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1 Introduction

The Dunning–Kruger (DK) effect states that people with low ability tend to
overestimate their ability. This hypothetical cognitive bias was first described
in Kruger and Dunning (1999) and, if true, it is potentially important and
dangerous, because it means that people of low ability not only perform
tasks poorly but (even worse) that they think that they perform these tasks
well. Dunning and Kruger claim that the reason for this bias is that people
of low ability are not good in seeing and judging themselves (a deficit in
metacognitive skills). A closely related effect, also important but arguably
less dangerous, is that people of high ability tend to underestimate their
ability. This second effect, although not discussed in Kruger and Dunning
(1999), is often also associated with their names. The DK effect and Dunning
and Kruger’s explanation of it has been discussed and challenged extensively.
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Figure 1: Perceived ability to recognize humor as a function of actual test
performance (from Kruger and Dunning, 1999)

In their original paper, Kruger and Dunning (1999) tested undergraduate
students enrolled in various psychology courses at Cornell University for their
ability in humor, logical reasoning, and English grammar. After the test they
asked the students to assess their performance in the test. The students were
then split in four groups according to their actual test scores. Calculating
the average perceived ability in each group, Dunning and Kruger obtained
Figure 1. The accuracy of the prediction was high in the top group and low

2



in the bottom group, and the prediction in the bottom group was highly
overestimated.

The Kruger–Dunning paper raises two questions. First, is there a DK
effect? And second, is the explanation provided by Dunning and Kruger
correct?

There has been both criticism and support. Most studies agree that there
is a DK effect, although many disagree on Kruger and Dunning’s metacogni-
tive explanations; see Ehrlinger et al. (2008), Schlosser et al. (2013), Williams
et al. (2013), Sullivan et al. (2018), West and Eaton (2019), Gabbard and
Romanelli (2021), and Mariana et al. (2021); and partial responses in Kruger
and Dunning (2002), Dunning et al. (2003, 2004), and Dunning (2011).

But there has also been much criticism and this criticism typically re-
lies on a statistical rather than a psychological explanation of the DK effect.
The attack on Dunning and Kruger was initiated by Krueger and Mueller
(2002), who suggested a regression better-than-average approach which is
parsimonious and ‘does not require mediation by third variables, such as
metacognitive insights into one’s own problem-solving abilities’.2 Their ap-
proach is based on two empirical facts. First, it is well-known that people
tend to overestimate their performance. Most people think they drive better
than average (Svenson, 1981). In a survey of engineers, 42% thought their
work ranked in the top 5% among their peers (Zenger, 1992); and in a sur-
vey of college professors, 94% thought they performed ‘above average’ (Cross,
1977). Second, the slope in the linear regression of estimated performance on
actual performance is not equal but less than one. This phenomenon is called
‘regression to the mean’ and has been known since Galton (1886) studied the
relationship between the height of sons and fathers. Combining these two
facts leads to the regression better-than-average approach, and it explains
the asymmetry of the DK effect: overestimation in the bottom quartile and
underestimation in the upper quartile. A more precise formulation of the
regression better-than-average approach was provided in the noise-plus-bias
model (Burson et al., 2006).

Several other studies attempted to provide statistical explanations. Krajc
and Ortmann (2008) assumed a nonsymmetric J-distribution for the talent
of the undergraduates studied by Kruger and Dunning (1999), which leads
to more students in the left tail of the students’ ability distribution, result-
ing in the DK effect. McIntosh et al. (2019) experimented with movement
and memory tasks, and concluded that the DK effect exists as an empirical
phenomenon. But they disagreed with the explanation that poor insight is

2To avoid confusion: Joachim Krueger of Brown University and Justin Kruger of Cor-
nell University are two different people.
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the reason for overestimation among the unskilled. Gignac and Zajenkowski
(2020), using a sample of general community participants, tested the validity
of the DK effect with the Glejser test of heteroskedasticity and by nonlinear
(quadratic) regression, and found much less evidence in favor of the DK effect
than Kruger and Dunning (1999). Jansen et al. (2021) replicated two of Dun-
ning and Kruger’s studies using a sample of 4000 participants. Their model
for the probability of a correct answer is an extension of the one-parameter
item response theory (IRT) model, known as the Rasch model (Embretson
and Reise, 2013). They showed that this model is consistent with the data.

Our explanation of the DK effect is based on the fact that the data are
bounded. This feature of the data has not received much attention, with the
exception of Burson et al. (2006), who concluded that the boundary restric-
tion ‘is an important concern that should be addressed in future research’;
and Krajc and Ortmann (2008), who noted that students in the bottom quar-
tile can only make optimistic errors placing themselves into a higher quartile,
while students in the top quartile can only make pessimistic errors placing
themselves in a lower quartile.

The remark by Krajc and Ortmann provides the essence of our story.
Consider a brilliant student who typically scores 95 or 99 points out of 100.
Because of the bound at 100, there is not much room to predict higher than
her ability but there is plenty of room to predict lower, so she would typically
predict 85 or 90, thus underestimating her score. The same happens at the
bottom end of the scale, where there is a bound of 0 and a student would
typically overestimate. This simple observation is the basis of our model.

We shall employ data on 665 undergraduates at the International College
of Economics and Finance of the Higher School of Economics in Moscow,
who predict their grade on a 0–100 scale for a statistics exam. We use a
simple statistical model which explicitly specifies the (random) boundary
constraints. This model fits the data perfectly. There is thus no need for a
psychological explanation of the DK effect: it is a statistical artefact.

The remainder of the paper is organized as follows. In Section 2 we present
and discuss the data. In Section 3 we present a simple one-parameter model
that accounts for censuring, and show that this model explains the DK effect,
although not yet perfectly. In Section 4 we extend this simple model to a more
realistic three-parameter model where the bounds are random rather than
fixed, and present the results based on this extended model. The fit is now
near-perfect. Section 5 concludes. A mathematical Appendix contains the
statistical theory underlying the required conditional expectation functions.
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2 The data

We shall study the DK effect by comparing exam results with predictions of
these results, and in this section we describe the data in some detail.

The International College of Economics and Finance (ICEF) in Moscow
was established in 1997 jointly by the London School of Economics and Po-
litical Science (LSE) in London and the Higher School of Economics (HSE)
in Moscow. The college offers a four-year bachelor’s program, which is con-
sidered to be one the top programs in economics in Russia. Each year about
200 students enter the program, typically immediately after high school. In
their first year the students follow, among other subjects, a course called
Statistics-1, and in their second year they follow Statistics-2. Both courses
are compulsory. Our data are obtained from four cohorts of students follow-
ing Statistics-2 in the period 2016–2019. In total, after removing students
who took the course for a second time, 665 students remained who took this
course and provided a prediction.

In Statistics-2 students take three exams every year, at the end of October
(exam 1), the end of December (exam 2), and the end of March (exam 3).
The exams are written exams, not multiple choice, and each exam consists
of two parts (80 minutes each) with a ten minute break between the two
parts. The level of the exam questions is the same in the two parts. To avoid
cheating, students are not allowed to leave and come back during each part
of the exam. At the end of part 1 and at the end of part 2 the examiner
collects each student’s work. Each part is graded out of 50 points.

At the end of the first part of each of the three exams each student
is invited to predict (out of 100) their grade for this exam (the two parts
together). When writing down the prediction, students know the questions
and their answers in part 1, but not yet the questions of part 2. To encourage
students to provide a prediction and try their best, a bonus is promised as
follows. If the difference between the prediction and the grade is less than or
equal to 3 in absolute value, then one bonus point is added to the grade. For
example, if the prediction is 49 and the grade is 52, then the grade for this
exam is marked up to 53. This procedure had to be and has been approved by
the ICEF administration. As a result of the procedure and the possibility of
a bonus, the response rate was extremely high (97%). The idea of giving each
student an incentive to express their opinion was successfully used earlier in
experiments by Blackwell (2010) and Magnus and Peresetsky (2018).

In the current study we take data only from the second exam in each year.
This is the most representative of the three exams, because in the first exam
students may not yet be familiar with the benefits of a careful prediction, and
in the third exam there is the problem that smart (or risk averse) students
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utilize the bonus to maximize the probability that their grade is ≥ 25, which
is a requirement for passing the course. The student’s optimal strategy is
then to choose their prediction between 21 and 27 in which case a grade of 24
would be marked up to 25. Many students actually use this strategy which
leads to an overrepresentation of 24 and 25 in the sample of the third exam.

In each year t we thus have one grade and one prediction per student.
Let us define

xit : actual grade of student i in year t,

yrawit : raw (unadjusted) prediction of student i in year t,

dit = yrawit − xit : difference between raw prediction and actual grade.

In each year we can average over students and this gives

x̄t =
1

nt

nt∑
i=1

xit, ȳrawt =
1

nt

nt∑
i=1

yrawit , d̄t =
1

nt

nt∑
i=1

dit,

where nt denotes the number of students in year t.
We don’t want to use the raw predictions directly, because of the variation

in the student cohort’s strengths and in the difficulty of the exam over the
years. To filter out these variations we define an adjusted prediction

yit = yrawit − d̄t (1)

with the property that ȳt = x̄t, so that in each year the average prediction
equals the average grade.

Year # Students Exam grade Raw prediction Difference St. dev.
t nt x̄t ȳrawt d̄t τt

2016 144 41.8 39.0 −2.76 12.1
2017 168 33.3 38.5 5.24 12.7
2018 185 41.2 37.5 −3.71 13.1
2019 168 43.0 39.3 −3.65 12.0
Total 665 39.8 38.6 −1.23 13.0

Table 1: Descriptive statistics (means) of the data

In Table 1 we present a summary of the data. Per year we provide the
number of students nt, the average exam grade x̄t, the average raw prediction
ȳrawt , and the difference d̄t between these two averages. The difference dit
varies a lot within each year, as shown by the standard deviation τt in the
last column. The second exam in 2017 turned out particularly difficult (or
the cohort was less motivated) leading to relatively low grades.
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nt∑
i=1

d2it =
nt∑
i=1

(yit − xit)2 + ntd̄
2
t

3 Fixed bounds

As a first attempt to model the predictions we propose the following equation:

yrawit = αt + xit + ζit, (2)

where the constant αt may vary per year to adjust for (over)confidence and
the difficulty of the exam, and the errors ζit are assumed to be independent
and identically distributed (iid) as N(0, σ2

ζ ). Writing (2) in deviation form
gives

yrawit − ȳrawt = (xit − x̄t) + (ζit − ζ̄t).
The adjusted prediction is given by

yit = yrawit − d̄t = yrawit − ȳrawt + x̄t,

which leads to the simple equation

yit = xit + εit, εit = ζit − ζ̄t.

After adjustment, the year plays no longer any role, so we may simplify the
notation and write

yi = xi + εi. (3)

The difference between the (adjusted) prediction yi and the grade xi is thus
random noise, and the only thing to estimate is the variance of that noise.

This first attempt does not, however, take into account that the left-
hand side of (3) is bounded by 0 ≤ yi ≤ 100, so that the right-hand side is
similarly bounded. The right-hand side xi + εi does not automatically fulfill
this constraint; it has to be censored to do so. The basic censuring model in
statistics and econometrics is the tobit model introduced by Tobin (1958).
In the tobit model we introduce a latent (unobserved) random variable y∗i
defined as

y∗i = xi + εi, (4)

where the εi are independent and identically distributed (iid) as N(0, σ2
ε ).

Then we model yi as

yi =


0, if y∗i ≤ 0,

y∗i , if 0 < y∗i ≤ 100,

100, if y∗i > 100.

(5)
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This is the standard tobit model, double-censured due to the fact that we
have both a lower and an upper bound.

Model (5) is more realistic than model (3), and once we have estimated
σ2
ε we can compute the expectation h(xi) = E(yi) as given in (9) in the

Appendix.
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Figure 2: Expectation functions for the one-parameter censored tobit model
for σε = 0, 10, 20, 30, 40

Estimating σε by maximum likelihood (ML) gives σ̂ε = 12.5 with stan-
dard error 0.35. In Figure 2 we plot the expectation h(xi) = E(yi) for four
values of σε: 10, 20, 30, and 40 (and 0, which is the 45◦ line). Figure 2
already demonstrates how the two bounds force the expectation function in
the direction of the DK effect in Figure 1.

But the fixed-bound model is not yet completely satisfactory due to the
fact that it is not realistic to assume that yi = 0 if y∗i ≤ 0 or that yi = 100
if y∗i > 100: no student predicts 0 (however poor) or 100 (however brilliant).
This leads to the random-bounds model presented in the next section.

4 Random bounds

A more realistic model is given by

yi =


|ui|, if y∗ ≤ 0,

y∗i , if 0 < y∗ ≤ 100,

100− |vi|, if y∗ > 100,

(6)
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where we assume that εi, ui, and vi are iid, independent of each other, and
that all three are normally distributed as N(0, σ2

ε ), N(0, σ2
u), and N(0, σ2

v),
respectively.

When applying (6) there is one further complication, namely that the
lower bound must not only satisfy |ui| > 0, but also |ui| < 100, while the
upper bound must not only satisfy 100− |vi| < 100, but also 100− |vi| > 0.
Hence, we must require that |ui| < 100 and |vi| < 100. This will be ‘almost’
true in most applications. For example, we have Pr(|ui| < 100) = 99.9 and
95.5 for σu = 30 and 50, respectively. We deal formally with this situation
by considering the conditional expectation function

h(xi) = E(yi|0 < yi < 100). (7)

We derive the mathematical expression for this conditional expectation func-
tion in the Appendix, resulting in (8).

Restriction σε σu σv logL
None 12.69 22.81 31.29 −2582.39

(0.40) (2.81) (3.38)

σu = σv 12.67 24.79 24.79 −2582.73
(0.39) (2.30) (2.30)

Table 2: Maximum likelihood estimates for the three-parameter model (stan-
dard errors in parentheses)

The ML estimates are presented in Table 2, first without restriction and
then under the restriction that σu = σv. The estimates take on reasonable
values and they are estimated rather precisely. The restriction σu = σv is not
rejected by a Wald (p-value 0.061) or likelihood ratio (p-value 0.412) test.

In Figure 3 we present the conditional expectation functions based on
the ML estimates in Table 2. As expected, there is not much difference
between the restricted (σu = σv) and the unrestricted plot, and both plots
show clearly the DK effect based purely on the fact that the observations
are bounded. The observed S-shape is very similar to the empirical plots
reported in the literature: overestimation for the weak students (‘unskilled
and unaware of it’ in the words of Dunning and Kruger) and underestimation
for the strong students.

As a benchmark comparison we also provide a nonparametric plot based
on locally-weighted scatterplot smoothing (lowess) with bandwidth 0.2. The
ML plots are close to the nonparametric plot when x is small but not so close
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Figure 3: Conditional expectation functions for the three-parameter censored
tobit model based on ML and nonparametric estimates

0
20

40
60

80
10

0

0 20 40 60 80 100

y adj nonparametric
nonlinear diagonal

Figure 4: Conditional expectation functions for the three-parameter censored
tobit model based on NLS and nonparametric estimates

when x is large. This is caused by the fact that only 14% of the observations
fall in the interval x > 60.

We can try and fit our three parameters such that the conditional ex-
pectation function is ‘as close as possible’ to the nonparametric plot. If we
employ nonlinear least-squares (NLS), then we find σ̂ε = 29.6 (0.70), σ̂u = 0,
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and σ̂v = 33.1 (2.13). The NLS plot in Figure 4 is now very close to the non-
parametric plot. In fact, the shape of the conditional expectation function is
quite robust against changes in the three parameters. If we fix the parame-
ters at σε = 30, σu = 10, and σv = 35; or at σε = 25, σu = 15, and σv = 40,
then we obtain conditional expectations that are almost indistinguishable
from Figure 4.

5 Conclusion

In this paper we have attempted to provide an explanation of the DK effect
which does not require any psychological explanation. By specifying a simple
statistical model which explicitly takes the (random) boundary constraints
into account, we achieve a near-perfect fit, thus demonstrating that the DK
effect is a statistical artefact. In other words: there is an effect, but it does
not reflect human nature.

Mathematical appendix

Consider the censored model (6), where we write y∗, y, and x instead of y∗i ,
yi, and xi for simplicity. We have

p1 = Pr(y∗ ≤ 0) = Φ

(
−x
σε

)
,

p2 = Pr(0 < y∗ ≤ 100) = 1− p1 − p3,

p3 = Pr(y∗ > 100) = 1− Φ

(
100− x
σε

)
,

and

q1 = Pr(y ≤ 0) = Pr(y ≤ 0|y∗ > 100) · Pr(y∗ > 100)

= Pr(100− σv|v| ≤ 0) · p3 = 2p3Φ

(
−100

σv

)
,

q2 = Pr(0 < y ≤ 100) = 1− q1 − q3,
q3 = Pr(y > 100) = Pr(y > 100|y∗ ≤ 0) · Pr(y∗ ≤ 0)

= Pr(σu|u| > 100) · p1 = 2p1Φ

(
−100

σu

)
.
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Let 0 < t < 100. Then,

G1(t) = Pr(0 < y < t|y∗ ≤ 0) = Pr(0 < σu|u| < t) = 1− 2Φ

(
−t
σu

)
,

G2(t) = Pr(0 < y < t|0 < y∗ ≤ 100) = Pr(0 < y∗ < t|0 < y∗ ≤ 100)

=
Pr(0 < y∗ < t)

Pr(0 < y∗ < 100)
=

Pr(0 < x+ σεε < t)

p2

=
1

p2

[
Φ

(
t− x
σε

)
− Φ

(
−x
σε

)]
,

G3(t) = Pr(0 < y < t|y∗ > 100) = Pr(0 < 100− σv|v| < t)

= 2

[
Φ

(
100

σv

)
− Φ

(
100− t
σv

)]
with derivatives

g1(t) =
2

σu
φ

(
−t
σu

)
,

g2(t) =
1

p2σε
φ

(
t− x
σε

)
,

g3(t) =
2

σv
φ

(
100− t
σv

)
.

This gives

m1 =

∫ 100

0

tg1(t) dt = 2σu

∫ 100/σu

0

sφ(s) ds

= −2σu

∫ 100/σu

0

φ′(s) ds = 2σu

(
φ(0)− φ

(
100

σu

))
,

m2 =

∫ 100

0

tg2(t) dt =
x

p2

∫ (100−x)/σε

−x/σε
φ(s) ds+

σε
p2

∫ (100−x)/σε

−x/σε
sφ(s) ds

=
x

p2

(
Φ

(
100− x
σε

)
− Φ

(
−x
σε

))
− σε
p2

(
φ

(
100− x
σε

)
− φ

(
−x
σε

))
,

m3 =

∫ 100

0

tg3(t) dt = 200

∫ 0

−100/σv
φ(s) ds+ 2σv

∫ 0

−100/σv
sφ(s) ds

= 200

(
Φ(0)− Φ

(
−100

σv

))
− 2σv

(
φ(0)− φ

(
−100

σv

))
.

Letting

F (t) = Pr(0 < y < t|0 < y < 100) =
p1G1(t) + p2G2(t) + p3G3(t)

q2
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with derivative

f(t) =
p1g1(t) + p2g2(t) + p3g3(t)

q2
,

we thus obtain the expectation∫ 100

0

tf(t) dt =
p1m1 + p2m2 + p3m3

q2
, (8)

which provides the expectation in the general case.
In the special case of model (5) we have σu = σv = 0, and hence m1 = 0,

m3 = 100, and q2 = 1. This gives the expectation∫ 100

0

tf(t) dt = p2m2 + 100p3. (9)
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