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Abstract

This paper considers an in…nitely repeated Cournot duopoly with Imperfect Mon-

itoring. Each …rm does not observe the production level of the other …rm, but instead

observes only a noisy private signal (the price of the product). We show that if the

support of the signal is not too large, there is an equilibrium in which both …rms pro-

duce the cartel level of output. This equilibrium is a result of a slight modi…cation of

the grim trigger strategy, showing that the concept of a grim trigger strategy works in

a more general context than has previously been envisioned. A Folk Theorem is also

established for our game.
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1 Introduction

The question of how cooperative motives can arise in a competitive industry has been debated

for a long time. Starting with Stigler’s work (1964), the dynamic motivation for forming a

cartel has been extensively considered. The idea stems from restricting industry production

to the monopoly level in the long run. This level of production gives an extra pro…t to each

member of the cartel compared to the short run Nash equilibrium - e.g. the Cournot outcome.

The monopoly output is supported by the threat that a deviation of any member from the

cooperative cartel output is punished by moving the whole industry to the static Nash

Equilibrium outcome. This threat is sequentially rational, and generates a self-enforcing

cartel in the industry.

The kind of threats that can be credibly made is sensitive to the information structure

available to the …rms. We can identify three cases.

First, the case of Perfect Monitoring is one in which there is perfect observability of every

…rm’s output. For this case, it has been shown that for a su¢ciently high discount rate, the

…rms can cooperate forever (e.g. Friedman (1971) and Abreu (1982)).

In the case of Public Monitoring …rms know only their own output and a publicly observed

signal related to the joint actions of all …rms - typically, the price of the product in the

market. For this case, the following industry behavior has been shown to sustain the cartel

output: …rms cooperate as long as the price is higher than some threshold price level, and

the industry falls to the non-cooperative phase for several periods in response to a low price

realization. After a low-price phase, …rms curtail production and the industry returns to one

characterized by cooperation. Hence in equilibrium, production ‡uctuates according to the

dynamics of the signal. More details can be found in Green and Porter (1984) and Abreu,

Pearce and Stacchetti (1986).1

This paper examines a model with the third type of information structure, Private Mon-

itoring. Private monitoring occurs when each …rm observes its own private signal of the

actions of the other …rms. In the industry modeled, there are two …rms interacting for

in…nitely many periods. The product is homogeneous, and each …rm observes its own pro-
1Empirical support for this type of price behavior can be found in Brander and Zhang (1993), Ellison

(1994) and Levenstein (1997).

2



duction and a realized price, the latter of which is imperfectly related to the actions of the

other …rm. This price is, in fact, a signal imperfectly related to the actions of the other …rm.

We assume that the realization prices may di¤er between the …rms although the product

is homogenous. Speci…cally, each …rm observes a separate realized price that is a function

of the aggregate output and a …rm speci…c random shock. The shocks are assumed to be

independent and thus a …rm’s realized price is private information. This is a novel assump-

tion in the oligopoly literature and not only captures the empirical evidence that prices do

di¤er for the same good and but is also closely related to the speci…cation used in models

of di¤erentiated products.2 In the model, a …rm uses its realized price and its knowledge of

the structure of the demand curve to obtain an estimate of the other …rm’s production level.

We refer to this estimate, which is used heavily in the paper, as a …rm’s signal.

Because of their more realistic nature, private monitoring games have recently become

quite popular, with Prisoner’s Dilemmas being the most commonly studied stage game.3

In private monitoring games there is asymmetric information, as each player observes her

opponents’ actions imperfectly. So far it has been shown that for in…nitely repeated games,

similar to the game considered in the present paper, the Folk Theorem generally fails.4 This

happens because unlike in a public or perfect monitoring environment, …rms do not have any

joint knowledge of the behavior of each other; therefore, they cannot coordinate a switch to

a punishment phase.5 The complications stemming from the private monitoring information

structure have made it hard to examine under what conditions, if any, …rms would be able

to coordinate their actions. The central goal of this paper is to address this question.

The game theory literature o¤ers some insight into this problem. Matshushima (1991) and

Compte (2002) examine a general class of games with a simple structure (a …nite number of

possible actions and signal realizations). They show that, in general, no degree of cooperation

can be maintained. Malaith and Morris (2002) consider games of “almost public monitoring”
2Tedeschi (1994) uses similar approach in the public monitoring contest.
3See, for example, Bhaskar (1999), Ely and Valimaki (2002), Mailath and Morris (2002), Piccione (2002)

and Sekiguchi (1998).
4Another name for this phenomenon is the “anti-folk theorem” result. See Compte (2002) and Matsushima

(1991).
5Although, if communication is allowed, which is excluded in our model, then is possible to have positive

result. See Aoyagi (1997), Compte (1998) and Kandori and Matsushima (1998).
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in which each player observes the same signal with probability close to one. They …nd an

almost e¢cient outcome in those games. An approach similar to theirs applied to oligopoly

games might yield an outcome close to full cooperation. Therefore, the literature suggests

that in oligopoly models, there might be at most partial cooperation when the Private

Information structure is close to the Public one.

The information structure is a key factor preventing the lack of perfect cooperation under

private monitoring. However, it is not the only obstacle, as evidenced by the fact that perfect

cooperation is not attainable under public monitoring. Another factor that prevents full

cooperation is the range of signal realizations. In fact, previous research has only considered

a constant range for signal realizations - namely, the support of the signal realizations does

not depend on …rms’ actions.

Consider an equilibrium strategy that forces all players to play the mono-poly outcome

always. This means that each …rm should produce the cooperative outcome for every possible

realization of its signal. When a particular …rm takes an action, each of its competitors

observes a noisy signal of that …rm’s action. By assumption, the supports of those signals

are independent of the …rm’s action. Since in the proposed equilibrium the opponents always

produce at the collusive level, the best response for the …rm is to produce an amount higher

than the collusive level. In other words, it is not rational for the …rm to sustain cooperation

all the time, which means that there is no full cooperation in these games. Instead, these

games display almost full cooperation. To attain it, the support of the signal received by

a …rm is usually divided into two regions: one where the …rm sustains cooperation, and

another where the …rm starts punishment. When the …rms cooperate, a …rm is more likely

than not to receive signals that induce it to sustain cooperation, but occasionally it gets

signals that prompt it to punish, despite the fact that no cheating has occurred.

In the contrast to previous work the key property of the model considered in this paper

is that the support of the signal, which is assumed to be bounded, changes with the actions

of the …rms. In this case, if a …rm observes a signal outside the range that corresponds

to cooperation, it is certain that a deviation has occurred, but this fact is not common

knowledge. Since this information is the private knowledge of the detecting …rm, a strategy

that calls for an immediate coordinated punishment cannot be implemented. Although a
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shifting support for the signal does not remove the informational asymmetry, it creates

conditions which allow full cooperation and for the Folk Theorem to hold.

Under a shifting support for the signal we show that for signals without too much noise -

signals with su¢ciently narrow support - all …rms produce the monopoly output level all the

time in equilibrium. The equilibrium shown is the result of …rms following a modi…ed “grim

trigger” strategy, which among other things speci…es that a …rm detecting a deviation in the

current period produces a high output level in the next period. This action transmits to the

industry the information that a deviation has been detected, thereby triggering all industry

to punish the deviator in all future periods. Other components of the strategy make this

initiation of punishment optimal.

It will be shown that this strategy allows the …rms to realize the full monopoly pro…t

for the same range of discount factors as in the full information case, as long as the range

of varying of realized prices is not too wide. This …nding thus demonstrates that a key

result from an environment with perfect monitoring will hold in an environment with private

monitoring, and that simple variants of the Grim Trigger Strategy are applicable in more

general contexts. Additionally, we obtain the following Folk Theorem result for mymodel: for

any individually rational feasible outcome there exists an equilibrium strategy that supports

this outcome, as long as the discount factor is su¢ciently high and the range of prices is

su¢ciently concentrated.

The structure of the paper is as follows. In Section 2 we give a formal description of the

model. Sections 3, 4 and 5 provide results for the perfect, public and private monitoring

cases, respectively. Section 6 considers the sensitivity of our results with respect to the shape

of the signal’s density, and Section 7 explores the Folk Theorem for our game. Section 8

presents some concluding observations.

2 The Model

Consider the following Cournot duopoly model with in…nitely many periods. There are

two identical …rms that produce the same product. In each time period t, …rm 1 produces

quantity q1t and …rm 2 quantity q2t . Since the …rms are identical, the superscript i is used
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for the …rm of interest and j for her opponent. In every period each …rm has zero cost of

production. In period t, …rm i’s realized price, pit, is imperfectly related to the current total

production of two …rms: qit+q
j
t . In the model, we assume the conventional linear dependence

between price and total quantity, but unlike most previous models price is assumed as

random. Namely, the price is a¤ected by a shock which is additive and not related to the

total quantity produced. The mathematical form of this relation is6

pit = 1 ¡ (qit + q
j
t) ¡ "jt (1)

where "jt is the price shock. The reason for this notation will be clear shortly.

As mentioned before, the scope of the paper is to consider the two situations of imperfect

monitoring: public and private. In both cases the player does not observe the rival’s action,

qjt , but rather observes her own realization price, pit, a price which may di¤er from that

of the other …rm. When the realized prices do not di¤er, the public monitoring situation

takes place. On the other hand, the realized prices might be di¤erent. Such the situation

will arise, for example, if …rms sell di¤erentiated products where each …rm faces the same

price disturbed by an idiosyncratic “brand shock”. This moves us to the private monitoring

environment which is the primary interest of this paper.

Let us describe the information available to a …rm. At the beginning of the period t …rm

i decides the amount to produce, qit. The realized price of the product pit becomes known

at the end of period t after the quantities qit and qjt are chosen. Firm i never observes the

quantity qjt produced by the other …rm. Instead, because the …rm knows the market demand

is given by (1), the “estimate” of the other …rm’s production ~qjt = pit+qit¡1 can be generated

at the end of period t. We refer to the signal as either pit or ~qjt , where the latter entity receives

such a denotation since it can be derived directly from the price realization, pit. The next

formula re‡ects the relation between the actual production of the rival and the estimate:

~qjt = q
j
t + "

j
t : (2)

From all of the above it follows that at the end of period t …rm i gets actual pro…t pitqit.

By formulae (1) and (2) the same pro…t expressed in terms of quantity produced and the
6This function without loss of generality presents any linear demand after proper rescaling.

6



estimate received in the end of the period is

P (qit; ~q
j
t) = (1 ¡ qit ¡ ~qjt )qit:

Next, it is assumed that each …rm has the intertemporal discount factor ±; so …rm i’s

utility, ui, will be the discounted sum of its pro…ts:

ui = (1¡ ±)
+1X

t=0

±tP (qit ; ~q
j
t ):

In the paper we assume that the shocks ("1t ; "2t ) are independent and identically distrib-

uted (i.i.d.) over time with zero expected value.7 Furthermore, each shock "jt has a limited

support. Notice that the support of player i’s estimate ~qjt of player j’s action is always

centered around qjt due to formula (2), so that this support moves together with qjt . This

speci…cation contrasts with the one usually made in most of the imperfect monitoring lit-

erature, where each player’s action has no e¤ect on the support of the signal observed by

her opponent. For demonstration of the main results of the paper, we assume that "jt is

uniformly distributed on [¡r; r], an assumption which makes our problem more tractable

mathematically. A more general form for the support of the noise is considered in Section 6.

As we mentioned above, each …rm makes its decision before its pro…t is realized. The

decision is based upon beliefs about the action of the other player. Hence for the further

analysis it is necessary to introduce the notion of a …rm’s expected pro…t - the pro…t which

is expected by a …rm given that it knows the production of the other …rm:

¼E(qit; q
j
t) ´ EfP (qi; ~qj)jqjg = [1¡ qi ¡ qj]qi: (3)

where Ef:j:g stands for conditional expectation.

Note the following two facts:

- The expected pro…t has the same form as in the perfect monitoring case (there is no

shock)8;

- Our model incorporates the Perfect Information situation as a special case when r = 0.

Regarding the joint distribution of "1t and "2t , we consider three cases. The …rst one is the

case of perfect monitoring. The second is the case of public monitoring, in which shocks are
7The zero mean makes ~qj

t an unbiased estimator of qj
t

8This is due to the linear dependence between player i’s pro…t and the signal.
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the same "1t = "2t , i.e. the two …rms face the same price, but this price is still random and

does not give exact information about the quantity produced by the other …rm. The third

case is the private monitoring case, which arises when "1t and "2t are independent.9

3 Perfect monitoring and the “grim trigger” strategy

The model becomes a perfect monitoring model when r = 0. In this situation the so called

“grim trigger” strategy pro…le helps to support the cooperative outcome.

Brie‡y recall the concept of this kind of strategy. First of all, the e¢cient symmetric

outcome for this game takes place when each player chooses to produceQP = 1=4, the Pareto

e¢cient quantity for both players. This gives each player the maximum possible symmetric

pro…t ¼P = 1=8. We refer to this strategy as the restricted, optimal, cooperative or cartel

output. In a one period setting, this game has a unique Nash equilibrium, where each player

plays the Cournot outcome quantity QC = 1=3, and obtains a pro…t of ¼C = 1=9. We refer

to this strategy as noncooperative or Cournot output. The well known grim strategy, which

allows for certain values of ± the e¢cient outcome in an in…nitely repeated game with perfect

monitoring, is stated below.

The grim trigger strategy:

Produce the e¢cient quantity QP initially and as long as every player produced QP in

the last period; otherwise produce the disagreement quantity QC.

The above strategy is sequentially optimal only for certain values of ±. The next well

known result is quite simple and speci…es this range. We provide it here with the proof

because the range of ± turns out to be universal for all results of the paper.

Result 1: The grim trigger strategy is a subgame perfect equilibrium strategy for any

± 2 [±; 1), where ± = 9=17.

PROOF: To …nd the condition on the values of ± required to support equilibrium we need

to check that any one-period deviation from cooperation does not o¤set the long run losses.
9Of course, there is an intermediate case of partial correlation between the "’s, but the analysis of such

a case is beyond the scope of this paper.
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The highest possible short run gain comes from playing 3=8, which is the static game best

response to the opponent’s play of QP = 1=4. This deviation yields a pro…t of 9=64, which is

higher than the one period equilibrium payo¤ 1=8. In every subsequent period the deviator

is punished and gets the Cournot payo¤ 1=9. Hence, the sequential optimality of the grim

trigger strategy holds when the following inequality is true:

1
8

¸ (1¡ ±) 9
64

+ ±1
9

() ± ¸ ± = 9
17
: (4)

Q.E.D.

Note that ± will remain the lower bound for ± in the imperfect monitoring case, because

the deviation described in the proof of Result 1 is also possible in any other case with

expected short run payo¤s of the same form as in the perfect monitoring case.

4 Public monitoring and public grim trigger strategy

Under public monitoring both …rms sell their products for the same random price. In any

time period t, the …rm knows its own production levels in all previous periods and all past

price realizations. A …rm does not know the production of its opponent, but does know

that its opponent’s realization price is the same. For this reason, the price allows the …rms

to synchronize their actions. In other words, if the strategy of a …rm only depends on

only the price realization, …rms can cooperate while observing “good” prices and initiate an

immediate punishment after any “bad” price.

Now suppose that both …rms produce the cooperative outcome (QP ; QP ) = (1=4; 1=4)

at some period t ¡ 1. According to formula (1), the realization of the price will be in

[1 ¡ 2QP ¡ r; 1¡ 2QP + r] = [1=2¡ r; 1=2 + r]. Any realization of price below the threshold

level 1 ¡ 2QP ¡ r means that the rival has produced more than QP and as a result she

can be punished by moving to the Cournot outcome (QC ; QC) = (1=3; 1=3) forever.10 By

formula (1), the price is below 1¡ 2QP ¡ r if and only if the production qit¡1 of …rm i plus
10The …rm may also punish for too high price realizations, ones which are higher than 1 ¡ 2QP + r.

However, such action is not optimal since these signals are generated by low production, which decreases the

opponent’s pro…t.
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Figure 1: Signal realizations with non overlapping supports. We have drawn the possible

signal realizations when a player’s opponent plays either QP or QC. The corresponding supports

are separated. Hence if the player knows for sure that one of QP and QC has been played she can

correctly guess the right one.

the “estimate” of its rival’s production, ~qjt¡1, is less than 2QP + r. We use this observation

to construct the public grim trigger strategy as a minor adaptation of the Green and Porter

(1984) strategy.

Public grim trigger strategy:

qit = s(q
i
t¡1; ~q

j
t¡1) =

8
<
:
QP if qit¡1+ ~qjt¡1 · 2QP + r

QC otherwise
(5)

The above strategy helps to support the cartel outcome for the whole duration of the

game. Now the only question that remains is, for which values of ± and r does the above

strategy constitute a Perfect Bayesian Equilibrium in Pure Strategies?

From now on we will impose a restriction on highest possible level of r. This restriction

dramatically simpli…es the equilibrium analysis and as it is shown below is not an “active”

restriction for the main result of the paper. The model requires that the support of the

signal under the opponent’s play QP does not overlap with the support under QC . So for

the rest of the paper we consider noise such that

r · QC ¡QP
2

=
1
24
: (6)

Figure 1 provides a graphical presentation at this assumption.

The result below describes the set of values for ± and r for which the strategy under

interest supports an equilibrium.
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Result 2: Given restriction (6), the Public Grim Trigger Strategy is a Perfect Bayesian

Equilibrium in Pure Strategies strategy for any

± ¸ ± = 9
17

and r · ±
36(1¡ ±):

The borderline for r is an increasing function of ±. The intuition is the following. Suppose

we increase the noisiness of the signal to r0 > r. This lowers the probability of punishment

for the same level of deviation because the density of the noise becomes smaller. So to make

r0 a border point we need to increase the discount factor ± to some ±0 > ±. In this case

the level of long run punishment becomes higher and the short run bene…ts get smaller to

compensate having a lower probability of punishment.

PROOF: Any output level produced as a deviation is denoted by q. There are two types

of deviations. The …rst type is a “large” deviation, with q ¸ QP + 2r. This deviation is

detected by the opponent for sure, so the rest of the game continues with the certain outcome

(QC ; QC). Since the one period best response to QP = 1=4 , which is 3=8; is itself a large

deviation, the analysis is equivalent to that of the perfect monitoring case, which yields the

restriction on ± given by condition (4).

The second type of deviation is a “small” deviation. This happens whenQP · q · QP+2r

or q 2
£
1
4;

1
4 + 2r

¤
. In this situation, with probability q¡QP2r the price for the current period

will be lower than the threshold level, and the game will end up in the noncooperative

outcome (QC ; QC) which gives the one period payo¤ 1=9. Otherwise, the game will continue

in the cooperative phase with payo¤ 1=8 as prescribed by the equilibrium strategy. For our

strategy to be optimal the set of following inequalities must hold for all such q’s.

1
8

¸ (1¡ ±)(1¡ 1=4¡ q)q + ±
½µ

1¡ q ¡ 1=4
2r

¶
1
8
+
q ¡ 1=4

2r
1
9

¾
:

The left side of inequality represents the equilibrium payo¤. On the right side, which is

payo¤ from deviation, the …rst summand stands for the payo¤ during the deviation period

and the second summand corresponds to the expected continuation payo¤ after deviation.

Now notice that the deviation payo¤s are concave in q and equal to 1=8 when q = 1=4.
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Figure 2: Deviation payo¤s for public monitoring. We have drawn the deviation payo¤ for

three di¤erent values of r (r1 < r2 < r3) under …xed ±. The higher r the larger the payo¤ from

playing q. The line with zero derivative w.r.t. q at q = 1=4 corresponds to r = r2. For any r > r2

the payo¤ is higher than 1=8 for some q > 1=4 and for r · r2 the payo¤ from deviation is always

less than 1=8.

Hence, the derivative of these payo¤s with respect to q at q = 1=4 must be non-positive or

(1 ¡ ±)1
4

¡ ± 1
144r

· 0 () r · ±
36(1 ¡ ±) : (7)

The speci…c form of the relationship between r and ± arises because given q the deviation

payo¤ is an increasing function of r. This happens because the probability of punishment

(q ¡ 1=4)=(2r) (see Figure 3) becomes smaller the larger is r. We draw the borderline for r

in Figure 8 (r2 on Figure 2 is a point of the borderline).

The only thing left to specify is the players’ beliefs. Clearly, the trivial belief that the

opponent will play QP given the game has been in cooperation (qit¡1 + ~qjt¡1 · 2QP + r) and

QC otherwise, makes our strategy optimal. This belief is consistent with Bayes’ rule on the

equilibrium path of game. On this path every player always plays QP and observes that

~qjt¡1 · QP + r. The proof is complete by specifying that o¤ the equilibrium path a …rm

believes that its opponent will play QC .11 Q.E.D.

Notice that the lowest level of the signal’s noisiness (level of r) for which the cooperation

outcome cannot be sustained takes place for the lowest level of the discount factor, and is
11We are free to choose any beliefs o¤ the equilibrium path.
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equal to 1=36. This means that if r is no more then one third of the distance between the

cooperative and noncooperative production level then collusion is sustainable for the same

range of the discount factor as in the perfect monitoring environment.

5 Private monitoring and private grim trigger strategy

Now consider the private monitoring case, in which the signals are independent across players.

Recall that shocks that satisfy restriction (6) are only considered. These values of r are such

that any estimate of the opponent’s play when she actually plays QP = 1=4 di¤ers from any

estimate when her opponent actually plays QC = 1=3.

For this informational situation it is possible to construct an analog of the grim trigger

strategy. Suppose that both …rms agree to support the Pareto e¢cient outcome by producing

the same output QP , which gives the one-period expected pro…t ¼P = 1=8 to each …rm. As

with perfect monitoring, each …rm has the temptation to increase production in order to

increase its current pro…t. As in the public monitoring case, two types of deviation are

identi…ed.

The …rst type of deviation is the “large” one. This happens when the player produces

an output q higher than QP + 2r. In this case the opponent’s estimate of the player’s

action will lie between q ¡ r and q + r, while under cooperative play QP the signal would

be in the range [QP ¡ r;QP + r]. Hence the opponent for sure will detect the deviation

and be able to punish the rival by producing the noncooperative outcome QC . Because the

level of the noise r is restricted (restriction (6)) to make the Cournot outcome be a “large”

deviation, the punishment will de…nitely be recognized by the deviator. The rest of the game

will continue in the noncooperative state (QC; QC), which will give the one-period expected

pro…t ¼C = 1=9 to each …rm. In short the large deviations can be punished exactly in the

same way as in the perfect monitoring case, so we can apply the analysis that already exists

in the literature.

The situation is di¤erent when the player tries to make a “small” (QP · q · QP + 2r)

deviation. Suppose a player (deviator) decided to produce more than QP , say, q. This

action induces a signal ~q not known by the player but received by the opponent which might

13



be lower or larger than QP + r. If the signal’s realization is less than this value then the

opponent will not detect the deviation and no punishment will take place. When the signal

~q is higher than QP + r; the opponent will know for sure that a deviation occurred, and

she can implement the long run punishment by producing QC forever. The period after the

deviation, the deviator will …nd out for sure that the deviation has been detected. Therefore,

she will have to play QC from then on.

The above analysis implies that it might be possible to look for a strategy where any

detected deviation (~q > QP + r) is immediately punished by the opponent by playing QC

for the rest of the game. Let us now …nd out what is rational for the deviator to play in the

next period after deviation under these circumstances.

To simplify the exposition for the remainder of the section we refer to the subsequent

period after the deviation as the current period t.

While previously playing q > QP the deviator (player i) “alarmed” the opponent with

probability

®(q) = Probf~qi > QP + rjqi = qg;

which has the simple functional form given by

®(q) =
q ¡QP

2r
: (8)

Figure 3 provides a description of ®(q).

From now on we will refer to ® simply as “the detection probability”. Notice that ®

uniquely speci…es the last period deviation q by equation (8), so we can safely deal with the

probability instead of the action and use q for the current period action. Now let us analyze

what the player might do after producing the high output level that induced detection

probability ®. Before doing so, let us introduce notation for the expected one period payo¤

during the period after the deviation. The function ¼(q; ®) is the short notation for the

expected payo¤ from playing q in the current period when the opponent mixes between QP

and QC with probabilities (1 ¡ ®) and ® respectively. This function has the following form

¼(q; ®) = (1¡ ®) (1¡QP ¡ q) q +® (1 ¡QC ¡ q) q: (9)

Figure 4 shows the shape of function ¼(q; ®).
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Figure 3: The probability of detection. The shaded area denotes the probability of being

detected after a deviation to q. This probability equals probability of getting a signal in the range

[QP + r; q + r], which is ®(q) = (q ¡QP)=(2r).

One possibility is to playQP , the “penitent” action. Then in the next period the deviator

…nds out with probability ® that she is punished, and both players will play the Cournot

outcome (QC; QC) for the rest of the game. With probability (1¡ ®) the game continues in

the cooperative phase (QP ; QP). The decision to play QP gives the expected payo¤

¦P(®; ±) = (1¡ ±)¼(QP ; ®) + ± [(1¡ ®)¼P +®¼C] ; (10)

where the subscript P denotes the penitent action payo¤.

Another possibility is to produce outcome Q̂(®) which maximizes her expected current

period pro…t given by formula (9). By taking the derivative of ¼(q; ®) with respect to q, and

setting this derivative equal to zero, we get the expression for Q̂(®):

Q̂(®) = (1¡ ®)1¡QP
2

+ ®1 ¡QC
2
: (11)

The level of production Q̂(®) is always no less than the Cournot level QC for any value

of the probability ®. So this kind of action is a large deviation, and the game will de…nitely

continue at the Cournot level afterwards. This deviation will be detected for sure, and the

expected continuation payo¤ is

¦F (®; ±) = (1 ¡ ±)¼(Q̂(®); ®) + ±¼C ; (12)

where the subscript F refers to “the fatal action” Q̂(®).
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Figure 4: Expected one period pro…t. The one period expected pro…t, ¼(q; ®), is a parabola

with negative curvature. The maximum is at point Q̂(®) = (1 ¡ ®) 1¡QP2 + ® 1¡QC
2 with value

Q̂(®)2.

If the player is restricted in choosing between the penitent action QP or the fatal action

Q̂(®), she will pick the one which will give her the highest continuation payo¤. Intuitively,

when the detection probability ® is low enough one should expect that the action QP will

give a higher payo¤, while the action Q̂(®) is preferable for a high level of ®. This means

that there is a critical value of the probability under which the penitent and fatal actions

give the same continuation payo¤. We notate this probability as ®¤(±). It comes as the

solution to the system ¦P (®¤; ±) = ¦F(®¤; ±). By solving the this system we get

®¤(±) =
4
p

2±2 ¡ ± ¡ 7± +3
1¡ ± : (13)

The graph of ®¤(±) is shown on Figure 5.

If the deviator plays QP when ® · ®¤(±) and Q̂ (®) otherwise, then her opponent’s next

period reaction QC to the signal observed in the range (QP + r;QP + 3r] can be justi…ed

by the belief that the deviator plays action QP + 2r in the previous period. This action

generates the detection probability ® = 1 and so in the current period the deviator’s best

response is Q̂ (1) = QC. Therefore, in the next period the punisher is consistent by playing

QC while observing the signal in the range (QP + r;QP +3r]: she plays a best response to

her rival’s action QC. This …nishes the construction of the joint behavior of the players with

self-sustained beliefs.
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Figure 5: Probability Cuto¤ Level ®¤(±). The threshold level of the probability ®¤(±) is

monotonically increasing in ±. This happens because the higher the ±; the more signi…cant the

long run punishment compared to the short run bene…ts from deviation. For the same reason

®¤(±) = 0 and lim
±!1
®¤(±) = 1. The shaded area shows the value of ® for which the deviator will

want to produce QP , while for ® above the shaded area the deviator produces Q̂(®).

Having described the key features of the equilibrium strategy, we can present them for-

mally. The action qit of player i at time period t depends only on the information received

at period t¡ 1 (qit¡1; ~q
j
t¡1) and has the following form

Private grim trigger strategy:

s(qit¡1; ~q
j
t¡1) =

8
>>><
>>>:

QP if ®(qit¡1) · ®¤(±) and ~qjt¡1 ¡QP · r
Q̂

¡
®(qit¡1)

¢
if ®(qit¡1) > ®¤(±) and ~qjt¡1 ¡QP · r

QC otherwise

(14)

where functions ®(¢), ®¤(¢) and Q̂(¢) are given by formulae (8), (13) and (11), respectively.

This strategy is presented on Figure 6.
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Figure 6: Private Grim Trigger Strategy qit = s(qit¡1; ~q
j
t¡1). The dotted line shows the strategy

played by the player when the signal is “bad”, i.e. if a deviation of the opponent has been detected

(~qjt¡1 ¡ QP > r). In this case, the player always plays the Cournot outcome QC . The solid

line shows the strategy under a “good” signal (~qjt¡1 ¡ QP · r). The player follows the collusive

agreement QP when its last period production qit¡1 generates a probability of being punished by its

opponent no higher than the threshold level ®¤(±) (left part of the graph). In the case of a certain

detection, the player plays QC (right part of the graph). The middle part is a linear combination

of one period best responses QC and 1¡QP
2 on QC and QP , respectively. The weights are equal to

the probabilities of these actions played by the opponent.

We have already described two possible actions that the deviator may choose after her

own deviation. By previous construction the equilibrium payo¤ function is the maximum of

the penitent action payo¤ function (10) and the fatal action payo¤ function (12)

¦¤(®; ±) = maxf¦P (®; ±);¦F (®; ±)g: (15)

Figure 7 shows the equilibrium payo¤ function.

Another possible action after the deviation is to play some “small” deviation.12 This

action induces a detection probability ¯ which can calculated in exactly the same fashion as
12By the construction Q̂(®) gives highest continuation payo¤ among all large deviations.
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Figure 7: Equilibrium Payo¤ Function ¦¤(®; ±). The solid line marks the equilibrium payo¤

function, ¦¤(®; ±), which is the maximum of the penitent action payo¤, ¦P(®; ±), and the fatal

action payo¤, ¦F(®; ±). ¦¤(®; ±) is decreasing function of ®. When ± goes up function ¦P pivots

up around point the (0; ¼P) and function ¦F is “pressed” down to the level ¼C .

®. Given that the players will follow the equilibrium strategy (14) afterwards, the calculation

of the expected payo¤ after two small deviations with probabilities ® and ¯ is analogous to

the calculation of the expected payo¤s ¦F (®; ±) and ¦P(®; ±) and is equal to

¦0(®; ¯; ±; r) = (1 ¡ ±)¼(QP + 2¯r; ®) + ± [(1¡ ®)¦¤(¯; ±) +®¼C] : (16)

It turns out that the payo¤ functions given by formulae (15) and (16) are enough to

characterize the set of ± and r for which the above strategy constitutes the Nash Equilibrium.

We would also like to show that this equilibrium is one in which players’ out of equi-

librium beliefs are reasonable. Unfortunately, Kreps and Wilson’s de…nition of Sequential

Equilibrium (1982) only pertains to the …nite games - games with a …nite number of infor-

mation sets and a …nite number of actions available at each information set. Our game is not

…nite in either of these aspects. We therefore introduce a consistency principle in the spirit

of Kreps and Wilson to get a re…nement of a Perfect Bayesian Equilibrium. The following

de…nition uses the same concepts as the de…nition of Sequential Equilibrium applied and it

will be applied to our game.13 We call it:
13Similar concepts were used, for example, in Chatterjee and Samuelson (1990) and Simon and Stinchcombe
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De…nition 1: Nash Equilibrium with Consistent Beliefs in Pure Strategies:

Let H denote the collection of information sets of the game and let s:H ! A(H) specify

the pure strategy behavioral strategies of players. Then these strategies yield an equilibrium

if there exists an assessment (¹; s)14 consisting of beliefs ¹ and behavioral strategies s with

the following two properties:

i) Sequential rationality: for the given beliefs, the behavioral strategies yield the largest

continuation payo¤s at each information set.

ii) Consistency: Let sn be a set of completely mixed behavioral strategies. By the notion

of complete mixing we mean that for any information set h, supp(sn) ´ A(h). For each sn,

Bayes’ rule uniquely speci…es beliefs ¹n. Consistency means that there is a weakly converging

sequence of completely mixed strategy pro…les sn to s such that the induced beliefs ¹n weakly

converge to ¹. In short, (¹; s) = limn!1(¹n; sn).

The application of this concept yields the central result of the paper.15

Result 3: Fix a pair (±; r). The private grim trigger strategy described by (14) gives a

Nash Equilibrium with Consistent Beliefs in Pure Strategies if and only if following set of

inequalities holds

¦¤(®; ±) ¸ ¦0(®; ¯; ±; r) 8®; ¯ 2 [0; 1]; (17)

where, the payo¤ functions ¦¤ and ¦0 are given by formulae (15) and (16).

The above result demonstrates the interesting features of the constructed strategy. First,

any private history, regardless of its length and the sequence of observations, in‡uences

the player’s actions only through ®, the probability of punishment. Second, to check the

optimality of the strategy we need to check only one period deviations which are characterized

by the probability of inducing punishment ¯ from them.

The next result gives a closed form description of the set of parameter pairs (±; r) for

which the private grim trigger strategy is an equilibrium one and shows that this set is
(1995).

14Kreps and Wilson use the symbol ¼ instead of s.
15The proof is quite tedious and it is presented in Appendix (A1).
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nonempty.16

Result 4: Let § be the set of pairs (±; r) such that condition (17) holds. Then:

i) 9 ¹r(±) 2 C [±; 1) such that ¹r(±) > 1
48 for 8± 2 [±; 1) and § = f(±; r) : ± 2 [±; 1); 0 · r ·

¹r(±)g.
ii) Moreover ¹r(±) = minfr1(±); r2(±)g, where r1(±) and r2(±) are given by:

r1(±) =
1
48

±(3¡ ±)
³
3± ¡ 1¡ 2

p
2±2 ¡ ±

´

(1 ¡ ±)(± ¡
p

2±2 ¡ ±)
and

r2(±) =
1

204

9± ¡ 9
p

2±2 ¡ ± +2
p
2
r
±(17± ¡ 9)

³
3± ¡ 1 ¡ 2

p
2±2 ¡ ±

´

1 ¡ ± :

iii) ¹r(±) = 9
272, lim±!1

¹r(±) = 1
48.

The intuition behind the functions r1(±) and r2(±) is the following. Increasing the prob-

ability of detection ® decreases the long run equilibrium payo¤ at a constant rate, until

® = ®¤(±): From then on, the rate of decrease in the long run payo¤ drops since the player

switches from the penitent action to the fatal action. We show in Appendix (A2) that the

immediate bene…t from deviating …rst o¤sets the long run costs when ® = ®¤(±). Then, by

imposing the condition that the penitent action (¯ · ®¤(±)) can not be pro…table we get

the r1(±) part of the curve ¹r(±). The proof in the appendix shows that values of ¯ ' 0 are

critical, because the long run loss is linearly increasing with a increase in ¯, while the short

run pro…ts increase at a decreasing rate. Taking care of the fatal action (¯ > ®¤(±)) gives

the r2(±) part of the curve ¹r(±). In this case, the critical values of ¯ are di¢cult to determine

explicitly. Graphical analysis shows a negative relationship between ± and the critical value

of ¯.

The function ¹r(±) is depicted on Figure 8 along with the borderline for the public moni-

toring case.

From the picture we can see that the values of r for which cooperation can be sustained

are comparable to the ones in the public monitoring case. Also for r · 1=48; the cooperative
16The proof of this result is technical and can be found in Appendix (A2).
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Figure 8: The sets for which the Public and Private Strategies are equilibrium ones. The

shaded area marks possible pairs (±; r) for which the private strategy gives an equilibrium. The

line ±
36(1¡±) restricts the area for the public monitoring case. The dotted lines show the curves r1(±)

and r2(±).

equilibrium is sustainable for the same range of ± as in the perfect monitoring case. Notice

that unlike under public monitoring, the borderline ¹r(±) is not monotonic in ±. This is a

feature of our particular modi…cation of the grim trigger strategy. However, it might possible

to …nd other modi…cations for this strategy which would make the borderline monotonic.

As mentioned above, restriction (6) on r has no e¤ect on the set § because ¹r(±) < 1=24

for ± 2 [±; 1). Possible realizations of the signal under r · ¹r(±) when the opponent plays

either QP or QC are shown in Figure 9. We can see clearly that for any ± the supports do

not intersect, so our restriction on possible values of r is not critical.
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Figure 9: Possible signal realizations under private monitoring. The possible signal realizations

are marked by the shaded area when the player’s opponent plays either QP or QC , for r’s, which

make our private grim trigger strategy an equilibrium one. Note that the realizations are separated

for q = QP and q = QC .

6 Arbitrary distribution of noise

Our analysis so far has relied on the assumption that the signal noises are uniformly distrib-

uted. Surprisingly, the private monitoring results of this paper do not substantially change

if this assumption is relaxed. We demonstrate these results without providing proofs.

Suppose that the noise, "; is distributed on a limited support whose width equals 2r; and

has zero expected value. Let the value of the right end of the support be ER. The noise can

be fully described by the decumulative distribution function measured from the right end of

the support:

F (x) ´ Prob(" > ER ¡ 2rx).

Note that F (0) = 0 and F (1) = 1. Assume, further, that this distribution function has a

continuous density f(x).
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Now the analog of formula (8) which gives the detection probability from playing q is

®(q;F (¢)) = F
µ
q ¡QP

2r

¶
:

The equilibrium strategy is

s(qit¡1; ~q
j
t¡1;F (¢)) =

8
>>><
>>>:

QP if ®(qit¡1;F (¢)) · ®¤(±) and ~qjt¡1 ¡QP · ER
Q̂

¡
®(qit¡1;F (¢))

¢
if ®(qit¡1;F (¢)) > ®¤(±) and ~qjt¡1 ¡QP · ER

QC otherwise

where the functions ®¤(¢) and Q̂(¢) are given by formulae (13) and (11).

Result 3 which gives the necessary and su¢cient condition for having an equilibrium stays

the same. In it, the function ¦0(®; ¯; ±; r) should be understood as

¦0(®; ¯; ±; r;F (¢)) = (1 ¡ ±)¼(QP + 2F¡1(¯)r; ®) + ± [(1 ¡®)¦¤(¯; ±) + ®¼C] ;

where F¡1(¢) is inverse function of F (¢).
As it will be shown shortly, we have the analog of Result 4 with nonempty set of pairs

(±; r) when we have positive density of the right end of the support (F 0(0) > 0). Under this

property of the distribution of the noise we have the borderline ¹r(±;F (¢)) as the minimum

of two continuous functions, r1(±;F (¢)) and r2(±;F (¢)), which can assume any nonnegative

values. In general, it is impossible to …nd the shape of the functions r1(±;F (¢)) and r2(±;F (¢))
explicitly. Still the curve r1(±;F (¢)) is related to curve r1(±) as follows:

r1(±;F (¢)) · f(0)r1(±):

If the density on the right end of support is equal to zero, then our modi…ed grim trigger

strategy no longer supports cooperation. This is because the short run pro…t gain from an

in…nitesimal increase of production dq is proportional to dq, while the expected long run

costs are proportional to F (dq). Therefore there always exists a small dq such that it will

be optimal for a player to deviate.17

In the case of nonzero density on the right end of support it is possible to show that,

analogous to the uniform case, ¹r(±;F (¢)) > 0 for any ± 2 [±; 1).
17The same problem takes place in the public monitoring situation.
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As a concluding remark to this section, notice that the condition of nonzero density

narrows the applicability of our approach. Still for most economic situations possible values

of price and estimate of production are not continuous. The production and estimate usually

take discrete values of the form fk¢ : ¢ > 0; k = 0; 1; 2; :::g.18 Given that any noise with

bounded support always has nonzero density on the right end of the support, the direct

translation of our approach for the discrete case yields cooperation with any distribution of

signal with su¢ciently small noisiness.19

7 Nash Reversion Folk Theorem

In this section we show that a private grim trigger strategy may also be used to support any

feasible individually rational outcome with uniform density of noise.20 By an individually

rational outcome for our game we mean a pair of payo¤s (¹u1; ¹u2) which gives players no less

than the Cournot outcome ¼P = 1=9 each.

Now it is necessary to choose a pair of actions which yield the pair of payo¤s (¹u1; ¹u2).

The candidates ( ¹Q1; ¹Q2) are solutions to the following system of equations:

¼( ¹Q1; ¹Q2) = ¹u1

¼( ¹Q2; ¹Q1) = ¹u2
(18)

where function ¼(¢; ¢) is given by formula (3). The system (18) might exhibit multiple

solutions, but if at least one solution exists we can always choose the pair where ( ¹Q1; ¹Q2) ·
(5=18; 5=18) < (QC; QC) = (1=3; 1=3).21 In fact, one can establish the following claim, which

we provide without proof:

Claim: For any pair of individually rational feasible payo¤s (¹u1; ¹u2) > (¼C ; ¼C) there

exists a pair of production levels ( ¹Q1; ¹Q2) such that ¹Qi < 5=18 < QC = 1=3 and ( ¹Q1; ¹Q2)
18For example, car and airline industries measure production in units.
19The situation with zero density on the right end of the support can also been remedied by allowing grim

trigger strategy to be "-equilibrium. The same type of equilibria are used in Fudenberg and Levine (1991)

and Lehrer (1992).
20The Folk Theorem can naturally be extended for the noise with nonzero density on the right end of the

support. For notational simplicity we demonstrate the result with the uniform noise.
21The corresponding closed form solution is ¹Qi = 1¡

p
1¡4(¹ui+¹uj)

4 + ¹ui+¹uj

1+
p

1¡4(¹ui+¹uj)
.
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yield payo¤ (¹u1; ¹u2).

The strategy in (14) can be used as a starting point for constructing the strategy which

generates our outcome as an equilibrium. For the chosen pair ( ¹Q1; ¹Q2) the following private

grim trigger strategy for player i works.

s(qit¡1; ~q
j
t¡1; ¹Qi; ¹Qj) =

8
>>><
>>>:

¹Qi if ®(qit¡1; ¹Qi) · ®¤(±; ¹Qi; ¹Qj) and ~qjt¡1 ¡ ¹Qj · r
Q̂

¡
®(qit¡1; ¹Qi); ¹Qj

¢
if ®(qit¡1; ¹Qi) > ®¤(±; ¹Qi; ¹Qj) and ~qjt¡1 ¡ ¹Qj · r

QC otherwise
(19)

Here, the function ®(q; ¹Qi) is the probability that player i is detected by the opponent

when playing q instead of ¹Qi. Q̂ (®; q) is the short run best response while the opponent

mixes q and QC with probabilities (1¡ ®) and ® respectively.

The function ®¤(±; ¹Qi; ¹Qj) is the cuto¤ probability level which equalizes the payo¤s from

playing penitent action ¹Qi and fatal action Q̂
¡
®; ¹Qj

¢
after a the deviation with a detection

probability ®. We do not present the formula for ®¤(±; ¹Qi; ¹Qj) because it is quite bulky and

there is no need for the closed form of this function. The payo¤s from the penitent and the

fatal actions are, respectively

¦P(®; ±; ¹Qi; ¹Qj) = (1 ¡ ±)¼( ¹Qi; ®; ¹Qj) + ±
£
(1¡ ®)¹ui + ®¼C

¤
(20)

and

¦F (®; ±; ¹Qi; ¹Qj) = (1¡ ±)¼(Q̂(®; ¹Qj); ®; ¹Qj) + ±¼C ; (21)

where ¼(q; ®; ¹Qj) is one period expected payo¤ from playing q when the opponent mixes ¹Qj

and QC with probabilities (1¡ ®) and ® respectively. Again the equilibrium payo¤ function

¦¤(¯; ±; ¹Qi; ¹Qj) is maximum of ¦P(®; ±; ¹Qi; ¹Qj) and ¦F(®; ±; ¹Qi; ¹Qj).

As in Section 5 we need to care about payo¤s which arise from initiating “small” deviations

with probability ¯. Analogously we get

¦0(®; ¯; ±; r; ¹Qi; ¹Qj) = (1 ¡ ±)¼( ¹Qi + 2¯r; ®; ¹Qj) + ±
£
(1 ¡ ®)¦¤(¯; ±; ¹Qi; ¹Qj) +®¼C

¤
: (22)

We can now describe our Folk Theorem.
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Result 5 (Nash Reversion Folk Theorem):

i) Fix a pair of parameters (±; r) and a pair of Nash dominating payo¤s (¹u1; ¹u2) >

(¼C ; ¼C). The strategy given by (19) gives a Nash Equilibrium with Consistent Beliefs in

Pure Strategies if and only if the following system of inequalities holds

¦¤(®; ±; ¹Qi; ¹Qj) ¸ ¦0(®; ¯; ±; r; ¹Qi; ¹Qj); 8®; ¯ 2 [0; 1]: (23)

Here the payo¤ functions are given by formulae (20-22) and pair ( ¹Qi; ¹Qj) are those in the

claim above.

ii) For any pair of individually rational feasible playo¤s (¹u1; ¹u2) > (¼C; ¼C) there exists

an ² = ²(¹u1; ¹u2) > 0 that for any ± ¸ 1¡ ² and r · ² the system of inequalities (23) holds.

Result 5 shows that for any individually rational feasible outcome there exists an equi-

librium strategy that support this outcome if the discount factor is su¢ciently high and the

range of price realizations are su¢ciently concentrated. The …rst statement of this result

can be proved exactly in the same way as Result 3. Given the …rst part of the result, the

proof of the second part is provided in Appendix (A3).

8 Conclusion

This paper demonstrated that full cooperation is possible in a repeated Cournot Duopoly

with private monitoring. The key property of the model sustaining this result is that the

support of the price signals depends on the players’ actions. We showed that for a moderate

level of noise, the monopoly outcome can be supported for the same range of the discount

factor as in the perfect monitoring case, and we established a Folk Theorem for our model.

We conclude the paper by discussing some possible directions of future research and

complications which may arise along the way.

In Section 6 it was shown that the strategy we constructed fails when the density of the

noise on the right end of the support is zero. Further analysis shows that in general the sit-

uation cannot be remedied by applying a grim trigger strategy which initiates a punishment

phase after realizations of the signal close to the right end of the support. The di¢culty is

that there are always in…nitesimally small pro…table deviations involving either increased or
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decreased production. Hence, the situation in which the noise has zero density noise on the

right end of its support needs a more elaborate investigation.

One might develop another modi…cation of the grim trigger strategy which allows sustain-

ing the monopoly outcome for noisiness of the signal which is larger than the ones established

in this paper. One possibility is to impose a more severe punishment for deviation than mov-

ing to the Cournot outcome.

Additionally, the model can also be adapted to study cases with more than two …rms. Here

every …rm observes the estimate of the total production of the rest of the industry. Similar

to the duopoly case, the non-deviator plays the monopoly quantity while the signal is “good”

and punishes using the Cournot quantity when a deviation has been detected.22 The deviator

plays the penitent action when the detection probability is lower than the threshold level,

and plays a one period best response when the detection probability is higher. The primary

di¢culty of moving to the n …rm case is not conceptual but computational: for example, the

threshold probability is the solution of a polynomial of order of the number of …rms minus

one.

Another direction of research is to allow for correlation between signals. It would be

interesting to see how the equilibrium set § from Section 5 changes while the correlation

between signals increases from 0 to 1. Notice that this is a gradual transformation of the

model from private monitoring to public monitoring situation.

The presence of nonlinear demand does not a¤ect the applicability of the our model.

In this case the expected price becomes dependent on the signal noisiness, which makes

the monopoly and Cournot outcome sensitive to the level of noise of signal. The other

components of the model and strategy construction stay intact.

Throughout the paper we imposed a restriction on the highest possible level of noisiness.

It was assumed that the monopoly and Cournot levels of production are observationally

di¤erent to allow for the construction of beliefs with one period memory. However, when

consider overlapping supports, including in…nite support, the same signal realizations for

cooperative and non-cooperative actions of the other …rm exist. In this case, beliefs will

be functions of the …rm’s whole set of private information. This situation, which is more
22Note that the identity of the deviator is not known to the …rm.
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complex than the one presented in this paper, requires further research.

9 Appendix

A1. Proof of Result 3

Proof that the strategy described by formula (14) gives a Nash Equilibrium with Con-

sistent Beliefs in Pure Strategies as given by de…nition 1. The proof is provided in a few

steps.

Step 1: The structure of a game history and an information set.

Suppose the players have played t periods. According to the game structure, any t period

history ht can be represented as a set of the following t quadruples

ht = f(q10; ~q20; q20; ~q10); :::; (q1t¡1; ~q2t¡1; q2t¡1; ~q1t¡1)g 2 R4t:

Fix a player i, and call her opponent j . After any time period ¿ < t, player i observes

only her action qi¿ and the signal ~qj¿ about the action qj¿ of player j . So the information set23

of player i at time t, hit, can be represented by the following set

hit = ¦t¡1¿=0fqi¿g £ f~qj¿g £ [~qj¿ ¡ r; ~qj¿ + r] £ [qi¿ ¡ r; qi¿ + r] 2 R4t;

where multiplication means the Cartesian product and the sequence of pairs f(qi¿ ; ~qj¿); ¿ =
0; :::; t¡ 1g represents all of player i’s observations at period t.

De…nition 1 requires beliefs ¹(hit) for player i for every information set hit. These beliefs

should be sequentially consistent. This is the scope of the next two steps.

Step 2: , Construction of a sequence of completely mixed behavioral strategies as required

by De…nition 1.

Let f(x;!; ¾2) denote the density function of the normally distributed random variable

with expectation ! and variance ¾2. Then for each information set hit we consider the totally
23The information set re‡ects a partitioning of all possible game histories according to player i’s private

information.
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mixed strategy with the following density functions:

sn(qit;h
i
t) =

n2 ¡ 2n¡ 1
n(n¡ 1)

f
µ
qit; s(q

i
t¡1; ~q

j
t¡1);

1
n

¶
+

+1X

k=¡1

µ
1
n

¶jkj+1

f
µ
qit;QP + 2kr;

1
n

¶
; (24)

where s(:; :) is the equilibrium strategy.

So a mixture of equilibrium strategies puts
P+1
k=¡1

¡
1
n

¢jkj+1 = n+1
n(n¡1)

µ
!
n!+1

0
¶

amount

of probability around points of the following uniform grid fQk = QP +2kr; k = ¡1:::+1g
and the rest of the probability around the quantity prescribed by the equilibrium strategy.

By the construction supp(sn(qit;hit)) ´ (¡1;+1) and lim
n!1
sn(qit;hit) = ±(qit¡s(qit¡1; ~qjt¡1)),24

what is required by de…nition 1.

Step 3: Calculation of the limiting beliefs of a player for each information set.

The sequence of totally mixed behavioral strategies is given by formula (24). For a given

information set hit , by Bayes’ rule player i’s beliefs ¹n(hit) can be uniquely determined.

Moreover, the limiting belief ¹(hit) may be found. ¹(hit) is in fact a density function over hit,

which shows how likely it is for the game to be at a certain node of hit. This distribution,

together with a particular form of the equilibrium strategy, gives a distribution of possible

actions for player j at period t. Let us denote this distribution function of actions of j as

~¹(qjt ;hit). Any of functions ~¹ and ¹ are su¢cient for checking the optimality of player i’s

behavioral strategy. Unlike ¹ the description of ~¹ is simple. From now on without loss of

generality we deal with the distribution of possible actions of player j: ~¹(qjt ;hit). Lemma 1

summarizes the results for the current step.

The …rst statement of Lemma 1 shows that for any hit the density function ~¹(qjt ;hit)

describes a random action which has only two possible realizations fQP ; QCg. In other

words, to characterize the density function ~¹(qjt ;hit) we need a scalar function, say, ®(hit)

which speci…es the probability that player j’s plays QC .25

The second result of Lemma 1 gives a closed form solution for the function ®(¢). More

importantly, it states that the probability of player j ’s playing QC at time t only depends

on player i’s private observation in period t¡ 1.

24±(x ¡ a) is called delta function and it denotes the density of a deterministic random variable which

takes the value a.
25®(q) as presented in paper is this probability.

30



Lemma 1 i) 8hit suppf~¹(qjt ;hit)g ½ fQP ; QCg.

ii) Prob(qjt = QCjhit) =

8
>>><
>>>:

0 if qit¡1 · QP and ~qjt¡1 ¡QP · r
qit¡1¡QP

2r if 0 < qit¡1 ¡QP · 2r and ~qjt¡1 ¡QP · r
1 otherwise

PROOF:

i) This statement we prove by using the principle of mathematical induction on t. For

t = 0 it can be seen that supp(~¹(qj0;hi0)) = fQPg because the mixture of behavioral strategies

at time zero should converge to the equilibrium strategy. Therefore, it will be expected that

player j plays QP for sure.

Now suppose that the statement (i) of the lemma is true for any t · T ¡ 1: Consider the

information set hiT. By the inductive hypothesis, the beliefs ¹n(hiT¡1) converge to the beliefs

~¹(qjT¡1;hiT¡1) which leave player j with two possible actions, QP and QC , in period T ¡ 1.

So the behavioral mixtures will be “concentrated” around those two actions. In the limit

as n ! 1 the Bayesian rule together with the signal qjT¡1 gives player i what we call the

“intermediate” belief that (at T ¡ 1) player j has played for sure either QP + 2kr (k 2 Z)
(see the formula (24)) or QC at T ¡ 1: This intermediate belief arises due to the additional

information that arrives as ~qjT¡1 get realized. Now consider player j. By the equilibrium

strategy, the action of player j at T ¡ 1, which we described above, and the signal ~qiT¡1
determine the action of player j at period T . She should follow the equilibrium strategy

(14). So it can be checked that this action can be either QP or QC.

ii) From the proof of the statement above it follows that player i’s subjective beliefs, say,

that if the following two events have occurred: a) player j played QP + 2kr (k · 0) in the

previous period, and b) the signal player j received was less than QP + r , then player j

plays QP . When player i gets the signal ~qjt¡1 · QP + r, she believes that (a) happened

for sure. The probability of the signal being lower than QP + r or event (b) taking place

is 1 ¡ qit¡1¡QP
2r . All of this gives the expression for the probability of …rm j’s playing the

noncooperative level of production. Q.E.D.
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Step 4: Proof of the one-stage deviation principle.

The one-stage deviation principle is heavily used in the next step. We present it in the

following

Lemma 2 (One-stage deviation principle) Consider a multistage game with incomplete in-

formation and restricted one-stage payo¤ set. Then for a behavioral strategy to be the best

response it is necessary and su¢cient to check that any one-period deviation at any infor-

mation set does not increase the continuation payo¤ of the player who makes the decision at

the information set considered.

PROOF:26

Necessity. Follows immediately.

Su¢ciency. We start the proof from the contrary statement and then we …nd a contra-

diction. Suppose that for a player starting on period t there exists a set of deviations from

the behavioral equilibrium strategy such that the player’s payo¤ is increased by " > 0. Let

~t stands for the last period when there is an information set where a deviation takes place.

There are two cases: in the …rst ~t is …nite, while in the second ~t is in…nite.

Now we show that without loss of generality we can restrict attention to the …rst case.

This is done by reducing the second case to the …rst one. Suppose ~t is in…nite. Let UH

be the highest possible one-stage payo¤ of the player. No deviation generates a one-stage

payo¤ higher than UH ; which implies that if deviations take place after period t; then the

highest possible payo¤ is no larger than ±t+1UH : Given that the equilibrium expected payo¤

is bounded from below by UL it is possible to …nd t̂ that ± t̂+1UH¡ ±t̂+1UL < "=2. As a result

we can remove all deviations after period t̂, consider deviations until period t̂ , and get the

…rst case with ~t = t̂: The improvement of the payo¤ is no less than "=2 and so it is su¢cient

to examine only the …rst case.
26The proof of the lemma’s result is provided in almost exactly the same way as the one for the ”one-stage

deviation principle” in in…nitely played games with perfect information (see Fuderberg and Tirole (1991)).

This is due to two reasons. First, we are dealing with information sets, which “evolve” in the same tree

like fashion. Second, by dealing with the behavioral strategy at all information sets we avoid the issue of

reaching some information sets with probability zero.
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Consider case 1. There are deviations in information sets from time period t until ~t.

Those deviations improve the payo¤ by ". Now starting with information sets whose time

duration is ~t; let us replace deviations by equilibrium behavioral strategies. By the one-

stage deviation principle these replacements cannot reduce the continuation payo¤ at these

information sets. Hence these replacements yield another example of case 1, except that the

terminal period is now reduced in 1, and the payo¤ improvement is no less than ": So in a

…nite number of steps we get ~t = t; which means that we found the one period deviations

that improved the continuation payo¤ in at least " > 0. We reached a contradiction, which

proves the su¢ciency statement of this lemma. Q.E.D.

Step 5: Derivation of necessary and su¢cient conditions.

From De…nition 1 and the result of the previous step it follows that we need to make sure

that no deviation at any information set yields a larger continuation payo¤. From step 3

we know that any information set may be “labeled” with the probability that the opponent

plays QC instead of QP . We denote this probability as ®. Any one period deviation at time

t is characterized by the quantity produced, which is denoted by q.

There are three possible situations:

i) q · QP . In this situation, due to equilibrium strategy all these levels of q provide the

same continuation play of the opponent. But q = QP , which is prescribed by equilibrium

strategy, give the uniformly highest payo¤ for any level of ®. So any deviation q < QP

cannot be a pro…table deviation.

ii) q ¸ QP + 2r. The opponent will detect the deviation with probability 1 and continue

to behave by producing QC . Again analogous to the previous situation all q’s but Q̂(®) ¸
QP + 2r cannot be optimal and Q̂(®) is part of the equilibrium strategy.

iii) QP < q < QP + 2r. This action can be uniquely characterized by the probability of

inducing a signal higher than QP + r. This probability is ¯ = ®(q), where the function ®(q)

is given by (8). The continuation payo¤ is ¦®¯(®; ¯; ±; r). Hence, if the continuum set of

inequalities (17) hold any deviation of situation (iii) in not pro…table.

A2. Proof of Result 4

We develop the proof in several steps.
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Step 1: Proof that the system holds when r = 0.

Substituting formulae (15) and (16) into (17) when r = 0 we get

maxf¦P(®; ±);¦F (®; ±)g ¸ (1¡ ±)¼(QP ; ®) + ± [(1¡ ®)¦¤(¯; ±) + ®¼C] (25)

Now the RHS27 becomes ¦P(®; ±) when ¯ = 0. The proof of this step follows from the

fact that ¦¤(¯; ±) is a nonincreasing function of ¯.

Step 2: Modi…cation of the system of inequalities while r is changing.

When r is nonzero the initial system of inequalities (17) can be modi…ed in the following

form

¢¦(®; ¯; ±) ¸ (1¡ ±)¢¼(®; ¯; r) 8®; ¯ 2 [0; 1]; (26)

where the function ¢¼(®; ¯; r) = ¼(QP +2¯r; ®) ¡ ¼(Qe; ®) or

¢¼(®; ¯; r) = ¯(3¡ ®)
6

r ¡ 4¯2r2 (27)

and ¢¦(®; ¯; ±) = ¦0
E(®; ±) ¡ ¦0

D(®; ¯; ±). The functions ¦0
E(®; ±) and ¦0

D(®; ¯; ±) are

the LHS and RHS of inequality (25) correspondingly.

The properties of the new function ¢¦(®; ¯; ±) are studied in the next steps. As for

the function ¢¼(®; ¯; r); it is continuous and increasing in r on the interval [0; 1=24] with

¢¼(®; ¯; 0) = 0. Given that ¢¦(®; ¯; ±) is nonnegative (see the previous step) and the

properties of ¢¼(®; ¯; r), it follows immediately that for a given ± the set of r’s for which

the set of inequalities holds has the form [0; ¹r(±)].

In order to …nd ¹r(±) we gradually increase r until for some pairs (®; ¯) the inequality (26)

binds for some r < 1=24, where 1=24 comes from restriction (6). Such pairs we call “critical”

pairs. In the next step we …nd the restriction for critical values of ®.

Step 3: For any critical pair ® = ®¤(±).

The functions ¢¦(®; ¯; ±) and ¢¼(®; ¯; r) are continuous in their arguments. Also it

can be seen that the function ¢¼(®; ¯; r) is linear in ®. In turn the function ¢¦(®; ¯; ±) is

piecewise linear in ® with the kink at ® = ®¤(±). Hence any critical value of ® is critical
27Throughout we will refer to the right hand side and the left hand side of any relationship as RHS and

LHS, respectively.
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together with one of three possible values f0; ®¤(±); 1g. The rest of this step shows that 0

and 1 cannot be critical values without ®¤(±) being a critical value as well.

Case ® = 1 : From the system of inequalities (25) and formula (27) it follows that

¢¦(® = 1; ¯; ±) = (1¡ ±) 1
144

and

¢¼(® = 1; ¯; r) =
¯
3
r ¡ 4¯2r2:

The highest possible level of ¢¼(1; ¯; r) is when ¯ and r reach their highest possible

values in which case ¢¼(® = 1; ¯ = 1; r = 1=24) = 1=144. Hence the inequality (26) holds

for all values of ¯ and r, so it is not possible to have critical pairs (®; ¯) with ® = 1.

Case ® = 0 : In this case it can be seen that for ® · ®¤(±) the function ¢¦(®; ¯; ±)

has the form ¢¦(®; ¯; ±) = (1 ¡ ®)'(¯; ±), where the function '(¯; ±) is nonnegative. Now

suppose that at ® = 0 and for some ^̄ and r̂ the inequality (26) holds with equality or

'(^̄; ±) = (1 ¡ ±)¢¼(0; ^̄; r̂). Then, because ¢¼(1; ^̄; r̂) ¸ 0 and ¢¼(®; ^̄; r̂) is linear in ®

it follows that ¢¦(®¤(±); ^̄; ±) ´ (1 ¡ ®¤(±))'(^̄; ±) · (1 ¡ ±)¢¼(®¤(±); ^̄; r̂). Hence if the

system of inequalities (26) binds at ® = 0 and some r; then it binds at ® = ®¤(±) and the

same or lower level of r. So ® = 0 cannot be a critical value without ®¤(±) being a critical

value as well.

The original system of inequalities is parameterized by two parameters ® and ¯. This

step …xes the …rst parameter ®, what helps to decrease the dimensionality of the system and

moves us to the construction of the boundary curve ¹r(±).

Step 4: Derivation of two boundary curves r1(±) and r1(±), their values are higher than

1=48.

From the previous step we found that in order to …nd the highest possible value of r at

which the system of inequalities (26) holds, we can restrict our attention to values of ® equal

to ®¤(±). Given that the function ¢¦(®¤(±); ¯; ±) can be represented as

¢¦(®¤(±); ¯; ±) = (1¡ ®¤(±))±minf¢¦1(¯; ±);¢¦2(¯; ±)g ;
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where

¢¦1(¯; ±) =
3¡ ±
144 ¯ and

¢¦2(¯; ±) =
1
8

¡
"
(1¡ ±)

µ
9¡ ¯
24

¶2

¡ ±1
9

#
:

The function ¢¦(®¤(±); ¯; ±) is the minimum of two well behaved functions. One way to

…nd the largest r, for which the function ¢¦(®¤(±); ¯; ±) still dominates ¢¼(®¤(±); ¯;r), is

the following. First, we …nd the largest r for the function ®¤(±)±¢¦1(¯; ±), which we refer

to as r1(±). Then we do the same for ®¤(±)¢¦2(¯; ±) and call the associated value of r as

r2(±). Clearly the function of interest ¹r(±) is the minimum of the functions r1(±) and r2(±).

Before studying each case separately let us prove the following lemma which is very handy

throughout this step.

Lemma 3 (1 ¡ ®¤(±))± 1
72 > (1¡ ±)2¡®¤(±)144 , where the function ®¤(±) is given by (13).

PROOF: Below we present a series of simultaneous transformations applied to both sides

of the inequality. They preserve the above inequality and facilitate the task of checking

whether it holds. The sequence of inequality preserving operations on both sides is: mul-

tiply by 144, subtract (1 ¡ ±)(1 ¡ ®¤(±)), multiply by (1 ¡ ±), plug in formula (13), addn
4(3± ¡ 1)

p
2±2 ¡ ± ¡ (1 ¡ ±)2

o
, take the square and …nally subtract ¡16(3±¡1)2(2±2¡ ±).

These transformations brings us to the inequality (1 ¡ ±)4 > 0, which is obviously holds.

Q.E.D.

Now let us derive the two curves in a sequence.

Curve r1(±) : The function ¢¦1(¯; ±) is linearly increasing in ¯ and ¢¦1(0; ±) = 0. In

turn the function ¢¼(®¤(±); ¯; r) is quadratic in ¯, has a nonpositive second derivative and

¢¼(®¤(±); 0; r) = 0. Moreover, the function ¢¼(®¤(±); ¯; r) is increasing in r. From all of

the above it follows that we can increase r until the slopes (derivatives in ¯) of the two

functions ®¤(±)±¢¦1(¯; ±) and (1¡ ±)¢¼(®¤(±); ¯; r) at ¯ = 0 are get equal. This gives us

the necessary condition for the function r1(±)

(1¡ ±)3¡ ®¤(±)
6

r1(±) = (1¡ ®¤(±))±3 ¡ ±
144
; (28)
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where the LHS is the derivative of (1 ¡ ±)¢¼ and the RHS is the derivative of (1 ¡
®¤(±))±¢¦1 w.r.t. ¯ at ¯ = 0.

Now by substituting r1(±) = 1=48 into the LHS we have (1 ¡ ±)1+(1¡®¤(±))=2
144 , which is

strictly less than (1 ¡ ®¤(±))± 1
72 by lemma 3, while the RHS is strictly larger than (1 ¡

®¤(±))± 1
72. This gives

Lemma 4 r1(±) > 1
48 for all ± 2 [±; 1).

By solving equation (28) for r1(±) and by substituting formula (13) for ®¤(±) we get

r1(±) =
1
48

±(3 ¡ ±)
³
3± ¡ 1 ¡ 2

p
2±2 ¡ ±

´

(1¡ ±)(± ¡
p

2±2 ¡ ±)
: (29)

The above function is continuous on [±; 1) except at the points where the denominator

is zero and the expression under the square root is negative. It can be checked that those

points are outside the region [±; 1).

The result of the next lemma helps to get the limiting value of the function r1(±) at ± = 1.

Lemma 5 lim
±!1

±¡
p

2±2¡±
1¡± = 1

2 and lim
±!1

3±¡1¡2
p

2±2¡±
(1¡±)2 = 1

4.

PROOF: The above limits result from a Taylor expansion of the numerator around the

point ± = 1. Q.E.D.

From the above lemma it follows that lim
±!1
r1(±) = 1=48 and it can be checked that r1(±) =

21=544.

The monotonicity properties are hard to investigate but from the graphical representation

of the function on Figure 9 we see that it is a monotonically decreasing function of ±.

Curve r2(±) : In this case both functions ¢¦2(¯; ±) and ¢¼(®¤(±); ¯; r) are increasing and

quadratic in ¯ with a negative curvature. At ¯ = 0 the function ¢¦2(¯; ±) is nonnegative

and at ¯ = 1 it is equal to 1=72. The highest possible level of the function ¢¼(®¤(±); ¯; r) is

achieved at ¯ = 1 and r = 1=24; in which case the function equals 2¡®¤(±)
144 . From lemma 3 it
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follows that the two functions (1¡ ®¤(±))±¢¦1(¯; ±) and (1¡ ±)¢¼(®¤(±); ¯; r) never meet

at the point ¯ = 1.

Before …nding the closed form of r2(±), let us show that all values of r2(±) are strictly

higher than 1=48.

Lemma 6 r2(±) > 1=48 for all ± 2 [±; 1).

PROOF: By plugging in 1=48 for r and ®¤(±) for ® into formula (27) we get

¢¼(®¤(±); ¯;
1
48

) =
(3¡ ®¤(±))

288
¯ ¡ 1

576
¯2:

The above function is concave in ¯. Let us consider a linear function of ¯, L(¯; ±) which at

¯ = 0 has the same value and derivative as the above function (1¡ ±)¢¼(®¤(±); ¯; 1
48). This

function has the form

L(¯; ±) = (1¡ ±)
µ
3¡ ®¤(±)

288

¶
¯:

Next, the following two inequalities hold

(1¡ ®¤(±))±¢¦2(0; ±) = (1¡ ®¤(±))±17± ¡ 9
576

¸ 0 = L(0; ±) and

(1¡ ®¤(±))±¢¦2(1; ±) =
(1¡ ®¤(±))±

72 > (1¡ ±)
µ
3¡ ®¤(±)

288

¶
= L(1; ±);

where the …rst inequality follows from the fact that ± ¸ 9=17; and the second inequality

follows from lemma 3.

Because the function ¢¦2 is concave in ¯, it follows that the function (1 ¡ ®¤(±))±¢¦2

strictly dominates the linear function L(¯; ±) except at the point ¯ = 0 when ± = 9=17.

As a result when r = 1=48, the function (1 ¡ ®¤(±))±¢¦2 strictly dominates the function

(1¡±)¢¼; except at the point (¯; ±) = (0; 9=17). Comparing the derivatives w.r.t. ¯ of these

two functions at the point (¯; ±) = (0; 9=17), we get the strict inequality 9=544 > 1=204; so

the result of the lemma holds with strict inequality. Q.E.D.

We now return to determining the form of r2(±). The only possibility left is that the two

functions considered above are tangent in ¯ at the highest possible level of r = r2(±). The
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tangency condition gives us the necessary system of equations for ¯2 (the ¯ where two curves

are tangent) and r2(±)

(1¡ ®¤(±))±
(
1
8

¡
"
(1 ¡ ±)

µ
9¡ ¯
24

¶2

¡ ±1
9

#)
= (1¡ ±)

½
¯2(3¡ ®¤(±))

6
r2(±)¡ 4¯22r2(±)2

¾

and
1

288
(1¡ ®¤(±))±(9 ¡ ¯2) = (1¡ ±)

½
3¡ ®¤(±)

6
r2(±)¡ 8¯2r2(±)2

¾
;

where the …rst equation states that the functions are equal and the second equation states

that their derivatives coincide.

By solving for ¯2 from the second equation which is linear in ¯2 and by substituting it into

the …rst one we get a polynomial of fourth order in r2(±), and then we can write down four

possible solutions for r2(±). The …rst two solutions are §
p

(1¡®¤(±))±
48 which do not generate

values greater than 1=48. For the other two solutions by applying lemma 5 we get that one

of the roots has the property lim
±!1
r2(±) = 1=408 < 1=48, while the other one has the property

lim
±!1
r2(±) = 1=24 > 1=48. So the last one is the solution we are looking for and it is given by

formula28

r2(±) =
1
204

9± ¡ 9
p

2±2 ¡ ± + 2
p
2
r
±(17± ¡ 9)

³
3± ¡ 1 ¡ 2

p
2±2 ¡ ±

´

1¡ ± :

It can be checked that this function is continuous in ± on [±; 1) and lim
±!1
r2(±) = 1=24 and

r2(±) = 9=272.

Monotonicity properties is hard to investigate but from a graphical representation of the

function (see Figure 9) we see that the function r2(±) is a monotonically decreasing function

of ±.

A3. Proof of the Folk Theorem

Proof that there exists su¢ciently small ²(¹u1; ¹u2) > 0 such that for any ± ¸ 1 ¡
²(¹u1; ¹u2) and r · ²(¹u1; ¹u2) the system of inequalities in (23) holds.

The system of inequalities (23) may be rewritten as

¦¤(®; ±; ¹Qi; ¹Qj) ¸ (1¡ ±)¼( ¹Qi + 2¯r; ®; ¹Qj) + ±
£
(1¡ ®)¦¤(¯; ±; ¹Qi; ¹Qj) + ®¼C

¤
:

28To get the formula for the other root in which lim
±!1

r2(±) = 1=408 ths plus sign before 2
p

2 should be

replaced by the minus sign.
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Note that the last term of the RHS is increasing in ¯ and theRHS equal to¦P(®; ±; ¹Qi; ¹Qj)

when r = 0 and ¯ = 0. The …rst term of RHS is increasing in ¯ and the second term is

decreasing in ¯. The rate of increase of the …rst term declines till 0 with a decrease of r and

so we can always …nd su¢ciently small r which makes the above inequality true. The proof

is complete if we take the bound for ± from the Perfect Information case.
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