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Previous research has suggested that an individual consumer may have multiple tastes within a given product

category. Multi-taste preferences are likely present in categories characterized by large product attribute

spaces and many diverse products, such as music, videos, restaurants, or books. Capturing heterogeneity

among such multi-taste consumers requires new methods, as two consumers may share some tastes but not

others. This is a different type of heterogeneity than that captured by existing models, such as mixed logit

or latent class models, which estimate only one taste for each individual.

In this paper, we propose a model that allows for heterogeneity among consumers with multiple tastes,

and an estimation procedure that scales to potentially very high dimensional attribute spaces. In a numerical

study, we simulate consumers with multiple preferences and demonstrate the proposed algorithm accurately

recovers parameters, whereas single-taste benchmark models underfit and lead to a misleading picture of

individual level preferences and the population preference distribution. We then test the algorithm empiri-

cally on a data set of recipe choices. We show that the algorithm scales to a large parameter space, and that

the model fits the data better than single-taste benchmarks. We also demonstrate that the model uncovers

rich patterns of underlying heterogeneity, such as what the different tastes are, how many consumers have

each taste, and which tastes tend to be more and less likely to occur in the same individual.

Key words : choice modeling, heterogeneity, machine learning, optimization, recommender systems
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1. Introduction

In many product categories, an individual consumer may have multiple different sets of

preferences, or tastes. Previous research has documented a “multiple ideal point” phe-

nomenon in the context of brand preferences (Lee et al. (2002), DeSarbo et al. (2008)).

This may occur due to context dependence, variety seeking, or different products meeting

different goals. We extend this notion to preferences for product attributes. Consider, for

example, consumer preferences for recipes (cooking), which is our empirical application in

this paper. A consumer might enjoy cooking healthy meals using fish and chicken, many

vegetables, little butter and oil; and using grilling or steaming as the cooking method.

The same consumer may also like throwing dinner parties, for which she prefers recipes

that scale well so they can be cooked in large portions and that most people tend to like.

The consumer has two distinct (though not necessarily mutually exclusive) tastes, with

different specific criteria for each. Other examples include music, videos, restaurants, and

books, all of which are characterized by large attribute spaces and many diverse products.

To accurately capture such a consumer’s preferences, the model must have flexibility to

allow for a single consumer to have a number of tastes, each with its own set of parameters.

The presence of multiple tastes on the individual level also requires a different treatment

of consumer heterogeneity. Accurately capturing how preferences are distributed in a pop-

ulation is a central problem in marketing (Allenby and Rossi (1998)). It helps firms design

product lines, target individuals, and plan in-store assortments. To market their products

effectively, firms need to be able to predict the optimal product configuration and under-

stand the distribution of preferences: Are consumers all similar in terms of their preferred

attributes, or are they more differentiated? Is the population segmented into groups of

consumers that all have similar preferences within said segment? When each consumer has
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multiple different tastes, two consumers can now be similar on one taste but different on

others. Thus, if we want to accurately capture preferences for a population of consumers

with multiple tastes, we need a different treatment of heterogeneity. Specifically, we have

to understand (1) what different tastes exist in the population, (2) which consumers have

which tastes, and (3) how heterogeneous individual preferences are within each taste.

Capturing heterogeneity among multi-taste consumers is our goal in this paper. We

formalize a population-level model of multi-taste consumers and propose an estimation

procedure to estimate parameters. To allow for consumer heterogeneity, we use a hierar-

chical model in which each individual’s preferences contain a subset of population tastes

and are heterogeneous within a single taste. This combinatorial property of the individual-

taste subsets makes the objective function computationally expensive to estimate via the

EM algorithm (see Section 4 and Appendix B for the derivation). We propose a com-

putationally efficient iterative algorithm, which we call the Iterative Multi-taste Mixed

Logit (IMML) for the hierarchical model, based on the CCCP algorithm (Section 4). We

demonstrate in a set of simulation studies that the method accurately recovers parame-

ter values. Importantly, our method scales to very large attribute spaces (84 attributes

in our empirical application), which is essential because multiple tastes are most relevant

in product categories defined over many attributes. For the empirical illustration we use

recipe consumption data from a website on which users can browse recipes and select them

by adding them to their “recipe box.” We demonstrate that the IMML method signifi-

cantly outperforms single-taste benchmarks. We also uncover important patterns about

the preference distribution: We identify four tastes, with most consumers having either

two or three tastes. We also find that some tastes are much more likely to occur together

than others. Comparing our parameter estimates with those of the single taste models,
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we see huge differences among attributes (e.g., ingredients) that have positive weights in

some tastes but negative weights in others. Butter is an example of such an attribute.

Such attributes, unsurprisingly, are estimated to have a weight close to 0 by single taste

models. These results highlight the importance of accounting for multi-taste preferences

when characterizing the heterogeneity of preferences in a population.

The rest of this paper is organized as follows. Section 2 reviews related literature in

marketing and computer science. In section 3, we formally specify the model. Section 4

describes our estimation approach. Section 5 describes results of a numerical study testing

the algorithm, and the empirical application is in section 6. Section 7 concludes the paper.

2. Related Work

In marketing, this paper is related to the literature on inferring consumer preferences

from past purchase data, dating back to Guadagni and Little (1983). With the growing

amount of consumer data available through digital channels, researchers have developed

methods that are able to make accurate individual-level predictions for personalization

on the internet (Yoganarasimhan (2015), Kim et al. (2007), Ying et al. (2006), Ansari

et al. (2000), Ansari and Mela (2003), Bodapati (2008)). Researchers have used different

approaches to capture heterogeneous preferences across consumers. For example, they have

modeled preferences drawn from a finite mixture of latent classes (Kamakura and Russell

(1989), Danaher and Mawhinney (2001), Bucklin and Gupta (1992), Chintagunta et al.

(1991), Boxall and Adamowicz (2002)), as in Figure 1a, drawn from a continuous unimodal

distribution (McFadden et al. (2000), Allenby and Rossi (1998), Rossi et al. (1996)), as in

Figure 1b, and a mixture of continuous distributions (Greene and Hensher (2013)), as in

Figure 1c. The current work differs from past research in that a single consumer can have

more than one taste, as in Figure 1d, and two consumers can be similar on one taste but

different on others.
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(a) Latent Class Model (Boxall and Adamowicz 2002).

Each consumer belongs to exactly one taste.
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(b) Mixed Logit Model (McFadden and Train 2000).

All consumers’ taste parameters are drawn from a uni-

modal distribution.
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(c) Latent Class Mixed Logit Model (Greene and Hen-

sher 2013). Each consumer can and only can belong to

one segment, though individual parameters can vary.
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(d) Multi-taste consumer Model. Consumers can have

more than one taste and belong to multiple segments.

Figure 1 Illustration of Consumer Heterogeneity Models

Studies have also captured preference across choice scenarios (i.e., along time) using

first-order Markov processes or by modeling variety-seeking as a personal-trait parameter

separately from taste parameters (Givon (1984), Chintagunta (1998), Varki and Chinta-

gunta (2004)). However, all previous approaches assume that, in a specific choice scenario,

each consumer has one taste and applies that taste to all products in her choice set. The
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current work differs from this literature in that a single consumer may apply different choice

criteria to different products even when they occur in the same choice set (simultaneously).

Research on multi-category choice behavior captures the phenomenon that consumers have

different tastes for different product categories and choose among products across multiple

product categories in each shopping trip (Seetharaman et al. (2005)). Previous work mod-

els consumers’ preference for different product categories jointly (Manchanda et al. (1999),

Singh et al. (2005)), or considers consumers’ choice of products from multiple categories

a bundle choice (Chung and Rao (2003)). In our approach, consumers may have multiple

tastes even within a single category, when all products share the same set of attributes. The

complexity of the problem increases because the underlying subcategories are not known

to the researcher a priori, and need to be learned simultaneously with the tastes.

Methodologically, this work is related to the growing literature of developing machine

learning methods to study consumer preferences, both in preference elicitation (Huang and

Luo (2012), Hauser et al. (2010), Dzyabura and Hauser (2011), Evgeniou et al. (2007),

Evgeniou et al. (2005)) and in secondary data such as clicks (Yoganarasimhan (2015)) and

text from user-generated content, such as reviews and forums (Tirunillai and Tellis (2014),

Netzer et al. (2012)).

This paper also draws on literature in computer science, specifically, recommendation

systems and machine learning. The problem of predicting a user’s preferences for unrated

items based on past behavior is well studied in recommendation systems. Most recommen-

dation systems use collaborative filtering (CF) methods to produce user-specific recom-

mendations based on patterns of ratings or purchases across all consumers (collaborating)

(see Koren and Bell (2011) for a review). For example, matrix factorization methods SVD

and SVD++ map both users and items to a joint latent factor space. In this latent space,
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each item and each user is represented as an m-dimensional vector. This paper differs from

this literature in that we explicitly model consumer choice behavior and obtain parameter

estimates that correspond to product attributes. We draw on the machine-learning litera-

ture to design an efficient algorithm to estimate our model (Yuille and Rangarajan (2003),

Felzenszwalb et al. (2008), Yu and Joachims (2009).

3. Model

We now formally set up the model for multi-taste consumers. We begin by defining utility

for a multi-taste consumer, then present the population-level model, and finally discuss

two related models from the literature.

Utility. For a single-taste consumer, the utility of choosing product j is given by

Uj = βxj + εj, j = 1, . . . , J, (1)

where β is the consumer’s taste, that is, a vector of weights on product attributes, xj is a

vector of product attributes, and εj ∼ i.i.d extreme value is the idiosyncratic error.

A multi-taste consumer has a set of K tastes {β1, . . . , βK}. Within each taste, the utility

of a product j is linear in attributes, as in the single-taste consumer case. But across all

tastes, we define utility as the maximum of utilities from multiple tastes:

Uj = max
k=1,...,K

βkxj + εj, j = 1, . . . , J. (2)

If we observe that a consumer purchased a product, we can infer this product must

have high utility on at least one of his/her tastes. We use max to capture this inference.

A similar approach of using max-based nonlinearities of latent factors can be found in

Weston et al. (2013) and Felzenszwalb et al. (2008) in machine learning. For such models,

algorithms exist with proven guarantees for convergence, which we describe in more detail

in the following estimation section.
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The choice probability of choosing product j in a binary choice scenario is:

Pr(j) =

exp

(
max

k=1,...,K
βkxj

)
1 + exp

(
max

k=1,...,K
βkxj

) . (3)

Let Y = {y1, . . . , yJ} be the choice decision of this consumer regarding all the products,

and yj = 1 if product j is chosen. The log-likelihood is

`({β1, β2, ..., βK}) =
J∑
j=1

[
yj max

k=1,...,K
βkxj − max

k=1,...,K
log(1 + exp (βkxj))

]
. (4)

Heterogeneity. For multi-taste consumers, two sources of heterogeneity exist: first, as a

random-effects model, within each taste, individual parameters are drawn from a popula-

tion distribution; second, individuals also possess different sets of tastes.

Suppose a total of K tastes exist in population, and each taste follows a normal distribu-

tion N(bk,Σk), k= 1, . . . ,K. Assume each taste membership follows a Bernoulli distribution

with parameter αk, k = 1, . . . ,K. Each consumer i, i= 1, . . . , I draws his tastes and makes

choices as follows:

1. For each taste k, consumer i decides whether to possess it with probability αk. Con-

sumer i ends with a taste subset Ki.

2. For each taste in Ki, consumer i draws his/her individual parameter from the popu-

lation taste distribution, namely,

βik ∼N(bk,Σk),∀k ∈Ki.

3. Conditional on the sampled Ki individual tastes {βik,∀k ∈ Ki}, consumer i makes

choices by maximizing utilities using the multi-taste utility function defined in the section

above. We consider a binary choice scenario. For all J products, consumer i makes a
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decision to buy or not to buy. Let Yi = {yi1, ..., yiJ} be the choice decision. Given consumer

i’s set of tastes {βik,∀k ∈Ki}, the probability of Yi is

Qi({βik,∀k ∈Ki}) =
∏
j

Lij({βik,∀k ∈Ki}), (5)

where Lij is the likelihood of choice of product j:

Lij({βik, k ∈Ki}) =

 exp

(
max
k∈Ki

βikxj

)
1 + exp

(
max
k∈Ki

βikxj

)

yij 1

1 + exp

(
max
k∈Ki

βikxj

)


1−yij

. (6)

Conditional on the model parameters θ= {b1,Σ1, ..., bK ,ΣK , α1, ..., αK}, the choice prob-

ability of consumer i is

Pi(θ) =
∑
Ki⊆K

sKi

∫
· · ·
∫
Qi({βik,∀k ∈Ki})

(∏
k∈Ki

φ(βik|bk,Σk)

)
dβik1 . . . dβik|Ki| , (7)

where sKi is the share of the population that has tastes subset Ki,

sKi =
∏
k∈Ki

αk
∏
k′ /∈Ki

(1−αk′), (8)

and φ(βik|bk,Σk) is normal density with mean bk and variance Σk. {k1, . . . , k|Ki|} is the taste

subset Ki.

The joint loglikelihood of the data of all consumers is:

` (θ) =
∑
i

logPi (θ) . (9)

Related models. Two alternative ways to capture multiple tastes are worth mentioning.

The first way is with a nested logit model (e.g., Kannan and Wright (1991), Guadagni and

Little (1998), Chintagunta (1992)). The challenge, however, is that we do not know the

“nests” corresponding to each product. The second way is to increase the dimensionality of

product representation by allowing any interaction between product attributes, and to learn
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consumers’ utility weights for all such interactions. This approach captures the nonlinearity

of consumer preference on product attributes as in our model (by using “max”). However, it

needs to figure out which set of interaction terms to add to the model; allowing all possible

interactions leads the parameter space to grow exponentially. The high-dimensional model

also takes longer to train and is likely to overfit. Regularization can be used to produce

a sparse model, by performing feature selection while learning and penalizing extreme

parameter values (e.g., Zou and Hastie (2005)). But regularization itself is time consuming,

especially when dimensionality is high and when for allowing heterogeneity. Our model is

both parsimonious and interpretable.

Next, we discuss the details of estimating the multi-taste consumer model.

4. Estimation

We first describe an iterative algorithm based on CCCP (Yuille and Rangarajan (2003))

for estimating the homogeneous multi-taste consumer model. It is simpler to estimate and

also provides intuition of the algorithm for the heterogeneous multi-taste consumers case.

We then describe the iterative algorithm we use to estimate the heterogenous consumers

case, called Iterative Multi-taste Mixed Logit (IMML).

4.1. CCCP for Homogeneous Multi-taste Consumer Model

In the homogeneous multi-taste case, all the consumers have the same set of multiple tastes

{β1, β2, ..., βK}. Our goal is to find a set of parameters that maximize the log-likelihood

function (or minimize the negative log-likelihood) given in equation 4, namely,

{β∗1 , β∗2 , ..., β∗K}= arg min
{β1,β2,...,βK}

[ n∑
j=1

max
k
log(1 + eβkxj)︸ ︷︷ ︸
convex

−
n∑
j=1

yj max
k
βkxj︸ ︷︷ ︸

concave

]
. (10)

A key property of the optimization function is that it’s a sum of a convex and a concave

function; hence, we can solve the optimization problem using the CCCP (Yuille and Ran-

garajan (2003)). The general template for a CCCP algorithm for minimizing a function
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f(β)− g(β), where f and g are convex, iterates between two steps: (1) upper bound the

concave part (−g) with a hyperplane, so that the resulting function is convex; and (2)

minimize the resulting convex sum. A CCCP-based algorithm is guaranteed to decrease

the objective function at every iteration and to converge to a local minimum or saddle

point (Yuille and Rangarajan (2003)).

The CCCP algorithm for homogeneous multi-taste-consumers is listed in Algorithm 2

(see Appendix A). Line 3 in the algorithm is the step for computing the upper bound

for the concave part −
∑n

j=1 yj maxk βkxj. The hyperplane constructed is −
∑n

j=1 yjβ
T
k∗j
xj,

where k∗j is the index of the taste that gives the highest utility for product j. In fact, for

the concave part, we only need to impute the taste index k∗j for positive examples (i.e.,

∀j, yj > 0). The algorithm iterates between imputing the index of the taste, which gives the

highest utility for each product that is purchased (i.e., positive instances), and solving the

resulting convex sum while treating those taste indeces as given. It is similar to algorithms

used for learning SVM with latent variables (Felzenszwalb et al. (2008); Yu and Joachims

(2009)).

4.2. IMML for Heterogeneous Multi-taste Consumer Model

To estimate taste parameters of heterogeneous multi-taste consumers, we propose the

IMML algorithm. Appendix 1 derives an expectation-maximization (EM) algorithm to

estimate θ= {b1,Σ1, ..., bK ,ΣK , αi1, ..., αiK} by solving the maximum likelihood function:

arg max
θ

∑
i

logPi(θ).

Though the maximization function is much simpler than the original log-likelihood function

and we derive a closed form of the update function for the parameters, it’s computationally

expensive due to the combinatorial property of the individual-taste subsets and simulation

draws. For each EM iteration, the time complexity is O(2KIRJK), in which I is the
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number of consumers, J is the number of products, R is the number of draws per iteration,

and K is the number of tastes in the population. Hence, instead, we propose the IMML to

solve the problem efficiently.

The general approach of this algorithm is similar to the CCCP algorithm for the homo-

geneous multi-taste consumer case. It iterates between two steps: (1) given the individual

taste parameters, for each person, impute the index of taste which gives the highest util-

ity for each product that this consumer chose (i.e., positive instances); and (2) treating

the taste index as given, learn model parameters and each individual’s taste parameters.

Specifically, the first step clusters products for each individual. For consumer i, suppose

she has a taste subset Ki. We cluster the products she purchased to the taste that gives

the highest utility. We put copies of the products i didn’t purchase into each of his taste

clusters. The intuition is that if a product is not purchased, then it must have low utility

on all of this consumer’s tastes; hence we consider it a negative instance for any taste.

After the first step, for each consumer and each product (i.e., each observation), we assign

the product to a taste cluster. In the second step, for each taste cluster, based on the data

assigned to it, we estimate a mixed logit model, assuming the individual parameters of

all consumers who have the taste are drawn from a normal distribution. The algorithm

continues until the products assignment for each consumer is the same as the previous

iteration or until the objective function cannot be decreased below tolerance. If we use a

similar EM-based approach to estimate the mixed logit model, the time complexity of each

iteration is O(IJKR). The pseudocode is procedure ITERATIVESTEP in Algorithm 1.

The initialization of the individual taste parameters are important. The individual taste

parameters include the tastes subsets and individual utility weights associated with each

taste in his taste subset. We utilize the heterogeneity of purchased products and clustering
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Algorithm 1 The IMML algorithm for heterogeneous multi-taste consumer

Input: D= {(x1, y1), ..., (xJ , yJ)} // Consumer’s choice on all J products

K // Number of tastes

ε // Error threshold

Output: θ= {b1,Σ1, ..., bK ,ΣK}

1: procedure InitializationStep

2: for each consumer i= 1, ..., I do

3: Cluster i’s purchased products to Ki clusters by product attributes

4: Assign products that are not purchased to all Ki clusters

5: for each individual product cluster k= 1, ...,Ki do

6: Learn consumer i’s taste βik using logit model with regularization

7: end for

8: end for

9: Cluster all individual’s tastes into K taste clusters

10: for each consumer i= 1, ..., I do

11: for each individual product cluster k= 1, ...,Ki do

12: Assign products in k to the population taste which βik belongs to

13: end for

14: end for

15: end procedure

1: procedure IterativeStep

2: repeat

3: for each population taste cluster k= 1, ...,K do

4: Learn Mixed logit model with consumers and products that belong to this taste

5: Get (βk,Σk) and βik, i.e., individual posterior tastes for consumers who have taste k

6: end for

7: for each consumer i do

8: for each product j that consumer i purchased do

9: Assign product j to taste k∗, where k∗ = arg maxk∈Ki} βikxj

10: end for

11: end for

12: until products taste cluster assignment for each consumer is the same as last iteration or

objective function can not be decreased below tolerance ε

13: end procedure
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to get a rough guess of individual tastes and also population tastes. For each consumer,

we cluster his purchased products by product attributes, because the heterogeneity of the

purchased products reveals the heterogeneity of tastes. As in the iterative-learning step,

we also put a copy of products that were not purchased into each cluster. Then, for each

product cluster, we can learn an individual taste using logistic regression with regulariza-

tion. This procedure gives us an initialization of all the individual’s taste parameters. After

obtaining all resulting individual’s tastes, we cluster them (as well as products that are

associated with them) into K population taste clusters. This step gives us an initialization

of population-level taste clusters.

We next test the performance of the IMML on simulated and empirical data.

5. Simulation

This section presents the results from a Monte Carlo experiment based on the heteroge-

neous multi-taste consumer model. We test whether the IMML algorithm can recover the

true parameters for multi-taste consumers, and how it performs in terms of predicting

held-out data compared with other choice models.

5.1. Data Generating Process and Simulations

In the Monte Carlo experiment, we have K = 3 tastes in the population, and each of

them follows a normal distribution N(bi,Σk), k = 1, . . . ,K. We have N = 100 consumers

and J = 3000 products with 30 binary attributes. The three taste parameters are shown in

Table 1. To ensure the separate tastes are different from each other, we select two different

attributes for each taste and put a mean weight of 4 on them. The variance for the weight

is 0.1 for all attributes. For each consumer, we randomly select two tastes and draw the

individual parameters for each of the tastes from the corresponding population distribution.

Conditional on the individual parameters, we simulate each consumer’s choices on a random
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Taste 1 Taste 2 Taste 3

Attribute 1 4 (0.1) 0 (0.1) 0 (0.1)

Attribute 2 4 (0.1) 0 (0.1) 0 (0.1)

Attribute 3 0 (0.1) 4 (0.1) 0 (0.1)

Attribute 4 0 (0.1) 4 (0.1) 0 (0.1)

Attribute 5 0 (0.1) 0 (0.1) 4 (0.1)

Attribute 6 0 (0.1) 0 (0.1) 4 (0.1)

Attribute 7 0 (0.1) 0 (0.1) 0 (0.1)

Attribute 8 0 (0.1) 0 (0.1) 0 (0.1)

... ... ... ...

Attribute 30 0 (0.1) 0 (0.1) 0 (0.1)

Table 1 Simulation parameters (Taste parameters omitted are all with mean 0 and variance 0.1)

subset of products. We only simulate choices on 300 random products, rather than using

all products, to capture the fact that in a real data set, a consumer is unlikely to have

examined all the available products. The data are binary 1 or 0, 1 if the consumer has

purchased the product, and 0 if the consumer did not purchase it. We generate 100 runs

of the simulation.

5.2. Results

We estimate model parameters using the IMML algorithm, as well as a set of benchmark

models.

Benchmark Models. We compared the results of the IMML algorithm with both single

taste benchmark models and multi-taste benchmark models. Logit and mixed logit model

are the single-taste benchmark models. They assume only one taste exists in the popula-

tion, and hence we expect they will underfit. Latent class model assumes multiple taste

segments in the population. It captures the market segments in the population; however,
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they still assume each consumer belongs to only one segment. Cluster + Logit model clus-

ters products by attributes first, and then learns consumers’ tastes in each product cluster.

In this case, each consumer could have multiple tastes. This approach is similar to the

case in which we know how consumers categorize products and learn a taste per category.

For example, when learning consumers’ preference for movies, we can learn one taste per

movie genre.

Parameter Recovery. Because in the simulation we know the true underlying parameter

values that were used to generate the data, we can check whether a model can recover these

parameters. Tables 6 and 7 in the Appendix summarize the parameter recovery. Table

6 shows the empirical mean and standard deviations of all the estimators based on 100

runs. Table 7 shows estimation results from one simulation run. For each estimator, we

select the run that is the closest to the mean log-likelihood across the 100 runs. Unlike the

other estimators, IMML always recovers the pattern of the taste distribution: it recovers

three tastes with the correct attributes that have a high weight, and the other attributes

are estimated to have weight 0. It is worth noting that, while the pattern of partworths

is recovered, the exact values have bias in the constant and attribute partworths. This

bias decreases when we run the same simulation for 1000 users. It takes about seven

iterations on average to converge. As expected, both logit and mixed logit model underfit,

and distribute utility weights evenly for the first six attributes. Latent class model performs

much better than logit and mixed logit model, but each of their tastes is a combination

of two correct tastes, because in the true model, each individual has two tastes. Hence(
3
2

)
= 3 types of consumers exist in the population. Latent class model identifies these three

types of customers but estimate each type of consumer as having only one taste, which is a

combination of two tastes. As a result, they achieve the correct segmentation, but because
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they do not capture the multi-taste disjunctive nature of the consumer preferences, they

perform worse on out-of-sample prediction, which we discuss next.

Predictive Performance. Next, we test the predictive performance of IMML and com-

pare it with that of the benchmark models. We randomly divide the data set into a training

(80%) and a test (20%) set. We train IMML and all the benchmark models only in the

training set, and test their predictive performance in test set. We compare all the models

on five performance metrics: log-likelihood, accuracy, precision, recall, and F1. Accuracy,

also called hit rate, is the percentage of predicted choices that match true choices. Pre-

cision, recall, and F1 are widely used metrics in machine learning for classification and

recommendation systems. Precision measures the percentage of predicted positives that

are indeed true positives. In the context of choice modeling, it measures how many items

that are predicted to be purchased actually are purchased. Recall (also called sensitivity

in psychology) is the percentage of true positives that are correctly predicted to be pos-

itive. In our case, it measures how many items that are purchased were predicted to be

purchased. F1 is the harmonic mean of precision and recall. These three measures focus

on only the positive instances and predictions, and are widely used in the literature on

recommender systems and information retrieval.

Table 2 shows the empirical mean and standard deviation of the predictive performance

of all the estimators, averaged over the 100 simulation runs. We can see IMML outperforms

the other benchmarks significantly on all the predictive metrics.

Convergence. On average over the 100 runs, IMML takes 6.9 iterations to converge. In

each training iteration of IMML, products are reassigned to the taste clusters that give

them the highest utility based on the parameter estimation from previous iterations. If the

product taste assignment stays the same for two consecutive iterations, the algorithm con-

verges. Figure 6 shows the number of products whose taste assignment changed decreases
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IMML Logit Cluster + Logit LC Mixed Logit

Log-likelihood -2021.34*** -2587.95 -2567.36 -2275.42 -2426.14
(122.2) (125.11) (139.98) (126.93) (117.89)

Accuracy(Hit rate) 0.8947*** 0.8028 0.8062 0.8301 0.8173
(0.0102) (0.0106) (0.0134) (0.0081) (0.0084)

Precision 0.86*** 0.6759 0.6434 0.7636 0.6798
(0.0258) (0.0354) (0.0362) (0.0344) (0.0251)

Recall 0.6457*** 0.2647 0.338 0.3752 0.4082
(0.0307) (0.0367) (0.0615) (0.0269) (0.0249)

F1 0.7278*** 0.379 0.4408 0.489 0.4874
(0.0282) (0.0389) (0.0573) (0.0278) (0.024)

Table 2 Predictive performance across 100 runs of simulation studies. IMML significantly outperforms

benchmark models on all metrics (*** p < 0.001).

with each iteration, indicating that the algorithm stabilizes and converges to a saddle

point. Figures 7 through 11 plot IMML’s out-of-sample predictive performance per each

training iteration across 100 simulations for each of the five performance metrics. From

these figures, we can see IMML improves with each iteration and becomes flat towards the

end.

6. Empirical Application

This section presents an empirical application of the multi-taste consumer model and

IMML estimation procedure in a real world setting. We select recipes as our focus category,

because it exemplifies the type of category in which we expect multi-taste preferences to

be relevant. Each ”product”, or recipe, is characterized by a large number of attributes,

including ingredients and cooking methods (more detail on this below). Users select many

recipes, giving them room for a diverse set of preferences. We collected data from a com-

mercial recipe website called AllRecipes.com.1 We apply our method to this data set and

compare it with several popular alternative models.

1 http://allrecipes.com/
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6.1. The AllRecipes Data Set

Allrecipes.com is one of the largest food-focused online social network. This website’s

users can post recipes, review others’ recipes, and collect recipes in their “recipe box”.

We collected the data set in January 2015. The entire data set contains 136,012 users

and 58,698 recipes. For each user, we collected recipes from their recipe box. For each

recipe, we gathered the following information: a brief recipe introduction, ingredient list,

cooking time, cooking directions, nutrition, and reviews and ratings. All of the collected

information is in the form of unstructured text.

The website classifies recipes into categories, including “Appetizer”, “Breakfast and

Brunch”, “Dessert”, etc. For our study, we focus only on recipes in the “Main Dish” and

“Meat and Poultry” categories. These categories are diverse enough that we expect a single

user might like different types of recipes and thus exhibit multi-taste behavior. At the same

time, products in these two categores do not have an obvious sub-categorization. If we were

to estimate the multi-taste model on recipes from all the categories, we would likely end up

with degenerate tastes, e.g. a desert taste, a salad taste, a breakfast taste, etc. This is not

what we want. By focusing only on main dish and meat and poultry recipes, we are able

to discover more surprising and subtle underlying patterns in the population preferences.

In total, we have 121,208 users who selected at least one recipe in either the “Main dish”

or the “Meat and Poultry” categories, and a total of 12,775 recipes. On average, each user

had about 42 recipes in their recipe box.

We expect that multi-taste preferences are more likely to be observed for users with large

recipe boxes. In addition, a challenge we face in this application is the sparsity of the data:

most users do not select most recipes. In fact, the average recipe on the site is only present

in 0.3% users’ recipe boxes, and 95% of recipes are present in less than 1.4% recipe boxes.
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For these reasons, we focus our analysis on popular recipes and active users. We sample

1,000 recipes and 1,000 users, creating a data set with 1 million observations, as follows.

The 1,000 recipes in the data used for estimation are randomly selected from the 2,000

most popular recipes (the remaining 1,000 are used for feature selection, as described in

section 6.2). Popular recipes are those most frequently occuring in recipe boxes. Selecting

the top 2000 recipes results in a cutoff of occuring in at least 621 recipe boxes (out of

the total 121,208 users). We then randomly select 1,000 users who have at least 100 of

the sampled recipes in their recipe box. In addition, we removed the top one percentile of

active users - many of these selected almost every recipe, and may be robots. The resulting

data set is still very sparse compared to most choice modelling settings, with about 88%

negative observations 2.

6.2. Product Attributes Extraction and Selection

The first step of modeling consumer choices is to extract important product attributes

from unstructured text that we collected. Of the information available in the recipe text,

we use two types of information as product attributes: (1) ingredients, e.g., “egg”, “bean”,

and (2) cooking methods, e.g., “roast”, “saute”.

We automatically extract ingredients from the ingredient list portion of the recipe. An

example of an ingredient list item as it occurs in the raw data is “1 cup shredded cheddar

cheese, divided.” We use a part-of-speech (POS) tagger to annotate each word in the recipe

ingredient list to identify whether a word is a number, an adjective, a noun, or a verb.

Then we use regular expression to remove non-ingredient terms from the list, specifically

numbers, modifiers or verb. We extract a total of 1,077 ingredients. We identify seven

cooking methods using a listing in the Wikipedia entry on cooking as used in Teng et al.

2 For robustness, we also constructed a different, more random sample of users and recipes and estimated all the

models on it. The results is similar
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(2012): bake, boil, fry, grill, roast, simmer, and marinate. We extract whether each recipe

uses these cooking methods by mining the cooking directions portion of the recipe.

Next, we do feature selection using `1-regularization techniques. We estimate a lasso

estimator based on the observations of the recipes hold out for feature selection (Tibshirani

(1996)). It minimizes the negative log-likelihood along with an `1-penalty:

β̂lasso = arg min
β

`({β;y,X}) +λ‖β‖1. (11)

The `1 penalty causes some coefficients to be set to exactly zero which allows us to do

feature selection. The λ parameter controls the strength of the penalty, and hence the

sparsity of the model. As λ increases, fewer features are selected. λ is set through cross-

validation. This procedure results in 84 attributes, including three cooking methods and

81 ingredients.

The resulting data set consists of 1 million observations of 1000 consumers’ choices

on 1000 recipes. Each data point is a binary choice on whether or not to collect the

recipe in the recipe box. Each recipe is represented using 84 binary attributes, where each

attribute indicates whether or not the recipe contains the ingredient or cooking method.

We randomly divide the data into two sets: 80% of the data is used for training and

calibrating the model and 20% of the data is held out for performance comparison with

other models. When dividing the data, for each user, we randomly select as training data

80% of the recipes he selected and 80% of the recipes he didn’t select, and hold out the

rest as test data. This way of dividing data into training and test has two advantages over

simply holding out a set of recipes for all users. First, the distribution of choices for each

individual is similar in training data and in hold out data. Second, it more closely mimics

the real-world setting, in which we do not always have observations of the same set of

products for all consumers.
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6.3. Model Estimation and Results

On the resulting training set, we apply the IMML procedure to estimate the multi-taste

preference model. We compare its predictive performance with four benchmark models. We

call the first bench mark model a “Null” model. It simply predicts all negatives. The second

and third model are single-taste benchmarks: Logit (homogeneous consumers) and Mixed

logit model (heterogeneous consumers). The fourth benchmark, which we call “Cluster +

Logit” also captures multi-taste preferences. It first performs a K-means clustering on all

the recipes’ attributes to group recipes to different types. Number of clusters is determined

using the silhouette method (Rousseeuw (1987)). Then it fits a model that includes a full

set of interactions of recipe types (clusters) and recipe attributes.

Uj = α+
A∑
a=1

βaxja +
K∑
k=2

γksjk +
K∑
k=2

A∑
a=1

θka(sjk×xja) + εj, j = 1, . . . , J (12)

where xja is attribute a of recipe j, sjk is the dummy variable for whether recipe j belongs

to cluster k. In this benchmark model, each consumer has the same number of tastes

as the number of recipe clusters. The resulting number of parameters to be estimated is

K ∗ (A+ 1), where K is number of recipe clusters and A is number of recipe attributes.

Table 3 gives the out-of-sample prediction performance of our model the above four

benchmark models. For our model, we fit the model with K number of tastes in population

for K = 2, ...,6.

We compare the models on a set of six performance metrics: log-likelihood, accuracy,

precision, recall, F1, and number of true positives predicted. All the metrics are computed

based on prediction results on the held-out data. First, note that due to the sparsity of the

data, with the majority of data being comprised of negative observations, the null model

achieves an accuracy of 88% by predicting all negative. However, this is clearly not a very

useful model, because it does not help us understand population preferences or make any
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Log-likelihood Accuracy Precision Recall F1 True Positives

Null -72742 88.24% NaN 0.00% 0.00% 0

Logit -71789 88.24% NaN 0.00% 0.00% 0

Mixed Logit -71179 88.24% 66.67% 0.01% 0.02% 2

Cluster + Logit -70617 88.24% NaN 0.00% 0.00% 0

IMML (K=2) -71050 88.25% 55.79% 0.23% 0.45% 53

IMML (K=3) -71796 88.21% 39.86% 0.49% 0.97% 116

IMML (K=4) -71696 88.21% 39.65% 0.57% 1.12% 134

IMML (K=5) -71982 88.22% 42.91% 0.49% 0.97% 115

IMML (K=6) -72123 88.23% 43.78% 0.43% 0.86% 102

Table 3 Empirical application: hold out sample predictive performance

predictions about which users might like which recipes. We also note that the log-likelihood

is quite flat among the tested models. The model that has the highest log likelihood is

the Cluster + Logit multi-taste model. This model, however, also does not predict any

positives. We introduce the precision, recall, and F1 measures, common in recommender

systems literature. We can see that the IMML-based multi-taste models are able to predict

positives, even though the resulting log-likelihood is slightly lower than the Mixed Logit

and Cluster + Logit benchmarks. They also significantly outperform the benchmarks on

the F1 measure. By comparing the IMML models with K = 2, ...,6 on the F1 measure,

which balances precision and recall, and the true positives measure, IMML model with

4 tastes in population seems to perform the best. Next, we look at the estimates of this

model and characterize the underlying population preference parameters.
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Table 4 IMML Taste Estimates (K = 4)

IMML

Mixed LogitTaste 1 Taste 2 Taste 3 Taste 4
High effort Italian/pasta Chicken/healthy Trad. American

Top

butter ground beef curd cottage cheese cracker curd cottage cheese
lime juice pasta tomato puree dill pickle tomato puree

curd cottage cheese ricotta cheese cracker roast lime juice
clove tomato puree lime juice tomato puree roast

mustard simmer garlic salt soy sauce soy sauce
mustard powder mustard powder soy sauce Cajun seasoning mustard powder

chicken breast half pea onion flake mushroom soup pasta
bread dough lasagna noodle chicken breast onion flake garlic salt

leaf roast pepper flake curd cottage cheese ricotta cheese
Dijon mustard Cheddar cheese chicken breast half beef brisket chicken breast half

Bottom

chicken soup clove curry powder seed dog bun
soy sauce tarragon rib dog bun bread dough
brandy iron steak chicken soup sesame oil ground beef chuck

pizza sauce jasmine rice firm tofu tarragon beef sirloin
mayonnaise saffron thread saffron thread ground beef chuck rib

sherry chipotle pepper jasmine rice ricotta cheese chinese food
dog bun kernel corn thyme leaf simmer jasmine rice

beef brisket cracker cheese food ground beef firm tofu
pasta onion flake ground beef firm tofu thyme leaf

cider vinegar butter butter butter saffron thread
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Table 4 shows the top 10 attributes and bottom 10 attributes for both multi-taste

model (IMML) and single taste model (Mixed Logit), for comparison. For each taste, we

rank recipe attributes by their coefficients, from highest (most positive) to lowest (most

negative). Table 8 in the appendix shows the coefficient estimates of the full set of recipe

attributes.

The resulting categorization of the multi-taste estimates can be interpreted as follows.

The first taste involves High-effort recipes made from scratch. It has a high weight on

“butter,” “lime juice,” “cottage cheese,” “clove,” “bread dough,” meats (“chicken breast

half,” “ground beef”), and vegetables (“leaf,” “corn”), and negative weights on ingredients

such as “pizza sauce,” “ranch dressing,” “chicken soup,” and “spaghetti sauce.”

The second taste is Italian/pasta dishes. The top ingredients are “pasta,” “ground

beef,” “tomato puree,” and “ricotta cheese.” Negative weight is placed on, for example,

“butter,” “jasmine rice,” “iron steak,” “avocado,” and “chipotle peppers.”

The third taste suggests a preference for Chicken and healthy/low-calorie cooking.

It has high weight on “cottage cheese,” “tomato puree,” low-fat meat (“chicken breast

half,” “chicken breast”), and seasonings (“soy sauce”, “lime juice”, “garlic salt”, “pepper

flake”, and “zest”). It has negative weight on high fat-content ingredients, such as “butter,”

“cheese food,” “cheese ravioli,” and meats (“ground beef,” “ground beef chuck,” “beef

sirloin,” and “rib”).

The fourth taste is Traditional American: high weight on “tomate puree,” “roast,”

“cracker,” “mushroom soup,” “barbecue sauce,” and “beef brisket,” and negative weights

on “butter,” “recotta cheese,” “simmer,” “avocado,” “jasmine rice,” “sesame oil,” and

“ginger root.”

The resulting estimates from the single taste model can be interpreted as a combination

of all the tastes above, particularly the chicken taste and pasta tastes: high weight on
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Table 5 Butter Estimates

IMML

Mixed LogitTaste 1 Taste 2 Taste 3 Taste 4
High effort Italian/pasta Chicken/healthy Traditional American

6.17 -4.62 -7.15 -10.46 -0.0094

“lime juice,”, “cottage cheese,” “pasta,” “ricotta cheese,” “ground beef,” “chicken breast

half.” Estimating a single taste rather than multiple tastes also results in estimates of

some coefficients to be close to 0, even though the multi-taste model reveals that the same

attribute has non-zero coefficients in different tastes. For example, consider the coefficient

of the attribute “butter”, presented in Table 5. In the mixed logit model, it is estimated

to have a value of 0.0064, while ranging from −10.46 to 6.16 in the multi-taste model,

depending on the taste.

6.3.1. Taste Distribution Across Consumers Because the key aspect of our model

relative to existing choice models is that each consumer can have more than one taste,

and consumers can have different subsets of tastes, it allows us to look at the distribution

of tastes among consumers. Figure 2 displays the histogram of the number of tastes per

consumer: the majority of consumers have two tastes and three tastes. Each consumer has

an average of 2.43 tastes. Figure 3 shows number of consumers who has each taste. The

first three tastes are popular tastes with a lot of consumers but only 30% of consumers

have the last taste.

Given that we know the subset of tastes that each consumer has, we can also compute

number of consumers with a particular subset of tastes to understand how tastes co-occur.

Figure 6 and Figure 7 display the number of consumers with a particular pair of tastes and

each set of three of tastes, respectively. From the figures we can see that the third taste

(chicken/healthy) and the fourth taste (traditional american) co-occur relatively rarely -
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Figure 2 Number of tastes per consumer.

Figure 3 Number of consumers with each taste.

only 4% of consumers have both of these tastes, suggesting that very few consumers cook

both these types of recipes. However, 20% of consumers have both the healhy/chicken and

the high effort taste. The flexibility provided by our model and estimation procedure allows

us to find these complex patterns in population preferences.
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Figure 4 Number of people with each pair of tastes.

Figure 5 Number of consumers with each tuple of tastes.

7. Conclusion

We present a new approach for modeling and estimating consumer preferences from pur-

chase data that is well tailored for diverse product categories, in which one consumer may

have multiple different tastes. Our analysis has demonstrated that:



Liu and Dzyabura: Capturing Heterogeneity Among Consumers with Multi-taste Preferences 29

1. The proposed algorithm is able to successfully recover the true parameters of a multi-

taste model in simulations. It is substantially more effective than existing benchmarks.

2. The method scales well to a large, high-dimensional data set (84 attributes, 1000

products) and makes better predictions on hold-out data than a single-taste model.

3. The majority of consumers exhibit multi-taste behavior, with most consumers (about

56%) being fit best with a 2 taste model, and about 37% fit best with a three taste model.

4. Accounting for multiple tastes of a single consumer also generates a meaningful seg-

mentation of consumer preferences.

The first finding demonstrates the algorithm performs well in simulation and succeeds

at recovering parameters. This is critical because the IMML is a heuristic algorithm and

is not theoretically guaranteed to converge to the correct estimate. The simulation studies

allow us to test its ability to recover the correct parameters, not only make accurate

predictions. The second result demonstrates its ability to perform well in practice, on large

problems and further demonstrates predictive performance. Finally, the last two results

suggest important substantive insights can be gained from the proposed method, and shows

evidence that consumer do indeed use multiple tastes in a diverse product category like

recipes.
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Appendix

A. CCCP Algorithm for Homogeneous Multi-taste Consumers

Algorithm 2 The CCCP Algorithm for Homogeneous Multi-taste Consumers

Input: D= {(x1, y1), ..., (xJ , yJ)} // Consumer’s choice on all J products

K // Number of tastes

ε // Error threshold

Output: B= {β1, ..., βK}

1: t← 0 and initialize B(0)

2: repeat

3: k∗j = arg maxk β
T
k xj

4: Update B(t+1) by fixing k∗j for (xj, yj) and minimizing the resulting convex sum, specifically

B(t+1) = arg min
{β1,β2,...,βK}

[ n∑
j=1

max
k
log(1 + eβkxj )−

n∑
j=1

yjβ
T
k∗j
xj

]
5: until Objective function cannot be decreased below tolerance ε
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B. EM for Heterogeneous Multi-taste Consumer Model

The EM algorithm is derived following notations and steps in Train (2008). Our goal is to estimate θ =

{b1,Σ1, ..., bK ,ΣK , αi1, ..., αiK} by solving the maximum likelihood function

arg max
θ

∑
i

logPi(θ)

There exists two types of missing variable: (1) tastes membership Ki, i.e., whether consumer i has taste

subset Ki; (2) {βik,∀k ∈Ki} for each consumer i, i.e., individual parameters. Conditional on the customer’s

choices, the probability-density of {βik, k ∈Ki} and tastes subset Ki is

hiKi
({βik,∀k ∈Ki}|θ) =

(
sKi

∏
k∈Ki

φ(βik|bk,Σk)
)
Qi({βik,∀k ∈Ki})

Pi(θ)
(13)

where sKi
(Equation (8)), Qi({βik,∀k ∈Ki})(Equation (5)), and Pi(θ) (Equation (7)) is defined in main text.

The expectation in the EM algorithm is

E(θ|θt) =
∑
i

∑
Ki⊆K

∫
· · ·
∫
hiKi

({βik,∀k ∈Ki}|θt)

log
[
sKi

Qi({βik,∀k ∈Ki})
∏
k∈Ki

φ(βik|bk,Σk)
]
dβik1 . . . dβik|Ki|

(14)

Substituting (13) and rearranging gives

E(θ|θt) =
∑
i

∑
Ki⊆K

∫
· · ·
∫ [

sKi
Qi({βik,∀k ∈Ki})/Pi(θ)

]
log
[
sKi

Qi({βik,∀k ∈Ki})
∏
k∈Ki

φ(βik|bk,Σk)
] ∏
k∈Ki

φ(βik|bk,Σk)dβik1 . . . dβik|Ki|
(15)

Both the expectation (Equation (15)) and Pi(θ) involves integrals over φ(·). This integration can be

approximated by simulation by taking R draws from each normal distribution of the tastes in consumer

i’s taste subset. Let βikr for draw r from normal N(bk,Σk) for consumer i. We can write simulated choice

probability as

P̃i(θ) =
∑
Ki⊆K

sKi

∑
r

Qi({βikr,∀k ∈Ki})/R (16)

and simulated expectation as

Ẽ(θ|θt) =
∑
i

∑
Ki⊆K

∑
r

htiKir
log
[
sKi

Qi({βikr, k ∈Ki})
∏
k∈Ki

φ(βikr|bk,Σk)
]
/R (17)

where htiKir
= sKi

Qi({βikr, k ∈Ki})/P̃i(θt)

In the maximization step, we solve

θt+1 = arg max
θ

Ẽ(θ|θt) (18)
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Notice that the complete data log likelihood part in Equation (15) can be written as the sum of three

parts

log
[
sKi

Qi({βikr, k ∈Ki})
∏
k∈Ki

φ(βikr|bk,Σk)
]

= log sKi
+ log

∏
k∈Ki

φ(βikr|bk,Σk) + logQi({βikr, k ∈Ki}).

We can optimize separately for each set of parameters. Also notice that Qi({βikr, k ∈Ki}) does not depend

on the parameters. It depends on the random draws of βikr. Once the draws are given, change of parameters

of θ will only affect φ(βikr|bk,Σk) but not Qi({βikr, k ∈Ki}), and hence we can drop Qi({βikr, k ∈Ki}) from

optimization function. The resulting maximization becomes:

{α1, ..., αK}t+1 = arg max
{α1,...,αK}

∑
i

∑
Ki⊆K

∑
r

htiKir
log sKi

, (19)

and

{b1,Σ1, ..., bK ,ΣK}t+1 = arg max
{b1,Σ1,...,bK ,ΣK}

∑
i

∑
Ki⊆K

∑
r

htiKir
log

∏
k∈Ki

φ(βikr|bk,Σk). (20)

The maximization in Equation (19) is satisfied by

αt+1
k =

∑
i

∑
Ki⊆K:k∈Ki

∑
r
htiKir∑

i

∑
Ki⊆K

∑
r
htiKir

, k= 1, . . . ,K. (21)

The maximization in Equation (20) is satisfied by

bt+1
k =

∑
i

∑
Ki⊆K:k∈Ki

∑
r
htiKir

βikr∑
i

∑
Ki⊆K

∑
r
htiKir

, k= 1, . . . ,K, (22)

and

Σt+1
k =

∑
i

∑
Ki⊆K:k∈Ki

∑
r
htiKir

[(
βikr − bt+1

k

) (
βikr − bt+1

k

)′]∑
i

∑
Ki⊆K

∑
r
htiKir

, k= 1, . . . ,K. (23)

We list the pseudocode of this EM algorithm in Algorithm 3.
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Algorithm 3 The EM Algorithm for Heterogeneous Multi-taste Consumers

Input: D= {(x1, y1), ..., (xJ , yJ)} // Consumer’s choice on all J products

K // Number of tastes

ε // Error threshold

Output: θ= {b1,Σ1, ..., bK ,ΣK , αi1, ..., αiK}

1: t← 0 and initialize θ0.

2: repeat

3: for each consumer i= 1, . . . , I do

4: for each normal k= 1, . . . ,K do

5: Take R draws from k-th normal N(btk,Σ
t
k). Label r-th draw as βikr

6: end for

7: for each possible taste subset, i.e., ∀Ki ∈K do

8: for each draw r= 1, . . . ,R do

9: Compute htiKir = sKiQi({βikr, k ∈Ki})/P̃i(θt)

10: end for

11: end for

12: end for

13: Update

αt+1
k =

∑
i

∑
Ki⊆K:k∈Ki

∑
r h

t
iKir∑

i

∑
Ki⊆K

∑
r h

t
iKir

, k= 1, . . . ,K

14: Update

bt+1
k =

∑
i

∑
Ki⊆K:k∈Ki

∑
r h

t
iKirβikr∑

i

∑
Ki⊆K

∑
r h

t
iKir

, k= 1, . . . ,K

15: Update

Σt+1
k =

∑
i

∑
Ki⊆K:k∈Ki

∑
r h

t
iKir

[(
βikr− bt+1

k

) (
βikr− bt+1

k

)′]∑
i

∑
Ki⊆K

∑
r h

t
iKir

, k= 1, . . . ,K

16: t← t+ 1

17: until Objective function cannot be decreased below tolerance ε
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C. Tables

True tastes Cluster + Logit LC IMML

Attributes
β1 β2 β3

Logit MIXL
β1 β2 β3 β1 β2 β3 β1 β2 β3

Intercept -6 -6 -6 -3.47 -3.62 -2.26 -3.88 -3.86 -4.34 -4.07 -4.17 -7.49 -7.73 -7.73

Attribute 1 4 0 0 1.11 1.31 0.75 1.50 1.13 1.95 -0.02 1.77 4.86 -0.40 -0.05

Attribute 2 4 0 0 1.16 1.32 0.80 1.30 1.06 1.95 0.05 1.92 5.06 -0.38 -0.08

Attribute 3 0 4 0 1.06 0.59 2.29 0.45 1.19 1.85 1.89 -0.07 -0.33 5.51 -0.33

Attribute 4 0 4 0 1.07 NA NA NA 1.26 1.77 1.81 0.09 -0.16 5.51 -0.28

Attribute 5 0 0 4 1.05 1.25 0.80 1.37 1.43 0.17 1.93 1.83 -0.04 -0.10 5.15

Attribute 6 0 0 4 1.06 1.46 0.80 1.48 1.32 0.01 1.99 2.03 -0.11 -0.54 5.45

Table 6 Parameter estimates from a typical simulation run. For each estimator, we select the run that is

closest to the mean log-likelihood across 100 runs. IMML recovers parameters best.
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True tastes Cluster + Logit LC IMML

Attributes
β1 β2 β3

Logit MIXL
β1 β2 β3 β1 β2 β3 β1 β2 β3

Intercept -6 -6 -6
-3.61

(0.09)

-3.9

(0.1)

-3.53

(0.45)

-3.47

(0.5)

-3.54

(0.44)

-4.13

(0.33)

-4.11

(0.18)

-4.07

(0.19)

-8.48

(4.46)

-8.67

(6.62)

-8.31

(3.91)

Attribute 1 4 0 0
1.12

(0.09)

1.22

(0.12)

1.08

(0.26)

1.04

(0.26)

1.3

(0.36)

1.88

(0.19)

0.05

(0.3)

1.84

(0.28)

5.11

(1.34)

-0.03

(0.79)

-0.06

(0.91)

Attribute 2 4 0 0
1.11

(0.08)

1.18

(0.11)

1.07

(0.19)

1.09

(0.27)

1.24

(0.26)

1.84

(0.32)

0.03

(0.27)

1.84

(0.27)

5.11

(1.28)

-0.08

(0.68)

-0.07

(0.93)

Attribute 3 0 4 0
1.11

(0.08)

1.17

(0.13)

1.06

(0.21)

1.24

(0.34)

1.1

(0.27)

1.86

(0.24)

1.89

(0.18)

0.06

(0.29)

0.19

(2.78)

5.38

(2.16)

-0.15

(0.53)

Attribute 4 0 4 0
1.1

(0.08)

1.19

(0.11)

1.07

(0.2)

1.23

(0.34)

1.08

(0.25)

1.86

(0.26)

1.87

(0.18)

0.07

(0.33)

0.23

(2.76)

5.39

(2.31)

-0.17

(0.61)

Attribute 5 0 0 4
1.12

(0.1)

1.19

(0.13)

1.25

(0.27)

0.94

(1.58)

1.09

(0.26)

0.07

(0.36)

1.86

(0.22)

1.82

(0.24)

-0.04

(1.5)

0.09

(2.03)

5.3

(1.59)

Attribute 6 0 0 4
1.13

(0.09)

1.21

(0.13)

1.32

(0.34)

1.09

(0.37)

1.02

(0.26)

0.08

(0.36)

1.86

(0.26)

1.84

(0.24)

-0.03

(1.42)

0.07

(1.97)

5.31

(1.59)

Table 7 Empirical means and standard deviations of estimators from 100 runs of simulations. IMML recovers

parameters best.
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Taste 1 Taste 2 Taste 3 Taste 4
Mixed Logit

High effort Italian/pasta Chicken/healthy Trad. America

constant -8.3097 -5.1271 -2.3129 -2.0281 -2.1530
butter 6.1673 -4.6189 -7.1497 -10.4628 -0.0094
chicken breast half 0.4772 0.0809 0.3082 -0.1006 0.2377
tomato -0.4980 0.1042 0.0565 -0.4822 -0.0106
Parmesan cheese 0.0157 0.2990 0.2475 -0.0128 0.0762
soy sauce -0.6071 -0.0275 0.3623 0.4692 0.2822
parsley 0.2360 -0.2170 -0.0135 0.1043 0.1196
ground beef 0.2818 2.6487 -2.6506 -3.0919 0.2010
all-purpose flour -0.5162 0.1040 0.0675 0.0088 -0.1030
Cheddar cheese -0.2745 0.4166 0.0608 -0.3457 -0.0331
cayenne pepper -0.1019 -0.4420 0.0518 -0.0701 -0.0315
mustard 0.7593 0.1640 -0.2795 -0.3287 0.0484
ground cumin -0.0231 0.1248 0.0613 -1.2237 -0.1373
mayonnaise -0.7665 -0.1133 0.2076 -0.0609 0.0257
pepper flake -0.2543 0.3068 0.3100 -0.2748 0.2303
mushroom soup -0.0033 0.0099 -0.1587 0.3721 0.0485
rosemary -0.0726 -0.3212 -0.1062 -0.2223 -0.1703
flour -0.1303 -0.1584 -0.3148 -0.5994 -0.2442
rice -0.3900 0.1475 -0.1293 -0.6216 -0.1875
tomato sauce -0.1373 -0.0935 0.2259 -0.3435 0.0605
salsa -0.0956 0.3757 0.1364 -0.7831 0.0869
chicken breast 0.1924 0.2368 0.3305 -0.4967 0.1553
chicken soup -0.5297 -0.0625 -0.7386 -0.2786 -0.4021
Dijon mustard 0.3931 -0.0682 0.1794 -0.0119 0.1936
spaghetti sauce -0.3168 -0.0036 -0.3646 -0.5698 -0.2210
ginger root -0.0635 -0.1884 -0.1668 -1.0693 -0.3087
leaf 0.3979 -0.4013 -0.1785 0.1667 -0.0707
ricotta cheese -0.0797 1.5326 -0.1985 -1.6143 0.2518
lime juice 1.8096 0.0820 0.3981 -0.2627 0.4924
barbeque sauce -0.3057 -0.1271 0.0133 0.2677 0.0857
curry powder -0.1477 -0.5051 -0.5106 -0.9784 -0.4929
lasagna noodle -0.3116 0.5223 -0.4945 -0.6479 0.0789
sesame oil -0.2509 -0.1040 -0.1531 -1.3010 -0.2859
garlic salt 0.0003 0.2239 0.3669 0.0999 0.2524
pea -0.0689 0.7010 0.2182 0.1702 0.1417
salmon fillet 0.0834 -0.2060 -0.1103 -0.2772 -0.3050
roast 0.1655 0.4278 0.2750 0.5787 0.3172
avocado -0.1134 -0.5496 -0.4029 -1.1167 -0.6142
mustard powder 0.6239 0.8321 -0.1474 -0.1357 0.2659
clove 0.8027 -0.5942 -0.2880 0.0127 0.1215
Cajun seasoning 0.3764 0.0514 0.0450 0.4201 0.1555
angel hair pasta 0.1674 0.1246 0.0717 -0.2819 0.0720
celery salt -0.1910 -0.1431 -0.2145 -0.9175 -0.4379
asparagus 0.1646 -0.3069 -0.0209 -0.4102 -0.1635
kernel corn 0.2611 -0.8803 -0.3930 -0.7114 -0.5688
zest -0.1756 -0.0644 0.2659 -0.5097 0.0673
pie crust 0.2015 0.0021 0.1380 -0.2748 0.0837
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sherry -0.8065 -0.1970 -0.3165 -0.3230 -0.3960
cider vinegar -1.2055 -0.2968 0.1531 0.0768 -0.2247
hoagie roll -0.2795 -0.4300 0.0821 0.1522 0.0069
beef brisket -0.9203 0.0689 0.1185 0.3311 -0.0185
pizza sauce -0.7312 -0.0989 -0.1609 -0.5296 -0.4242
seed 0.1223 -0.5021 -0.3806 -1.2430 -0.6382
tarragon -0.2126 -0.6071 -0.3095 -1.4230 -0.3728
firm tofu 0.1187 -0.4879 -0.9485 -3.4376 -1.1772
chipotle pepper -0.0332 -0.8332 -0.0052 -0.2244 -0.2815
cilantro leaf -0.0086 -0.1435 0.2269 -0.6948 -0.0427
pasta -1.0703 2.0840 -0.4470 -0.2423 0.2651
cracker 0.1043 -0.9873 0.4115 1.0451 -0.1053
thyme leaf -0.0809 -0.0500 -1.1960 -0.7476 -1.1960
beef sirloin 0.0012 -0.1999 -0.4092 -1.1573 -0.8660
iceberg lettuce 0.3310 0.1315 -0.0982 -0.9816 -0.0937
cheese food -0.2653 -0.1077 -1.4251 -0.7859 -0.9321
cheese ravioli -0.0412 0.3058 -0.5085 -0.7233 -0.2442
bread dough 0.4003 -0.0870 -0.0907 0.0033 -0.6828
ranch dressing -0.3667 0.1774 0.0547 -0.4222 -0.2649
rib -0.0111 -0.2343 -0.7352 -1.0575 -0.8791
beef sirloin steak 0.0691 -0.0719 -0.1668 -0.7637 -0.1815
iron steak -0.1836 -0.6809 -0.1881 -0.2444 -0.4630
dill pickle 0.0760 0.0510 0.1272 0.7576 0.1301
brandy -0.6280 0.0651 -0.4983 -0.6029 -0.5039
jasmine rice -0.2712 -0.7560 -1.0573 -0.9303 -1.0810
dog bun -0.8102 -0.0163 -0.2302 -1.2527 -0.6401
curd cottage cheese 1.2028 0.0814 1.0161 0.3582 1.0834
tomato puree -0.1379 1.0794 0.7670 0.5121 0.6481
chorizo sausage -0.0549 0.2111 0.2401 -0.8017 0.1532
onion flake -0.1251 -1.3963 0.3539 0.3667 -0.4977
ground beef chuck -0.2445 -0.4192 -0.4593 -1.5089 -0.7366
puff pastry shell -0.0511 0.0009 -0.2038 -0.6524 -0.3916
saffron thread -0.2002 -0.7566 -1.0538 -0.6279 -1.5030
peach preserves 0.2217 -0.1254 -0.3420 -0.6840 -0.6064
rock lobster tail 0.0183 -0.1151 0.0882 0.2742 -0.2557
Fontina cheese -0.1412 0.0273 0.1889 -0.1677 0.0845
bake 0.0954 -0.1974 -0.1715 -0.2504 -0.0997
simmer -0.0047 0.9655 -0.0025 -2.0432 0.0727

Table 8: Full estimate on recipe data: IMML (K=4) and
Mixed logit model
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Figure 6 Mean (with standard deviation bar) number of individuals with products shuffled per iteration. It

decreases with each iteration, indicating the algorithm converges.
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Figure 7 Likelihood (out-of-sample) per iteration. It decreases with each iteration, indicating the trained model

is getting better each iteration in terms of out-of-sample likelihood.
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Figure 8 Accuracy (out-of-sample) per iteration. It decreases with each iteration, indicating the trained model

is getting better each iteration in terms of out-of-sample accuracy.
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Figure 9 Precision (out-of-sample) per iteration. It decreases with each iteration, indicating the trained model

is getting better each iteration in terms of out-of-sample precision.
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Figure 10 Recall (out-of-sample) per iteration. It decreases with each iteration, indicating the trained model is

getting better each iteration in terms of out-of-sample recall.



Liu and Dzyabura: Capturing Heterogeneity Among Consumers with Multi-taste Preferences 43

Iteration
0 5 10 15

F
1 

(o
ut

 o
f s

am
pl

e)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Figure 11 F1 (out-of-sample) per iteration. It decreases with each iteration, indicating the trained model is

getting better each iteration in terms of out-of-sample F1.
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