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Abstract

We investigate the distribution and evolution of intertrade durations for frequently

traded stocks at the Moscow Interbank Currency Exchange. We use a flexible econometric

model based on ARMA and GARCH which, when coupled with a certain class of distribu-

tions that allow for skewness and slim-tailedness, adequately captures the characteristics

of conditional distribution of durations for Russian stocks, and is able to generate high

quality density forecasts. We also analyze what factors determine the dynamics of log-

durations and in which way. The results in particular indicate that the Russian market

is characterized by aggressive informed traders and timid liquidity traders, and that the

participants react evenly to upward and downward short-run price trends.
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1 Introduction

Modeling high frequency (HF) transaction data has been an intensive topic of research

in recent decades. The seminal articles of Engle and Russell (1998) and Engle (2000)

generated a burst of new interest in modeling the dynamics of duration and price pro-

cesses and gaining understanding of market microstructure. In the applied literature,

the most frequent analysis is of IBM stocks at the NYSE (e.g., Engle and Russell, 1998,

Engle, 2000, McCulloh and Tsay, 2001, Zhang, Russell and Tsay, 2001), with different

studies often using the same database. Some exploit data for other stocks at the NYSE

(Dufour and Engle, 2000, Bauwens and Giot, 2000, Engle and Lunde, 2003). Exploration

of other stock exchanges is much rarer and does not go unnoticed. Several papers (e.g.,

Ghysels, Gourieroux and Jasiak, 2004, Drost and Werker, 2004) use data from the Paris

Stock Exchange (Paris Bourse); Grammig and Wellner (2002) use data from the Frankfurt

Stock Exchange; and Tyurin (2002) uses data from the Reuters D2000-2 foreign exchange

electronic brokerage system. Papers that study high frequency features of emerging stock

markets are rare but do exist. For instance, Hanousek and Podpiera (2003) explore the

impact of informed trading on the bid-ask spread using HF data from the Czech stock

market. To our knowledge, there is no econometric study analyzing HF data from the

Russian market, although a couple of papers do look at the microstructure of Russian

financial markets: Medvedev and Kolodyazhny (2001) investigate the behavior of nonres-

idents in the state bond market and find evidence of herding behavior; the same authors

(2003), henceforth M&K, explore possibilities of profitable market making, and inspect

relationships between brokers and their clients. In this paper, we analyze tick-by-tick data

on trades in six frequently traded common stocks at the Moscow Interbank Currency Ex-

change (MICEx) focusing attention on the dynamics, distribution and determinants of

intertrade durations.1

A careful analysis of the dynamics of intertrade durations shows that the classical

autoregressive conditional duration (ACD) model (Engle and Russell, 1998) and its loga-

rithmic modifications (Bauwens and Giot, 2000) fit the Russian market intratrade dura-

tions data worse than a simple specification applied to log-durations and based on ARMA

and GARCH, which we call Log–ARMA–GARCH. In addition, this econometric model

is more flexible, has desirable theoretical properties, and at the same time is computa-

1Other segments and aspects of Russian financial markets are studied in, among others, Fedorov and

Sarkissian (2000), Anatolyev and Korepanov (2003), and Hayo and Kutan (2005).
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tionally simpler than complicated models that have appeared recently. Using the class

of so-called Skewed Generalized Error (SGE) distributions (Bali and Theodossiou, 2003)

to model the conditional distribution within the Log–ARMA–GARCH framework allows

one to adequately capture slight right skewness and slim-tailedness of log-durations of

the MICEx stocks. In addition, density forecasting experiments (as in Bauwens, Giot,

Grammig, and Veredas, 2004) show that the SGE Log–ARMA–GARCH model performs

out-of-sample no worse than some preferable ACD specifications. We also analyze what

factors determine the dynamics of log-durations and in which way. From this analysis, it

appears that the Russian stock market is characterized by aggressive informed traders and

timid uninformed traders, and that the participants react evenly to upward and downward

short-run price trends. Throughout, along with the Russian stocks, we analyze the Alcatel

stock at the Paris Bourse for comparison purposes. Our results show that the behavior of

Russian traders is quite similar to that of traders in developed financial markets, but the

SGE Log–ARMA–GARCH framework may not be so successful for developed markets as

for the Russian market.

The paper is organized as follows. The description of the MICEx and the database

we use is given in section 2. An inspection of the data reveals that, along with intraday

deterministic patterns, there are also interday variations in intertrade durations, returns,

and volumes. In section 2, we also show how we remove both sorts of nonstationarity from

the data prior to the analysis, and we discuss the properties of adjusted durations. Section

3 is devoted to empirical analysis of evolution of intertrade durations, including modeling

the conditional distribution and performing the density forecasting exercise. In section 4,

we analyze factors that influence trading intensity, and we draw some conclusions on the

microstructure of the Russian financial market. Finally, section 5 concludes.

2 The MICEx and data

2.1 Russian stock market and MICEx

The organized stock market in Russia is composed of several stock exchanges, two of

which, MICEx and RTS (short for “Russian Trading System”), account for more than

95 percent of trade turnover, with the share of MICEx being near 80 percent.2 In 2002,

2A brief introducion to the Russian stock market can be found in Ostrovsky (2003). Details on the

MICEx are available in English at www.micex.com.
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the volume of stocks of more than 100 Russian issuers transacted on the MICEx reached

about $39 billion. Most of these stocks are traded very rarely, but several blue chips are

traded at a frequency of from 200 to 6,000 transactions a day. The MICEx is evidently

quite active for an Eastern European market compared, for example, with the Czech stock

market, where the daily turnover is $19 million, with most liquid stocks being traded at

67 trades per day (Hanousek and Podpiera, 2003).

The electronic system at the MICEx is organized as a typical order-driven market.3

The MICEx takes advantage of technological innovations to enable its members to trade

via the Internet. (In 2002, more than 70 percent of trades were made from 1,500 remote

workstations in 50 different cities.) The players primarily represent Russian investors;

the percentages of American and European investors are relatively small. Along with the

“normal” trading regime with continuous matching of orders, there are special regimes of

trades in the same security. Regimes and their brief descriptions are presented in Table

1. As at other exchanges, participants in trades are individual members (brokers) who

trade either for themselves or on behalf of their customers, which include more than 500

banks and financial companies. M&K roughly estimate that 43 percent of brokers trade

for themselves, 44 percent have up to ten customers, and the rest have more numerous

clients. There are no official market makers for liquid stocks, although there may be

appointed market makers for bonds and low liquidity stocks like specialists at the NYSE,

where orders are almost never executed automatically. However, participants who set limit

orders that are not immediately executed are de facto market makers, although none of

them profit all the time solely from intermediation between buyers and sellers (see M&K).

M&K roughly estimate that 16 percent of transactions are made by market makers (those

who sell and buy the same number of shares during a day), and 47 percent are made by

pure buyers or sellers (those who only sell or only buy during a day). M&K also draw

the interesting conclusion that there are attractive opportunities for market making at

the MICEx, which allow earning higher returns with lower risk, but the investor body is

quite heterogeneous so that only a portion of market makers can enjoy excessive gains.

2.2 MICEx database

Our sample covers the period from August 12, 2002, to October 18, 2002, composed

of 50 trading days, and includes six Russian corporations whose common stocks were

3An excellent explanation of an order-driven system can be found in Tyurin (2002).
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most frequently traded during this period.4 Among these six companies, three are oil

extractors (Lukoil, SurgutNG, and Yukos); MosEnergo is a large electricity provider;

Rostelecom is a leading Russian telecommunications company; Sberbank is the largest

Russian commercial bank. For some corporations, there are several issues of common

stocks as well as preferred stocks and bonds; we focus on only one security for each

corporation, the issue that is traded much more frequently than others. A brief description

of stocks is presented in Table 2. The column “stock share” shows shares of each stock

turnover in the total turnover in stocks at the MICEx during the period from August

19, to August 23, 2002. We concentrate on the “trading session,” or “normal,” trading

regime. All other observations are excluded from the sample, i.e., trades that are recorded

out of trading hours for the “normal” regime (which opens at 10:30 a.m. and closes at 6:45

p.m.), and trades that belong to the “negotiated deals,” “REPO,” or “incomplete lots”

regimes. As a consequence, the Lukoil, SurgutNG, Rostelecom, and MosEnergo samples

are left with about 600 to 750 transactions a day; for Yukos we have 400 transactions a

day, and “only” 250 trades for Sberbank.

Each record in our database corresponds to one transaction for which the following

three characteristics are available:

1. Time Tt (with the precision of one second) when the transaction occurred;

2. Price Pt at which the transaction occurred;

3. Number of shares Vt bought or sold.

The database does not contain quote data. Using the available characteristics we generate

the following three variables:

1. Duration between consecutive trades: d̂t = Tt − Tt−1;

2. Log return: r̂t = lnPt − lnPt−1;

3. Log volume: v̂t = lnVt.

When generating the variables we pay special attention to simultaneous transactions.

Such transactions occur in two ways. First, simultaneous transactions are recorded when a

new buy (sell) order matches several sell (buy) orders and is in sufficient amount to execute

all these matching orders. It is natural to treat such trades as one big transaction. A

characteristic of simultaneous transactions of this type is that their prices are either non-

increasing or non-decreasing. The second way is that the duration between consecutive

4The most heavily traded stock at the MICEx is that of Unified Energy System of Russia (UES), with

an average of about 6,000 transactions a day. We do not take these data into analysis because of a huge

number of simultaneous transactions (see below).
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trades is so small that the precision of one second is not sufficient for their discrimination

and they are marked with the same time stamp. Because we cannot distinguish between

the two sources, we use the following procedure. If there are several transactions recorded

at the same time, we aggregate transactions with non-increasing or non-decreasing prices,

using for these aggregated transactions a weighted average price and aggregate volume,

and remove all remaining transactions with this time stamp.5

The Alcatel sample analyzed throughout for comparison purposes originates in the

Paris Bourse, a similarly organized market equipped with an electronic order matching

device, and has been used in a number of studies; see Jasiak (1999), Ghysels, Gourieroux

and Jasiak (2004), Drost and Werker (2004) for a detailed description.6 These data

cover 43 days in July and August 1996. The aggregation of simultaneous transactions is

performed as described above.

2.3 Seasonal data adjustment

Most of the previous literature studying high frequency transactions data ignores inter-

day variation in variables. We find that on different days the transaction activity and

price volatility at the MICEx fluctuate noticeably, which may be caused by day-of-week

deterministic patterns (on average, the durations are larger on Mondays and Fridays than

on other weekdays) and interday variations in the number of market players. Figure 1

depicts plots of average durations across trading days for Lukoil and Alcatel.7 For return

volatilities and volumes, the effects of interday variations (not shown) are also present,

more clearly for returns than for volumes. One way to deal with these fluctuations is to

create a dummy variable for each day, akin to fixed time effects in the panel data analysis,

or to apply the model to each day separately. Another approach is taken in the hierarchi-

cal model of McCulloch and Tsay (2001) where the parameters are modeled as random

variables drawn from some distribution taking new values every day, akin to random time

effects in the panel data analysis. We instead remove interday variations from the data

5This deletion is relatively innocuous because the number of such situations is small for all stocks

(except very heavily traded UES which we excluded from the sample). Of course, a final user of our

analysis may not necessarily be most interested in data aggregated in this way because the aggregation

can potentially change some of its time series properties.
6This dataset is publicly available from the Journal of Business & Economic Statistics data website.
7Note that trading intensity for Alcatel seems to be subject to medium-run (i.e. a few week long) ups

and downs, while that for Lukoil apparently is not.
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from the outset in the following way:

d̃t =
d̂t

d̂s

,

r̃t =
r̂t√
r̂2
s

,

ṽt = v̂t − v̂s,

where d̂s is the average duration for day s if observation t belongs to day s, r̂2
s is the average

squared return for day s, and v̂s is the average log volume for day s. For durations and

returns we use a multiplicative form of adjustment as durations and squared returns are

naturally positive. However, for log volumes we use additive adjustment as this variable

may take any sign; this adjustment implies the multiplicative form for volumes in levels

as well.

In addition to interday variations in the data, there are specific intraday patterns

of a deterministic nature in durations, returns, and volumes. It is conventional in the

literature to remove such patterns prior to estimation by using various nonparametric

methods. Most authors (e.g., Engle, 2000, Grammig and Wellner, 2002) use cubic or

piecewise linear splines, while some authors estimate regressions based on kernel methods

(e.g. Zhang, Russell and Tsay, 2001). Even more rarely they include diurnal dummy

variables (as in Dufour and Engle, 2000), or remove the seasonal component by a linear

regression on time (as in Ghysels, Gourieroux and Jasiak, 2004) or by simple averaging

over a moving window and linear interpolation (as in Bauwens and Giot, 2000). To

identify and estimate U-shaped patterns one may also use parametric specifications for

their shape (as in Aradhyula and Ergün, 2004, Panas, 2005).

Here we estimate means d̃t, r̃
2
t and ṽt conditional on time-of-the-day Tt by fitting local

linear regressions8. Moreover, we do not assume that the intraday patterns are the same

across different days of the week but do estimation for each of them separately. This is

also different from most of previous studies, some of which allow but do not detect weakly

seasonal components, e.g., Bauwens and Giot (2000), although Grammig and Wellner

(2002) and Bauwens, Giot, Grammig, and Veredas (2004) also condition both on time-

of-day and on day-of-week. An extreme position is taken in Meitz and Teräsvirta (2003),

where splines are fit separately for each day of the sample.

8The gaussian kernel is employed, and bandwidths are manually selected. The global bandwidth

equals 2000 seconds for durations and return volatilities, and 3000 seconds for log-volumes.
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The estimates of intraday patterns for durations of Lukoil stocks are presented in

Figure 2. The pattern is consistent with previous studies: the durations are longer at

mid-day and shorter in the morning and in the evening. Figure 3 plotting intraday

patterns together with confidence bands9 for two weekdays confirms that day-of-week

differences are statistically significant: the two confidence bands do not overlap except

during short time intervals. We use the estimates of intraday patterns to generate final

adjusted versions of our variables:

dt =
d̃t

Ê[d̃t|Tt]
,

rt =
r̃t√

Ê[r̃2
t |Tt]

,

vt = ṽt − Ê[ṽt|Tt].

Table 3 reports descriptive statistics for all stocks under consideration, and Figures

4 and 5 show nonparametric kernel density estimates10 of (adjusted) durations and log-

durations for Lukoil and, for comparison purposes, Alcatel data. One sees a bit lower

variability of durations and their autocorrelation for Alcatel than for Russian stocks, as

well as a higher degree of kurtosis. Distributions of durations for Lukoil and Alcatel

look similarly. A much starker contrast can be observed from the statistics and graphs

for log-durations. While the distribution of log-durations for a typical Russian stock

resembles normal (although slightly slimmer-tailed and right-skewed), those for Alcatel

exhibit much higher skewness. Some of the skewness is certainly due to the fact that very

short durations (between 0 and 1 seconds) were rounded to 0 or 1 when recorded in the

database. Finally, note that the autocorrelation coefficients are higher for log-durations

than for durations. In our view, this is an indication that an econometric model that tries

to capture dynamics of log-durations promises to be more successful than a similar model

for durations in levels.

9Let g1(Tt) = E [yt|Tt] and g2(Tt) = E
[
y2

t |Tt

]
. Confidence intervals for g1(Tt) are constructed as

ĝ1(Tt) ∓ 1.96
√

(ĝ2(Tt)− ĝ1(Tt)2)
∫

k(u)2du/(nhf̂(Tt)), where ĝ1 and ĝ2 are local linear regression esti-

mates of g1 and g2, f̂ is kernel density estimate of Tt, k is kernel function, h is bandwidth, n is sample

size.
10The gaussian kernel is employed, except for durations on the segment [0,1], in which case the Beta

kernel (Chen 2000) is used because of boundedness of the support from below, with the smoothing

parameter b = 0.089 and the global bandwidth of h = 0.254 as suggested in Chen (2000).

8



3 Time-series models for durations

3.1 ACD and Log–ARMA models

The class of autoregressive conditional duration (ACD) models was proposed by Engle

and Russell (1998). The idea of an ACD model is to capture the persistence in durations, a

stylized feature of high frequency transactions data, by means of an autoregressive model

for conditional means. Let dt be the duration between consecutive trades occurring at

times Tt−1 and Tt, which is assumed to be strictly greater than zero. This duration is

factored into the predictable and unpredictable components:

dt = E[dt|It−1]εt ≡ πtεt, (1)

where It−1 is the information set embedding all previous durations and possibly other

variables, and εt is a shock having mean of unity conditional on It−1. Engle and Russell

(1998) use the following functional form of evolution of πt:

πt = ω +

p∑
i=1

φidt−i +

q∑
i=1

ψiπt−i. (2)

This specification is called ACD(p, q). To complete the parametric model, one specifies

the distribution for εt, which can be done in a variety of ways. Engle and Russell (1998)

used the exponential and Weibull distributions. These choices, however, imply an un-

realistic monotonic conditional hazard function, which led Lunde (1999) to propose the

generalized gamma distribution, and Grammig and Maurer (2000) the more exotic Burr

distribution. When the density is specified, one can proceed with the maximum likelihood

(ML) estimation. When the above distributions do not fit the data well, one may treat

the ACD model as semiparametric, and run quasi-maximum likelihood (QML) estimation

presuming the exponential or (ordinary) gamma density for εt, with robust computation

of standard errors. The ACD model also allows a researcher to investigate the influence

of external factors by introducing additional regressors in equation (2).

An arguably more suitable parameterization for dynamics of πt may be two versions

of the LogACD(p, q) model (Bauwens and Giot, 2000), where

πt = exp

(
ω +

p∑
i=1

φi ln dt−i +

q∑
i=1

ψi ln πt−i

)
(3)

or

πt = exp

(
ω +

p∑
i=1

φiεt−i +

q∑
i=1

ψi ln πt−i

)
. (4)
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As Bauwens and Giot (2000) argue, these specifications have the advantage that the condi-

tional mean πt is always positive, so there is no need to impose non-negativity constraints

either on the coefficients φi and ψi, or on the coefficients belonging to additional structural

variables on the right sides of (3) or (4). In addition, Bauwens and Giot (2000) find that

(4) fits their data better than the ACD specification (2). Subsequently, we denote the

specifications (3) and (4) by LogACD1 and LogACD2, respectively.

Although ACD models are able to capture high persistence in the duration process

well, the major shortcoming of models of this type is that the conditional mean and

variance are tied to each other:

V [dt|It−1] = π2
t V [εt],

where V [εt] is a constant depending on the error distribution. To separate out the per-

sistence in mean and that in variance, Ghysels, Gourieroux and Jasiak (2004) propose

a stochastic volatility duration (SVD) model. They argue that their model is successful

in capturing these two different sources of persistence. However, the likelihood function

has a complicated form due to the presence of latent factors, and thus simulation-based

techniques have to be applied for estimation and inference.

Now consider the following ARMA(p, q) representation for log durations:

ln dt = α+

p∑
i=1

βi ln dt−i +

q∑
i=1

γiζt−i + ζt, (5)

where ζt = σtηt follows GARCH(r, s):

ηt ∼ IID(0, 1), (6)

σ2
t = µ+

r∑
i=1

λiζ
2
t−i +

s∑
i=1

νiσ
2
t−i. (7)

We will call this specification the Log–ARMA(p, q)–GARCH (r, s) model, or Log–ARMA

for brevity. As before, we have two options to complete the model. One is to specify the

distribution of ηt, and proceed with ML estimation. The second option is to view the

model as semiparametric and run QML using the normal density.

That the Log–ARMA specification (5)–(7) has not been seriously used in the previous

literature11 we attribute to the fact that it does not explicitly acknowledge the nature of

11In fact, McCulloch and Tsay (2001) consider a very simple version of the Log–ARMA specification

in their model for price changes and durations. Their equation for a price duration (i.e., a duration

between trades with a nonzero price change) is a homoscedastic autoregression for log-durations with an

additional explanatory variable, the lagged price change. Surprisingly, McCulloch and Tsay (2001) find

no or weak dynamic dependence in time durations for IBM data.
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dt as a duration variable.12 At the same time, this specification is natural to consider, it is

flexible, and its properties are familiar; in Appendix it is shown how the Log–ARMA and

ACD-type specifications are algebraically related. In addition, the Log–ARMA model fits

the data we are using much better than ACD-type models, while the degree of parsimony

is comparable. The main advantage of the Log–ARMA model lies in its greater flexi-

bility, which originates from separation of the persistence in conditional mean from that

in conditional variance. In particular, a time-varying conditional variance in the Log–

ARMA model can take account of the dynamics of overdispersion in transaction data.

Gourieroux and Jasiak (2000, p. 462) argue that the overdispersion in real data is time-

varying. While in the ACD model the conditional overdispersion is constant (recall that

V [dt|It−1]/π
2
t = V [εt]), in the Log–ARMA it is path dependent. Moreover, the coefficients

in the variance equation (7) provide an idea about clustering of observations with over-

or underdispersion. At the same time, in spite of flexibility of this model, a practitioner

may easily use standard statistical software to estimate the parameters in (5)–(7).

Another interesting feature of the Log–ARMA model is the type of implied condi-

tional hazard function of the duration process. Grammig and Maurer (2000) come to

the conclusion that allowing for non-monotonic hazard functions is an important issue in

modeling durations. Even in a conditionally normal homoscedastic Log–ARMA model,

the conditional distribution of durations is lognormal and thus the conditional hazard

function is non-monotonic, increasing for small durations and decreasing for larger du-

rations, which is consistent with estimated patterns (e.g., Grammig and Maurer, 2000,

Figure 5). Moreover, in a heteroscedastic Log–ARMA model, the hazard function is time-

varying, and it will be even more flexible after the assumption of conditional normality is

relaxed.

Because the summary statistics and nonparametric estimates of unconditional log-

duration distributions suggest the presence of platykurticity (slim-tailedness) and skew-

ness, we in addition use the Skewed Generalized Error (SGE) distribution introduced in

Bali and Theodossiou (2003) instead of the standard normal distribution to fit to the

standardized innovations ηt. This distribution is an extension of the GED13 that captures

12Indirect evidence of the convenience in using log-durations as a variable to be modeled is contained

in Meitz and Teräsvirta (2003), who set lagged values of ln dt to be transition variables in their STACD

specification.
13GED is an acronym for “Generalized Error distribution.” It was used, for example, by Nelson (1991)

in an EGARCH model of stock returns.
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leptokurtic, platykurtic, and mesokurtic distributions, and in addition allows nonzero

skewness. The density of the SGE distribution is

fSGE (η;κ, ϕ) =
κ

2ΛΓ(1/κ)
exp

(
−
∣∣∣∣ η −∆

Λ (1 + sgn (η −∆)ϕ)

∣∣∣∣κ) ,
where

Λ =
1

B

√
Γ(1/κ)

Γ(3/κ)
, ∆ = −2ϕA

B
, A =

Γ(2/κ)√
Γ(1/κ)Γ(3/κ)

, B =
√

1 + (3− 4A2)ϕ2,

κ > 0 is a tail-thickness parameter (κ > 2 implying platykurticity), and −1 < ϕ < 1 is a

skewness parameter (negative ϕ implying skewness to the left).

3.2 Estimation results

The estimation of all models is performed using Gauss v. 6.0.8 with the maximum like-

lihood library maxlik v. 5.0.3. For numerical optimization, the BFGS and BHHH al-

gorithms are utilized; standard errors are computed using numerical derivatives. All

autoregressive processes are reinitialized at the beginning of each day, as in, for example,

Engle and Russell (1998) and Zhang, Russell and Tsay (2001); hence, the duration be-

tween the last “normal regime” trade of one day and the first “normal regime” trade of

the following day never contributes to the likelihood.

To judge the quality of fit, we use several measures. Ljung–Box tests for (standard-

ized) residuals and their squares, and values of sample mean loglikelihood together with

Akaike and Schwarz information criteria (AIC and BIC), are standard in empirical im-

plementation of HF data models. It is sometimes reported that parameters in HF data

models are highly unstable; the Nyblom test (Nyblom, 1989) is a natural portmanteau

check for structural stability when the estimation framework is the method of maximum

likelihood. We report the Nyblom statistic for a whole model and the maximal value of

Nyblom statistics for individual parameters. Also, taking into account huge sample sizes,

we treat diagnostic testing results liberally and display reasonable tolerance to rejections

by portmanteau statistics.

Table 4 presents the results of exponential QML estimation of ACD(2,2), LogACD1(2,2),

LogACD2(2,2), and Log–ARMA(1,2)–GARCH(1,1) models for Lukoil as a representative

Russian stock (the results for other stocks are similar), while Table 5 contains analogous

output for Alcatel. The loglikelihood values are quite close across the three ACD-type

models, but there is an appreciable gain in loglikelihood values and reduction in infor-

mation criteria for the Log–ARMA model in comparison with ACD-type models. The
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LogACD2 model tends to reduce the autocorrelation in raw and squared residuals slightly

better than the ACD model and much better than the LogACD1 model. Note also that

in the Log–ARMA model the variance persistence indexed by λ+ ν far exceeds the mean

persistence indexed by (β + γ1 + γ2) / (1 + γ1 + γ2) . This indicates the need to separate

the mean and variance dynamics, which is facilitated by the use of Log–ARMA models.

This model does seem ideal for the Russian stocks as any autocorrelation in residuals and

their squares is removed, and the model exhibits high stability (unlike in case of Alcatel)

despite huge sample sizes. The latter fact may be explained in the following way. At

the MICEx the non-informed traders know that informed traders are constantly learning

and exploiting news, and still trade mimicking their behavior, trying to benefit from the

overall growing market. As a result, an essential piece of news, while having an impact

on the dynamics of trade intensity, does not influence the style of traders’ behavior in the

Russian stock market, and the trading process goes in the same regime.

Because KS statistics indicate the inadequacy of the normal conditional distribution

for standardized log-durations in the Log–ARMA model (although in a much lesser de-

gree than of the exponential conditional distribution in ACD-type models), we estimate

the Log–ARMA(1,2)–GARCH(1,1) assuming the SGE distribution for standardized in-

novations. The results are presented in Table 6. One can see that the SGE–Log–ARMA

model fits the Russian duration data very well, removing all autocorrelation in standard-

ized residuals and their squares, and exhibiting a high degree of stability (except the

least liquid Sberbank stock). In addition, KS test statistics are much lower than for

other combinations of models and conditional distributions14, which means that the SGE

distribution captures well the skewness and platykurticity of conditional log-durations.

The SGE–Log–ARMA also fits Alcatel durations quite well as far as serial dependence

and conditional density are concerned, but some dynamic features (for example, regime

switches) are left unaccounted for, which is indicated by extremely high values of both

stability statistics.

3.3 Density forecasting results

In addition to in-sample fitting, we also verify an ability of the Log–ARMA model to

provide reliable out-of-sample forecasts and compare them with those provided by ACD

14This follows from non-reported results of adapting the three ACD-type models to the Weibull, Gen-

eralized Gamma, and Burr distributions.
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models. We follow the algorithm of evaluating density forecasts proposed by Diebold,

Gunther, and Tay (1998) and adapted by Bauwens, Giot, Grammig, and Veredas (2004)

to duration data. In a nutshell, to test the specification of conditional distribution, one

may generate a sequence of probability integral transforms

zt =

∫ dt

−∞
f (u) du,

where f (u) denotes the conditional one-step-ahead density forecast, and verify if the

sequence zt is serially independent and distributed uniformly on [0, 1]. Appropriate testing

tools include Pearson’s goodness-of-fit statistic for uniformity and Ljung–Box statistics for

serial uncorrelatedness of the z-sequence and of its squares; in addition, visual inspection

of histograms of z is able to provide informal evidence about possible causes of model

failure (for more details, see Bauwens, Giot, Grammig, and Veredas, 2004).

We implement the density forecasting exercise by re-estimating each model of interest

(including making intraday seasonal adjustment) on the data from the first 35 days (28

days in case of Alcatel), and collecting forecast statistics during the remaining 15 days.

Table 7 contains Pearson and Ljung–Box test statistics for selected Russian stocks, Lukoil

among them, and Alcatel; the models of interest are ACD, LogACD1 and LogACD2 with

Exponential, Weibull, Generalized Gamma and Burr innovations, and Log–ARMA with

normal and SGE innovations. Figure 6 shows histograms accompanied by 95% confidence

bands (computed using multinomiality of histogram heights under the null) of probability

integral transforms for Lukoil and Alcatel; the models are represented by best performing

ACD specifications for each distribution. Figure 7 displays analogous diagrams when the

working model is Log–ARMA with normal and SGE innovations.

Although relative out-of-sample performance of different models varies from stock

to stock, it is clear that Log–ARMA models fare no worse than some preferable ACD

specifications. This is especially true as far as Pearson’s test for uniformity is concerned;

the situation with autocorrelation tests is somewhat less clear.15 The benchmark normal

Log–ARMA model decidedly beats any benchmark exponential ACD model and even any

Weibull ACD model most of the time. At the same time, the SGE Log–ARMA specifica-

tion and Generalized Gamma logarithmic ACD specifications (especially LogACD1) fare

15Note that for Alcatel the Ljung–Box statistics display too much serial dependence in z. One possible

explanation of this phenomenon is that no account is made of pronounced long memory in Alcatel

durations (Jasiak, 1999); another is that trading intensity for Alcatel is subject to medium-run regime

switches (see Figure 1).
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comparably well16. Visually, the bottom left panels of Figures 6 and 7 showing predictive

z-distributions for the Generalized Gamma LogACD1 and SGE Log–ARMA models fitted

to Lukoil seem equally ideal, while only the bottom right panel of Figure 7 representing

the SGE Log–ARMA specification is indefectible for Alcatel.

4 Factors influencing trading intensity

4.1 Previous empirical studies

We use the experience of previous empirical studies to choose variables to include in our

dynamic model. The regressors that various researchers have used can be roughly divided

into three categories: volume, price, and spread variables. As our database does not

contain quote data, we focus on the first two.

The category “volume variables” encompasses those based on trading volumes in

recent transactions. Hafner (2005) includes lagged volume as an explanatory variable in

the ACD equation. This yields a non-significant coefficient which justifies his assumption

of non-causality from volume to durations. Russell (1999) too finds that large transacted

log-volume does not appear to be followed by higher intensity of transactions. However,

more researchers find significant effects of volume variables. Bauwens and Giot (2000)

add lagged average volume per trade into the LogACD2 model, which turns out to be

significant both when entered separately and when accompanied by trading intensity and

spread variables. Dufour and Engle (2000) include five lags of past log-volume in the

ACD model, which seems to have great explanatory power. Spierdijk (2004) finds jointly

significant several volume variables involving up to the five most recent transactions. It

appears that a conclusion about significant volume effects highly depends on the definition

of corresponding variables. As additional confirmation, Engle and Lunde (2003) introduce

jointly into their LogACD2 model the square root of the size of the previous trade, which

always turns out significant, the mean of the square roots of the sizes of the 10 previous

trades, which only sometimes is significant, and the absolute value of accumulated signed

size of the same trades, which never turns out significant.

16Note that p-values for Pearson’s test in Bauwens, Giot, Grammig, and Veredas (2004) are straight

zeros for all models for all stocks as far as trade durations are concerned. For Russian duration data,

such p-values are often larger than 1% both for the SGE Log–ARMA model and for Generalized Gamma

ACD models; for Alcatel durations, the p-value is larger than 1% only for the SGE Log–ARMA model.
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Related variables take into account imperfections of the data such as zero price changes

and discreteness of time stamps. Bauwens and Giot (2000) include the number of trades

recorded during the price duration (i.e., the time interval between successive price changes)

divided by the length of that duration, and find that a higher value of this variable tends

to shorten the next expected duration. Zhang, Russell and Tsay (2001) instead add as

a regressor an indicator that at last trade, multiple trades have occurred, and find the

corresponding coefficient significant and negative. An additional variable constructed

similarly for the second to last trade turns out to be insignificant.

The category “price variables” encompasses those based on returns from recent trans-

actions and price volatility over them. There is more agreement among different studies

concerning such variables, although McCulloch and Tsay (2001) find price changes in-

significant in a very simple Log–ARMA model, and Russell (1999) finds that volatility

of price changes has little impact on transaction rates. However, Russell (1999) finds

that a price change between subsequent transactions has a positive and significant coeffi-

cient; Spierdijk (2004) includes two more ancient lags of absolute returns, and both turn

out significant for most stocks in her sample. Dufour and Engle (2000) find mixed evi-

dence on significance of lagged absolute returns for a sample of several NYSE stocks, with

a negative effect on durations prevailing. Russell and Engle (2005) find that expected

transaction intensity tends to be higher when conditional price volatility per transac-

tion is higher. Likewise, Grammig and Wellner (2002) obtain positive and highly jointly

significant effects of the latent expected price volatility and price volatility shock.

Market microstructure theories such as those of Admati and Pfleiderer (1988) and

Easley and O’Hara (1992) presume the coexistence of informed and uninformed (liquidity)

traders in the market. Increased trading volumes and price volatility serve as indicators

of informed trading, which may either enhance trading activity if informed traders are

further attracted by opportunities to exploit their private information, or slow it down if

liquidity traders are intimidated by the possibility of informed trading (see, e.g., Spierdijk,

2004).

4.2 Estimation results

We perform estimation on the basis of the Log–ARMA(1,2)–GARCH(1,1) model that

worked well before, with conditionally normal innovations for simplicity, calculating stan-

dard errors in the Bollerslev–Wooldridge (1992) form. We use the following ad hoc mod-
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eling procedure: starting from this specification with the indexed by t mean equation

supplemented by factor variables indexed by t − 1, t − 2, · · · , t − 10, we remove one

by one the least significant variables until all p-values are lower than 1%. The following

factor variables are chosen:

VOL: log-volume for each trade;

ST: number of simultaneous transactions occurring at each trade;

RV: absolute value of return times log-volume for each trade;

PR: absolute value of latest non-zero price change for each trade.

The choice of these variables is driven primarily by tendencies in the literature re-

viewed in the previous subsection. In addition, some experimentation for the Russian

stocks revealed the following trends. The variable ST works better than an indicator of

more than one transaction, in contrast to the finding of Zhang, Russell and Tsay (2001).

The variable RV is a proxy for the degree of “market overheating.” Finally, previous re-

turns or non-zero returns are insignificant if used without taking absolute values. Further,

to investigate possible asymmetric effects of positive and negative returns, we took the

final estimated mean equations, and in addition included PR(−1)I[R6=0(−1) < 0], where

I[R6=0(−1) < 0] is an indicator of whether the latest non-zero price change is negative. Ta-

ble 8 contains the estimation results for all Russian stocks and Alcatel. The table reports

only point estimates of coefficients on the factors and AR and MA terms; all are signifi-

cant at the 1% confidence level. The values of the Ljung–Box statistics for standardized

log-duration innovations shown at the bottom once again indicate good performance of

the Log–ARMA framework.

One can immediately see that the introduced factors do have strong effects, and

influence the dynamics of intertrade durations for all stocks pretty much in the same way.

The lagged volume has positive impact on trading intensity as in Engle and Lunde (2003),

Bauwens and Giot (2000), Dufour and Engle (2000), and Spierdijk (2004), attesting that

informed traders are encouraged by observing increasing trading volumes. The effect of

the presence of simultaneous transactions during the last trade on the current duration

is stably negative, as in Zhang, Russell and Tsay (2001). This effect is purely a result

of the aggregation of trades that happened within one second, and hardly has structural

interpretation. Market overheating naturally leads to a higher trading intensity, but the

effect nearly fades away during later trades (evidently, there is no overheating at the

Paris Bourse, and the corresponding coefficient is probably spurious). Both long-run and

short-run influence of the last non-zero price changes on durations is significantly positive
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for all stocks. The positive sign is in agreement with the majority of stocks in the sample

of Spierdijk (2004), but at variance with the majority of NYSE stocks in the sample of

Dufour and Engle (2000). It is likely that in the Russian stock market large transaction

price changes signal to liquidity traders that new information unavailable to them has

entered the market, making them avoid risky trading.

Inclusion of asymmetric effects of positive and negative returns yields that coefficients

belonging to PR(−1) are insignificantly different (with p-values ranging from 8% to 83%),

depending on whether the latest non-zero price change has been positive or negative. Thus

at the MICEx, the traders react evenly to upward and downward recent price trends, i.e.

both directions of the market are perceived as equally “normal,” at least in the short run.

5 Concluding remarks

This paper is fully focused on durations. Future research may be devoted to a careful

analysis of price (and possibly volume) data, including modeling price movements in a

framework that acknowledges discreteness of their changes, modeling joint dynamics of

durations and mark processes, and analysis of effects of market-wide, industry-wide, and

stock-specific news.
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A Appendix

Engle and Russell (1998) show that the ACD(p, q) model can be reformulated as ARMA(max(p, q), q)

for durations in levels with non-Gaussian innovations. These innovations exhibit condi-

tional heteroskedasticity whose parameters are tied to the ACD coefficients. Consider

now the LogACD1(p, q) model (3). From equations (3) and (1),

ln dt = ω +

p∑
i=1

φi ln dt−i +

q∑
i=1

ψi ln πt−i + ln εt

= ω +

(
1−

q∑
i=1

ψi

)
m+

max(p,q)∑
i=1

(φi + ψi) ln dt−i + ζt −
q∑

i=1

ψiζt−i,

where m = E [ln εt] and ζt = ln εt − m, so that ln dt follows an ARMA(max(p, q), q)

process. If εt is distributed lognormally17 with parameters18 (−σ2/2, σ2), then ζt is dis-

tributed normally with parameters (0, σ2). Thus, the LogACD1 model is equivalent to

a conditionally normal homoscedastic Log–ARMA model. Other distributional specifica-

tions for εt would imply conditionally non-normal homoscedastic Log–ARMA models. A

conditionally heteroskedastic specification (7) relaxes serial independence in ζt and hence

that in εt. If we start from the LogACD2(p, q) model (4), however, the past innovations

ζt−i then enter the ARMA equation nonlinearly, but still are conditionally homoskedastic.

17This may be viewed as a limiting case of the generalized gamma distribution.
18Recall that if x is distributed lognormally with parameters (µ, σ2), then lnx is distributed normally

with parameters (µ, σ2), and E [x] = exp(µ + σ2/2). Due to the constraint E [εt] = 1, µ and σ must be

related by µ = −σ2/2.
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Table 1. Trading regimes at MICEx

Trading regime Timing Description

Pre-trading period 10:00AM–10:30AM The opening price is determined.

Trading session 10:30AM–6:45PM The regular trading regime.

Post-trading period 6:45PM–7:00PM Trades can be executed at a weighted average

price determined during last 30 minutes of

the trading session.

Negotiated deals

regime

10:00AM–7:05PM Designed for large trades not executed imme-

diately, but whose execution may be delayed

up to 30 days.

Special negotiated

deals regime

7:05PM–10:00PM The same as the negotiated deals regime, but

only specific securities can be traded.

REPO regime 10:15AM–7:05PM The repurchase agreement trading regime.

Incomplete lots

regime

5:00PM–7:05PM Nonstandard lots can be traded.

Table 2. Description of Russian securities

Company Security code Price Lot Stock Observations

step share in sample

Sberbank RU0009029540 1 1 0.75% 13156

Yukos RU0009054449 1 1 1.99% 20125

Lukoil RU0009024277 1 1 15.71% 34316

SurgutNG RU0008926258 0.1 100 5.27% 38275

Rostelecom RU0008943394 1 1 2.75% 38246

MosEnergo RU14MSNG3008 0.1 100 1.88% 32452

Note: price step is in kopecks (1/100 of the ruble), lots are in shares.
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Table 3. Descriptive statistics of adjusted durations and log durations

Stock Mean Var Skew Kurt Min Med Max Acor

Durations dt

Sberbank 0.998 2.791 4.287 32.96 0.002 0.378 24.799 0.159

Yukos 1.004 2.286 3.818 26.62 0.005 0.442 23.344 0.145

Lukoil 1.001 2.434 4.042 28.51 0.010 0.446 24.538 0.167

SurgutNG 1.001 2.307 4.033 29.67 0.008 0.460 27.500 0.171

Rostelecom 1.004 2.410 4.361 38.37 0.009 0.458 36.084 0.151

MosEnergo 1.006 2.308 3.885 27.31 0.007 0.456 24.131 0.158

Alcatel 0.991 1.730 4.208 50.37 0.005 0.524 36.187 0.134

Log-durations ln dt

Sberbank −1.008 2.325 −0.157 2.579 −6.197 −0.974 3.211 0.266

Yukos −0.864 2.025 −0.235 2.639 −5.270 −0.816 3.150 0.213

Lukoil −0.848 1.892 −0.128 2.570 −4.604 −0.807 3.200 0.240

SurgutNG −0.802 1.771 −0.120 2.606 −4.794 −0.776 3.314 0.234

Rostelecom −0.816 1.802 −0.105 2.586 −4.717 −0.781 3.586 0.234

MosEnergo −0.813 1.826 −0.144 2.629 −4.940 −0.786 3.183 0.227

Alcatel −0.752 1.789 −0.345 2.674 −5.335 −0.646 3.589 0.213

Notes: Mean is sample mean, Var is sample variance, Skew is sample skewness coefficient,

Kurt is kurtosis, Min is sample minimum, Max is sample maximum, Acor is sample

first-order autocorrelation coefficient.
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Table 4. Estimates of exponential ACD, LogACD
and Log–ARMA–GARCH models for Lukoil

ACD LogACD1 LogACD2 Log–ARMA

ω 0.033 0.029 −0.046
(0.004) (0.004) (0.008)

ψ1 0.998 1.261 1.394
(0.041) (0.060) (0.075)

ψ2 −0.120 −0.317 −0.416
(0.035) (0.052) (0.071)

φ1 0.205 0.162 0.144
(0.009) (0.006) (0.005)

φ2 −0.113 −0.123 −0.100
(0.006) (0.007) (0.008)

α −0.091
(0.009)

β 0.896
(0.011)

γ1 −0.708
(0.012)

γ2 −0.057
(0.008)

µ 0.040
(0.008)

λ 0.019
(0.002)

ν 0.958
(0.006)

Q(15) 34.61 107.24 22.57 20.97
Q2(15) 37.90 125.44 33.58 15.39

ModelNyb 0.90 0.83 0.74 1.24
IndivNyb 0.09 0.60 0.34 0.19
Mean LL −0.9257 −0.9241 −0.9278 −0.8427
AIC 1.8518 1.8484 1.8559 1.6858
BIC 1.8521 1.8488 1.8563 1.6863
KS 20.66 21.33 20.69 3.44

Notes: Standard errors in parentheses are in the Bollerslev–Wooldridge form. “Q(15)”
and “Q2(15)” denote Ljung–Box statistics for standardized residuals and their squares,
whose 1% critical value is 30.58. “ModelNyb” denotes the Nyblom statistic for the whole
model, whose 1% critical value is approximately 1.87 for ACD and LogACD models, and
2.35 for Log-ARMA-GARCH model; “IndivNyb” denotes the maximal across the coeffi-
cients individual Nyblom statistic, whose 1% critical value is 0.74. “MeanLL” denotes the
sample mean loglikelihood; “AIC” and “BIC” – Akaike and Schwarz information crite-
ria, respectively. “KS” denotes the Kolmogorov–Smirnov statistic measuring divergence
between the exponential and empirical distributions, whose 1% critical value is 1.63.
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Table 5. Estimates of exponential ACD, LogACD
and Log–ARMA–GARCH models for Alcatel

ACD LogACD1 LogACD2 Log–ARMA

ω 0.014 0.018 −0.027
(0.004) (0.004) (0.005)

ψ1 1.245 1.396 1.555
(0.046) (0.068) (0.051)

ψ2 −0.309 −0.442 −0.566
(0.043) (0.060) (0.050)

φ1 0.145 0.118 0.110
(0.010) (0.007) (0.006)

φ2 −0.094 −0.090 −0.084
(0.010) (0.007) (0.007)

α −0.062
(0.009)

β 0.924
(0.012)

γ1 −0.765
(0.014)

γ2 −0.032
(0.009)

µ 0.031
(0.002)

λ 0.011
(0.003)

ν 0.987
(0.002)

Q(15) 27.35 45.69 18.54 15.88
Q2(15) 5.36 7.02 6.07 30.25

ModelNyb 7.70 4.05 6.60 11.26
IndivNyb 1.44 2.97 4.49 5.42
Mean LL −0.9404 −0.9379 −0.9403 −0.9082
AIC 1.8813 1.8763 1.8811 1.8171
BIC 1.8818 1.8769 1.8817 1.8179
KS 10.93 11.31 10.91 4.65

Notes: Standard errors in parentheses are in the Bollerslev–Wooldridge form. “Q(15)”
and “Q2(15)” denote Ljung–Box statistics for standardized residuals and their squares,
whose 1% critical value is 30.58. “ModelNyb” denotes the Nyblom statistic for the whole
model, whose 1% critical value is approximately 1.87 for ACD and LogACD models, and
2.35 for Log-ARMA-GARCH model; “IndivNyb” denotes the maximal across the coeffi-
cients individual Nyblom statistic, whose 1% critical value is 0.74. “MeanLL” denotes the
sample mean loglikelihood; “AIC” and “BIC” – Akaike and Schwarz information crite-
ria, respectively. “KS” denotes the Kolmogorov–Smirnov statistic measuring divergence
between the exponential and empirical distributions, whose 1% critical value is 1.63.
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Table 7. Results of out-of-sample testing

Model Pearson Q(15) Q2(15) Pearson Q(15) Q2(15)

Sberbank Yukos

Exponential ACD 956.78 92.76 59.09 703.10 53.76 36.98
Weibull ACD 321.22 87.34 56.28 269.23 51.98 35.70

Gen. Gamma ACD 33.49 87.17 60.93 23.64 46.26 35.04
Burr ACD 91.94 66.83 45.44 70.86 39.51 30.93

Exponential LogACD1 1017.35 102.91 111.60 729.85 40.82 55.25
Weibull LogACD1 350.21 63.65 77.06 310.32 30.48 42.86

Gen. Gamma LogACD1 35.35 27.61 40.27 28.41 20.93 32.68
Burr LogACD1 89.24 20.39 31.31 72.69 20.03 31.60

Exponential LogACD2 985.06 169.50 111.78 707.61 88.78 62.05
Weibull LogACD2 292.87 184.98 127.36 268.13 91.68 64.67

Gen. Gamma LogACD2 39.61 217.01 160.71 28.19 94.30 69.20
Burr LogACD2 101.67 193.46 140.20 70.86 85.58 63.01

Normal Log–ARMA 59.62 39.72 52.21 108.61 30.85 43.99
SGE Log–ARMA 27.02 61.07 75.18 39.76 42.47 56.81

Lukoil Alcatel

Exponential ACD 973.52 86.20 56.91 385.74 295.00 185.27
Weibull ACD 510.27 82.08 55.96 222.11 280.06 191.54

Gen. Gamma ACD 47.72 85.80 62.00 54.95 271.35 199.94
Burr ACD 114.46 66.26 47.20 112.77 227.35 164.74

Exponential LogACD1 1029.19 48.05 63.52 365.39 215.13 184.78
Weibull LogACD1 582.23 36.00 50.93 218.70 185.65 173.94

Gen. Gamma LogACD1 36.04 21.11 38.56 58.97 129.83 135.95
Burr LogACD12 95.64 16.25 29.29 89.21 114.25 119.41

Exponential LogACD2 922.93 145.16 92.92 355.68 300.31 194.54
Weibull LogACD2 496.10 151.20 101.78 183.69 298.85 207.35
GGam LogACD2 54.44 185.29 137.34 66.49 342.10 253.99
Burr LogACD2 103.51 162.35 117.23 121.39 293.01 212.12

Normal Log–ARMA 122.71 22.53 42.29 157.48 219.43 208.45
SGE Log–ARMA 35.53 28.14 47.85 31.04 280.87 245.61

Notes: “Pearson” denotes Pearson test statistic for uniformity of probability integral
transforms z, whose 1% critical value is 36.19. “Q(15)” and “Q2(15)” denote Ljung–Box
statistics for z and z2, whose 1% critical value is 30.58.
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Figure 1: Average durations for different days.
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Figure 2: Estimated intraday patterns for Lukoil durations.
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Figure 3: Intraday patterns (Monday and Wednesday) with 95% confidence bands for Lukoil.
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Figure 4: Unconditional distributions of durations.
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Figure 5: Unconditional distributions of log-durations.
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Figure 6: Histograms of probability integral transforms for Lukoil (left) and Alcatel (right).
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Figure 7: Histograms of probability integral transforms for Lukoil (left) and Alcatel (right), continued.
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