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Abstract

The “discouragement effect” (DE) is mentioned routinely as a reason for why hetero-
geneity is detrimental for incentives in contests. It serves as a theoretical argument
for various policies aimed at homogenizing contestants. We show that, at least in
static contests, the DE has no robust theoretical foundation. We divide widely used
contest models into two classes. In the first class, heterogeneity either decreases or
increases aggregate effort. In the second class, the effect of heterogeneity depends
crucially on how it is defined. Hence, the DE cannot serve as a go-to argument for
why heterogeneity in contests is undesirable.

Keywords: discouragement effect, contest, heterogeneity
JEL classification codes: C72, D63

*New Economic School and CEPR, mdrugov@nes.ru.
�Department of Economics, Florida State University, Tallahassee, FL 32306-2180, USA, dryvkin@

fsu.edu.

1

mdrugov@nes.ru
dryvkin@fsu.edu
dryvkin@fsu.edu


1 Introduction

The contest literature routinely discusses the so-called “discouragement effect.” The story,

for two-player static contests, usually goes as follows: If one player—the underdog—is

weaker than the other—the favorite—the underdog’s probability of winning, and hence

her marginal benefit of effort, is reduced, which means her effort is reduced in equilibrium.

In response, the favorite’s effort is also reduced, and the overall effort in the contest goes

down. This theoretical argument is then used as a basis for a broad claim that heterogene-

ity is detrimental for aggregate output in contests, which in turn serves as a justification

for various policies aimed at “leveling the playing field” or reducing heterogeneity in

environments with competitive incentives.

Yet, as an example, consider a Lazear and Rosen (1981) type tournament model with

two risk-neutral players i ∈ {1, 2} in which player i’s output (yi) is her effort (ei) distorted

by a zero-mean additive shock (Xi): yi = ei + Xi. Player i’s cost of effort is 1
2
e2i . The

player with the highest output wins and receives a unit prize, while the other player

receives zero. For simplicity assume, similar to, e.g., Meyer (1991), Konrad (2009) and

Brown and Minor (2014), that X1−X2 is uniform on [−1
2
, 1
2
]. Type ti ≥ 1 favors player i

by multiplying her effort (at no cost) and proportionally decreasing the effort of the other

player so that the probability of player 1 winning is p(e1, e2; t1, t2) = 1
2

+ t1
t2
e1− t2

t1
e2, with

the variables restricted to ensure p ∈ [0, 1]. Assuming an interior equilibrium (e∗1, e
∗
2), the

aggregate equilibrium effort, e∗1 + e∗2 = t1
t2

+ t2
t1

, increases when the players become more

heterogeneous.

In this paper, we systematically investigate the impact of players’ heterogeneity on

aggregate effort in a general static contest setting. We propose a simple taxonomy of

popular contest models, dividing them into two classes we call relative types and absolute

types. The example above is a model with relative types, in which the players’ types

matter only relative to each other. In other words, the direction of the effect of each type

on aggregate effort depends crucially on its position relative to the other type. For such

models we show that, under mild assumptions, an increase in heterogeneity, defined in an

intuitive way, has a monotone effect on aggregate effort. Models with relative types are,

therefore, suitable to study the impact of heterogeneity. While the effect is negative in

some popular models, there is no fundamental reason for that. Indeed, as the example

above shows, it may well be positive.

In models with absolute types, instead, aggregate effort is monotone in both players’

types. This holds, for instance, when type is the player’s prize valuation or the marginal

cost of effort. We show that in this case aggregate effort can always be written as a

function of some (generalized) mean of the types. Then, for example, increasing hetero-
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geneity while keeping the arithmetic mean of the types constant may either increase or

decrease aggregate effort, depending on how the arithmetic mean compares to the gener-

alized mean embedded in the aggregate effort function. In other words, the existence of

discouragement or encouragement effects hinges on the way heterogeneity is introduced.

When the generalized mean belongs to the power mean family, whose special cases include

the arithmetic, geometric and harmonic means, both discouragement and encouragement

effects can always be generated by an appropriate version of higher heterogeneity.

The main message of this paper is that the prevailing common wisdom about the

(static) discouragement effect does not have a strong theoretical foundation. Among fre-

quently used contest models, there is only one (up to an isomorphism) that follows the

discouragement story to the letter. Other models either produce the opposite effect—

encouragement—or can have either effect depending on how an increase in heterogeneity

is introduced. Generically, even in models with relative types most prone to the discour-

agement effect, the mechanism behind it is different from the standard story.

Relation to the existing literature This paper has far-reaching implications for the

vast literature on static contests and their applications as incentive provision mechanisms

(for a recent review see, e.g., Vojnović, 2016; Fu and Wu, 2019). To highlight the per-

vasiveness of the “common wisdom” of the discouragement effect, consider the following

quotes from recent comprehensive reviews of, respectively, the experimental and theoret-

ical literature on contests.

The theoretical literature on contests has recognized that greater heterogeneity

between players (appropriately normalized depending on the contest) leads to lower

aggregate effort (Baye, Kovenock and De Vries, 1993, 1996; Gradstein, 1995; Baik,

1994; Stein, 2002). The reason for this is the so called “discouragement effect.” Al-

though the technical details underlying the discouragement effect differ from model

to model, they basically arise because a weaker player, either with higher unit costs

of effort or a lower value of winning, finds it relatively unprofitable to try to beat

the stronger player and, consequently, cuts back on his costly expenditure. This, in

turn, may allow the stronger player to bid more passively as well when compared

to a contest in which he faces a player of similar strength.

(Dechenaux, Kovenock and Sheremeta (2015))

It is well known in the literature that the performance of a contest crucially

depends on the competitive balance among contenders, and a more level playing

field tends to fuel competition. (Fu and Wu (2019))
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Similar ideas are expressed in many studies and surveys (e.g., Hillman and Riley, 1989;

Schotter and Weigelt, 1992; Nitzan, 1994; Rapoport and Amaldoss, 2000; Szymanski,

2003; Runkel, 2006; Hart et al., 2015; Imhof and Kräkel, 2016). While some of the more

recent surveys are more nuanced and present theoretical arguments and empirical evidence

pointing in the other direction, those are still interpreted mainly as aberrations (Mealem

and Nitzan, 2016; Chowdhury, Esteve-Gonzalez and Mukherjee, 2020).

There is a relatively small but growing literature questioning the universality of these

claims. Ryvkin (2013) shows that in a widely used contest model small heterogeneity

can lead to an increase in aggregate effort. Drugov and Ryvkin (2017) study biased

contests and find a variety of contest settings where ex ante or even ex post symmetric

players subjected to an arbitrary asymmetry in the winner determination process produce

more in equilibrium. Bastani, Giebe and Gürtler (2020) develop a general approach to

modeling contests with symmetric equilibria and show that aggregate effort can increase

with heterogeneity.

Empirical studies of the discouragement effect focus mainly on a “superstar effect”

the presence of strong athletes may have on peers’ performance, producing mixed results.

A negative superstar effect was found, for example, by Brown (2011) in golf and Bilen

and Matros (2020) in chess; while a positive effect was identified by Hill (2014b) in sprint,

Hill (2014a) in track and field, and Yamane and Hayashi (2015) in swimming.

The rest of the paper is organized as follows. Section 2 sets up a generic contest model

and introduces the classification of relative and absolute types. Examples of models with

relative and absolute types are collected in Tables 1 and 2, respectively, and referenced

throughout the text. Section 3 provides results for the models with relative types while

Section 4 does so for absolute types. Section 5 concludes. Proofs are collected in the

Appendix.

2 The model

2.1 Preliminaries

For clarity, we consider two-player, complete information contests admitting a pure strat-

egy equilibrium characterized by first-order conditions.1

1This covers the vast majority of models used in the contest literature, including the variants of
Tullock (1980) and Lazear and Rosen (1981) models. Alternative models of static contests are all-pay
auctions of complete (Baye, Kovenock and De Vries, 1993; Siegel, 2009) and incomplete (Hillman and
Riley, 1989; Moldovanu and Sela, 2001) information, as well as imperfectly discriminating contests of
incomplete information (Fey, 2008; Ryvkin, 2010; Wasser, 2013; Ewerhart, 2014).
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The game Two players indexed by i = 1, 2 simultaneously and independently choose

efforts ei ∈ R+. The type of player i is ti ∈ R++. Player 1’s utility is given by function

f(e1, e2; t1, t2) such that that f2 < 0, ft1 > 0, and ft2 ≤ 0.2 The game is symmetric; that

is, the utility of player 2 is f(e2, e1; t2, t1).

The most common form of function f in the contest literature is f(e1, e2; t1, t2) =

v(t1)p(e1, e2; t1, t2) − c(e1; t1), where v(ti) is player i’s prize valuation, p(e1, e2; t1, t2) is a

contest success function (CSF) that defines the probability of player 1 winning given the

players’ efforts and types, and c(ei; ti) is player i’s cost of effort. Our symmetry assumption

is then equivalent to the contest being unbiased, in the sense defined by Drugov and

Ryvkin (2017), or anonymous (Skaperdas, 1996), or perfectly symmetric (Dixit, 1987).

While these prior definitions pertain to the CSF p, the model here is more general and

does not require separability or even risk-neutrality.

Equilibrium Suppose f is sufficiently differentiable and consider an equilibrium char-

acterized by the system of first-order conditions,

f1(e1, e2; t1, t2) = 0, f1(e2, e1; t2, t1) = 0. (1)

We will use f̃ to denote function f and its derivatives evaluated at (e2, e1; t2, t1) where the

players’ identities have been swapped. We assume there exist open intervals Y, T ⊆ R++

such that the following holds.

Assumption 1 For all (e1, e2; t1, t2) ∈ Y 2 × T 2, f11f̃11 − f12f̃12 6= 0.

Equations (1) then define well-behaved implicit functions e∗i : T 2 → Y ,3 which we assume

constitute the equilibrium for any (t1, t2) ∈ T 2. From this point on, we restrict attention

to the values of (t1, t2) in this domain. We will use E∗(t1, t2) = e∗1(t1, t2) + e∗2(t1, t2) to

denote aggregate equilibrium effort.

Symmetric equilibrium Of special interest for our purposes is the symmetric equilib-

rium (ē(t), ē(t)) obtained for t1 = t2 = t ∈ T and characterized by the equation

f1(ē, ē; t, t) = 0. (2)

2We use subscript i to denote partial derivatives of f with respect to ei, and subscript ti for partial
derivatives with respect to ti.

3From the implicit function theorem, if f1 is a C1 function and Assumption 1 holds, the implicit
functions e∗i (t1, t2) are C1.
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# f(e1, e2; t1, t2) e∗1(t1, t2) E∗(t1, t2) τ(t1, t2)

1 1
2

+ t1
t2
e1 − t2

t1
e2 − 1

2
e21 τ τ + 1

τ
t1/t2

2 t1e1
t1e1+t2e2

− e1 τ
(1+τ)2

] 2τ
(1+τ)2

t1/t2

3 G(e1 + t1 − e2 − t2)− c(e1) c′−1(g(τ))] 2c′−1(g(τ)) t1 − t2

4 1
2

+ (1 + t1 − t2)e1 − (1 + t2 − t1)e2 − 1
3
e31
√

1 + τ
√

1 + τ +
√

1− τ t1 − t2

Table 1: Examples of contest models with relative types. In examples marked with ],
e∗1(t1, t2) = e∗2(t1, t2). In Example 3, G(·) is an absolutely continuous cdf, g(·) is the
corresponding pdf, and c(·) is a strictly convex cost function. Example 1 is from the
Introduction.

The resulting symmetric equilibrium effort e∗1(t, t) = e∗2(t, t) ≡ ē(t) exists and is C1 in t

provided f11 + f12 6= 0, with

ē′(t) = −f1t1 + f1t2
f11 + f12

, (3)

where all derivatives are evaluated at (ē, ē; t, t). Aggregate effort in the symmetric equi-

librium is E∗(t, t) = 2ē(t). The following regularity condition ensures that individual

(and aggregate) effort in the symmetric equilibrium is either constant or monotone in the

type.4

Assumption 2 (Diagonal monotonicity) For all (e1, e2, t1, t2) = (ē, ē, t, t) such that

t ∈ T and (2) holds, f1t1 + f1t2 does not change sign.

2.2 Relative and absolute types

As we show below, the effect of heterogeneity on aggregate equilibrium effort depends

critically on how the types (t1, t2) enter function f . For illustration, consider two popular

models of contests of heterogeneous players used in the literature: Example 2 in Table 1

and Example 5 in Table 2. Both models are variations of the Tullock contest with linear

costs, and only differ by how the types are introduced.

These two models motivate the following definition.

Definition 1 (Relative and absolute types) The contest (or function f) has relative

types if ē(t) is independent of t, ē′(t) = 0 for all t ∈ T , and absolute types otherwise.

4In Section 4, we will impose a stronger condition to have aggregate effort E∗(t1, t2) globally monotone
in both types.
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# f(e1, e2; t1, t2) e∗1(t1, t2) E∗(t1, t2) m(t1, t2)

5 e1
e1+e2

− e1
t1

t21t2
(t1+t2)2

1
2
m 2

1/t1+1/t2

6 (1+t1)e1+(1−t2)e2
2(e1+e2)

− e1 1
8
(t1 + t2)

] 1
2
m 1

2
(t1 + t2)

7 e1+t1
e1+t1+e2+t2

− e1 1
4
− t1 1

2
− 2m 1

2
(t1 + t2)

Table 2: Examples of contest models with absolute types. In examples with ], e∗1(t1, t2) =
e∗2(t1, t2). Example 5 is equivalent to having heterogeneous prize valuations v(ti) = ti.

Models with relative types are more suitable to study the effects of heterogeneity

because the benchmark—aggregate effort in the symmetric equilibrium—is fixed. In con-

trast, in models with absolute types, individual and aggregate effort in the symmetric

equilibrium is either increasing or decreasing in the type.5 In such models, the impact of

heterogeneity on aggregate effort needs to be carefully defined because, as we show in the

following section, arbitrary changes in types can generate a combination of absolute and

relative effects. We consider relative types in detail in Section 3, and absolute types in

Section 4.

2.3 Local effects of heterogeneity

Before turning to our main results, we consider local effects of changes in heterogeneity

around the symmetric equilibrium point with types (t, t). This analysis helps highlight

a fundamental difference between models with relative and absolute types in how they

accommodate variation in types.

It is convenient to parameterize type changes around (t, t) by differentiable curves

(t1(d), t2(d)) ⊂ T 2, with d in some interval including zero such that (t1(0), t2(0)) = (t, t).

For example, a situation where player 1’s ability is fixed and player 2’s ability is changing

can be modeled as t1(d) = t, t2(d) = t + d, where d > (<)0 corresponds to player 2

becoming stronger (weaker). A mean-preserving scenario where both player’s abilities are

changing with the (arithmetic) average ability staying fixed can be modeled as t1(d) =

t+ d, t2(d) = t− d. Abusing notation somewhat, define

E∗(d) = e∗1(t1(d), t2(d)) + e∗2(t1(d), t2(d)), (4)

5Nonmonotonicity is excluded by Assumption 2. It is easy, however, to construct “hybrid” models
where ē(t) is nonmonotone.
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to be aggregate equilibrium effort along such a curve. Of special interest are conditions

under which E∗(d) is locally maximized or minimized at the symmetric equilibrium point,

i.e., for d = 0.

Proposition 1 (a) Under relative types, E∗(d) has a critical point at d = 0 along any

curve going through (t, t).

(b) Under absolute types, E∗(d) has a critical point at d = 0 if and only if t′1(0) = −t′2(0).

Part (a) of Proposition 1 says that, under relative types, homogeneous types can

produce a local maximum or minimum of aggregate effort along any curve going through

(t, t). In other words, there is a possibility for pure discouragement or encouragement

when the introduction of any heterogeneity leads to a lower or higher aggregate effort as

compared to the symmetric case. Example 2 has pure discouragement, and Example 1 is

that of pure encouragement.

In contrast, part (b) of Proposition 1 implies that, for absolute types, heterogeneity-

driven discouragement or encouragement are possible only for a very restricted set of type

changes. Locally, when the condition t′1(0) = −t′2(0) holds, the types change in opposite

directions in an arithmetic mean-preserving way: One player becomes weaker, and the

other player becomes stronger by the same amount, to the first order in d. Only such

type changes can be meaningfully characterized as (isolated) changes in heterogeneity for

absolute types. Indeed, any type change that does not satisfy this condition brings about

a homogeneous type shift which changes aggregate effort but does not alter heterogeneity.

For illustration of the latter point, consider an arbitrary type change (t, t)→ (t̂1, t̂2).

Defining t̂ = 1
2
(t̂1 + t̂2), we can decompose it into two steps: (i) a homogeneous type shift

(t, t)→ (t̂, t̂) that, under absolute types, leads to a change in aggregate effort that is not

related to heterogeneity; and (ii) a mean-preserving change (t̂, t̂)→ (t̂1, t̂2) around the new

symmetric point (t̂, t̂). Locally, when the condition in Proposition 1(b) is satisfied, the

first effect is zero and hence the type change represents a clean increase in heterogeneity.

Otherwise, the impact of heterogeneity is confounded.

3 Relative types

In this Section we consider models with relative types, see Definition 1. We start by

defining what it means for one type profile to be more heterogeneous than another.

Definition 2 (Surely more heterogeneous) Profile (t̂1, t̂2) is surely more heteroge-

neous than profile (t1, t2) if max{t̂1, t̂2} ≥ max{t1, t2} and min{t̂1, t̂2} ≤ min{t1, t2}, with

at least one inequality strict.
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In words, Definition 2 says that heterogeneity is for sure increased when a stronger type

becomes stronger while a weaker one becomes weaker. This is a partial order, in the sense

that some type profiles are not comparable. The advantage of this definition, apart from

simplicity, is its model-independence.6

We say that f has a relative types structure if f1(e1, e2; t1, t2) = r(e1, e2; τ(t1, t2)),

where rτ > 0, and τ is some function of the types such that τt1 > 0 and τt2 < 0.

Definition 1 then implies that τ̄ = τ(t, t) is independent of t. While this structure is not

necessary for relative types, it is very common and applies to all examples of contests

with relative types used in the literature, most of which are listed in Table 1.

Under this structure, aggregate effort is a function of τ ; that is, it has the form

E∗(t1, t2) = φ(τ(t1, t2)). The following proposition then provides simple sufficient condi-

tions for heterogeneity to have a definite effect.

Proposition 2 Suppose f has a relative types structure and E∗(t1, t2) = φ(τ(t1, t2)),

where φ(·) is unimodal (U-shaped) and maximized (minimized) at τ = τ̄ . Then aggregate

effort decreases (increases) as types become surely more heterogeneous.

In Example 2, τ(t1, t2) = t1
t2

, and φ(τ) = 2τ
(1+τ)2

is unimodal and maximized at τ̄ =

τ(t, t) = 1, producing a discouragement effect. Namely, any sure increase in heterogeneity

leads to a reduction in aggregate effort. In Example 3 based on the seminal Lazear and

Rosen (1981) paper, τ(t1, t2) = t1 − t2 and φ(τ) = 2c′−1(g(τ)). If g(·) is unimodal,7

aggregate effort has a global maximum at τ̄ = 0, also producing a discouragement effect.

Finally, in Example 1, τ(t1, t2) = t1
t2

, and φ(τ) = τ + 1
τ

is convex and minimized at

τ̄ = 1, leading to the encouragement effect while in Example 4 τ(t1, t2) = t1 − t2, and

φ(τ) =
√

1 + τ+
√

1− τ is concave and maximized at τ̄ = 0, leading to the discouragement

effect.

Individual efforts As mentioned in the Introduction, the standard explanation for the

discouragement effect is that the weaker player decreases her effort and the stronger player

follows suit. Yet, in Examples 1 and 4 the individual equilibrium efforts change in op-

posite directions following any increase in heterogeneity. Moreover, defining e∗i (d) =

e∗i (t1(d), t2(d)), Proposition 1(a) implies that e∗′1 (0) = −e∗′2 (0) along any curve going

though (t, t), i.e., locally this behavior is generic. Then, regular models will have the

same behavior globally as well.

6For relative types, it is possible to define a complete heterogeneity order based on the function τ(t1, t2)
introduced below. That order would be model-dependent.

7g(·) is the pdf of the difference of shocks, X1 −X2. When shocks are i.i.d., a sufficient condition for
the unimodality of g(·) is that the pdf of Xi is unimodal (Hodges and Lehmann, 1954).
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Examples 2 and 3 are special in that both individual efforts decrease with hetero-

geneity. Note first that the two examples are essentially variations of the same model,

since the Tullock contest can be obtained from the Lazear-Rosen tournament when the

additive noise follows the Gumbel (or extreme value type-I) distribution (Jia, Skaperdas

and Vaidya, 2013; Ryvkin and Drugov, 2020). Additive types in the Lazear-Rosen tour-

nament become multiplicative types in the Tullock CSF. Second, this is a knife-edge case

in which the two efforts are always equal to each other, and not just aggregate effort but

also individual efforts are maximized at (t, t), and hence e∗′1 (0) = e∗′2 (0) = 0. We are not

aware of any other widely used model with the same property.

Connection to biased contests In models with a relative types structure, one may

think about the equivalence of a contest with heterogeneous players and a biased contest

with homogeneous players, where β = τ is the bias parameter in the sense introduced

by Drugov and Ryvkin (2017). The contest is unbiased when β = τ̄ . They show that a

property of biased contests called locally symmetric bias is both necessary and sufficient

for a wide class of objective functions (including aggregate effort) to have a critical point

at zero bias. When players are homogeneous, the locally symmetric bias condition states

that p1β(ē, ē, β̄) = p2β(ē, ē, β̄), where p(e1, e2, β) is a biased CSF with a bias parameter

β, and the contest is unbiased at β = β̄. Consider the model in the present paper with

f(e1, e2; t1, t2) = p(e1, e2; t1, t2) − c(e1), where the contest is unbiased and the CSF is a

function of both players’ types. This model can be re-interpreted as a biased contest if

we set t1 = t and treat t2 as a bias, with t2 = t corresponding to zero bias. Then it can

be shown that the locally symmetric bias condition is equivalent to there being relative

types.

4 Absolute types

In this section, we consider models with absolute types in which aggregate effort E∗(t, t)

is nonconstant in t, cf. Definition 1. While in general the behavior of E∗(t, t) can be

arbitrary, we will focus on the most important cases, covered by Assumption 2, where

E∗(t, t) is strictly monotone in t. Moreover, it is convenient to impose an even stronger,

albeit natural, assumption under which E∗(t1, t2) is monotone in both types.8

Assumption 3 (Global monotonicity) For all (e1, e2, t1, t2) such that (t1, t2) ∈ T 2

and (1) holds, f1t1(f̃11 − f̃12) + f̃1t2(f11 − f12) does not change sign.

8This assumption is obtained by differentiating the first-order conditions (1) and calculating E∗ti . As
expected, at (t, t), a combination of Assumptions 1 and 3 produces Assumption 2.

10



For concreteness, we perform the analysis for E∗(t1, t2) increasing, as in Examples 5

and 6. However, all the results in this section also hold if E∗(t1, t2) is decreasing as in

Example 7.

In Example 5, aggregate effort E∗(t1, t2) = 1
1/t1+1/t2

is half of the harmonic mean of

the types, while in Example 6 E∗(t1, t2) = 1
4
(t1 + t2) is half of their arithmetic mean. As

we show in this section, this property holds generally: Aggregate effort can be written as

a function of some (generalized) mean of the types.

We will use the following definition of generalized mean.9

Definition 3 (m-mean) Function m : T 2 → R is an m-mean if it has the following

properties:

(a) Monotonicity: m(t1, t2) is strictly increasing in both arguments.

(b) Symmetry: m(t1, t2) = m(t2, t1) for all (t1, t2) ∈ T 2.

(c) Reflexivity: m(t, t) = t for all t ∈ T .

The following proposition provides a key observation for the results of this section.

Proposition 3 Under absolute types, there exists a unique m-mean such that aggregate

equilibrium effort can be written in the form E∗(t1, t2) = 2ē(m(t1, t2)).

In words, Proposition 3 says that for any contest model with absolute types, aggregate

equilibrium effort does not change if the two players are homogenized with a type equal

to a unique m-mean of the original types. The proof is based on the fact that aggregate

effort already satisfies properties (a) and (b) of Definition 3, and will satisfy reflexivity as

well after it is appropriately transformed via function ē−1(·).
Motivated by Proposition 3, we say that a contest model is characterized by an m-

mean if E∗(t1, t2) = 2ē∗(m(t1, t2)). The contest model in Example 5 is characterized by

the harmonic mean. In other words, if types change in a way that keeps their harmonic

mean constant, aggregate effort will be preserved. In Example 6 the model is characterized

by the arithmetic mean and hence, changing types keeping their sum constant will not

affect aggregate effort. The following definition uses this idea.

Definition 4 (m-heterogeneity) For some mean m, a type profile (t̂1, t̂2) is more m-

heterogeneous than (t1, t2) if it is surely more heterogeneous and m(t̂1, t̂2) = m(t1, t2).

9This is the minimum set of properties usually required from a mean (see, e.g., Bullen, 2003). Another
standard property is decomposability, i.e., that the mean is preserved when a subset of arguments is
replaced with their mean value (Kolmogorov, 1930; for a reprint of the original article see Kolmogorov,
1991). For n = 2, the decomposability property is not a restriction.
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Due to the monotonicity property of the m-mean (see Definition 3), the curve m(t1, t2) =

const has a negative slope and hence, any two points on it are ranked by sure heterogeneity.

Thus, m-heterogeneity simply applies the sure heterogeneity order to those profiles that

have the same m-mean.

In what follows we will consider parameterized means, m(t1, t2; ρ), increasing in pa-

rameter ρ so that m(t1, t2; ρ
′) ≥ m(t1, t2; ρ) for ρ′ > ρ and any (t1, t2) ∈ T 2. Arguably the

most popular such family is the power mean (also known as Hölder mean),

Mρ(t1, t2) =
(
1
2
tρ1 + 1

2
tρ2
) 1
ρ , −∞ < ρ <∞, (5)

of which the harmonic (M−1), geometric (M0) and arithmetic (M1) means are special

cases. Another example is a family introduced by Beckenbach (1950), Lρ =
tρ1+t

ρ
2

tρ−1
1 +tρ−1

2

, with

−∞ < ρ < ∞, which also includes the harmonic (L0), geometric (L1/2) and arithmetic

(L1) means.10

We are now ready to state the main result of this section.

Proposition 4 Consider a contest model characterized by mean m(t1, t2; ρ0) belonging to

a family m(t1, t2; ρ). Suppose that this family has the Spence-Mirrlees property:
mt1
mt2

is

increasing in ρ for t1 ≥ t2.11 Then a higher m(t1, t2; ρ)-heterogeneity leads to a decrease

(increase) in aggregate equilibrium effort if ρ > (<)ρ0.

Proposition 4 shows that increasing heterogeneity in an m-mean-preserving manner can

lead to either higher or lower aggregate effort. In other words, there might be either

a discouragement effect or an encouragement effect, depending on how this mean m

compares to the mean characterizing the model. For example, increasing heterogeneity

in the form (t, t) → (t + d, t − d), i.e., keeping the arithmetic mean constant, reduces

aggregate effort in Example 5 since that model is characterized by the harmonic mean,

which is smaller than the arithmetic mean. In Example 6, however, which is characterized

by the arithmetic mean, increasing heterogeneity in the form (t, t) → ( t
1−d ,

t
1+d

), i.e.,

keeping the harmonic mean constant, increases aggregate effort. This is illustrated in

Figure 1.

A simple intuition for why neither the discouragement nor encouragement effects can

be assured is the following. Take a “standard” model with absolute types where they

either increase the valuation of the prize or decrease the marginal costs, as in Example

5. The direct effect of a higher type is then to increase the player’s own effort. When

10This mean is sometimes attributed to Lehmer (1971), even though that article appeared much later.
It is monotone in t1 and t2 only for ρ ∈ [0, 1].

11By symmetry, this is equivalent to
mt1

mt2
decreasing in ρ for t1 ≤ t2.
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Figure 1: Example 5 characterized by the harmonic mean (left) and Example 6 characterized by
the arithmetic mean (right). Shaded areas show higher sure heterogeneity for profiles (1.25, 0.75)
and (0.75, 1.25). Arrows show higher arithmetic mean heterogeneity (left) and higher harmonic
mean heterogeneity (right). Along the arrows, aggregate equilibrium effort decreases in the
former case and increases in the latter one.

moving along some constant m-mean curve, types change in opposite directions. Hence,

the direct effect on total effort is ambiguous and depends, in particular, on the slope of

this constant m-mean curve, i.e., on how much one type has to increase to compensate for

a unit decrease in the other one. Since the size and direction of the indirect (equilibrium)

effects are hard to characterize a priori, the case for a particular direction of the change

in total effort becomes really weak.

The Spence-Mirrlees property in Proposition 4, known from the contract theory (see

e.g., Laffont and Martimort, 2002), ensures that any two iso-mean curves in T 2 correspond-

ing to different means intersect at most once, and the distance between them increases

from the point of their intersection on each side of the 45-degree line. Then, a higher

m(t1, t2; ρ)-heterogeneity always leads to a larger change in m(t1, t2; ρ0). The power mean

family (5) has the Spence-Mirrlees property for any ρ while the Beckenbach family has it

for ρ ≤ 1.

The range of ρ in the power mean family (5) is unbounded both from above and

below, leading to the following corollary of Proposition 4.12

Corollary 1 Consider a contest model characterized by an Mρ0-mean belonging to the

power mean family (5). For any ρ0 there exist ρ′ and ρ′′ such that a higher Mρ′-heterogeneity

12Recall that limρ→−∞Mρ(t1, t2) = min{t1, t2} and limρ→∞Mρ(t1, t2) = max{t1, t2}.
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decreases aggregate equilibrium effort and a higher Mρ′′-heterogeneity increases aggregate

equilibrium effort.

Since essentially all commonly used means belong to the power mean family, Corollary 1

implies that there is always a place for both discouragement and encouragement effects,

depending on how heterogeneity is increased.

5 Conclusion

The message of this paper is that the so-called “discouragement effect” in static contests—

the broad claim that players’ heterogeneity tends to reduce aggregate effort—does not have

a robust theoretical foundation. Two remarks are due. First, these results do not imply

in any way that policies aimed at restoring competitive balance in the real world should

not be pursued. It is possible that the model that does predict a discouragement effect

is the one that approximates the reality well. It is also possible that the discouragement

effect emerges due to psychological factors or bounded rationality ignored by the standard

models. Our results, however, call into question the “neoclassical” argument for leveling

the playing field, namely, that the utilitarian efficiency is never harmed by such policies

and hence, the efficiency and equity goals are aligned. Yet, there are certainly other

powerful arguments for competitive balance, and many other situations where a trade-off

between efficiency and another objective is resolved in favor of the other objective.

Second, we have focused on static contests. In dynamics contests, even if the players

are symmetric at the outset, discouragement can arise endogenously due to the advan-

tage acquired by the winner of earlier stages. Termed dynamic discouragement effect or

“momentum effect,” this phenomenon is predicted by a variety of models (for a review

see, e.g., Konrad, 2012). For example, in “multi-battle contests” where the winner is the

player who wins a certain number of stage contests first (e.g., Konrad and Kovenock, 2009;

Ryvkin, 2011), the leader values another win more than the follower because it brings the

leader even closer to winning the entire contest, whereas for the follower another win just

means they are tied at best and have to compete again.13 The stage game is, therefore,

similar to a static model with absolute types equal to the players’ prize valuations, such

as Example 5. The effect of heterogeneity in such models depends on the details of the

model and on how heterogeneity is defined. More generally, our results suggest that the

13When the stage game is an all-pay auction without intermediate prizes, this leads to players com-
pletely giving up as soon as they are trailing (Konrad and Kovenock, 2009). It is possible, however, to
generate a “last stand” type behavior by the trailing player if there is a cost of losing the contest and
future payoffs are discounted (Gelder, 2014).
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dynamic discouragement effect is also not robust and depends on exactly how the stage

contest and the dynamics are modeled.
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A Proofs

Proof of Proposition 1

Part (a) Differentiating (4), we obtain

E∗′(d) = e∗1t1t
′
1(d) + e∗1t2t

′
2(d) + e∗2t1t

′
1(d) + e∗2t2t

′
2(d)

= (e∗1t1 + e∗2t1)t
′
1(d) + (e∗1t2 + e∗2t2)t

′
2(d). (6)

By symmetry, e∗1(t1, t2) = e∗2(t2, t1); therefore, at d = 0 we have e∗1t1 = e∗2t2 and e∗1t2 = e∗2t1 ,

producing

E∗′(0) = (e∗1t1 + e∗1t2)(t
′
1(0) + t′2(0)) = ē′(t)(t′1(0) + t′2(0)). (7)

The second equality follows by differentiating ē(t) = e∗1(t, t). Under relative types ē′(t) =

0.

Part (b) Consider Eq. (7). Under absolute types ē′(t) 6= 0 and hence, E∗′(0) = 0 ⇔
t′1(0) + t′2(0) = 0.

Proof of Proposition 3

Recall that E∗(t1, t2) = e∗1(t1, t2) + e∗2(t1, t2). Due to symmetry, we have e∗1(t1, t2) =

e∗2(t2, t1); therefore, E∗(t1, t2) is symmetric. Function ē(t) = 1
2
E∗(t, t) is strictly mono-

tone and hence has a unique inverse ē−1(·). Then it is easy to see that m(t1, t2) =

ē−1(1
2
E∗(t1, t2)) is a generalized mean. Indeed, m(t, t) = ē−1(1

2
E∗(t, t)) = t, and all

other properties are satisfied. Thus, there exists a generalized mean m(t1, t2) such that

E∗(t1, t2) = 2ē(m(t1, t2)). Any other mean m̃(t1, t2) satisfying the same has to coincide

with m(t1, t2) because ē is a strictly increasing function.

Proof of Proposition 4

Suppose E∗(t1, t2) = 2ē(m(t1, t2; ρ0)), where m(t1, t2; ρ) satisfies the Spence-Mirrlees prop-

erty. Let ρ > ρ0 and consider two type profiles (θ1, θ2) and (θ̂1, θ̂2) such that (θ̂1, θ̂2) is

surely more heterogeneous and m(θ1, θ2; ρ) = m(θ̂1, θ̂2; ρ). From the symmetry and strict

monotonicity of m, we can assume without loss that θ̂1 > θ1 ≥ θ2 > θ̂2.
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Let t2 = χ0(t1) and t2 = χ(t1) be the implicit functions defined by the iso-mean

curves m(t1, t2; ρ0) = m(θ1, θ2; ρ0) and m(t1, t2; ρ) = m(θ1, θ2; ρ), respectively. By con-

struction, the two curves intersect at (θ1, θ2). Moreover, χ′0(t1) = −mt1 (t1,t2;ρ0)

mt2 (t1,t2;ρ0)
and

χ′1(t1) = −mt1 (t1,t2;ρ)

mt2 (t1,t2;ρ)
. The Spence-Mirrlees property then implies χ′1(t1) < χ′0(t1) for

t1 > θ1 and hence χ1(θ̂1) < χ0(θ̂1). This implies, by the monotonicity of m,

m(θ̂1, θ̂2; ρ0) = m(θ̂1, χ1(θ̂1); ρ0) < m(θ̂1, χ0(θ̂1); ρ0) = m(θ1, θ2; ρ0),

which gives E∗(θ̂1, θ̂2) < E∗(θ1, θ2).
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