 1

2
= αj + ηij, j = 1, · · · , k − 1, (6.13)

with observations running from i = 1 to i = nj for equation j.

Remark 2 A similar, but different, situation is considered in statistical literature. A fixed

number s of products are ranked by a fixed number k of experts. Denote by Ki,j the ranking

that the expert j gave the product i (Ki,j varies from 1 to s), and by Ni,j the number of times

the product i received ranking j.

The Friedman test statistic

F =
12

ks (s+ 1)

s∑
j=1

(
k∑
j=1

Ki,j −
s+ 1

2
k

)2

is used to test for homogeneity of products. It is asymptotically distributed as χ2 (s− 1) as

the number of experts increases. It is possible to show by following the same steps as in the

proof of Theorem 6 that F is asymptotically equivalent to an OLS-based Wald test for

H0 : αi = 0, i = 1, · · · , s− 1
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in the regression system

Ki,j −
s+ 1

2
= αi + ηij, i = 1, · · · , s− 1, (6.14)

with observations running from j = 1 to j = k.

The Anderson test statistic

A =
s

k

s∑
i=1

s∑
j=1

(
Ni,j −

k

s

)2

,

asymptotically distributed as χ2
(
(s− 1)2) as the number of experts increases, is used to test

for homogeneity of products. It is possible to show by following the same steps as in the proof

of Theorem 1 that A is asymptotically equivalent to an OLS-based Wald test for

H0 : αi,j = 0, i, j = 1, · · · , s− 1

in the regression system

Ni,j −
k

s
= αi,j + ηij, i, j = 1, · · · , s− 1, (6.15)

with one observation per equation.

Suppose the vector of ranks (R1, ..., Rn)′ corresponds to a random sample of length n.

The Spearman rank statistic ρ is defined as

ρ =
12

(n− 1)n

n∑
i=1

(
i− n+ 1

2

)(
Ri −

n+ 1

2

)
.

Theorem 7 The Spearman rank statistic ρ is equal to n+ 1 times the OLS slope coefficient

in a linear regression of Ri on a constant and observation number i

Ri = α + βi+ η, (6.16)

with observations running from i = 1 to i = n.

13



As a consequence, an OLS-based t test for the null H0 : β = 0 may be used to test for

independence of elements in a given sample, which is often realized in practice by informally

comparing ρ to zero.

The pairwise Spearman rank correlation coefficient ρ between two vectors of ranks (R1, ..., Rn)′

and (S1, ..., Sn)′ corresponding to two random samples of length n is defined as

ρ =

∑n
i,j=1 (Sj − Si) (Rj −Ri)√∑n

i,j=1 (Sj − Si)2∑n
i,j=1 (Rj −Ri)

2
.

Theorem 8 The Spearman rank correlation coefficient ρ is equal the OLS slope coefficient

in a linear regression of Rj −Ri on Sj − Si

Rj −Ri = β (Sj − Si) + η, (6.17)

with n2 observations for all possible pairs (i, j) where each index runs from 1 to n. Alterna-

tively, one may switch Sj − Si and Rj − Ri in the regression (6.17). A constant term may

be innocuously introduced into the regression (6.17).

As a consequence, an OLS-based t test for the null H0 : β = 0 may be used to test for

independence of two given random samples.

Remark 3 In the context of the previous remark, the Umbrella test statistic

U =
12√

k(s− 1)s(s+ 1)

(
s∑
i=1

i

k∑
j=1

Ki,j −
1

2
ks(s+ 1)2

)
,

asymptotically distributed as N(0, 1) as the number of experts increases, is used to test for

homogeneity of products. It is possible to show that U is asymptotically equivalent to an

OLS-based t test for

H0 : β = 0

in the regression

Ki,j = α + βi+ ηij, (6.18)

with observations running from i, j = 1 to i = s, j = k.
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A Appendix: proofs

Proof. [of Theorem 1] Let us represent X2 as

X2

n
=

`x∑
i=1

`y∑
j=1

(pi,j − pi,·p·,j)2

pi,·p·,j
+

`x∑
i=1

(
pi,`y+1 − pi,·p·,`y+1

)2

pi,·p·,`y+1

(A.1)

+

`y∑
j=1

(p`x+1,j − p`x+1,·p·,j)
2

p`x+1,·p·,j
+

(
p`x+1,`y+1 − p`x+1,·p·,`y+1

)2

p`x+1,·p·,`y+1

.

Let us analyze the numerators in the second, third and fourth terms in (A.1). Note that

pi,`y+1 − pi,·p·,`y+1 =

(
pi,· −

`y∑
j=1

pi,j

)
− pi,·

(
1−

`y∑
j=1

p·,j

)

= −
`y∑
j=1

(pi,j − pi,·p·,j) .

Similarly,

p`x+1,j − p`x+1,·p·,j = −
`x∑
i=1

(pi,j − pi,·p·,j) .

Finally,

p`x+1,`y+1 − p`x+1,·p·,`y+1 =

(
1−

`x∑
i=1

`y∑
j=1

pi,j −
`x∑
i=1

pi,· −
`y∑
j=1

p·,j

)

−

(
1−

`x∑
i=1

pi,·

)(
1−

`y∑
j=1

p·,j

)

= −
`x∑
i=1

`y∑
j=1

(pi,j − pi,·p·,j) .

The denominators in all terms in (A.1) asymptotically have probability limits

pi,·p·,j
p→ πi,·π·,j,

pi,·p·,`y+1
p→ πi,·

(
1−

`y∑
j=1

π·,j

)
,

p`x+1,·p·,j
p→

(
1−

`x∑
i=1

πi,·

)
π·,j,

p`x+1,·p·,`y+1
p→

(
1−

`y∑
j=1

π·,j

)(
1−

`x∑
i=1

πi,·

)
.
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Therefore, the X2 statistic is asymptotically equivalent to

X2

n
A
=
X̃2

n
=

`x∑
i=1

`y∑
j=1

(pi,j − pi,·p·,j)2

πi,·π·,j
+

`x∑
i=1

(∑`y
j=1 (pi,j − pi,·p·,j)

)2

πi,·

(
1−

∑`y
j=1 π·,j

)
+

`y∑
j=1

(∑`x
i=1 (pi,j − pi,·p·,j)

)2(
1−

∑`x
i=1 πi,·

)
π·,j

+

(∑`x
i=1

∑`y
j=1 (pi,j − pi,·p·,j)

)2(
1−

∑`y
j=1 π·,j

)(
1−

∑`x
i=1 πi,·

) .
Note that

pi,j − pi,·p·,j = Ii,·I·,j − Ii,·I·,j =
(
Ii,· − Ii,·

) (
I·,j − I·,j

)
.

Now we can represent X̃2 as a quadratic form of the type

X̃2 = nξ′Ξξ,

where

ξ = ξx ⊗ ξy,

ξx =
∥∥Ii,· − Ii,·∥∥`xi=1

,

ξy =
∥∥I·,j − I·,j∥∥`yj=1

,

i.e. ξ is `x`y×1 vector containing values of
(
Ii,· − Ii,·

) (
I·,j − I·,j

)
, with index j running faster

than index i. The `x`y × `x`y matrix Ξ contains weights implied by the formula for X̃2, and

is equal to

Ξ = diag

{
1

πi,·

}`x
i=1

⊗ diag

{
1

π·,j

}`y
j=1

+ diag

{
1

πi,·

}`x
i=1

⊗
ι`yι
′
`y

1−
∑`y

j=1 π·,j

+
ι`xι
′
`x

1−
∑`x

i=1 πi,·
⊗ diag

{
1

π·,j

}`y
i=1

+
ι`xι
′
`x

1−
∑`x

i=1 πi,·
⊗

ι`yι
′
`y

1−
∑`y

j=1 π·,j

= Ξx ⊗ Ξy,

where

Ξx = diag

{
1

πi,·

}`x
i=1

+
ι`xι
′
`x

1−
∑`x

i=1 πi,·
,

Ξy = diag

{
1

π·,j

}`y
j=1

+
ι`yι
′
`y

1−
∑`y

j=1 π·,j
.
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The inverse of Ξ equals

Ξ−1 = Vx ⊗ Vy,

Vx = diag {πi,·}`xi=1 − πxπ
′
x,

Vy = diag {π·,j}`yj=1 − πyπ
′
y,

which can be easily established by direct multiplication.

To summarize,

X2 A
= n

(
ξx ⊗ ξy

)′
(Vx ⊗ Vy)−1 (ξx ⊗ ξy) ,

which is (up to substitution of Vx and Vy by their sample analogs) a Wald test statistic for

testing the null hypothesis of joint insignificance of all slope coefficients in a linear multiple

regression of I·,j on Ii,· with a constant in each equation. Indeed, the standardizing matrix

Vx ⊗ Vy contains variances and covariances of “regressors” and “dependent variables” under

their independence, because

var (Ii,·) = πi,· − π2
i,·,

cov (Ii1,·, Ii2,·) = −πi1,·πi2,·,

and similarly for entries of Vy.

The last conclusion follows from the symmetry between x and y.

Proof. [of Theorem 2] The residual variance from this regression is

σ̂2 =
1

n

n∑
t=1

(
`+1∑
i=1

(
Ii,i − Ii,i −

(
Ii,· − Ii,·

)
I·,i −

(
I·,i − I·,i

)
Ii,·
))2

=
1

n

n∑
t=1

(
`+1∑
i=1

(Ii,i − πi,i − (Ii,· − πi,·)π·,i − (I·,i − π·,i)πi,·)

)2

+ op (1)

p→ var
(
f
(
‖Ii,j‖`+1

i=1

`+1

j=1

))
,
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where

f
(
‖Ii,j‖`+1

i=1

`+1

j=1

)
=

`+1∑
i=1

(Ii,i − Ii,·π·,i − I·,iπi,·)

=
`+1∑
i=1

(
Ii,i −

(
`+1∑
j=1

Ii,j

)
π·,i −

(
`+1∑
j=1

Ij,i

)
πi,·

)
.

Note that var
(
‖Ii,j‖`+1

i=1

`+1

j=1

)
= diag (Π)−ΠΠ′, where Π = ‖πi,j‖`+1

i=1

`+1

j=1
. As f (·) is linear in

all elements,

var
(
f
(
‖Ii,j‖`+1

i=1

`+1

j=1

))
=
∂f (Π)

∂Π′
(diag (Π)− ΠΠ′)

∂f (Π)

∂Π
,

which coincides with Vs in Pesaran and Timmermann (1992, p.463; 1994, formula (6)).

Proof. [of Theorem 3] The proof goes along the same lines as that of Theorem 1. Let us

represent X2 as

X2

n
=

`x∑
i=1

`y∑
j=1

(pi,j − pi,·π·,j)2

pi,·π·,j
+

`x∑
i=1

(
pi,`y+1 − pi,·π·,`y+1

)2

pi,·π·,`y+1

(A.2)

+

`y∑
j=1

(p`x+1,j − p`x+1,·π·,j)
2

p`x+1,·π·,j
+

(
p`x+1,`y+1 − p`x+1,·π·,`y+1

)2

p`x+1,·π·,`y+1

.

Let us analyze the numerators in the second, third and fourth terms in (A.2). Note that

pi,`y+1 − pi,·π·,`y+1 =

(
pi,· −

`y∑
j=1

pi,j

)
− pi,·

(
1−

`y∑
j=1

π·,j

)

= −
`y∑
j=1

(pi,j − pi,·π·,j) ,

p`x+1,j − p`x+1,·π·,j =

(
p·,j −

`x∑
i=1

pi,j

)
−

(
1−

`x∑
i=1

pi,·

)
π·,j

= −
`x∑
i=1

(pi,j − pi,·π·,j) + (p·,j − π·,j) ,
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p`x+1,`y+1 − p`x+1,·π·,`y+1 =

(
1−

`x∑
i=1

`y∑
j=1

pi,j −
`x∑
i=1

pi,· −
`y∑
j=1

p·,j

)

−

(
1−

`x∑
i=1

pi,·

)(
1−

`y∑
j=1

π·,j

)

= −
`x∑
i=1

`y∑
j=1

(pi,j − pi,·π·,j)−
`y∑
j=1

(p·,j − π·,j) .

Therefore, the X2 statistic is asymptotically equivalent to

X2

n
A
=
X̃2

n
=

`x∑
i=1

`y∑
j=1

(pi,j − pi,·π·,j)2

πi,·π·,j
+

`x∑
i=1

(∑`y
j=1 (pi,j − pi,·π·,j)

)2

πi,·

(
1−

∑`y
j=1 π·,j

)
+

`y∑
j=1

(∑`x
i=1 (pi,j − pi,·π·,j)− (p·,j − π·,j)

)2(
1−

∑`x
i=1 πi,·

)
π·,j

+

(∑`x
i=1

∑`y
j=1 (pi,j − pi,·π·,j) +

∑`y
j=1 (p·,j − π·,j)

)2(
1−

∑`y
j=1 π·,j

)(
1−

∑`x
i=1 πi,·

) .

Note that

pi,j − pi,·π·,j = Ii,· (I·,j − π·,j)

and

p·,j − π·,j = I·,j − π·,j.

Now we can represent X̃2 as a quadratic form of the type

X̃2 = nξ′Ξξ,

where

ξ = ξx ⊗ ξy,

ξx =

(
1

‖Ii,·‖`xi=1

)
,

ξy = ‖I·,j − π·,j‖`yj=1 .
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The (`x + 1) `y × (`x + 1) `y matrix Ξ contains weights implied by the formula for X̃2, and

is equal to

Ξ = Ξx ⊗ Ξy,

where

Ξx =


1

1−
∑`x

i=1 πi,·
−

ι′`x
1−

∑`x
i=1 πi,·

− ι`x

1−
∑`x

i=1 πi,·
diag

{
1

πi,·

}`x
i=1

+
ι`xι
′
`x

1−
∑`x

i=1 πi,·

 ,

Ξy = diag

{
1

π·,j

}`y
i=1

+
ι`yι
′
`y

1−
∑`y

j=1 π·,j
.

The inverse of Ξ equals

Ξ−1 = Ex ⊗ Ey,

Ex =

 1 π′x

πx diag {πi,·}`xi=1

 ,

Ey = diag {π·,j}`yi=1 − πyπ
′
y,

which can be easily established by direct multiplication.

To summarize,

X2 A
= n

(
ξx ⊗ ξy

)′
(Ex ⊗ Ey)−1 (ξx ⊗ ξy) ,

which is (up to substitution of Ex and Ey by their sample analogs) a Wald test statistic for

testing the null hypothesis of joint insignificance of all coefficients in a linear multiple regres-

sion of I·,j − π·,j on Ii,· with a constant in each equation. Indeed, the standardizing matrix

Ex ⊗ Ey contains expectations of cross-products of different “regressors” and expectations

of cross-products of different “dependent variables” under independence of “regressors” and

“dependent variables”.

Proof. [of Theorem 4] The conclusion is obvious, because Qn already has the form of the

Wald test, and V is a sample analog to var
(
‖Ii,· − I·,i‖`+1

i=1

)
.
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Proof. [of Theorem 5] The pivotization in the Wald test statistic equals the variance matrix

of the ` (`+ 1) /2 × 1 vector of differences Ii,j − Ij,i, i = 1, · · · , ` + 1, j = 1, · · · , i − 1, i.e.

var
(
‖Ii,j − Ij,i‖

∣∣`+1
i=1

∣∣i−1

j=1

)
, where the variance of each element Ii,j − Ij,i equals

var (Ii,j) + var (Ij,i) + cov (Ii,j, Ij,i) = πi,j (1− πi,j) + πj,i (1− πj,i) + 2πi,jπj,i

which under H0 is asymptotically

πi,j + πj,i.

The covariance between element Ii,j − Ij,i and Im,k − Ik,m where k 6= j or i 6= m equals

cov (Ii,j, Im,k)− cov (Ii,j, Ik,m)− cov (Ij,i, Im,k) + cov (Ij,i, Ik,m)

= 2 (πi,jπm,k − πi,jπk,m − πj,iπm,k + πj,iπk,m)

= (πi,j − πj,i) (πm,k − πk,m) = 0.

Hence, var
(
‖Ii,j − Ij,i‖

∣∣`+1
i=1

∣∣i−1

j=1

)
equals diag

{
{πi,j + πj,i}`+1

i=1

}i−1

j=1
, and its inverse is

diag
{{

(πi,j + πj,i)
−1}`+1

i=1

}i−1

j=1
, which is exactly the weighting system in Un.

Proof. [of Theorem 6] The vector containing all α̂j is equal to

α̂j =
1

nj

nj∑
i=1

(
rj,i −

n+ 1

2

)
=

1

nj

(
Rj − nj

n+ 1

2

)
.

To compute the asymptotics for this vector, we need the covariance matrix for the vector

‖Rj/nj‖k−1
j=1 .

Under the hypothesis of independence, each rank rj,i is distributed multinomially on

1, 2, ..., n with equal probabilities, therefore

var[rj,i] = E
[
r2
j,i

]
− E [rj,i]

2 =
n∑
i=1

i2

n
−
(
n+ 1

2

)2

=
n2 − 1

12
.

Now, for j1 6= j2 or i1 6= i2

cov[rj1,i1 , rj2,i2 ] = E [E [rj1,i1|rj2,i2 ] rj2,i2 ]− E [rj,i]
2

=
n∑
l=1

1

n

(∑
i6=l

i

n− 1

)
l −
(
n+ 1

2

)2

= −n+ 1

12
.
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Then also

var

[
Rj

nj

]
= var

[
1

nj

nj∑
i=1

rj,i

]
=

1

nj
var[rj,i] +

n2
j − nj
n2
j

cov[rj,i1 , rj,i2 ]

=
n+ 1

12

(
n

nj
− 1

)
and for j1 6= j2

cov

[
Rj1

nj1
,
Rj2

nj2

]
= cov

[
1

nj1

nj1∑
i1=1

rj1,i1 ,
1

nj2

nj2∑
i2=1

rj2,i2

]
= −n+ 1

12
.

Then it follows that

α̂√
n

=
1√
n

∥∥∥∥Rj

nj
− n+ 1

2

∥∥∥∥k−1

j=1

d→ 1√
12
N

(
0, diag

{
1

λj

}k−1

j=1

− ιk−1ι
′
k−1

)
.

Hence, the Wald test statistic for H0 is

W =
12

n
α̂′

(
diag

{
1

λj

}k−1

j=1

− ιk−1ι
′
k−1

)−1

α̂

=
12

n
α̂′

diag {λj}k−1
j=1 +

‖λj‖k−1
j=1

(
‖λj‖k−1

j=1

)′
1−

∑k−1
j=1 λj

 α̂

=
12

n

k−1∑
j=1

λj
n2
j

(
Rj − nj

n+ 1

2

)2

+
12

nλk

(
k−1∑
j=1

λj
nj

(
Rj − nj

n+ 1

2

))2

.

Obviously, the first term is asymptotically equivalent to

12

(n− 1)n

k−1∑
j=1

1

nj

(
Rj −

n+ 1

2
nj

)2

,

which is the first k − 1 terms in KW. The last term is asymptotically equivalent to

12

(n− 1)n

1

n−
∑k−1

j=1 nj

(
k−1∑
j=1

Rj −
n+ 1

2

k−1∑
j=1

nj

)2

=
12

(n− 1)n

1

n−
∑k−1

j=1 nj

(
n(n+ 1)

2
−Rk −

n+ 1

2
(n− nk)

)2

=
12

(n− 1)n

1

n−
∑k−1

j=1 nj

(
Rk −

n+ 1

2
nk

)2

,
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which is the last, kth, term in KW.

Proof. [of Theorem 7] The sample slope coefficient is in the regression (6.16)

β̂ =

∑n
i=1 (i− ı̄)

(
Ri − R̄

)∑n
i=1 (i− ı̄)2 ,

where ı̄ is the average over observation number, i.e. ı̄ = (n+ 1) /2, and R̄ is a sample average

rank, i.e. R̄ = ı̄. Then
∑n

i=1 (i− ı̄)2 = (n− 1)n (n+ 1) /12, and

β̂ =
12

(n− 1)n (n+ 1)

n∑
i=1

(
i− n+ 1

2

)(
Ri −

n+ 1

2

)
=

ρ

n+ 1
.

Proof. [of Theorem 8] The sample slope coefficient is in the regression (6.17)

β̂ =

∑n
i,j=1 (Sj − Si) (Rj −Ri)∑n

i,j=1 (Sj − Si)2 ,

because by construction the averages of regressors and regressands over the n2 observations

are zero. Taking into account that
∑n

i,j=1 (Sj − Si)2 =
∑n

i,j=1 (Rj −Ri)
2 by construction of

rank vectors, we get β̂ = ρ. When an additional constant term is included in the regression,

its estimate is exactly zero because the sample averages of both sides equal zero.

B Appendix: supplimentary material on the Pesaran–Timmermann test

Let ιq be q× 1 vector of ones for an integer q, Υ = ι`2 − vec (I`) , Vx = diag {πi,·}`i=1− πxπ
′
x,

vx = ‖πi,· (1− πi,·)‖`+1
i=1 , Vy = diag {π·,j}`j=1 − πyπ

′
y, and vy = ‖π·,j (1− π·,j)‖`+1

j=1 . Let also B

denote the matrix of slope coefficients in the system (3.2).

Theorem 9 The Pesaran–Timmermann Sn test is asymptotically equivalent to an OLS-

based t test for the null

H0 : Υ′vec (VxB
′) = 0

in the regression system 3.2. Alternatively, the Pesaran–Timmermann Sn test is asymptoti-

cally equivalent to an OLS-based t test for the null

H0 : Υ′vec (VyB
′) = 0
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in the regression system 3.2 where Ii,· are regressed on I·,j rather than I·,j are regressed on

Ii,·.

Proof. [of Theorem 9] As follows from the proof of Theorem 1,

Sn =
∑̀
i=1

(pi,i − pi,·p·,i) + p`+1,`+1 − p`+1,·p·,`+1

=
∑̀
i=1

(pi,i − pi,·p·,i)−
∑̀
i=1

∑̀
j=1

(pi,j − pi·p·j)

= −Υ′
(
ξx ⊗ ξy

)
.

Let B̂ be the OLS estimator of B. Because vec
(
B̂′
)

=
(
I` ⊗ V̂ −1

x

) (
ξx ⊗ ξy

)
, we have

Sn
A
= −Υ′ (I` ⊗ Vx) vec (B′) = −Υ′vec (VxB

′) .

The last conclusion follows from the symmetry between x and y.

Theorem 10 The Pesaran–Timmermann Sn test is asymptotically equivalent to an OLS-

based t test for the null

H0 : v′xβ = 0,

where β = ‖βi‖
`+1
i=1 , in the regression system

Ii,· = αi + βiI·,i + ηi, i = 1, · · · , `+ 1. (B.1)

Alternatively, the Pesaran–Timmermann Sn test is asymptotically equivalent to an OLS-

based t test for the null

H0 : v′yβ = 0

in the regression system B.1 where I·,i are regressed on Ii,· rather than Ii,· are regressed on

I·,i.
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Proof. [of Theorem 10] Consider the regression system (B.1). Let β̂ be the OLS estimator

of β. Because diag

{(
I·,i − I·,i

)2
}`+1

i=1

β̂ =
∥∥∥(Ii,· − Ii,·) (I·,i − I·,i)∥∥∥`+1

i=1
, we have

Sn =
`+1∑
i=1

(pi,i − pi,·p·,i) = ι′`+1

∥∥∥(Ii,· − Ii,·) (I·,i − I·,i)∥∥∥`+1

i=1

A
= v′xβ.

The last conclusion follows from the symmetry between x and y.

One can see that if one wants to run the Pesaran–Timmermann regression-based test,

one has to test a restriction that contains nuisance parameters (Vx, Vy, vx or vy). These,

of course, are unknown and may be estimated before running the test, but their estimation

generally has an impact on the asymptotic distribution of the test statistic and hence may

distort the asymptotic size.
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