
 

 
 

 

SECOND-ORDER 
REPRESENTATIONS: A 
BAYESIAN APPROACH  

 
 
 
Ozgur Evren 

 
 

 

 

 

Working Paper 

No 291 

 
NES Working 
Paper series 
 
 
 
 

January  

2024 

 

 



Second-Order Representations: A Bayesian
Approach�

Özgür Evreny

January 10, 2024

Abstract

For choice problems under ambiguity, I provide a behavioral characterization of a de-

cision maker who holds a second-order belief and updates it in a Bayesian fashion

in response to new information concerning the true distribution of the states. The

model features a unique second-order belief that can be elicited from choice data and

is quite comprehensive in terms of ambiguity attitudes and risk preferences. Special

versions, such as the smooth ambiguity model or the recursive non-expected utility

model, are easily characterized by additional assumptions on compound-risk prefer-

ences. Thereby, the model provides a testing ground to compare and contrast these

well-known representations as well as alternative speci�cations that may be of interest.

To illustrate potential bene�ts of alternative speci�cations, I provide a detailed analysis

of a rank-dependent extension of the smooth ambiguity model.
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1. Introduction
Subjective expected utility models consist of two components: An expected utility

operator and a probability distribution on the states of nature that represents the

decision maker�s (DM) subjective prior belief. Machina and Schmeidler�s (1992, 1995)

theory of probabilistic sophistication replaces the expected utility operator with a more

general non-expected utility function on simple lotteries, but retains the assumption

of a prior belief. This approach remains incompatible with ambiguity aversion, i.e.,

the tendency to prefer objectively de�ned probabilities (risk) to unknown probabilities

(ambiguity), as illustrated by Ellsberg�s (1961) classic examples.

To model Ellsberg-type behavior, researchers put forward the notion of a second-

order belief� a prior belief on possible distributions of the states� suggesting that the

DM makes a probabilistic assessment of the unknown distribution. The best known

examples of such models are Segal�s (1987) theory of recursive non-expected utility,

and the smooth ambiguity model of Klibano¤, Marinacci and Mukerji (2005), which

is further studied by Nau (2006), Ergin and Gul (2009), Seo (2009), and Denti and

Pomatto (2022), among others. Aside from these speci�c models, one can also think of

a generic form of second-order representations based on a general non-expected utility

function on compound lotteries, along the lines of Machina and Schmeidler (1992, 1995).

In what follows, second-order probabilistic sophistication (SOPS) refers to this generic

form.

Despite the growing interest in second-order representations, the scope of behavior

that can be modeled in this way is not yet fully understood. Notably, Ergin and Gul

(2009) show that in a purely subjective setup with no objective lotteries, SOPS can

be characterized by Machina and Schmeidler (1992) type axioms, but they assume an

enriched state space with two dimensions (issues).1 By contrast, in a purely subjective

setup with a standard state space and monetary prizes, there exists a second-order

representation for any rational DM who prefers more to less (see Evren 2017). While

the latter representation theorem is extremely general, it does not pin down a unique

second-order belief, nor does it allow one to test/compare di¤erent versions of the

1Following Arrow (1984, p.173), a state can be de�ned as a complete description of the world that
identi�es the consequences of all relevant actions. The second �issue�in Ergin and Gul�s (2009) setup
corresponds to the true distribution of such states. For example, in a typical Ellsberg-type experiment,
the second issue becomes the (unknown) distribution of colored balls in an urn. Accordingly, Ergin
and Gul�s axioms refer to (second-order) acts that map �rst-order distributions to conseqences/prizes.
As also noted by Klibano¤ et al. (2005), observing preferences on second-order acts is a di¢ cult task,
which is a central theme in the discussion between Epstein (2010) and Klibano¤ et al. (2012).
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theory based on speci�c assumptions on risk preferences.

In this paper, I study a testable model of SOPS based on two sets of additional

consistency assumptions. First, I assume that compound lotteries with objectively

de�ned probabilities are also present in the choice environment, and the DM�s ranking

of uncertain prospects (acts) is consistent with her actual preferences on those lotteries.

In practice, this rules out unrealistic speci�cations of utility functions on compound

lotteries and allows one to compare the descriptive power of di¤erent assumptions on

risk preferences.

My second set of assumptions are concerned with the description of ambiguity:

The DM�s second-order belief must be consistent with available information about the

distribution of states, and she must update it in a Bayesian fashion when she gets new

information about the true distribution. For example, in an Ellsberg-type experiment

with colored balls, new information may come in the following form: The fraction of

red balls is at least 30%. In my representation, the DM responds to this information

by conditioning her second-order belief to the set of possible �rst-order distributions

that attach at least 30% probability to the event of extracting a red ball.

The main �nding of this paper is a behavioral characterization of the class of

Bayesian second-order representations outlined above. First, I formulate some basic ax-

ioms that relate the value of an act h conditional on a set � of �rst-order distributions

to those of simple lotteries induced by h and the distributions in �. The hypothesis of

Bayesian updating entails strong links between conditional beliefs. Using these links, I

construct an algorithm that leads to a candidate second-order belief conditional on any

given set �. The algorithm requires the analyst to solve j�j�1 behavioral indi¤erence
equations, sequentially, each with one unknown variable. My main axiom is a Bayesian

consistency property that focuses on algorithmically constructed candidate conditional

beliefs.

More speci�c versions of the theory are easily obtained by additional, well-known

axioms on preferences on compound lotteries. In particular, Segal�s (1987) model is

characterized by a time-neutrality property, whereas Seo�s (2009) version of the smooth

ambiguity model demands von Neumann-Morgenstern (vN-M) independence axioms.

One can also think of a plethora of alternative speci�cations that belong to the general

class characterized in my main representation. To illustrate potential bene�ts of this

generality, I provide a detailed analysis of a rank-dependent speci�cation that has a

number of advantages over both the smooth ambiguity model and Segal�s model.
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Laboratory experiments (e.g., Halevy 2007, Abdellaoui, Klibano¤and Placido 2015,

Chew, Miao and Zhong 2017, and Dean and Ortoleva 2019) document robust connec-

tions between attitudes towards ambiguity and compound risk. While these �ndings

provide indirect support for second-order representations, they cannot be taken as

conclusive evidence absent a direct test of SOPS.2 Moreover, in principle, SOPS may

correlate with other behavioral patterns such as time neutrality or vN-M independence.

Thus, the present model provides a testing ground that may help us better understand

the descriptive power of various second-order representations.

In my model, the DM�s conditional preference relations uniquely determine her

prior second-order belief. This starkly contrasts more standard representations that

only focus on ex-ante behavior. For example, within Anscombe and Aumann�s (1963)

classical expected utility model, two second-order beliefs generate the same behavior

whenever they have the same �rst moment (mean). Seo (2009) notes that this non-

uniqueness problem persists in the smooth ambiguity model, aside from some special

cases. By extension, in my model, it is also possible to represent the same ex-ante be-

havior with two di¤erent second-order beliefs, but such beliefs tend to produce di¤erent

reactions to news concerning the true of distribution of the states. That is, di¤erent

prior beliefs produce di¤erent conditional behavior, even if they are indistinguishable

ex-ante. This allows me to pin down the DM�s prior second-order belief, using the

algorithmic approach mentioned above.

On a related note, under fairly general assumptions that are compatible with am-

biguity aversion, I show that second-order beliefs with larger spread tend to produce

stronger reactions to new information that negatively a¤ects the value of an act. This

illustrates how the uniqueness part of my representation may manifest itself in com-

parative statics exercises.

Halevy and Ozdenoren (2022) study SOPS in a more standard setup with no updat-

ing, and highlight the role of the reduction of compound lotteries axiom as a bridge be-

tween �rst and second order probabilistic sophistication. Following Sarin and Wakker�s

(1997) characterization of the expected utility model, they focus on a calibration axiom

that demands the existence of a �rst-order distribution and a collection of compound

lotteries� speci�cally, two compound lotteries for each pair of disjoint events� that si-

2As a partial exception, Chew et al. (2017) perform a test of second-order probabilistic sophis-
tication with two states, two possible distributions and further symmetry assumptions. However, to
assess the descriptive performance of second-order representations, they also consider more compli-
cated choice problems that involve more than two possible distributions. My theory also covers such
cases.

3



multaneously solve a number of behavioral (indi¤erence) equations between compound

lotteries and acts. If the DM holds a second-order belief, the probabilities that she

attaches to possible �rst-order distributions give a natural solution to the equation

system considered in the calibration axiom. However, the equations in the axiom may

have multiple solutions, and in those cases, the axiom does not pin down a representing

second-order belief. This identi�cation problem is parallel to the aforementioned non-

uniqueness issue, and seems to further illustrate the contribution of my identi�cation

algorithm, which becomes functional under the Bayesian updating hypothesis.

The second-order Bayesian representation is formally introduced in Section 2 and

characterized in Section 3. I discuss special versions of the theory in Section 4, while

Section 5 focuses on comparative statics of second-order beliefs. Section 6 highlights

some limitations of second-order representations in general, and my Bayesian approach

in particular. The proofs of the main results are in the appendix.

2. Setup
Let A be an arbitrary set. The set of all probability measures on A (with �nite

support) is denoted by �(A). As usual, �(B) stands for the probability of a set B � A

according to � 2 �(A). I write �(a) in place of �(fag). By assumption, supp(�) :=
fa 2 A : �(a) > 0g is a �nite set, and

P
a2A �(a) = 1. Given f�1; :::; �ng � �(A) and

f�1; :::; �ng � [0; 1] with
Pn

i=1 �
i = 1, the mixture

Pn
i=1 �

i�i is the element of �(A)

that attaches the probability
Pn

i=1 �
i�i(a) to a 2 A. Similarly, �2(A) := �(�(A)) is

the set of all probability measures on �(A), and the mixture operation on this set is

de�ned analogously. Given a subset B of A, I do not distinguish between the elements

of �(B) and those elements � of �(A) such that supp(�) � B.

The degenerate probability measure supported on a point a 2 A is denoted as �a.

For any B � A, we have �a(B) := 1 if a 2 B, and �a(B) := 0 otherwise. Note that

� =
P

a2A �(a)�a for every � 2 �(A).
The set of prizes is an interval X � R with infX < supX. A generic element

of �(X), denoted q (or q0; q̂ etc.), corresponds to a simple (or one-shot) lottery on

X. In turn, a generic element of �2(X), denoted Q, represents a compound lottery.

The sets �(X) and �2(X) are equipped with the topology of weak convergence.3 I

often write �(X) in place of the set f�q : q 2 �(X)g � �2(X), and X in place of

3A sequence (qn) in �(X) converges to q 2 �(X) i¤
P

x2X q
n(x)f(x)!

P
x2X q(x)f(x) for every

continuous and bounded f : X ! R. The convergence criterion on �2(X) is analogous.
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f�x : x 2 Xg � �(X).
The �rst-order stochastic dominance relation on�(R) and its strict part are denoted

by �fsd and >fsd, respectively. Given an interval Z � R, I say that a function ' :
�(Z) ! R is fsd-increasing if q >fsd q0 implies '(q) > '(q0) for every q; q0 2 �(Z).
The DM�s preferences on compound lotteries will be represented4 by a function V :

�2(X)! R that is twice fsd-increasing in the following sense: (i) v(q) � V (�q) is fsd-

increasing on �(X); and (ii)
P

q2�(X)Q(q)�v(q) �fsd (>fsd)
P

q2�(X)Q
0(q)�v(q) implies

V (Q) � (>)V (Q0), meaning that V is monotonically increasing with respect to �fsd
on simple utility distributions induced by compound lotteries. Parts (iii) and (iv) of

Axiom (A5) in Section 3 provide a behavioral description of such representations.

Lemma 1. Suppose V : �2(X) ! R is continuous and twice fsd-increasing. Then

there exists a continuous and fsd-increasing function � : �(v(X)) ! R such that

V (Q) = �(
P

q2�(X)Q(q)�v(q)) for every Q 2 �2(X). Moreover, given any continuous

function u : �(X) ! R that is ordinally equivalent to v, so that u(q) � u(q0) i¤

v(q) � v(q0) for every q; q0 2 �(X), there exists a continuous and increasing function
� : u(X)! R such that v(q) = �(u(q)) for every q 2 �(X).

Thus, a twice fsd-increasing function V can equivalently be thought of as a triplet

(�; �; u), where u is an arbitrarily selected function that represents the DM�s prefer-

ences on simple lotteries; � is an increasing transformation that solves the functional

equation v = � � u; and � is an aggregator that determines the overall utility of a

compound lottery Q as a function of the utility distribution in �(��u(X)) induced by
Q. I refer to the triplet (�; �; u) as a simple-form representation because it is based

on simple distributions on utility levels. In Section 4, I discuss particular variants of

such representations associated with some well-known models. (For brevity, I omit the

proof of Lemma 1, which is a straightforward exercise.)

Let S be a �nite set that consists of the states of nature. A �rst-order distribution

refers to a generic element of �(S), denoted by p. Similarly, a second-order distribution

is a generic element P of �2(S). A function that maps S into X is referred to as an

act. The set of all acts is H := XS, with generic elements h and g.

If the underlying uncertainty can accurately be described by a �rst-order distribu-

4Given a binary relation % on a set A and a subset B � A, I say that a function U : B ! R
represents % on B provided that U(a) � U(a0) i¤ a % a0 for every a; a0 2 B.
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tion p 2 �(S), an act h induces the following simple lottery:

ph :=
X
s2S

p(s)�h(s).

In choice problems under ambiguity, the DM may not be able to pick out such

a distribution. Suppose that she has in mind a second-order distribution/belief P 2
�2(S), where P (p) is her assessment of the likelihood of the event that the states are

distributed according to p. Then an act h induces a compound lottery:

Ph :=
X
p2�(S)

P (p)�ph.

De�nition 1. A binary relation %0 on H [ �2(X) is second-order probabilistically

sophisticated (SOPS) if there exist a continuous, twice fsd-increasing function V :

�2(X) ! R and a second-order distribution P 2 �2(S) such that for any �; �̂ 2
H [�2(X),

� %0 �̂ , VP (�) � VP (�̂),

where VP (h) := V (Ph) for h 2 H, and VP (Q) := V (Q) for Q 2 �2(X). I denote by

%(V;P ) the SOPS relation %0 on H [�2(X) that is represented by a given pair (V; P )

in this fashion.

As a key feature, an SOPS relation %0 satis�es h �0 Ph for every h 2 H. That is,
the DM is indi¤erent between an act h and the compound lottery induced by h and

her second-order belief P .5

I assume that given the initial information available to the DM, the true distribution

of the states belongs to an exogenously given, �nite set �� � �(S). Nonempty subsets
of �� are denoted as �, �0 etc., while 2� stands for the collection of all nonempty

subsets of �.

At an interim stage, the DM learns that the true distribution of the states lies in

a set �. Her behavior upon receiving this new information is described by a binary

relation %� on H [�2(X). Accordingly, the primitive of the model is a collection of

binary relations f%� : � 2 2�
�g on the set H[�2(X). I often write % in place of the

ex-ante preference %��.
I proceed with an example that illustrates the setup.

5I denote by � and � the symmetric and asymmetric parts of a relation %, respectively.
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Example 1. Suppose that the DM is asked to bet on the color of a ball to be randomly

extracted from an urn that contains nine balls. Initially, she only knows that three of

the balls are red (r), while the remaining balls are either black (b) or white (w). Then

the state space is S := fr; b; wg, where each state represents the event of extracting a
ball of the corresponding color. Given the set of possible color distributions in the urn,

we can let �� := fp 2 �(S) : p(r) = 1=3; p(b) = �=9; � = 0; 1; :::; 6g. Before choosing
a bet, the DM gets a further piece of information on the color distribution in the urn.

For instance, if she learns that there are at most two black balls, the set of relevant

distributions becomes � := fp 2 �� : p(b) � 2=9g.

My main purpose is to characterize, behaviorally, the representation notion de�ned

below.

De�nition 2. A second-order Bayesian representation (V; P �) for the collection of

preferences f%� : � 2 2�
�g consists of a continuous, twice fsd-increasing function

V : �2(X) ! R and a distribution P � 2 �(��) such that %� = %(V;P �j�) for every
� 2 2�� with P �(�) > 0. Here, P �j� is the Bayesian update de�ned as P �j�(p) :=
P �(p)=P �(�) for p 2 �, and P �j�(p) := 0 for p 2 ��n�.

The representation describes a Bayesian DM who holds an ex-ante second-order

belief P � 2 �(��). Upon learning that the true distribution lies in a set � with

P �(�) > 0, she updates P � according to the Bayes rule, converts acts into compound

lotteries via the updated second-order belief, P �j�, and evaluates those lotteries with
the function V . Shortly put, %� is the SOPS relation represented by the pair (V; P �j�).

3. Representation Theorem
In the remainder of the paper, I often write ph in place of �ph, and more generally, q in

place of �q. I say that a set � 2 2�
�
is null if for each p 2 � there exist a p0 2 �� and

an h 2 H such that p0h � ph and h �fp;p0g p0h. The latter two conditions suggest that
information concerning the (null) distribution p does not in�uence the DM�s behavior.

After learning that the true distribution is either p or p0, her evaluation of the act h

solely depends on p0.

My �rst axiom demands a similar form of indi¤erence toward all null sets: Learning

that the true distribution does not belong to a null-set � should not in�uence the DM�s

behavior.

A1: Null Irrelevance (NI). (i) If � is null and distinct from ��, then %��n� =
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%�� :
(ii) If � is null and �0

is non-null, then %�0 = %�0[�.

Part (ii) of this axiom presupposes the existence of a non-null set �0. If we were to

assume that the grand set �� is non-null, statement (i) would immediately follow from

statement (ii). Indeed, the only role of NI(i) in my analysis is to ensure that the set

�� is non-null.

A2: Singleton Sophistication (SiSo). If fpg is non-null, then h �fpg ph for every
h 2 H.

As a minimal sophistication condition, our DMmust be able to calculate the lottery

ph induced by an act h and a distribution p, and evaluate h in this manner if she learns

that p is the true distribution of the states. This is the content of SiSo.

A3: Monotonic Expansion (ME). If � is non-null and p0h % ph % p00h for every

p 2 �, then h �� Q implies h %�[fp0g Q and Q %�[fp00g h.

Suppose p0h % ph for every p 2 �, where p0 is a distribution that does not belong to
�. Let us consider two di¤erent scenarios regarding the interim stage. In one scenario,

the DM learns that the true distribution belongs to �, and in the second scenario she

learns that p0 can also be true in addition to those distributions in �. ME asserts

that h should be more valuable in the second scenario than the �rst, measured against

the values of lotteries Q 2 �2(X). Analogously, the converse conclusion must hold

whenever ph % p0h for every p 2 �.
If we think of � [ fp0g and � as nested events unfolding sequentially, and take ph

as the outcome of the act h under a distribution p, ME amounts to saying that the

value of h can only decrease (resp. increase) for the DM once she learns that the best

(resp. worst) possible outcome that she can expect from h is not actually feasible.

Assuming a Bayesian DM who holds a second-order belief, variations in the DM�s

behavior conditional on nested sets of distributions can be used to elicit her assessment

of the distributions�relative likelihood. The next de�nition introduces an algorithm

that determines a second-order distribution on any given non-null event � by iteratively

extending pre-determined distributions supported on subsets. Following the logic of

ME, the algorithm focuses on a single, outstanding distribution at each step of the

iteration.

De�nition 3. For any non-null � 2 2��, a distribution P 2 �(�) is pre-consistent on
� (with respect to the collection of conditional preferences) if one of the two statements
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below holds true:

1. � = fpg for some p 2 ��.
2. There exist a p0 2 �, an act g with p0g � pg for every p 2 �nfp0g, a distribution

P̂ 2 �(�nfp0g) that is pre-consistent on �nfp0g, and a number  2 [0; 1] such that

g �� �p0g + (1� )P̂g and P = �p0 + (1� )P̂ :

The �rst part of De�nition 3 declares the degenerate distribution �p pre-consistent

in the unambiguous case � = fpg. The second part of the de�nition describes how a
pre-consistent distribution P̂ on an event �̂ can be extended to an event � := �̂[fp0g.
First of all, there must exist an act g such that p0g � pg for every p 2 �̂. This ensures
that the utility of the mixture �p0g + (1 � )P̂g is increasing in , assuming a twice

fsd-increasing utility function. If g is indi¤erent to �p0g + (1 � )P̂g conditional on �

for a particular value of , then the corresponding mixture P = �p0 + (1 � )P̂ is

declared pre-consistent on �. Indeed, �p0 + (1� )P̂ is the unique distribution on �

that assigns probability  to p0 while agreeing with P̂ conditional on �̂, where  is the

�correct�weight of p0 suggested by the behavioral equation g �� �p0g + (1� )P̂g.

A distribution P 2 �(�) constructed via the algorithm in De�nition 3 is called

�pre-consistent�because a further consistency condition is necessary to guarantee the

existence of a second order Bayesian representation.

A4: Consistent Expansion (CE). Let P 2 �(�) be a pre-consistent distribution
on a non-null set �. Given any non-null fp1; p2g � �, � 2 [0; 1] and h 2 H, set
Q := ��p1h + (1� �)�p2h. Then we have

h %fp1;p2g Q , h %� P (fp1; p2g)Q+
P

p2�nfp1;p2g P (p)�ph.

Suppose that the algorithm that we just discussed leads to a second-order dis-

tribution P supported on a set �. Roughly speaking, CE demands this distribu-

tion be consistent with preferences conditional on binary subsets of �. The rank-

ing of an act h relative to the lottery Q := ��p1h + (1 � �)�p2h conditional on a

subset fp1; p2g must be the same as that of h relative to the linear transformation
P (fp1; p2g)Q +

P
p2�nfp1;p2g P (p)�ph conditional on the large set �. Alternatively, CE

can be viewed as an additive separability property based on carefully selected weights

embodied in a pre-consistent distribution. Section 3.1 contains further remarks on

pre-consistent distributions and the implications of CE.
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My �nal axiom consists of some standard properties.

A5: Standard Properties (STD). (i) For any non-null �, the relation %� on H [
�2(X) is complete, transitive, and continuous in the sense that fQ 2 �2(X) : Q � �g
and fQ 2 �2(X) : � � Qg are open subsets of �2(X) for each � 2 H [�2(X).

(ii) For any non-null � and Q;Q0 2 �2(X), we have Q %� Q0 if and only if Q % Q0.

(iii) For any q; q0 2 �(X) with q >fsd q0, we have q � q0.

(iv) For any fq̂0; q0; q1; :::; qng � �(X) and f�0; �1; :::; �ng � (0; 1) with
Pn

i=0 �
i = 1,

we have �0�q0 +
Pn

i=1 �
i�qi % �0�q̂0 +

Pn
i=1 �

i�qi i¤ q0 % q̂0.

Statements (iii) and (iv) above correspond to the monotonicity properties of a twice

fsd-increasing function on �2(X). Property (iv) is also known as the �compound inde-

pendence axiom�(see Segal 1990). Statement (ii) means that the DM�s risk preferences

do not to vary with new information on possible distributions of the states. This is a

standard assumption in the updating literature, and so are the remaining assumptions

in statement (i).

To avoid trivialities, I assume that the collection of conditional preferences is non-

constant in the sense that %� 6= %�0 for some �;�0 2 2�
�
. The following is the main

result of the paper.

Theorem 1. A non-constant collection of binary relations f%�: � 2 2��g on H [
�2(X) satis�es the axioms (A1)-(A5) if and only if it admits a second-order Bayesian

representation (V; P �). Moreover, P � is uniquely de�ned.

This theorem provides a characterization of second-order Bayesian behavior by

means of testable axioms. The axioms link the conditional values of a subjective act

h to those of compound lotteries jointly induced by h and possible distributions of

the states. Aside from two basic monotonicity properties, my axioms do not restrict

the DM�s preferences on compound lotteries. Compatible forms of ambiguity attitudes

and preferences on subjective acts are also unlimited, except for necessary connec-

tions between the valuations of acts and compound lotteries that underlie second-order

Bayesian representations.

In Section 4, we will see that interesting forms of the function V can easily be char-

acterized by additional axioms on preferences on compound lotteries. Thus, Theorem 1

provides a unifying framework that can be used to test and compare the descriptive

power of various second-order representations within a population of subjects who

update their second-order belief in a Bayesian fashion.
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3.1. Further Remarks

In the second part of De�nition 3, we may as well assume that the distribution P̂ 2
�(�nfp0g) satis�es

h � (P̂ j�0)h 8h 2 H and non-null �0 2 2�nfp0g: (1)

Then a pre-consistent distribution P on � becomes a natural, one-step extension of a

second-order belief, P̂ , that is known to represent preferences conditional on subsets of

�nfp0g, while CE reduces to a statement on extensibility of such representations. Yet,
in practice, condition (1) may complicate the task of eliciting pre-consistent beliefs from

choice data. I have therefore chosen to focus on the recursive approach in De�nition 3.

Upon letting p1 = p2 in the statement of CE, from SiSo and CE we get h �� Ph for
every h 2 H. Thus, once we elicit a pre-consistent distribution on a given set �, the
conditional preference %� must be SOPS as an immediate consequence of the axioms.
In turn, with p1 6= p2, CE helps establish Bayesian relations between pre-consistent

distributions on nested subsets of ��:

A second-order distribution that represents a SOPS preference relation is not neces-

sarily unique. This is especially commonplace for second-order formulations of Anscombe

and Aumann�s (1963) classical expected utility model. The next example illustrates

how Bayesian updating achieves uniqueness in Theorem 1.

Example 2. Let �� := fp1; p2; p3g, where p1 6= p3 and p2 = 1
2
p1 + 1

2
p3. Pick an

fsd-increasing expected utility function u : �(X) ! R. Set V (Q) :=
P

q2QQ(q)u(q)

for Q 2 �2(X), and P � := ��p2+(1��)(12�p1+
1
2
�p3) for � 2 (0; 1). It is easily checked

that V (P �h ) = u (p2h) for any h 2 H, independently from the choice of �, because both

V and u are expected utility functions. But if u(p1h) 6= u(p3h)� such h exists because

u is fsd-increasing, then V ((P �jfp1; p2g)h) = u(1��
1+�

p1h +
2�
1+�

p2h) returns distinct values

as a function of �. Thus, the choice of � in�uences the conditional preference %fp1;p2g
associated with P � but not the corresponding ex-ante preference.

In models of �rst-order Bayesian updating, null sets are de�ned by an analogue of

NI(i) formulated in terms of step functions on S. In the present setup, this approach is

not so suitable because a non-null � can also satisfy the conclusion of NI(i). That is,

unlike the �rst-order Bayesian theory, learning an event � does not necessarily alter the

DM�s preferences even if both � and its complement ��n� are non-null. For instance,
in Example 2, P �jfp2g, P �jfp1; p3g and P � induce the same preference on H, for any
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given � 2 (0; 1). Yet P � attaches positive probabilities to all three distributions, p1, p2

and p3. This manifests itself through the pattern pih �fpi;pjg h �fpi;pjg p
j
h for any act h

with pih � pjh.

Example 2 also shows that in the second part of De�nition 3, it is important to focus

on an outstanding distribution p0 such that p0g � pg for every p 2 �nfp0g. To meet this
condition, in the context of Example 2 one can start from the intermediate distribution

fp2g, then identify a pre-consistent distribution on a doubleton fp2; pig, which can be
extended further to a pre-consistent distribution on the grand set �� = fp1; p2; p3g.
By contrast, it would be futile to attempt to reach the ex-ante belief P � from the

conditional belief on the set fp1; p3g. Indeed, with P̂ := P �jfp1; p3g = 1
2
�p1 +

1
2
�p3 and

p0 := p2, the equation g ��� �p0g + (1 � )P̂g is completely uninformative about the

likelihood of p0; it holds for any g 2 H and  2 [0; 1].

4. Special Forms
The function V in a second-order Bayesian representation determines the DM�s atti-

tudes toward compound risk and ambiguity simultaneously. In this section, I discuss

two well-known speci�cations of this function, and an alternative that accounts for

some recent empirical �ndings.

Let (�; �; u) denote a simple-form expression of a continuous, twice fsd-increasing

function V : �2(X)! R that represents the DM�s preferences on compound lotteries,
%. By de�nitions, V (Q) = �(

P
q2�(X)Q(q)�v(q)) for every Q 2 �2(X), and v = � � u.

In the smooth ambiguity model, both u and � are expected utility operators, with

u(q) = Eq(u) :=
P

x2Xq(x)u(x) for q 2 �(X), and �(�) =
P

w2v(X)�(w)w for � 2
�(v(X)). Thus, the function V has the following form:

VSm(Q) :=
P

q2�(X)Q(q)� (Eq(u)) :

Segal�s (1987) model builds upon a non-expected utility function u on simple lot-

teries; the rank-dependent utility model (Quiggin 1982) and the cautious expected

utility model (Cerreia-Vioglio, Dillenberger and Ortoleva 2015) are the most popular

speci�cations for this function. There are two other key features of Segal�s model.

First, u and v are normalized so that u(q) = v(q) = x(q) for each q 2 �(X), where
x(q) 2 X is the certainty equivalent of q with �x(q) � q (or, more precisely, ��x(q) � �q).

This implies v(X) = X. Second, �(q) = u(q) for every q 2 �(X), meaning that the
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function u(�) = x(�) is applied two times, recursively, to evaluate a compound lottery.
To summarize, the utility of Q 2 �2(X) is de�ned as follows:

VSe(Q) := x
�P

q2�(X)Q(q)�x(q)

�
.

An alternative speci�cation utilizes a rank-dependent aggregator � in place of the

�rst-stage expected utility operator of the smooth ambiguity model. The utility of a

compound lottery Q =
Pn

i=1Q(q
i)�qi 2 �2(X) with qn % � � � % q1 is given by

VSr(Q) := �(Eq1 (u)) +
Pn

j=2

�
�(Eqj (u))� �(Eqj�1 (u))

�
	(
Pn

i=jQ(q
i)).

Here, 	 : [0; 1] ! [0; 1] is a continuous and increasing probability transformation

function with 	(0) = 0 and 	(1) = 1, while the functions u and � are de�ned as in

the smooth ambiguity model. In what follows, I refer to this speci�cation as SORDU

(the second-order rank-dependent utility model).

As we shall see shortly, the second-order Bayesian representations corresponding to

these three speci�cations are easily characterized by some well-known assumptions on

risk preferences.

On a more general note, it is possible to combine any speci�cation of u : �(X)!
R with any speci�cation of � : �(v(X)) ! R that may be of interest. Natu-

rally, the structure of u is determined by preferences on the set f�q : q 2 �(X)g,
which we do not distinguish from �(X). In turn, preferences on the set �o :=

fQo 2 �2(X) : supp(Qo) � f�x : x 2 Xgg, the set of compound lotteries that are de-
generate in the second stage, determine the structure of the �rst-stage aggregator �.

Note that the rule qo(x) := Qo(�x) establishes an isomorphism between �(X) and �o.

Thus, familiar forms of � can also be characterized by known axioms on preferences

on simple lotteries.

Proposition 1. Let f%�: � 2 2�
�g be a non-constant collection of binary relations on

H[�2(X) that satis�es the axioms (A1)-(A5). This collection admits a second-order

Bayesian representation (V; P �) with:

(i) V = VSm i¤ % satis�es (a) �rst-stage vN-M independence: Q % Q0 implies �Q+

(1 � �)Q̂ % �Q0 + (1 � �)Q̂ for � 2 (0; 1) and Q;Q0; Q̂ 2 �2(X); and (b) second-

stage vN-M independence: �q % �q0 implies ��q+(1��)q̂ % ��q0+(1��)q̂ for � 2 (0; 1) and
q; q0; q̂ 2 �(X):
(ii) V = VSe i¤ % satis�es time neutrality: Qo � �qo for Qo 2 �o, where qo 2 �(X)
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is de�ned as qo(x) := Qo(�x) for x 2 X.
(iii) V = VSr i¤ % satis�es second-stage vN-M independence, and �rst-stage weak

commutativity: Let q; q̂ 2 �(X) and Q; Q̂ 2 �2(X) be such that �q � Q =
Pn

i=1 �
i�qi

and �q̂ � Q̂ =
Pn

i=1 �
i�q̂i for some fq1; :::; qn; q̂1; :::; q̂ng � �(X) and f�1; :::; �ng �

(0; 1) with
Pn

i=1 �
i = 1. Assume further that �qn % � � � % �q1, �q̂n % � � � % �q̂1,

and �qn % �q̂n ; :::; �q1 % �q̂1. Then for any � 2 (0; 1) and f�q1; :::; �qng � �(X) with

��qi � ��qi + (1� �)�q̂i for i = 1; :::; n, we have ��q + (1� �)�q̂ �
Pn

i=1 �
i��qi :

In the characterization of SORDU, Chew�s (1989) weak commutativity axiom is

applied on compound lotteries.6 First-stage vN-M independence takes the role of weak

commutativity in the characterization of the smooth ambiguity model. Finally, Se-

gal�s model is characterized by the time neutrality property, which asserts that each

compound lottery Qo in �o must be indi¤erent to the corresponding simple lottery

qo. Needless to say, one can add further axioms on preferences on simple lotteries to

characterize more structured versions of Segal�s model with a speci�c family of the

non-expected utility function u.

Part (ii) of Proposition 1 is arguably more important than part (i) because Segal�s

model does not have a compelling characterization in the earlier literature.7 Although

the role of the time neutrality axiom is well-understood, di¢ culties associated with the

characterization of SOPS are responsible from this gap in the literature.

Compared to Segal�s model, a key di¤erence of SORDU is the expected utility

function u(q) = Eq(u) on simple lotteries, which is likely to be useful for modelers

who wish to think of ambiguity aversion/Ellsberg-type behavior as a distinct concept

than Allais-type risk preferences. Indeed, most ambiguity models in the literature�

including the smooth ambiguity model� employ vN-M preferences on simple lotteries.

In the next section, I show that SORDU overcomes some descriptive shortcomings

of the smooth ambiguity model, and has some additional analytical advantages over

both alternative theories.
6The weak commutativity axiom is also known as �weak certainty equivalent substitution� (see

Schmidt 2004). In line with my earlier comments, the proof of Proposition 1 shows that to characterize
SORDU it is actually su¢ cient to con�ne �rst-stage weak commutativity to the set�o; that is, without
loss of generality, we can assume that all simple lotteries in the statement of the axiom (i.e., q; q̂; qi; q̂i

and �qi, i = 1; :::; n) are degenerate. One can also utilize Wakker�s (1994) tradeo¤ consistency axiom
in place of weak commutativity.

7Section 6 provides a discussion of recent developments on the foundations of the smooth ambiguity
model.
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4.1. Analytical and Descriptive Features of SORDU

Non-participation in �nancial markets. Empirical �ndings show that the fraction
of individuals who do not participate in equity markets is quite high, even among

wealthy people (Vissing-Jorgensen 2003; Briggs, Cesarini, Lindqvist and Östling 2021).

Since Dow and Werlang (1992), we know that non-expected utility models� a non-

additive prior, in particular� can generate non-participation in �nancial markets under

permissive assumptions on parameter values. In SORDU, the value of an act h, VSr(Ph),

equals the Choquet integral of the function p ! � (Eph(u)) with respect to the non-

additive probability 	 � P on subsets of ��. If we take p as the true distribution of

returns associated with a �nancial asset, SORDU leads to similar predictions as in Dow

and Werlang, assuming that the second-order distribution P is non-degenerate.

Segal�s (1987) model is also compatible with large non-participation rates, but this

holds, to a lesser extent, even when P is degenerate (see Evren 2019). Thus, the role

of ambiguity in Segal�s model is not as sharp.

Ambiguity attitudes vs. the level of ambiguity. The curvature of the function
� in the smooth ambiguity model determines ambiguity attitudes. When � is concave,

the DM is absolutely ambiguity averse in the sense that, where �(P ) :=
P

p2�(S) P (p)p,

we have

�(P )h % Ph 8h 2 H. (2)

Here, the �rst-order distribution �(P ) 2 �(S) is the mean or (reduced form) of the
second-order distribution P 2 �2(S). Thus, property (2) says that the DM would like

the uncertain acts more if she were able to replace her second-order belief P with its

mean, �(P ), and eliminate the ambiguity in the environment.

Similarly, if � is a concave transformation of another function �̂, the former induces

relatively more ambiguity averse behavior in the smooth ambiguity model.8 Thereby,

the smooth ambiguity model allows one to study ambiguity attitudes independently

from the level of ambiguity, which can be measured with the spread of a second-order

belief P .

By contrast, Evren (2019) shows that such a separation is not possible in Segal�s

(1987) model, at least if one is willing to maintain a clear distinction between simple-risk

8Suppose � = '� �̂ for an increasing, concave function ' : �̂(u(X))! R. Let VSm and V̂Sm denote
the smooth ambiguity functions associated with � and �̂, respectively. Then for any P 2 �2(S),
q 2 �(X), and h 2 H with VSm(Ph) � VSm(�q), we also have V̂Sm(Ph) � V̂Sm(�q). That is, whenever
VSm ranks h above q, so does V̂Sm.
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aversion and ambiguity aversion. Indeed, a second-order belief is the only parameter

in Segal�s model aside from the preference relation on simple lotteries.

In SORDU, the curvature of � in�uences relative ambiguity attitudes just as in

the smooth ambiguity model because VSr(Ph) equals the expectation of �(Eph(u)) with

respect to a distorted probability measure on the set ��.9

The function 	 in SORDU provides an additional channel that in�uences ambiguity

attitudes. If we replace	 with a function 	̂ such that	(�) � 	̂(�) for every � 2 (0; 1),
then the values of acts (and compound lotteries) become smaller, but the values of

riskless prizes (and simple lotteries) remain the same. Consequently, the function 	̂

induces a smaller certainty equivalent for each act, implying an increase in ambiguity

aversion.

Next, I highlight some peculiar features of SORDU concerning absolute ambiguity

aversion.

Absolute ambiguity aversion vs. compound-risk aversion. In SORDU, con-
cavity of the function � is neither necessary nor su¢ cient for absolute ambiguity aver-

sion. Rather, concavity of � and convexity of 	 jointly characterize a strong form of

compound-risk aversion: Where �(Q) :=
P

q2�(X)Q(q)q,

�Q̂+ (1� �)��(Q) % �Q̂+ (1� �)Q 8Q; Q̂ 2 �2(X) and � 2 [0; 1]: (3)

Since �(Q) is the mean of the compound lottery Q, this property describes a DM who

dislikes a mean-preserving spread in compound risk. By contrast, absolute ambiguity

aversion corresponds to a weak form of compound-risk aversion: ��(Q) % Q, that is,

the mean of a compound lottery Q is preferred to Q.10 In SORDU, the latter property

requires 	 be su¢ ciently small relative to �. When � is concave, we obtain a sharp

characterization: Absolute ambiguity aversion becomes equivalent to the pessimism

condition 	(�) � � for � 2 (0; 1).
These observations easily follow from well-known relations between risk attitudes

and the parameters of the classical RDU model examined by Chew, Karni and Safra

(1987), and Chateauneuf and Cohen (1994).

A widely studied example due to Machina (2009) illustrates the importance of

9Speci�cally, VSr(Ph) equals the expectation of �(Eph(u)) with respect to the probability measure
that assigns 	(

Pm
i=j P (p

i))�	(
Pm

i=j+1 P (p
i)) to pj , where p1; :::; pm are the elements of �� ordered

so that Epmh (u) � � � � � Ep1h (u) :
10Dillenberger (2010) calls this property �preference for one-shot resolution of uncertainty.�
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separating absolute ambiguity aversion from strong compound-risk aversion.

Reflection Example. Let S = fs1; s2; s3; s4g. The DM knows that the probabilities

of the events fs1; s2g and fs3; s4g equal 1=2. While the probabilities of s2 and s3 are
ambiguous, the DM also knows that they belong to the set M := fk=100 : k =
0; 1; :::; 50g. Thus,

��ref :=
�
p 2 �(S) : p(fs1; s2g) = p(fs3; s4g) = 1=2;

�
p(s2); p(s3)

�
2M �M

	
.

Throughout the example, % denotes the DM�s preference relation on RS [�2(R).
For any P 2 �(��ref ), I write P (k; t) in place of P (fp 2 ��ref : (p(s

2); p(s3)) =

(k=100; t=100)g), and say that P is symmetric if P (k; t) = P (t; k) for k; t = 0; 1; :::; 50:

Pick two prizes x; y with x > y > 0, and consider the four acts de�ned in Table 1

below.11

Table 1�The Re�ection Example

Act s1 s2 s3 s4

h5 y x y 0

h6 y y x 0

h7 0 x y y

h8 0 y x y

Note that h5 and h8 are symmetric re�ections of each other, and the same holds

for h6 and h7. By contrast, h5 and h6 are signi�cantly di¤erent; the former is more

exposed to ambiguity. Indeed, in an experimental study, L�Haridon and Placido (2010)

found that among ambiguity averse subjects, the most frequently observed pattern is

h5 � h6 and h7 � h8. Baillon, L�Haridon and Placido (2011) showed that assum-

ing ambiguity aversion and a symmetric second-order belief P , the smooth ambiguity

model is unable to accommodate this pattern because the (expected) utility distribu-

tion induced by h6 is a mean-preserving spread of that induced by h5. The following

claim reformulates this observation in terms of compound-risk aversion.

Claim 1. Suppose that % is a SOPS preference relation represented by a symmetric

second-order belief P 2 �(��ref ). If % satis�es second-stage vN-M independence, and

11Using these acts, Machina (2009) questioned the descriptive power of Schmeidler�s (1989) Choquet
expected utility model. In Machina�s original formulation, we have x = $8000, y = $4000, while the
state si (i = 1; 2; 3; 4) corresponds to the event of extracting a ball marked with the number i from
an urn that contains 100 balls.
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the strong compound-risk aversion property in expression (3), then we have h5 % h6.

Since SORDU separates absolute ambiguity aversion from strong compound-risk

aversion, it is able to accommodate the pattern observed by L�Haridon and Placido

(2010) with reasonable speci�cations:

Proposition 2. Consider a SORDU model with �(x) � x. If 	 is not convex, then

there exists a symmetric P 2 �(��ref ) such that the associated preference % satis�es

h7 � h6 � h5 � h8. If, in addition, 	(�) � � for every � 2 (0; 1), then % is also

ambiguity averse.12

Ambiguity attitudes depending on the likelihood of a good outcome. In a
recent commentary, Ellsberg (2011) notes that ambiguity aversion observed in experi-

ments may hinge upon the likelihood of a good return. Kocher, Lahno and Trautmann

(2018) test this hypothesis with a large number of subjects, and �nd that ambigu-

ity seeking is indeed common when the likelihood of a good outcome is small. By

contrast, ambiguity aversion prevails in classical Ellsberg-type experiments that yield

a good outcome with a moderately large likelihood. Speci�cally, the experiments of

Kocher et al. involve two urns, Urn 1 and 2, �lled with colored chips of an unknown

composition. Urn 1 contains up to ten di¤erent colors, while Urn 2 contains at most

two di¤erent colors. More than half of the subjects prefer a bet on the color of a

randomly drawn chip from Urn 1 to the corresponding risky bet with 10% chance of

winning, which suggests ambiguity seeking. The opposite, ambiguity averse behavior is

observed in the two-colors case: More than half of the subjects prefer a risky bet with

50% chance of winning to a bet on the color of a randomly drawn chip from Urn 2.

SORDU with an inverse S-shaped 	 function provides a natural framework to

model such behavior. This version of the model admits a number �� 2 (0; 1) such that
	(�) > � for � 2 (0; ��) and 	(�) < � for � 2 (��; 1). Given a bet on a particular state
ŝ 2 S, consider a second-order belief P =

Pn
i=1 �

i�pi with pi+1(ŝ) > pi(ŝ) for each i.

The probability of the tail event fpi : i � jg under P equals P j+ :=
Pn

i=j �
i. For a

distribution pj with P j+ < ��, we have 	(P j+) > P j+, meaning that the tail probability

P j+ is evaluated in an optimistic way. By contrast, P j+ > �� implies 	(P j+) < P j+,

a pessimistic evaluation. Thus, a simultaneous increase in P 1+; :::; P n+; that is, an

12Dillenberger and Segal (2015) show that Segal�s (1987) model is compatible with all examples
provided by Machina (2009, 2014). A thorough examination of SORDU in this broader context is left
for future work.
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upward �rst-order stochastic shift in winning probabilities, makes each P j+ more likely

to fall into the pessimistic region (��; 0]. Consequently, a decrease in the number of

states� �colors,� in a typical urn experiment� may act as a catalyst for ambiguity

aversion by increasing the DM�s assessment of winning probabilities for the bet on the

particular state ŝ.

Toward a concrete example, consider a SORDU representation with the following

four properties:

i. �(v) = v for every v 2 u(X):
ii. 	(�) � � restricted to (0; ��) is a positive function with a unique peak at ��=2:

(Peak 1)

iii. �(	(�) � �) restricted to (��; 1) is a positive function with a unique peak at

(1 + ��)=2. (Peak 2)

iv. �� < 1=2, and Peak 2 is as large as Peak 1 in the following sense: j�� ��=2j >
j�0 � (1 + ��)=2j implies 	(�)� � < �(	(�0)� �0) for every � 2 [0; ��] and �0 2 [��; 1].
Here, property (iv) serves to tilt the balance in favor of ambiguity aversion in a

two-color experiment with a 50-50 lottery as the benchmark.

In the following claim, each state s 2 S represents a particular color we may observe
on an object extracted from an urn. The bet ĥ pays a prize x if a certain color ŝ is

observed, and a smaller prize y otherwise.

Proposition 3 . Consider a second-order belief P 2 �2(S) such that for any p 2
supp(P ), the probability of extracting the color ŝ, p(ŝ), equals one of three numbers,

�1; �2; �3. Suppose �2 2 (0; 1) is the expected value of p(ŝ), that is, �2 =
P3

i=1 �
iP i,

where P i := Pfp 2 �(S) : p(ŝ) = �ig. Assume further that P 2 < ��, �1 = 0, and

�3 = 1. Then a SORDU representation with the properties (i)-(iv) above implies the

following:

(a) ĥ � �2�x + (1� �2)�y for all su¢ ciently small �2.

(b) ĥ � �2�x + (1� �2)�y whenever �2 � 1=2.

This claim provides su¢ cient conditions to accommodate the �ndings of Kocher

et al. (2018). We have ambiguity seeking when �2� the expected probability of the

winning color ŝ� is small (statement (a)). The opposite prediction obtains when �2 is

moderately large (statement (b)).

The condition P 2 < �� means that there is a signi�cant amount of ambiguity con-

cerning the true probability of ŝ. When �2 is small, so is P 3, and consequently, both
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tail probabilities P 3 and P 2 + P 3 fall into the optimistic region (0; ��). This immedi-

ately yields the ambiguity seeking behavior in statement (a). As for statement (b),

note that holding P 2 �xed, an increase in �2 is accompanied by an increase in P 3,

making P 2 + P 3 more likely to fall into the pessimistic region (��; 1). The weight of

this tail probability in VSr(Ph) is proportional to �2��1, while the weight of the other
tail probability, P 3, is proportional to �3 � �2. Here, the particular speci�cation with

�1 = 0 and �3 = 1 ensures that �2 � �1 � �3 � �2 whenever �2 � 1=2, so that the tail
probability in the pessimistic region has a greater weight.13

In Proposition 3 , when �2 > 1=2, the compound lottery Pĥ associated with P and

ĥ is negatively skewed in the sense of Dillenberger and Segal (2015). Similarly, the case

�2 < 1=2 corresponds to positively skewed noise. Assuming a quasi-concave function

V on compound lotteries, Dillenberger and Segal derive aversion to negatively skewed

noise as a consequence of aversion to symmetric noise. Proposition 3 above is beyond

the scope of their analysis because SORDU with an inverse S-shaped function 	 is

neither quasi-concave nor quasi-convex.14 It should also be noted that their derivation

of preference for positively skewed noise relies on a not-so-straightforward di¤erential

condition on preferences, while Proposition 3 depicts a clear-cut dichotomy assuming

a well-known form of the function 	.

In passing, let us note that the smooth ambiguity model can also generate in-

stances of ambiguity seeking and aversion simultaneously, provided that the function �

is neither concave nor convex. However, this approach cannot distinguish between the

e¤ects of winning probabilities and prizes, making it impossible to prove an analogue

of Proposition 3 .

5. Comparative Bayesian Reactions
Models of ambiguity aversion typically involve a negative association between the values

of acts and the level of ambiguity. On a separate note, the uniqueness part of Theorem 1

tells us that distinct beliefs tend to produce distinct reactions to new information,

irrespective of ambiguity attitudes. The following comparative statics exercise connects

these two observations.

Proposition 4. Let (V; P �) and (V; P̂ �) be second-order Bayesian representations for

13We could as well assume that �1 = �2=2 and �3 = (1 + �2)=2.
14In fact, SORDU is quasi-concave only if 	 is concave (Wakker 1994, Theorem 24). Typically, this

is incompatible with any form of noise aversion.
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the collections f%�: � 2 2�
�g and f%̂� : � 2 2�

�g, respectively. Suppose that there
exists an � 2 (0; 1] such that

P̂ � = ���(P �) + (1� �)P �. (4)

Consider an act h 2 H and a set � 2 2�� such that (a) �(P �)h � �(P �j�)h, (b)
�(P �) 2 � and P �(�nf�(P �)g) > 0. Assume further that either of the following two
statements hold: (c) % is convex on �2(X) and �(P �j�)h %� h. (d) % satis�es strong
compound-risk aversion. Then (P̂ �j�)h � (P �j�)h, that is, h�̂��x implies �x �� h:

Equation (4) is a mean-preserving spread operation, which entails that P � embodies

a greater level of ambiguity than P̂ �. It says that P � can be obtained from P̂ � by

transferring a mass from the common mean of these distributions, �(P �), to some

other �rst-order distributions.15 Proposition 4 examines when a greater level of ex-

ante ambiguity, in this particular sense, deteriorates the value of an act h conditional

on an event �. If statement (c) or (d) holds in addition to statements (a) and (b), then

the certainty equivalent of h according to %̂� becomes strictly more desirable than h
according to %�.
Statement (a) means that the value of h conditional on the ex-ante mean �(P �)

is greater than its value conditional on the interim mean �(P �j�). Thus, the event
� is �bad news�for the act h, on average. Statement (b) ensures that the conditional

beliefs P �j� and P̂ �j� are distinct. More importantly, it follows that these conditional
beliefs preserve the spread relation between the ex-ante beliefs, P � and P̂ �. Statement

(c) covers a popular version of Segal�s (1987) theory that utilizes the cautious expected

utility model to evaluate simple lotteries. In particular, the condition �(P �j�)h %� h
holds if the conditional preference%� is absolutely ambiguity averse. Finally, statement
(d) captures SORDU with a concave �rst-stage utility index � and a convex probability

distortion function 	. Note also that Anscombe and Aumann�s (1963) expected utility

model satis�es both conditions (c) and (d).

Overall, Proposition 4 highlights a particular form in which the uniqueness part

of Theorem 1 manifests itself: Assuming ambiguity aversion, second-order beliefs with

larger spread tend to produce stronger reactions to bad news concerning the true

distribution of the states.
15Also note that if � < 1, then P � and P̂ � attach the same relative likelihood to all pairs of �rst-

order distributions, except �(P �). Evren (2019) introduced this mean-preserving spread operation in
relation to Segal�s (1987) model.
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6. Concluding Remarks
In this paper, I modeled preferences under ambiguity with a second-order belief that

is updated in a Bayesian fashion in response to new information about the true distri-

bution of the states. Bayesian updating implies strong connections between the prior

second-order belief and the DM�s reactions to new information. This makes it possi-

ble to identify the DM�s belief uniquely based on conditional preferences, even if the

ex-ante preference relation is representable by multiple second-order beliefs.

Also, the model features a general non-expected utility function on compound lot-

teries. I illustrated the bene�ts of this generality by means of a speci�cation that

uses a rank-dependent aggregator in place of the �rst-stage expectation operator of the

smooth ambiguity model. This and other particular speci�cations are easily charac-

terized by additional axioms on preferences on compound lotteries, which provides a

testing ground to compare and contrast second-order representations.

As a limitation, it should be noted that the connections between acts and compound

lotteries embodied in the notion of SOPS rule out certain forms of ambiguity attitudes.

Suppose, for example, that there are two possible distributions of the states, p1 and p2.

Consider two acts h and g such that p1h � p2h and p
2
g � p1g. If the DM tends to prefer

compound lotteries to acts, we may have 1
2
�p1h+

1
2
�p2h � h and 1

2
�p1g+

1
2
�p2g � g. If we take

% as the ex-ante preference associated with the set �� = fp1; p2g, Consistent Expansion
and Singleton Sophistication jointly rule out this mode of behavior. More generally,

a second-order belief supported on fp1; p2g cannot generate the pattern in question,
leading to a second-order extension of the Ellsberg paradox.16 It thus appears that

second-order representations are unable to accommodate some interesting modes of

behavior that involve signi�cantly di¤erent attitudes toward ambiguity and compound

risk. A thorough analysis of such behavior is beyond the scope of the present paper.

Interim signals that I have used throughout the paper can be constructed in labora-

tory experiments, but they have two special features that make them rare in real-life.

First, the signals do not bear any information that makes necessary to update the

�rst-order distributions. Second, the DM does not learn anything that may in�uence

the relative likelihood of �rst-order distributions that are not eliminated; she only

learns that a set of distributions do not contain the true distribution. I leave it to

future research to explore how alternative signal structures can be incorporated into

the theory.

16A more sophisticated example of similar nature can also be found in Halevy and Ozdenoren (2022).
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The most widely studied second-order representation is the smooth ambiguity

model. Seo�s (2009) characterization of it focuses on a setup with compound lot-

teries, but does not necessitate a Bayesian updating of the second-order belief. More

recently, Denti and Pomatto (2022) have provided a further characterization of this

model without utilizing preferences on compound lotteries.17 Analogous extensions

of other representations that I have reported would be useful if experimental �ndings

reveal systematic discrepancies between the valuations of acts and compound lotteries.

Appendix A.1. Proof of Theorem 1

Suppose f%�: � 2 2��g is a non-constant collection that satis�es the axioms (A1)-
(A5). For the present, let us also assume that each � 2 2�� is non-null. The general
case with null sets is handled at the end of the proof.

By STD(i), there exists a continuous function V : �2(X) 7! R such that Q % Q0 i¤

V (Q) � V (Q0) for any Q;Q0 2 �2(X). Parts (iii) and (iv) of STD ensure that V is

twice fsd-increasing.

Toward the proof of the �only if�part, we need to �nd a P � 2 �(��) such that
h �� (P �j�)h for every h 2 H and � 2 2��. By SiSo, without loss of generality we
can assume that �� contains at least two distributions.

Claim A1. For each h 2 H and � 2 2��, there exist p0; p00 2 � such that p0h %� h %�
p00h.

Proof. Fix an h 2 H. By SiSo, the conclusion of the claim holds trivially when � is a
singleton. Inductively, �x a natural number n, and suppose that the conclusion of the

claim holds for any � 2 2�� with n elements.
Pick a �0 2 2�� with n+ 1 elements. Let p0; p00 2 �0 be such that p0h % ph % p00h for

every p 2 �0. Set � := �0nfp0g. By the induction hypothesis, there exist p; p̂ 2 �
such that ph %� h %� p̂h, or equivalently, �ph %� h %� �p̂h. The sets f 2 [0; 1] :
�ph + (1 � )�p̂h �� hg and f 2 [0; 1] : h �� �ph + (1 � )�p̂hg are relatively
open in [0; 1] by the continuity property in STD(i). Since the interval [0; 1] cannot be

expressed as a union of two disjoint nonempty open subsets, it follows that there exists

17The support of the second-order belief in Denti and Pomatto�s (2022) representation satis�es a
technical condition related to statistical identi�ability of the true �rst-order distribution. Klibano¤ et
al. (2022) study a special case where states are in�nite sequences with independently and identically
distributed components. Earlier contributions in this line of research include Cerreia-Vioglio et al.
(2013), and Al-Najjar and De Castro (2014).
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a  2 [0; 1] such that h �� �ph + (1� )�p̂h. With Q := �ph + (1� )�p̂h, from ME

and the de�nition of p0 it follows that h %�0 Q. Moreover, we have Q %� p̂h because
Q �� h %� p̂h, while Q %� p̂h implies Q %�0 p̂h by invariance of risk preferences,
STD(ii). Similarly, the de�nition of p00 implies p̂h %�0 p00h. To summarize, we have
h %�0 Q %�0 p̂h %�0 p00h, and hence, h %�0 p00h. From a symmetric argument it also

follows that p0h %�0 h: �

Claim A2. (i) For any p; p0 2 �� with p 6= p0, there exists an act g 2 H such that

p0g � pg.

(ii) There exists an act g� 2 H such that for any p; p0 2 �� with p 6= p0, either p0g� � pg�

or p0g� � pg�.

Proof. For any p; p0 2 �� with p 6= p0, there exists an s0 2 S such that p0(s0) > p(s0).

Pick some x; y 2 X with x > y. De�ne an act g as g(s0) := x and g(s) := y for

s 2 Snfs0g. Then p0g = p0(s0)�x + (1� p0(s0))�y >fsd p(s
0)�x + (1� p(s0))�y = pg, which

implies p0g � pg by STD(iii). This proves statement (i).

To prove (ii), suppose S has m elements, s1; s2; :::; sm. Select a pair of numbers

x; y in the interior of X with x > y. De�ne an act g1 as g(s1) := x and g(s) := y for

s 2 Snfs1g. Then, as in the �rst part of the proof, pg1 � p0g1 implies p(s
1) = p0(s1) for

every p; p0 2 ��.
I claim that for any integer k with 1 � k < m, there exists an act gk, which maps

S into the interior of X, such that: gk(si) = gk(sk+1) for i = k+1; :::;m, and for every

p; p0 2 ��

pgk � p0gk ) p(si) = p0(si) 8i 2 f1; :::; kg.

We have already established this claim for k = 1. So, let m � 3, and suppose that

there exists a gko that satis�es the desired properties for some ko with 1 � ko < m� 1.
Set k := ko + 1 and zk := gko(sk). Given an " > 0, select a pair of numbers, z; ẑ; in

the interior of X such that zk � " < ẑ < z < zk. De�ne an act gk as gk(si) := gko(si)

for i � ko, gk(sk) := z, and gk(si) := ẑ for i > k. Then lim"!0 pgk = pgko for any

p 2 �� because lim"!0 g
k(s) = gko(s) for every s 2 S. Since �� is �nite and % is

continuous, it follows that there exists a su¢ ciently small " > 0 such that pgko � p0
gko

implies pgk � p0
gk
for any p; p0 2 ��. Put di¤erently, whenever pgk � p0

gk
, we also have

pgko � p0
gko
.

Suppose pgk � p0
gk
for some p; p0 2 ��. Then pgko � p0

gko
, which implies p(si) = p0(si)

for i = 1; :::; ko by our choice of gko . Hence, p0
gk
=
P

i�ko p(s
i)�gk(si) + p0(sk)�z +
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�
1� p0(sk)�

P
i�ko p(s

i)
�
�ẑ. Since z > ẑ, upon expanding pgk in a similar fashion,

we see that p(sk) > p0(sk) implies pgk >fsd p0gk , which contradicts the assumption that

pgk � p0
gk
. Similarly, we cannot have p0(sk) > p(sk). Thus, p(si) = p0(si) for i = 1; :::; k,

as we seek.

Inductively, we can �nd an act g� := gm�1 such that pg� � p0g� implies p(s
i) = p0(si)

for i = 1; :::;m� 1, that is, p = p0. �

Fix a set � := fp; p0g for some distinct p; p0 2 ��. Pick an act g 2 H with

p0g � pg. Claim A1 implies p0g %� g %� pg. The proof of the claim also shows

that there is a (p0; p) 2 [0; 1] such that g �� (p0; p)�p0g + (1� (p0; p)) �pg . In fact,

(p0; p) is the unique number  2 [0; 1] that satis�es g �� �p0g + (1� ) �pg because

V (�p0g + (1� )�pg) is increasing in . Moreover, (p
0; p) < 1, for otherwise we would

have g �� p0g while p0g � pg, contradicting the assumption that p is non-null.

Let us now show that h �� (p0; p)�p0h + (1� (p0; p)) �ph for every h 2 H. By
part (1) of De�nition 3, the degenerate distribution �p is pre-consistent on fpg. Con-
sequently, part (2) of the de�nition implies that the distribution P := (p0; p)�p0 +

(1� (p0; p)) �p is also pre-consistent on �. Since h �fp0g �p0h for any h 2 H, invoking
CE with p1 = p2 = p0 yields h �� P (p0)�p0h + P (p)�ph = (p0; p)�p0h + (1 � (p0; p))�ph,

as we seek.

Symmetrically, we also have h �� (p; p0)�ph+(1�(p; p0))�p0h for every h 2 H. From
the aforementioned uniqueness property of the function (�; �), it follows that (p; p0) =
1� (p0; p). As (p; p0) and (p0; p) are both less than 1, we get 0 < (p0; p) < 1.

Thereby, we have shown that for any � 2 2�� with two elements, there exists a
pre-consistent distribution P 2 �(�) such that (a) P (p) > 0 for every p 2 �; and
(b) h ��0 (P j�0)h for every h 2 H and �0 2 2�. Inductively, �x an integer n � 2,

and suppose that for every � 2 2�
�
with n elements, there exists a pre-consistent

distribution P 2 �(�) that satis�es the properties (a) and (b).
Consider a set � 2 2�� with n + 1 elements. Given an act g� as in Claim A2(ii),

let p0 denote the element of � such that p0g� � pg� for every p 2 �̂ := �nfp0g. By the
induction hypothesis, there exists a pre-consistent distribution P̂ 2 �(�̂) such that
P̂ (p) > 0 for every p 2 �̂, and h ��0 (P̂ j�0)h for every h 2 H and �0 2 2�̂. In

particular, g� ��̂ P̂g�, and hence, ME implies g� %� P̂g�. Moreover, we have p0g� %� g�

by Claim A1. Thus, as in the proof of Claim A1, the continuity property in STD(i)

implies that g� �� ��p0
g�
+ (1� �)P̂g� for some � 2 [0; 1]. Since P̂ is pre-consistent

on �̂, it follows that so is the distribution P := ��p0 + (1 � �)P̂ on �. To complete
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the induction, we need to prove that P satis�es the properties (a) and (b).

Fix a p 2 �nfp0g. Let 0 := (p0; p) so that h �fp;p0g 0�p0h + (1� 0) �ph for every

h 2 H. Since P is pre-consistent on �, from CE it follows that

h �� P (fp; p0g)
�
0�p0h + (1� 0) �ph

�
+
P

p̂2�nfp;p0gP (p̂)�p̂h 8h 2 H. (5)

Let Q� := P (fp; p0g)(0�p0
g�
+ (1� 0) �pg� ) +

P
p̂2�nfp;p0g P (p̂)�p̂g� . By (5), we have

g� �� Q�. Moreover, g� �� ��p0
g�
+ (1 � �)P̂g� = Pg� by construction, and hence,

Q� � Pg�. Note also that Q�(q) = Pg�(q) for each q 2 �(X)nfp0g� ; pg�g. As p0g� � pg�,

from part (iv) of STD it follows that Q� = Pg�, or equivalently,

P = P (fp; p0g) (0�p0 + (1� 0) �p) +
P

p̂2�nfp;p0gP (p̂)�p̂: (6)

This equation implies that P (p) and P (p0) are both positive numbers because 0, 1�0,
and P (fp; p0g) = � + (1 � �)P̂ (p) are all positive. Hence, � belongs to (0; 1), and

P (p̂) > 0 for every p̂ 2 �, which veri�es the condition (a).
By equations (5) and (6), we have h �� Ph for every h 2 H. Pick an arbitrary

h 2 H and �0 2 2� with �0 6= �. The next step is to show that h ��0 (P j�0)h.
If �0 � �̂, we have P j�0 = P̂ j�0 by de�nition of P , and the desired conclusion

follows from the induction hypothesis h ��0 (P̂ j�0)h. So, without loss of generality we
can assume that p0 2 �0.
Since �0 is a proper subset of �, by the induction hypotheses there exists a pre-

consistent distribution P 0 2 �(�0) such that P 0(p) > 0 for every p 2 �0, and ĥ ��00
(P 0j�00)ĥ for every ĥ 2 H and �00 2 2�0. In particular, h ��0 P 0h, and hence, it su¢ ces
to show that P j�0 = P 0.

Pick any p 2 �0nfp0g. By equation (6), P (p)=P (p0) = (1� (p0; p)) =(p0; p).

Moreover, g� �fp;p0g (P 0jfp; p0g)g� by de�nition of P 0, which implies P 0jfp; p0g =
(p0; p)�p0 + (1� (p0; p))�p. Thus,

P j�0(p)
P j�0(p0) =

P (p)

P (p0)
=
1� (p0; p)

(p0; p)
=
P 0jfp; p0g(p)
P 0jfp; p0g(p0) =

P 0(p)

P 0(p0)
, (7)

where the �rst and last equalities hold by de�nition of a Bayesian update. Since p is
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an arbitrary element of �0nfp0g, it follows that

1� P j�0(p0)
P j�0(p0) =

X
p2�0nfp0g

P j�0(p)
P j�0(p0) =

X
p2�0nfp0g

P 0(p)

P 0(p0)
=
1� P 0(p0)

P 0(p0)
,

which means P j�0(p0) = P 0(p0). Then invoking the equality (7) once again yields

P j�0(p) = P 0(p) for every p 2 �0nfp0g. Hence, P j�0 = P 0, as we seek.

The inductive procedure above leads to a P � 2 �(��) such that P �(p) > 0 for

every p 2 ��, and h �� (P �j�)h for every h 2 H and � 2 2��. This distribution P �

coupled with the function V gives us a second-order Bayesian representation, under

the assumption that each � 2 2�� is non-null.
Suppose now that some subsets of �� are null. Let �+ denote the set of non-null

distributions, �+ := fp 2 �� : fpg is non-nullg. By de�nitions, a set � 2 2�� is null i¤
� � ��n�+. If every nonempty subset of �� were null, NI(i) would imply %� = % for
every � 2 2��. Since the collection f%�: � 2 2�

�g is non-constant, it follows that ��

has some non-null subsets, and �+ is non-empty.

Upon replacing �� with �+ in the �rst part of the proof, we obtain a P � 2 �(��)
such that supp(P �) = �+, and h �� (P �j�)h for every h 2 H and � 2 2�+. Since
supp(P �) = �+, we have P �(�) > 0 i¤ � \ �+ 6= ; for any � 2 2��. As the condition
� \ �+ 6= ; characterizes non-null sets, we see that � 2 2�� is non-null i¤ P �(�) > 0.
Moreover, by NI(ii), %�\�+ = %� for any non-null � 2 2��, while supp(P �) = �+

implies P �j� = P �j� \ �+. It follows that h ��\�+ (P �j� \ �+)h = (P �j�)h for
any h 2 H and � 2 2�� with P �(�) > 0. Since %�\�+ = %�, it also follows that
h �� (P �j�)h, as demanded by a second-order Bayesian representation. This proves
the �only if�part of the theorem.

In what follows, (V; P �) denotes a second-order Bayesian representation for the

collection f%�: � 2 2�
�g.

To establish the uniqueness of P �, suppose f%�: � 2 2�
�g admits another second-

order Bayesian representation (V̂ ; P ) with P 6= P �. Then there exist some p; p0 2 ��

such that P �(p) > P (p) and P �(p0) < P (p0). Pick a g 2 H with p0g � pg. Note

that (P �jfp; p0g)g � (P jfp; p0g)g because we have P �jfp; p0g(p0) < P jfp; p0g(p0), and
V (��p0g + (1��)�pg) is increasing in � 2 [0; 1]. Moreover, P �(fp; p0g) � P �(p) > 0 and

P (fp; p0g) � P (p0) > 0. Hence, the representations require g �fp;p0g (P �jfp; p0g)g and
g �fp;p0g (P jfp; p0g)g, which contradict the condition (P �jfp; p0g)g � (P jfp; p0g)g.
The next step is to characterize the null sets. Pick any p 2 ��. If P �(p) = 0,
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there exists a p0 2 ��nfpg with P �(p0) > 0. Then P �jfp; p0g = �p0, while p0h � ph

for some h 2 H. Moreover, h �fp;p0g p0h by the representation. Hence, fpg is null
whenever P �(p) = 0. Conversely, suppose fpg is null so that p0h � ph and h �fp;p0g p0h
for some p0 2 �� and h 2 H. Assume by contradiction that P �(p) > 0. With

�0 := (P �jfp; p0g)(p0), the representation implies h �fp;p0g �0�p0h + (1 � �0)�ph. Since h

is indi¤erent to both �0�p0h + (1 � �0)�ph and �p0h conditional on fp; p
0g, we must then

have V (�0�p0h + (1��
0)�ph) = V (�p0h). This contradicts the assumption that V is twice

fsd-increasing because P �(p) > 0 implies �0 < 1. So, we have shown that fpg is null i¤
P �(p) = 0. From the de�nition of a null set, it also follows that a set � 2 2�� is null
i¤ P �(�) = 0.

Given this characterization of null sets, it is a routine exercise to verify the necessity

of the axioms (A1)-(A3) and (A5). To prove necessity of (A4), �rst we need to show

that P = P �j� for any pre-consistent distribution P 2 �(�) on a (non-null) set

� 2 2��. This holds trivially when � is a singleton. Given an n 2 N, suppose that
the claim holds for any pre-consistent distribution on any set �̂ with n elements. Pick

a set � 2 2�� with n + 1 elements and a pre-consistent distribution P 2 �(�). By
De�nition 3, there exist a p0 2 �, an act g with p0g � pg for every p 2 �nfp0g, a
distribution P̂ 2 �(�nfp0g) that is pre-consistent on �nfp0g, and a number  2 [0; 1]
such that

g �� �p0g + (1� )P̂g and P = �p0 + (1� )P̂ . (8)

With �̂ := �nfp0g, the induction hypothesis implies P̂ = P �j�̂. Moreover, by de�nition
of a Bayesian update, P �j� = �0�p0+(1��0)P �j�̂ where �0 := P �j�(p0). As P̂ = P �j�̂,
it follows that P �j� = �0�p0+(1��0)P̂ . Thus, g �� (P �j�)g = �0�p0g+(1��0)P̂g by the
representation, while the left hand side of (8) implies �0�p0g+(1��0)P̂g � �p0g+(1�)P̂g.
Since p0g � pg for each p 2 �nfp0g, a usual monotonicity argument yields �0 = . That

is, P �j� = P .

To verify (A4), let P 2 �(�) be a pre-consistent distribution on a set �. As

we have just seen, this implies P �j� = P . Let p1; p2 2 � and assume fp1; p2g is
non-null. With  := P �jfp1; p2g(p1), the de�nition of a Bayesian update implies
P �j� = P �j�(fp1; p2g)(�p1 + (1 � )�p2) +

P
p2�nfp1;p2g P

�j�(p)�p. Fix an h 2 H,
and set Q�;h := ��p1h + (1 � �)�p2h for � 2 [0; 1]. By the representation, we have

h �� P (fp1; p2g)Q;h +
P

p2�nfp1;p2g P (p)�ph on the one hand, and h �fp1;p2g Q;h
on the other. Hence, assuming p1h � p2h, the usual monotonicity property of V im-

plies h %fp1;p2g Q�;h i¤  � � i¤ h %� P (fp1; p2g)Q�;h +
P

p2�nfp1;p2g P (p)�ph for any
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� 2 [0; 1]. The case p1h � p2h is analogous. Finally, p
1
h � p2h implies h �fp1;p2g Q�;h

and h �� P (fp1; p2g)Q�;h+
P

p2�nfp1;p2g P (p)�ph for any � 2 [0; 1]. This completes the
proof of Theorem 1.

Appendix A.2. Remaining Proofs

Proof of Proposition 1. In view of Theorem 1, to prove the �if�part of statements

(i)-(iii) it su¢ ces to show that % := %�� restricted to �2(X) admits a utility function

V that has the desired form, given the additional assumptions on % speci�ed in the

corresponding statement.

The rule  : Qo ! qo, with qo(x) := Qo(�x) for x 2 X, de�nes a one-to-one function
from �o onto �(X), which is also a¢ ne in the sense that  (�Qo + (1 � �)Q0o) =

� (Qo)+(1��) (Q0o) for Qo; Q0o 2 �o and � 2 (0; 1). The inverse of  is a continuous
function that maps q 2 �(X) to the compound lottery  �1q :=

P
x2X q(x)��x.

De�ne a binary relation %o on �(X) as q %o q0 i¤ �1q %  �1q0. Since the function

 �1 is continuous, the relation %o inherits continuity of %. That is, the continuity
property in part (i) of STD ensures that fq 2 �(X) : q �o q0g and fq 2 �(X) : q0 �o qg
are open subsets of �(X) for each q0 2 �(X). Also, q >fsd q0 implies q �o q0 by parts
(iii) and (iv) of STD.

To prove part (iii) of the proposition, suppose that % satis�es second-stage vN-M

independence and �rst-stage weak commutativity. By the latter property, it is easily

checked that %o satis�es the weak commutativity axiom as stated in Chew (1989).18

Thus, by Chew�s Theorem 1, the relation %o admits a utility function Vo : �(X)! R
de�ned as

Vo(q) := vo(x
1) +

Pn
j=2

�
vo(x

j)� vo(x
j�1)

�
	(
Pm

i=jq(x
i)). (9)

Here xn � � � � � x1 are the points in the support of the lottery q 2 �(X), while
vo : X ! R and 	 : [0; 1] ! [0; 1] are increasing and continuous functions with

	(0) = 0 and 	(1) = 1.

Let x(q) 2 X denote the certainty equivalent of q 2 �(X) de�ned by the property
�x(q) � q (i.e., ��x(q) � �q); the existence of certainty equivalents is a well-known

18That is, if �x �o q =
Pn

i=1 �
i�xi and �x̂ �o q̂ =

Pn
i=1 �

i�x̂i for some fx1; :::; xn; x̂1; :::; x̂ng � X
and f�1; :::; �ng � (0; 1) with

Pn
i=1 �

i = 1, xn � � � � � x1, x̂n � � � � � x̂1, and xn � x̂n; :::; x1 � x̂1,
then � 2 (0; 1) and ��xi �o ��xi + (1� �)�x̂i for i = 1; :::; n imply ��x + (1� �)�x̂ �o

Pn
i=1 �

i��xi .
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consequence of STD(i) and (iii). De�ne a further function V : �2(X)! R as V (Q) :=
Vo(
P

q2�(X)Q(q)�x(q)). Since Vo represents %o, for any Q;Q0 2 �2(X), we have V (Q) �
V (Q0) i¤

P
q2�(X)Q(q)�x(q) %o

P
q2�(X)Q

0(q)�x(q). By de�nition of %o, this means

V (Q) � V (Q0) ,
P

q2�(X)Q(q)��x(q) %
P

q2�(X)Q
0(q)��x(q) .

Note also that
P

q2�(X)Q(q)��x(q) �
P

q2�(X)Q(q)�q = Q by part (iv) of STD, and

similarly,
P

q2�(X)Q
0(q)��x(q) � Q0. Thus, it follows that V (Q) � V (Q0) i¤ Q % Q0;

that is, the function V represents % on �2(X).

For Q =
Pn

i=1Q(q
i)�qi with qn % � � � % q1, the de�nition of V and equation (9)

jointly imply

V (Q) = vo(x(q
1)) +

Pn
j=2

�
vo(x(q

j))� vo(x(q
j�1))

�
	(
Pm

i=jQ(q
i)). (10)

In particular, v(q) := V (�q) = vo(x(q)) for each q 2 �(X).
By second-stage vN-M independence, there exists an expected utility function u :

�(X) ! R that represents the restriction of % to �(X), while Lemma 1 delivers a

continuous and increasing function � : u(X)! R such that v = ��u. Hence, equation
(10) can equivalently be written as

V (Q) = �(u(q1)) +
Pn

j=2

�
�(u(qj))� �(u(qj�1))

�
	(
Pm

i=jQ(q
i)).

This proves the �if�part of statement (iii).

The �if�part of statement (i) is proved similarly, by replacing �rst-stage weak com-

mutativity with �rst-stage vN-M independence, and appealing to an expected utility

theorem in place of Chew�s theorem.

To prove the �if�part of statement (ii), suppose that % satis�es time neutrality,

so that Qo � �qo for each Qo 2 �o. Pick any function u : �(X) ! R that represents
the restriction of % to �(X) so that u(q) � u(q0) i¤ �q % �q0 for any q; q0 2 �(X). Let
u�1 denote the inverse of the restriction of u to X. Since the increasing transformation

q ! u�1(u(q)) is ordinally equivalent to u on �(X), without loss of generality we can

assume that u(x) := u(�x) is equal to x for each x 2 X. Then u(q) = u(�x(q)) = x(q)

for any q 2 �(X).
Time neutrality combined with the de�nitions of u and %o imply q %o q0 i¤P
x2X q(x)��x %

P
x2X q

0(x)��x i¤ �q % �q0 i¤ u(q) � u(q0). That is, u also repre-
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sents the relation %o on �(X). Hence, if we let Vo(q) := u(q), the function V (Q) :=

Vo(
P

q2�(X)Q(q)�x(q)) = u(
P

q2�(X)Q(q)�x(q)) represents the relation % on �2(X), as

we have seen in the �rst part of the proof. Finally, note that u(
P

q2�(X)Q(q)�x(q)) =

x(
P

q2�(X)Q(q)�x(q)) for each Q 2 �2(X), as we seek.

I omit the proofs of the �only if�statements. �

Proof of Claim 1. Denote by k and t generic elements of the set f0; 1; :::; 50g. Given
a distribution p 2 ��ref with p(s2) = k=100 and p(s3) = t=100, let us write qi(k; t) in

place of phi. Then, where Qi :=
P

k;t P (k; t)�qi(k;t), we have h
i � Qi for i = 5; 6.

Pick an expected utility function u : �(X) ! R that represents % restricted

to �(X). Let us write ui(k; t) in place of u(qi(k; t)); and uz in place of u(z) for

z 2 X. Then we have u6(k; t) = (t(ux � u0) + 50(uy + u0)) =100, and u5(k; t) =

(k(ux � uy) + t(uy � u0) + 50(uy + u0)) =100 for any k and t.

Set � := (uy � u0)=(ux � u0), ~q5(k; t) := �q6(k; t) + (1 � �)q6(t; k) and Q(k; t) :=

��q6(k;t)+(1� �)�q6(t;k). Note that u(~q5(k; t)) = u5(k; t) for any k and t. Thus, STD(iv)

and the symmetry of P jointly imply

Q5 �
P
k

P (k; k)�q5(k;k) +
P
k>t

�
P (k; t)�~q5(k;t) + P (k; t)�~q5(t;k)

�
; and

Q6 =
P
k

P (k; k)�q6(k;k) +
P
k>t

(P (k; t)Q(k; t) + P (k; t)Q(t; k)) :

Since u5(k; k) = u6(k; k) and ~q5(k; t) = �(Q(k; t)) for any k and t, it follows that

Q5 % Q6 if % satis�es strong compound-risk aversion. �

Proof of Proposition 2. Since �(x) � x is a concave function, % is ambiguity averse
i¤	(�) � � for every � 2 (0; 1) (cf. Chateauneuf and Cohen 1994, Corollary 1).
Suppose now that 	 is not convex. As 	 is continuous, this means that there exist

�; � 2 (0; 1) such that 	((�+ �)=2) > (	(�) + 	(�)) =2. Without loss of generality,

let us assume � > �:

Note that u5(50; 50) � maxfu5(50; 0); u5(0; 50)g and minfu5(50; 0); u5(0; 50)g �
u5(0; 0), using the notation in the proof of Claim 1. Moreover, u5(50; 0) � u5(0; 50) i¤

ux + u0 � 2uy.
De�ne P 2 �(��ref ) as P (0; 0) = 1��, P (0; 50) = P (50; 0) = (���)=2, P (50; 50) =

�, and P (k; t) = 0 for all other k; t 2 f0; 1; :::; 50g.19 Using the aforementioned ranking
19If �+ � = 1, then P also satis�es the additional symmetry condition P (50� k; 50� t) = P (k; t)

for every k and t.
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of u5(k; t), it is easily checked that

VSr(
P

k;t P (k; t)�q6(k;t))� VSr(
P

k;t P (k; t)�q5(k;t)) = (	(�+�
2
)� 	(�)+	(�)

2
),

where  := uy � u0 if ux + u0 � 2uy, and  := ux � uy otherwise. This shows that

h6 � h5.

Finally, note that q5(k; t) = q8(t; k) and q6(k; t) = q7(t; k) for every k and t. Thus,

the symmetry of P implies h5 � h8 and h6 � h7. �

Proof of Proposition 3 . Let uxy := u(x)�u(y) and ui := u(y)+�iuxy for i = 1; 2; 3.

Given any p 2 �(S) with p(ŝ) = �i, we have pĥ = �i�x+(1��i)�y, while Epĥ(u) = ui.

Thus, VSr(Pĥ) = u1+(u2�u1)	(P 2+P 3)+(u3�u2)	(P 3). Since v(�2�x+(1��2)�y) =
u2, we need to determine the sign of the number D := VSr(Pĥ)� u2.

Note that ui � uj = (�i � �j)uxy for any i; j 2 f1; 2; 3g. It easily follows that
D = (�2 � �1)uxy (	(P

2 + P 3)� 1) + (�3 � �2)uxy	(P
3). Since uxy > 0, without loss

of generality we can set uxy = 1.

By assumption, �2 =
P3

i=1 �
iP i = �1 + (�2 � �1)(P 2 + P 3) + (�3 � �2)P 3, and

hence,

D = (�2 � �1)
�
	(P 2 + P 3)� (P 2 + P 3)

�
+ (�3 � �2)

�
	(P 3)� P 3

�
: (11)

Let � := P 3 and �0 := P 2+P 3. Since �3 is a �xed positive number, its probability,

P 3, converges to 0 as �2 ! 0: Given the assumption P 2 < ��, it follows that for all

su¢ ciently small values of �2, both � and �0 belong to (0; ��), and hence, both 	(�)��
and 	(�0) � �0 are positive. By equation (11), this completes the proof of statement

(a).

To prove statement (b), suppose now �2 � 1=2. If � is greater than ��, then so is
�0. In this case, 	(�) � � and 	(�0) � �0 are both negative, and (11) immediately

implies D < 0. Thus, without loss of generality let � � ��.

Since �2 � 1=2, we have �3 � �2 = 1 � �2 � �2 = �2 � �1, and hence, P 3 � P 1.

This implies P 3 > 1=4, for we have P 3 + P 1 = 1� P 2 > 1� �� > 1=2 by assumptions.
As 1=4 > ��=2, we then see that P 3 > ��=2. Moreover, P 3 � P 1 also implies P 1 � 1=2,
and hence, P 2 + P 3 = 1 � P 1 � 1=2 > ��. To summarize, � belongs to (��=2; ��] while

�0 belongs to (��; 1).
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The next step is to show that

�� ��=2 > j�0 � (1 + ��)=2j : (12)

As noted earlier, � = P 3 � P 1 = 1��0. Thus, �� ��=2 � 1��0� ��=2 > (1+ ��)=2��0,
where the last inequality follows from the assumption 1=2 > ��. Moreover, P 2 < 1=2

implies �0 � (1 + ��)=2 < �0 � (P 2 + ��=2) = �� ��=2.
Inequality (12) and assumption (iv) imply (	(�0)� �0) + (	(�)� �) < 0. Since

�2 � �1 � �3 � �2 and 	(�0)� �0 < 0 � 	(�)� �, from equation (11) it follows that

D < 0, as we seek. �

Proof of Proposition 4. Since � > 0, the conditions in statement (b) ensure that

P �(�) and P̂ �(�) are positive numbers. Set � := P �(�)=P �(�); �̂ := P̂ �(�)=P̂ �(�),

and �0 := �nf�g, where � stands for �(P �).
By equation (4), we have P̂ �(�) = � + (1 � �)P �(�). Similarly, � 2 � implies

P̂ �(�) = �+(1��)P �(�). Since � and P �(�0) are both positive, it easily follows that
�̂ > �.

Let � := (�̂� �)=(1� �). We claim that

P̂ �j� = ��� + (1� �)P �j�: (13)

If � = 1, then � = 1 and P̂ � = P̂ �j� = ��. Suppose now � < 1, so that P̂ �(�0) =

(1 � �)P �(�0) > 0. In this case, we have P̂ �j� = �̂�� + (1 � �̂)P̂ �j�0 and P �j� =

��� + (1 � �)P �j�0, while P �j�0 = P̂ �j�0 by equation (4). It is a straightforward
exercise to derive (13) from these equalities.

Since �h � �(P �j�)h, equation (13) and STD(iv) jointly imply (P̂ �j�)h = ���h +

(1� �)(P �j�)h � ���(P �j�)h + (1� �)(P �j�)h. If % is strongly compound-risk averse,
from (3) we get (P̂ �j�)h � �(P �j�)h + (1 � �)(P �j�)h = (P �j�)h. Alternatively, if
% is convex on �2(X) and ��(P �j�)h % (P �j�)h, we also get (P̂ �j�)h � ���(P �j�)h +

(1 � �)(P �j�)h % (P �j�)h. Indeed, the condition �(P �j�)h %� h in statement (c)

means ��(P �j�)h % (P �j�)h. We conclude that (P̂ �j�)h � (P �j�)h if (c) or (d) holds.�
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