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Abstract

We develop and evaluate sequential testing tools for a class of nonparametric tests for pre-

dictability of financial returns that includes, in particular, the directional accuracy and

excess profitability tests. We consider both the retrospective context where a researcher

wants to track predictability over time in a historical sample, and the monitoring context

where a researcher conducts testing as new observations arrive. Throughout, we elaborate

on both two-sided and one-sided testing, focusing on linear monitoring boundaries that are

continuations of horizontal lines corresponding to retrospective critical values. We illustrate

our methodology by testing for directional and mean predictability of returns in a dozen of

young stock markets in Eastern Europe.
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1 Introduction

Economists have been getting more and more concerned with possible structural instabili-

ties in economic relationships which may invalidate conclusions obtained using conventional

econometric tools. More than a decade ago, econometricians revived old CUSUM-type fluc-

tuation tests that allowed one to track structural shifts in model parameters in time in order

to detect deviation from constancy (e.g., Ploberger, Krämer and Kontrus, 1989). More re-

cently, there has been a new burst of interest to developing tools of sequential testing for

practitioners who make decisions in real time. This was started by Chu, Stinchcombe, and

White (1996) and Chu, Hornik, and Kuan (1995), and continued in Leisch, Hornik, and Kuan

(2000), Altissimo and Corradi (2003), Zeileis, Leisch, Kleiber, and Hornik (2005), Inoue and

Rossi (2005), and Andreou and Ghysels (2006), among others. This resulted in a number of

sequential tests designed both for static and for dynamic models, both for conditional means

and for conditional variances. Most of this work is targeted towards parametric models.

In this paper, we develop and evaluate sequential testing tools for a certain class of

nonparametric tests for predictability of financial returns. This class is quite large and allows

testing for hypotheses of non-predictability of various features of a series of interest. Two

representatives of this class are the directional accuracy test of Pesaran and Timmermann

(1992) and the excess profitability test of Anatolyev and Gerko (2005). Testing for stability

of predictability is important; see the discussion in Pesaran and Timmermann (2004) where

it is shown that ignoring structural instability may have serious consequences for the quality

of directional forecasting.

We consider both retrospective tests where a researcher wants to track predictability over

time in a historical sample, and monitoring tests where a researcher conducts testing as new

observations arrive. It is worth noting that the literature does not usually consider these

tasks together; considering both is the first novelty introduced in this paper. Underlying it

is a scenario that a researcher after having carried out a retrospective test goes on to the

monitoring stage. Moreover, the retrospective boundaries (horizontal lines corresponding

to retrospective critical values) continuously translate into the monotonically growing mon-

itoring boundaries. The continuity of the boundaries is an appealing property as the first

observation of the monitoring period should not affect dramatically the inference about the

null. Our second novelty is that we develop both two-sided and one-sided testing, with the

emphasis put on the latter as more appropriate in the context of testing for predictability

(cf. Inoue and Rossi, 2005). We focus on the use of the supremum functional over empirical
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processes to construct test statistics which is most widely used functional in the rest of the

literature.

In the monitoring context, a widely discussed issue is the shape of monitoring bound-

aries. Some authors follow Chu, Stinchcombe, and White (1996) who suggest complicated

boundaries which however lead to an analytic form of critical values. Zeileis, Leisch, Kleiber,

and Hornik (2005) proposed more intuitively appealing linear boundaries which tend to dis-

tribute the size throughout the monitoring period more evenly. In Monte–Carlo exercises

reported in Zeileis, Leisch, Kleiber, and Hornik (2005) and Andreou and Ghysels (2006) the

linear boundaries performed well. We concentrate on such linear boundaries for two reasons,

one being the mentioned intuitive appeal, and the other being that they also lead to analytic

critical values that can be obtained even more easily.

Note that in most of the work on sequential stability testing, the emphasis is usually put on

testing for stability rather than testing whether a particular hypothesis holds throughout the

sample. In this sense, the closest to the present work is the paper by Inoue and Rossi (2005)

who also sequentially track deviations of some parameter combinations from a hypothesized

value. The main consequence is that the asymptotic analog of emerging empirical processes

is the Wiener process (and functions thereof) rather than the Brownian Bridge. Inoue

and Rossi (2005), however, do not consider one-sided testing, and their framework is, as

mentioned above, parametric, albeit nonlinear. Finally, their monitoring boundaries are

inherited from Chu, Stinchcombe, and White (1996) which means that the ability to detect

structural changes is skewed from late changes to early changes.

We illustrate our methodology by testing for directional and mean predictability of returns

in a dozen of young stock markets in Eastern Europe. Such markets are an ideal polygon

for applying predictability tests as it is documented using other econometric tools that the

pattern of predictability there is changing (e.g., Rockinger and Urga, 2000).

The paper is organized as follows. In Section 2 we review the class of one-shot tests for

predictability and its special cases. Sequential tests are developed in Section 3. In Section

4, simulation evidence is discussed, while the empirical application is presented in Section 5.

All proofs are collected in the Appendix. Throughout, bac denotes taking an integer part of

a, and ⇒ denotes weak uniform convergence in the space of cadlag functions.

3



2 One-shot predictability tests

Let yt represent some economic variable, and xt be a continuously distributed forecast of

yt that depends only on the data from It−1 = {yt−1, yt−2, · · · }, or, more generally, from

the extended information set It−1 ⊃ {yt−1, yt−2, · · · } which may include other historical

variables. We are interested in testing the null hypothesis

Hg
0 : E [g(yt)|It−1] = const,

where g(u) is a given stationary function. The predictability test is based on the contrast

Ag,h −Bg,h ≡ 1

T

∑
t

h(xt)g(yt)−

(
1

T

∑
t

h(xt)

)(
1

T

∑
t

g(yt)

)
, (2.1)

where the function h(u) is chosen by the researcher. A popular choice is h(u) = sign(u), in

which case setting g(u) = sign(u) leads to the directional accuracy (DA) test for conditional

sign independence of Pesaran and Timmermann (1992), while setting g(u) = u leads to the

excess profitability (EP) test for conditional mean independence of Anatolyev and Gerko

(2005). The DA test is routinely used as a predictive-failure test in constructing forecasting

models, or for evaluating the quality of predictors; see, for example, Pesaran and Timmer-

mann (1995), Franses and van Dijk (2000), and Qi and Wu (2003). When yt is a logarithmic

return on some financial asset or index, the EP statistic can be interpreted as a normalized

return of the position implied by a simple trading strategy that issues a buy signal if a

forecast of next period return is positive and a sell signal otherwise, over a certain bench-

mark (see Anatolyev and Gerko, 2005 for details). These two example of special interest will

be intensively tackled throughout, although we develop testing algorithms for the general

framework.

Let us impose

Assumption 1

(i) The series yt and its forecast xt are continuously distributed, strictly stationary, and

strongly mixing with mixing coefficients α (j) satisfying
∑∞

j=1 α (j)1−1/ν <∞ for some ν > 1.

(ii) The forecast xt is It−1-measurable.

(iii) The functions g(u) and h(u) are measurable, and E [|g(yt)|2νq] and E [|h(xt)|2νp] exist

and are finite for ν from (i), and for some q and p such that q−1 + p−1 = 1.

The moment condition in assumption 1(iii) is sufficient, but not necessary. With a choice

of bounded h(u), as is the case for the DA and EP tests, it is possible to set p = ∞ and

q = 1, so that the moment condition on g(yt) is quite mild.
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Let us introduce the following notation for future use:

Mg = E [g(yt)] , Vg = var [g(yt)] ,

Mh = E [h(xt)] , Vh = var [h(xt)] ,

and

my = E [sign(yt)] , mx = E [sign(xt)] , Vy = var [yt] .

We will base our tests on the following result which we will generalize to the context of

sequential testing in the next Section.

Lemma 1 Suppose h(u) and g(u) satisfy the regularity conditions specified in Assumption

1. Consider the contrast (2.1). Under Hg
0 : E [g(yt)|It−1] = const,

√
T
(
Ag,h −Bg,h

) d→ N(0, V g,h)

as T →∞, where

V g,h = VhVg + C1 − 2MhC2,

where C1 = cov [h(xt)
2, g(yt)

2] and C2 = cov [h(xt), g(yt)
2] .

Specialization of Theorem 1 to the two special cases of DA and EP tests yields

Corollary 1

(i) Under the null of conditional sign independence, i.e. HDA
0 : E [sign(yt)|It−1] = const,

√
T
(
ADA −BDA

) d→ N(0, V DA)

as T →∞, where

V DA =
(
1−m2

x

) (
1−m2

y

)
.

(ii) Under the null of conditional mean independence, i.e. HEP
0 : E [yt|It−1] = const,

√
T
(
AEP −BEP

) d→ N(0, V EP )

as T →∞, where

V EP =
(
1−m2

x

)
Vy − 2mx cov

[
sign(xt), y

2
t

]
.
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To construct the test statistic, the contrast (2.1) may be pivotized using

V̂ g,h = V̂hV̂g + Ĉ1 − 2M̂hĈ2,

where M̂h, V̂h, V̂g, Ĉ1 and Ĉ2 are empirical analogs of corresponding population quantities.

For example, for the DA and EP tests,

V̂ DA =
(
1− m̂2

x

) (
1− m̂2

y

)
,

V̂ EP =
(
1− m̂2

x

)
V̂y − 2m̂xĈ,

where

my =
1

T

∑
t

sign(yt), mx =
1

T

∑
t

sign(xt),

V̂y =
1

T

∑
t

y2
t −

(
1

T

∑
t

yt

)2

,

Ĉ =
1

T

∑
t

(sign(xt)− m̂x) y
2
t .

3 Sequential tests

3.1 Sequential testing and boundaries

In the sequential context, the null hypothesis of interest is the conditional independence of

g(yt) throughout the entire period, i.e. that

Hg
0 : E [g(yt)|It−1] = const for all t. (3.2)

Note that we do not require that the const in (3.2) be the same across time; all we want to

test is that g(yt) cannot be predicted by information at t− 1. Thus, the emerging tests may

not be able to detect deviations of the risk premium from a constant value.

Let us continue denoting the size of the historical sample by T . Then, if we do retro-

spective testing of Hg
0 on the historical sample, t in (3.2) runs from 1 to T. If we monitor

Hg
0 further, t in (3.2) runs from T + 1 to infinity. We choose the boundaries to be linear for

both retrospection and monitoring periods: horizontal lines corresponding to retrospective

critical values which continuously translate into linear monitoring boundaries going upward

(see Fig.1).

The underlying scenario is the following: a researcher has a historical sample in hands

and carries out a retrospective test; then he/she goes on to the monitoring stage as new
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Figure 1: Sequential testing: periods and boundaries

observations begin to arrive. The continuity of the boundaries makes sense as first several

observations in the monitoring period should not affect dramatically the inference about the

null. With linear boundaries, this continuity is possible to impose provided that the test

sizes are equal in the retrospective and monitoring stages. Technically, this happens due to

the property

Pr

{
sup
r≥1

(w (r)− λr) ≥ 0

}
= Pr

{
sup
r≥1

w (r)

r
≥ λ

}
= Pr

{
sup

0<r≤1
w (r) ≥ λ

}
,

and to a similar property for |w (r)| , where λ > 0 is a constant, and w (r) is a univariate

standard Wiener process on [0,+∞), a limiting process for the sequential test statistic to be

developed below.

3.2 Asymptotics for partial contrasts

For a generic series at, t = 1, 2, · · · , T, T + 1, · · · , let us introduce the notation

āτ =
1

bTτc

bTτc∑
t=1

at,

where τ ≥ 0. When at is a product of several series, at = btct, say, then we write āτ also as

bcτ .
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Kuan and Chen (1994) discovered that fluctuation tests are better sized in finite samples

when test statistics are pivotized using data in the expanding window, thus we use such

estimates throughout. To this end, let us denote by V̂ g,h
τ the value of V̂ g,h computed using

the data from 1 to bTτc:

V̂ g,h
τ =

(
h2

τ − h̄2
τ

)(
g2
τ − ḡ2

τ

)
+ h2g2

τ − h2
τg2

τ − 2h̄τ

(
hg2

τ − h̄τg2
τ

)
.

In particular,

V̂ DA
τ =

(
1− sign(x)

2

τ

)(
1− sign(y)

2

τ

)
and

V̂ EP
τ =

(
1− sign(x)

2

τ

)(
y2
τ − ȳ2

τ

)
− 2sign(x)τ

(
sign(x)y2

τ − sign(x)τy
2
τ

)
.

The empirical process for sequential tests corresponding to the one-shot test based on

g(u) and h(u), is

Pτ = τ

√
T

V̂ g,h
τ

(
ghτ − ḡτ h̄τ

)
.

Because the usual time t is related to τ by t = [τT ] , we have

Pτ =
t√
T V̂ g,h

τ

(
ghτ − ḡτ h̄τ

)
. (3.3)

Theorem 1 Suppose the null hypothesis

Hg
0 : E [g(yt)|It−1] = const for all t

holds, and h(u) and g(u) satisfy the regularity conditions specified in Assumption 1. Then

we have that as T →∞,

Pτ ⇒ w(τ),

where w(r) is a univariate standard Wiener process on [0,+∞).

3.3 Retrospective tests

Anatolyev and Gerko (2005) observe the evolution of the level of mean predictability at the

American stock market throughout the last half of the 20th century by computing the EP

statistic from data in a moving window. Although the results obtained are remarkable, the

comparison of the maximum level with the conventional critical values for one-shot tests

constitutes, strictly speaking, an invalid testing procedure. In this subsection we derive a

formal recursive estimates procedure so that the overall size of this test is controlled.
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Using the supremum functional, we obtain the asymptotic size α one-sided sup-RE test

Reject if max
t=2,...,T

Pτ ≥ q(1)
α ,

and the asymptotic size α two-sided sup-RE test

Reject if max
t=2,...,T

|Pτ | ≥ q(2)
α ,

where q
(j)
α is a critical value for the j-sided sup-RE test with significance level α.

It is widely known (e.g., Karatzas and Shreve (1988, problem 8.2)) that for λ > 0,

Pr

{
sup

0≤r≤1
w (r) ≥ λ

}
= 2 (1− Φ (λ)) ,

where Φ (◦) is the CDF of the standard normal distribution. Hence, q
(1)
α can be easily found

as a solution to the equation

Φ
(
q(1)
α

)
= 1− α

2
,

so the α-quantiles for the one-sided sup-RE test are equal to conventionally used α-quantiles

for two-sided one-shot tests. Next, from Erdös and Kac (1946),

Ψ(λ) ≡ Pr

{
sup

0≤r≤1
|w (r)| ≤ λ

}
=

4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π

2 (2k + 1)2

8λ2

)
.

Hence, q
(2)
α can be easily found as a solution to the equation

Ψ
(
q(2)
α

)
= 1− α.

In the following table we document the critical values for popular levels of significance.

Note that for small α, as typically is the case, q
(1)
α ≈ q

(2)
2α . This reflects a low probability of

the standard Wiener process’ hitting both −λ and +λ when λ is large enough (i.e. when α

is small enough).

One-sided Two-sided

10% 5% 1% 10% 5% 1%

1.645 1.960 2.576 1.960 2.241 2.807

3.4 Monitoring tests

Using the supremum functional, we obtain the asymptotic size α one-sided sup-RE test

Reject if max
t=T+1,T+2,...

(
Pτ − b(1)

α (t)
)
≥ 0,
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and the asymptotic size α two-sided sup-RE test

Reject if max
t=T+1,T+2,...

(
|Pτ | − b(2)

α (t)
)
≥ 0,

where b
(1)
α (t) and b

(2)
α (t) are upper boundaries.

We base our recursive monitoring one-sided tests on the boundaries of the type

b(j)
α (t) = λ(j)

α

t

T
,

which tend to distribute the size throughout the monitoring period evenly when the under-

lying process has growing variance (Zeileis, Leisch, Kleiber, and Hornik, 2005). From the

results of Robbins and Siegmund (1970, example 1) we obtain that

lim
T→∞

Pr

{
max

t=T+1,T+2,...

(
Pτ − λ

t

T

)
≥ 0

}
= 2 (1− Φ (λ)) .

Hence, λ(1)
α can be found as a solution of the equation

Φ
(
λ(1)
α

)
= 1− α

2
.

For the two-sided test,

b(2)
α (t) = λ(2)

α

t

T
,

and λ(2)
α solves

Ψ
(
λ(2)
α

)
= 1− α.

Note that the same equations are used by the retrospective RE tests in the previous subsec-

tion. Hence, we can consult the same tables to get values of λ(j)
α . Note also that b

(j)
α (T ) = q

(j)
α ,

which provides continuity of the boundaries.

4 Simulation evidence

In this Section, we use Monte–Carlo simulations to check on actual sizes of the developed

tests in finite samples, and to study their power properties. Throughout, for the sake of

simplicity, we set the predictor xt to be the total return from two previous periods, i.e.

xt = yt−2 +yt−1. This is an easy way to construct a predictor, and it is always available. The

forecasting power of this predictor, however, may not be large, so that in practical situations

the power properties of the tests reported below may be even higher when other predictors

are used such as coming from estimation of parametric or nonparametric autoregressions. In
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what follows, we report actual rejection frequencies of one-sided sequential analogs of the DA

and EP tests corresponding to the nominal size of 5%. The simulation results are collected

in Table 1 for retrospective tests and in Table 2 for monitoring tests.

For retrospective tests, we generate R = 10, 000 times the series of yt’s of length T,

where T = 50, 100, 200, or 500 when the size is checked, and T = 200 or 500 when the

power is investigated, according the data generating processes (DGPs) described below.

The parameters in DGPs A, B and C are calibrated using the weekly S&P500 index during

the period from 1954 to 1973 as in Anatolyev and Gerko (2005); other DGPs are created

artificially using these parameters as benchmarks.

The first two DGPs, A and B, are used to check on size (except for testing for directional

accuracy in DGP B: Christoffersen and Diebold (2006) have recently shown that conditional

heteroskedasticity induces sign predictability even when there is no mean predictability).

DGP A yt = 0.001526 + εt, εt ∼ iid N(0, 0.000025), (4.4)

DGP B yt = 0.002483 + εt, εt = σtηt, ηt ∼ iid N(0, σ2
t ), (4.5)

σ2
t = 0.0000223 + 0.1773 · ε2

t−1 + 0.7397 · σ2
t−1

The following DGPs C, D and E in several variations are used to investigate power. While

in DGP C there is the same non-zero amount of predictability throughout the sample period,

in DGPs D the predictability is observed only during subperiods in the middle or towards the

beginning or the end of the sample. Finally, in DGPs E there is a continuous transition from

no predictability to higher and even higher predictability, or vice versa. Extra factors 3 and

2 attached to the autoregressive parameter serve to equalize the “amount” of predictability

across the DGPs.

DGP C yt = 0.001526 + 0.1256 · yt−1 + εt, εt ∼ iid N(0, 0.00025), (4.6)

DGP Dk yt = 0.001526 + 3 · 0.1256 · I{t∈Tk} · yt−1 + εt, (4.7)

εt ∼ iid N(0, 0.00025), k = 1, 2, 3,

DGP Ek yt = 0.001526 + 2 · 0.1256 ·
tI{k=1} + (T − t) I{k=2}

T
· yt−1 + εt, (4.8)

εt ∼ iid N(0, 0.00025), k = 1, 2,

where I{◦} is an indicator function, and Tk contains time periods from the k’s third of the

sample. That is, T1 contains observations from the first third of the sample, T2 – those from

the second third of the sample, and T3 – those from the last third of the sample. Hence, in

DGPs D1 through D3 the predictability is observed during one of the three periods, and is
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not observed during the other two. In contrast, the predictability is continuously escalating

as time passes in DGP E1, but is vanishing as time passes in DGP E2.

First let us look at panel A of Table 1 which contains actual sizes when data are serially

independent, without any predictability. One can immediately see that the sequential tests

are very well-sized, especially for larger samples. The DA tests tend to be a little undersized,

while the EP tests tend to be instead a little oversized. Next consider panel B corresponding

to the GARCH process which is mean unpredictable. The actual sizes for EP tests are a

little smaller compensating for some oversizedness but sometimes overshooting the target.

More importantly, the DA tests display practically the same sizes as for DGP A, even though

under DGP B the series is, in contrast to DGP A, sign predictable. Next, if we compare size

distortions across alternatives, those for two-sided tests seem to exceed those for one-sided

tests in the case of EP, but the opposite is true in the case of DA.

Let us now turn to power figures in panels C, D and E corresponding to DGPs with

predictability of the autoregressive type. Overall, the EP tests are more powerful than the

DA tests in detecting such predictability, which is in line with the analysis in Anatolyev and

Gerko (2005, section 3). Naturally, the power increases quickly with the sample size. Also,

power figures are significantly higher for one-sided tests than for two-sided ones.

For monitoring tests, we verify the test sizes and how these sizes are distributed along

the monitoring period. For that purpose, we generate R = 10, 000 times the series of yt’s of

length 4T, where T = 50, 100, 200, or 500, according to the DGPs A or B. Then we read off

actual rejection frequencies using boundaries corresponding to the true size of 5%, happened

within the periods [T + 1, τT ] , where τ equals 3
2
, 2, and 4.

One can see from Table 2 that the monitoring RE tests are very well sized, strictly smaller

than 5% (except for DA testing in the case of DGP B where there is sign predictability),

with the size exhausting pretty rapidly. For smaller sample sizes underrejection is slightly

larger than for larger samples.

5 Application to returns from Eastern European stock markets

In this Section we apply the developed methodology to the analysis of predictability of stock

market indexes in a dozen of former communist countries in Eastern Europe. The indexes

together with some of their characteristics are listed in Table 3. All indexes are weekly, start

on January of the year 1997 (7 series), 1998 (2 series), 1999 (1 series) or 2000 (2 series), and

end on January 2005. The data are taken from Bloomberg.

12



The literature has documented a significant amount of predictability in such markets

at the end of 20th century when these markets were very young; see Zalewska-Mitura and

Hall (1999) and Rockinger and Urga (2000, 2001)1. At the same time, one could observe a

movement towards non-predictability in most of them (Rockinger and Urga, 2000). By now

several more years have passed, much more data have arrived, and it is interesting to test if

that movement indeed has been taking place further.

Our empirical strategy is the following. To illustrate retrospective testing, we run ret-

rospective RE tests over entire samples. To illustrate monitoring testing, we partition the

sample into two parts, the earlier period representing a historical subsample, and then run

the monitoring test acting in the position of a real time observer during the second period.

Figure 1 presents graphs of evolution of values of recursive estimates (3.3), together with

horizontal lines corresponding to critical values for one-sided testing; left panels representing

the DA test, the right panels representing the EP test. As can be easily seen, only Ukrainian,

Lithuanian and Estonian stock indices exhibit a clear pattern of strong predictability of both

types. For the Polish stock index, mean predictability is strongly rejected, but directional

predictability is not. The Slovak, Slovenian and Romanian stock indices display marginal

rejection at the 5% significance level for at least one of predictability criteria. Finally, the

Russian, Czech, Hungarian, Croatian, and Latvian stock indices do not exhibit predictability

of either type even at the 10% significance level.

Now we turn to illustrations of the monitoring tests, restricting ourselves only to the excess

profitability statistic. Let us put ourselves into a position of a researcher who monitors in

real time the stock market starting from two years after the beginning of the sample. Before

monitoring, let us suppose that the researcher conducts retrospective tests on the historical

subsample of two years. The results are presented in Figure 2.

The documented patterns are quite different across markets, and range from the situation

where neither retrospective nor monitoring tests detected mean predictability (Slovenian,

Romanian and Latvian stock markets) to the situation where retrospective tests on the

historical subsample strongly reject conditional mean independence (Hungarian, Croatian,

and Estonian stock markets). Most of series, however, exhibit intermediate patterns. For

the Russian, Czech, and Slovak stock markets the retrospective tests either reject marginally

1In the literature, this predictability is often referred to as (weak form) “efficiency”. However, in such

markets there are a few market limitations (like transactions costs and short selling constraints) that do not

support such interpretation. For discussions, see Pesaran and Timmermann (1995) and Timmermann and

Granger (2004).
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or does not reject at all, the same tendency continuing for the monitoring tests at the very

beginning of the monitoring period. For the Ukrainian and Polish markets, the retrospective

tests reject conditional mean independence at the end of the historical period, and so do the

monitoring test at the beginning of the monitoring period. In contrast, in the Lithuanian

stock market the retrospective tests do not detect predictability in historical subsamples,

but the monitoring test indicates that strong mean predictability appeared in the market in

2003.

Overall, the patterns of predictability vary significantly across countries, in agreement

with findings in Rockinger and Urga (2001) and Mateus (2004). Even markets in closely

connected countries may display completely different patterns of predictability; one example

is Russia and Ukraine; another example is the three Baltic states. Few stock markets do not

tend to exhibit predictability at all, while for most it proves possible to detect predictability

during some periods.
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A Appendix

Proof. [of Lemma 1] Follows as a special case of Theorem 1 by setting τ 1 = 0 and τ 2 = 1.

Lemma 2 Suppose h(u) and g(u) satisfy the regularity conditions specified in Assumption

1. Then under

Hg
0 : E [g(yt)|It−1] = const,

as T →∞, we have

1√
T
V −1/2

[τT ]∑
t=1


htgt −MhMg

gt −Mg

ht −Mh

⇒ W (τ)

where W (τ) is a trivariate standard Brownian motion, and the elements of V are given by

V11 = var [h(xt)g(yt)] + 2Mg

+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V22 = Vg,

V33 = Vh + 2
+∞∑
j=1

cov [h(xt), h(xt+j)] ,

V12 = cov
[
h(xt), g(yt)

2
]

+MhVg +Mg

+∞∑
j=1

cov [g(yt), h(xt+j)] ,

V13 = MgVh +Mg

+∞∑
j=1

cov [h(xt), h(xt+j)] +
+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V23 =
+∞∑
j=1

cov [g(yt), h(xt+j)] .

Proof. The conclusion follows directly from Phillips and Durlauf (1986, corollary 2.2),
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with the elements of the long-run covariance V given by

V11 =
+∞∑
j=−∞

cov [h(xt)g(yt), h(xt+j)g(yt+j)]

= var [h(xt)g(yt)] + 2Mg

+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V22 =
+∞∑
j=−∞

cov [g(yt), g(yt+j)] = Vg,

V33 =
+∞∑
j=−∞

cov [h(xt), h(xt+j)] = Vh + 2
+∞∑
j=1

cov [h(xt), h(xt+j)] ,

V12 =
+∞∑
j=−∞

cov [h(xt)g(yt), g(yt+j)]

= cov
[
h(xt), g(yt)

2
]

+MhVg +Mg

+∞∑
j=1

cov [g(yt), h(xt+j)] ,

V13 =
+∞∑
j=−∞

cov [h(xt)g(yt), h(xt+j)]

= MgVh +Mg

+∞∑
j=1

cov [h(xt), h(xt+j)] +
+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V23 =
+∞∑
j=−∞

cov [g(yt), h(xt+j)] =
+∞∑
j=1

cov [g(yt), h(xt+j)] ,

where the law of iterated expectations and the statement of the null hypothesis are intensively

used.

Proof. [of Theorem 1] Let us denote

µ =
(

1 −Mh −Mg

)′
.

From Lemma 2, it follows that

√
T
(
ghτ − ḡτ h̄τ

)
⇒ µ′V 1/2W (τ)

τ
.

When pivotized,

Pτ ⇒
µ′V 1/2W (τ)√

µ′V µ

d
= w(τ),

because V̂ g,h
τ

p→ V g,h = µ′V µ.
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Directional accuracy Excess profitability

DGP T RE1 RE2 RE1 RE2

A 50 3.2 4.1 6.7 7.7

100 4.1 4.6 6.1 6.5

200 4.0 4.9 5.4 6.4

500 4.4 4.7 5.0 5.5

B 50 3.4 4.5 4.7 6.0

100 4.0 4.4 4.9 5.9

200 4.2 4.6 4.7 5.4

500 5.5 4.6 4.5 4.8

C 200 17.2 11.4 22.6 15.4

500 34.2 24.3 46.4 35.0

D1 200 25.5 15.9 43.2 36.3

500 51.7 37.6 74.4 66.1

D2 200 23.4 15.2 36.9 27.7

500 44.5 32.8 66.1 55.0

D3 200 15.2 10.3 25.7 19.0

500 30.0 22.1 49.4 39.6

E1 200 15.2 10.1 22.9 16.6

500 29.0 20.2 42.7 33.2

E2 200 19.4 12.6 30.2 23.3

500 37.9 26.7 55.2 44.7

Table 1. Actual size and power for retrospective tests, from Monte–Carlo simulations.
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Directional accuracy Excess profitability

DGP T τ RE1 RE2 RE1 RE2

A 50 3
2

3.0 3.9 3.2 3.7

2 3.2 4.0 3.4 3.8

4 3.3 4.1 3.5 3.8

100 3
2

3.5 4.0 3.5 3.8

2 3.7 4.1 3.6 3.9

4 3.8 4.2 3.7 3.9

200 3
2

3.8 4.4 3.9 4.3

2 4.1 4.5 4.1 4.4

4 4.1 4.5 4.1 4.4

500 3
2

4.2 4.3 4.3 4.6

2 4.4 4.5 4.4 4.8

4 4.4 4.5 4.5 4.8

B 50 3
2

3.0 4.1 2.6 3.7

2 3.2 4.3 2.8 3.7

4 3.2 4.3 2.8 3.8

100 3
2

3.5 4.1 3.1 3.9

2 3.7 4.2 3.3 4.1

4 3.8 4.3 3.3 4.2

200 3
2

4.1 4.4 3.6 4.0

2 4.3 4.5 3.7 4.0

4 4.4 4.6 3.8 4.1

500 3
2

5.1 4.5 4.1 4.5

2 5.3 4.7 4.2 4.6

4 5.4 4.7 4.2 4.6

Table 2. Actual size for monitoring tests, from Monte–Carlo simulations.
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Country Series Beginning End Sample size

Russia RUX Jan 1998 Jan 2005 369

Ukraine PFTS Jan 1998 Jan 2005 367

Poland WIG Jan 1997 Jan 2005 423

Czech Republic PX50 Jan 1997 Jan 2005 422

Slovakia SKSM Jan 1997 Jan 2005 404

Hungary BUX Jan 1997 Jan 2005 422

Croatia CROBEX Jan 1997 Jan 2005 418

Slovenia SBI Jan 1997 Jan 2005 422

Romania ROL Jan 1999 Jan 2005 309

Lithuania VILSE Jan 2000 Jan 2005 266

Latvia RIGSE Jan 2000 Jan 2005 266

Estonia TALSE Jan 1997 Jan 2005 423

Table 3. Characteristics of series of stock indexes.
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Figure 1(a). Retrospective test for the Russian stock index.

Figure 1(b). Retrospective test for the Ukrainian stock index.

Figure 1(c). Retrospective test for the Polish stock index.



Figure 1(d). Retrospective test for the Czech stock index.

Figure 1(e). Retrospective test for the Slovak stock index.

Figure 1(f). Retrospective test for the Hungarian stock index.



Figure 1(g). Retrospective test for the Croatian stock index.

Figure 1(h). Retrospective test for the Slovenian stock index.

Figure 1(i). Retrospective test for the Romanian stock index.



Figure 1(j). Retrospective test for the Lithuanian stock index.

Figure 1(k). Retrospective test for the Latvian stock index.

Figure 1(l). Retrospective test for the Estonian stock index.



Figure 2(a). Sequential tests for the Russian and Ukrainian stock indexes.

Figure 2(b). Sequential tests for the Polish and Czech stock indexes.

Figure 2(c). Sequential tests for the Slovak and Hungarian stock indexes.



Figure 2(d). Sequential tests for the Croatian and Slovenian stock indexes.

Figure 2(e). Sequential tests for the Romanian and Lithuanian stock indexes.

Figure 2(f). Sequential tests for the Latvian and Estonian stock indexes.


