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Abstract

It is commonly understood that making a tournament ranking process more noisy
leads to a reduction in effort exerted by players in the tournament. But what exactly
does it mean to have “more noise?” We address this question and show that the
level of risk, as measured by the variance or the second-order stochastic dominance
order, is not the answer, in general. For rank-order tournaments with arbitrary
prizes, equilibrium effort decreases as noise becomes more dispersed, in the sense of
the dispersive order. For winner-take-all tournaments, we identify a weaker version
of the dispersive order we call quantile stochastic dominance, as well as other orders
and entropy measures linking equilibrium effort and noise.
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1 Introduction

A tournament takes place whenever agents make irreversible investments of effort or other

resources trying to win a valuable prize. Examples include R&D competition, research

grant applications, competition for promotion and bonuses in organizations, rent-seeking,

and political campaigns. In many cases, the relationship between the agents’ investments

and tournament outcomes is noisy, in the sense that agent i investing more than agent

j does not guarantee that i will be ranked above j as a result. Noise comes from many

sources: Researchers experience random arrival of ideas, salespeople are subject to demand

shocks, grant applications are evaluated by random reviewers, and money buys a lot but

certainly not everything in politics. The effect of noise is especially critical in environments

where agents are symmetric or nearly symmetric in their ability – in these settings, in

equilibrium, noise is the only determinant of success.

In this paper, we study how the amount, or intensity, of noise in the ranking process

affects effort in tournaments. We use a variant of the classic Lazear and Rosen (1981)

rank-order tournament model with symmetric players. The players’ output is given by

effort distorted by additive noise, and the players receive fixed prizes based on the ranking

of their output levels.1 There is a common understanding that noise has a negative impact

on incentives: The more uncertainty there is in the mapping between one’s investment

and relative position, i.e., the more rewards are determined by pure luck, the less sense it

makes to invest in the tournament. But what does it mean to have “more noise?” Noise

intensity is typically associated with the level of risk, which is determined by variance or,

more generally, the second-order stochastic dominance (SOSD) order. Indeed, in several

easy-to-compute examples such as when noise has the normal or uniform distribution,

equilibrium effort is decreasing in the variance. The original Tullock (1980) paper on

rent-seeking contests shows that a lower parameter r – the “discriminatory power” of

the contest – leads to a lower equilibrium effort. A lower r also corresponds to a higher

variance of the underlying Gumbel distribution of noise.

Consider, however, the example in Figure 1. The triangular distribution (left) has a

lower variance than the absolute value distribution (center), and dominates it in the sense

of the SOSD order; yet, the two distributions result in the same symmetric equilibrium

1The widely used contest model of Tullock (1980) is a special case (Fu and Lu, 2012; Jia, Skaperdas and
Vaidya, 2013; Ryvkin and Drugov, 2020), with the noise following the extreme value type-I distribution
(also known as the Gumbel distribution). The discriminatory power r in the Tullock (1980) contest

success function (CSF) pi =
eri∑

j=1 e
r
j

is a parameter of this distribution. For the analysis of multi-prize

Tullock contests, see Clark and Riis (1996), Fu and Lu (2012) and Schweinzer and Segev (2012).
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Figure 1: Left : The triangular distribution with pdf f(x) = 1 − |x| on [−1, 1]. Center : The
absolute value distribution with pdf f(x) = |x| on [−1, 1]. Right : Equilibrium efforts for winner-

take-all tournaments of n players, with prize normalized to one and cost of effort e2

2 , for the
triangular distribution (blue diamonds) and the absolute value distribution (red circles). For
n = 2 and 3, the efforts are the same for the two distributions.

efforts in a winner-take-all (WTA) tournament of two or three players. Even more strik-

ingly, the triangular distribution generates lower efforts in WTA tournaments with n ≥ 4

players despite having a lower variance.2

We show that, in general, the relevant stochastic order for the effect of noise on effort

in tournaments is the dispersive order (Lewis and Thompson, 1981). It is stronger than

the SOSD order and, in particular, is preserved by order statistics. Our main result is

that the dispersive order is both necessary and sufficient to unambiguously rank noise

distributions in terms of the equilibrium efforts they generate. In other words, noise X

generates higher equilibrium efforts than noise Y for any number of players and any prize

structure (subject to restrictions on the equilibrium existence) if and only if X dominates

Y in the dispersive order.

To get a rough intuition for the role of the dispersive order, consider a “large contest”

version of the model where a fraction α of best-performing players win a prize normalized

to 1.3 Let yi = ei + Xi denote the output of player i, where ei is the player’s effort,

and Xi is the noise term that is i.i.d. across players with a cdf F (·) and pdf f(·). In a

symmetric equilibrium, the probability of winning is equal to α for all the players, and

α = 1 − F (θ − e∗), where θ is the endogenous output threshold needed to win, and e∗

is the symmetric equilibrium effort. The marginal return to effort in the equilibrium is

2We come back to this example in Section 4.
3In a large contest, an individual player’s choice of effort does not affect other players’ probability of

winning. We are grateful to an anonymous referee for this intuition. For the analysis of large contests,
see, e.g., Olszewski and Siegel (2016).
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then f(θ− e∗) = f(F−1(1− α)), where F−1(·) is the quantile function of noise. Function

f(F−1(z)) is known as the inverse quantile density (Parzen, 1979), and it is ranked by the

dispersive order for all z ∈ (0, 1) (see, e.g., Shaked and Shanthikumar, 2007). Hence, in

large contests the dispersive order ranks equilibrium efforts for all α. We show that this

result continues to hold for any (finite) number of players and any prize structure in the

tournament.

For a fixed prize schedule – such as WTA – the necessity part does not apply. For

WTA tournaments, we provide a number of results involving weaker stochastic orders and

entropy characterizations. In particular, we show that equilibrium effort is determined by

the entropy of Xn
2
:n
2

– the highest order statistic of noise from the sample of size n
2
, i.e.,

half the original number of players. A similar result holds more generally for tournaments

involving two distinct prizes. The entropy in question is H2 – the Rényi entropy of order

2, also known as “collision entropy” (Rényi, 1961).4 In the case of two players, it is the

entropy of the original noise distribution, which explains why the two distributions in

the example above generate the same effort when n = 2. Indeed, entropy is invariant

to reshuffling of realizations, and the two distributions in Figure 1 are each other’s re-

arrangements. We also introduce a new spread order which is linked to the ranking of

H2, and hence to the ranking of equilibrium effort.

As the number of players increases, the ranking of distributions can change since the

pdf of Xn
2
:n
2

may no longer be a re-arrangement of the pdf of Yn
2
:n
2

even if the pdf of

X is a re-arrangement of the pdf of Y . The presence of order statistics makes various

parts of the support of the distribution matter differently. We identify a new class of

progressively weaker quantile stochastic dominance (QSD) orders that are similar to the

standard FOSD, SOSD, and higher orders of stochastic dominance but apply to inverse

quantiles densities. In particular, first-order QSD can be interpreted as the upper-tail

conditional entropy order that ranks entropy H2 in the upper tail of the distribution of

noise. The concept of QSD also helps explain the diverging effects of risk and entropy on

equilibrium effort, especially as n increases. Risk, or the standard SOSD order, measures

variability relative to the mean; whereas entropy is a measure of variability over the

entire support of the distribution. In the symmetric equilibrium, player i wins a WTA

tournament if her noise realization, Xi, surpasses Xn−1:n−1 – the largest of the noise

realizations of the other n− 1 players. For n = 2, this is equivalent to simply surpassing

X; hence, the effect is determined by entropy H2 over the entire range of noise. As n

4The more standard entropy in information theory is Shannon entropy, which is the Rényi entropy of
order 1.
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increases, the distribution of Xn−1:n−1 shifts to the upper tail, and entropy over the upper

tail of the support becomes dominant.

As we discuss below in the literature review section, the majority of imperfectly

discriminating contest models in the literature rely, sometimes implicitly, on a noise dis-

tribution that has a scale parameter, such as the uniform, normal or Gumbel distribution.

Variation in scale leads to the dispersive order, but also to the SOSD order and associated

changes in the variance. The latter may have created an impression in the literature that

it is the level of risk that determines equilibrium effort. However, we show that effort is

instead determined by informational properties of noise. These characteristics are distinct

from risk and may or may not change in the same direction.

Relation to prior literature We focus here on “imperfectly discriminating” models of

tournaments – most notably, those originating from the seminal contributions of Tullock

(1980) and Lazear and Rosen (1981).5 In a generic model of this sort, a player’s output

can be represented as yi = ϕ(ei, Xi), where ei is player i’s costly investment (or effort),

Xi is an idiosyncratic random shock, and ϕ is a “production function” increasing in both

arguments. The most common functional forms for ϕ are additive and multiplicative. The

additive version gives rise to the Lazear and Rosen (1981) model, while the multiplicative

one can be reduced to it by taking logs and appropriately transforming the distribution

of noise and the cost function.

There are relatively few papers focusing specifically on the effect of noise on equilib-

rium effort in tournaments. The most basic result follows already from the original Tullock

(1980) paper showing that equilibrium effort in a symmetric contest with the probability

of player i winning given by the contest success function (CSF) pi =
eri∑
j=1 e

r
j

increases in r

– the discriminatory power of the contest. For contests with endogenous entry, with the

same CSF, Fu, Jiao and Lu (2015) show that an increase in r may lead to a reduction in

the number of entrants, thus introducing a trade-off between the intensive and extensive

margins of effort provision. As a result, there is an interior optimum level of discrimi-

natory power maximizing aggregate effort. Both of these papers only consider scenarios

with pure strategy bidding, and thus their results apply for r not too large. Wang (2010)

analyzes two-player Tullock contests of heterogeneous players and arbitrary r, including

the range of mixed equilibria, and shows that an interior value of r maximizes aggregate

5For a recent review see, e.g., Konrad (2009), Congleton, Hillman and Konrad (2008), Corchón (2007),
Connelly et al. (2014). Parallel to this literature there is a branch studying “perfectly discriminating”
contests or all-pay auctions without noise (e.g., Hillman and Riley, 1989; Baye, Kovenock and De Vries,
1996; Moldovanu and Sela, 2001; Siegel, 2009).
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effort, and more noise (a lower r) is optimal as the players become more heterogeneous.6

Finally, Morgan, Tumlinson and Vardy (2018) consider a more general Lazear-Rosen tour-

nament model with the pdf of noise parameterized as f(x, σ) = 1
σ
f(x

σ
, 1), where the scaling

parameter σ is a measure of noise intensity. Extending the analysis also to mixed equi-

libria, they show that aggregate equilibrium effort is single-peaked in σ, and the optimal

(positive) σ corresponds to the smallest possible noise that still allows for the symmetric

pure strategy equilibrium with full participation.7 A common feature of these studies is

that, effectively, they all consider variation in noise intensity in terms of a single param-

eter – the scale of the distribution of noise, as in Morgan, Tumlinson and Vardy (2018).

Indeed, discriminatory power r in Tullock contests is the inverse scale parameter of the

corresponding type I extreme value (or Gumbel) distribution. Incidentally, an increase in

the scale parameter also implies an increase in variance and a decrease in the SOSD order

and the dispersive order.

In this paper, we restrict attention to settings where noise is “large enough” so that the

symmetric pure strategy equilibrium in pure strategies exists.8 In contrast to prior studies,

we consider the effects of more general changes in the distribution of noise, including

changes in its shape. We identify a number of uncertainty orders for the distribution

of noise that lead to a ranking of equilibrium effort. Gerchak and He (2003) provide

an important first step in this direction, noting that the in two-player tournaments the

equilibrium effort is determined by the collision entropy of noise. However, their result is

restricted to two-player tournaments, and they do not relate it to any uncertainty orders.

Finally, while we are unaware of the use of the dispersive order in the contest literature,

there are several recent applications in the auction theory literature (see, e.g., Ganuza and

Penalva, 2010; Kirkegaard, 2012).

The rest of the paper is organized as follows. Section 2 sets up the model. Section

3 provides results for general prize schedules. Section 4 looks at winner-take-all tourna-

ments. Section 5 discusses several extensions. Section 6 concludes. Missing proofs are

contained in the Appendix.

6The existence and properties of mixed-strategy equilibria arising in contests with small noise (or large
discriminatory power) have been studied more comprehensively by Ewerhart (2015) for Tullock contest
and by Ewerhart (2017) for general imperfectly discriminating contests.

7Strictly speaking, this result is only demonstrated for Lazear-Rosen tournaments with n = 2 players
and Tullock contests with any number of players. Otherwise, Morgan, Tumlinson and Vardy (2018) use
the “large contest” approximation where each player’s effort does not affect the ranking of others.

8When there is too little noise in the tournament, the symmetric pure strategy equilibrium no longer
exists and effort goes down due to players dropping out (Morgan, Tumlinson and Vardy, 2018). We focus
on the effect of adding noise to a tournament with full participation.
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2 Model setup

We consider a tournament of n ≥ 2 identical players indexed by i = 1 . . . , n. Each player

i chooses effort ei ∈ R+ at a cost c(ei). Function c(·) is continuous on [0, ē]; and strictly

increasing, strictly convex and C2 on (0, ē], where ē = c−1(1) exists and is finite. Player i’s

output is yi = ei +Xi, where Xi are random shocks, i.i.d. across players, with E(Xi) = 0,

support X = [x, x] (finite or infinite), absolutely continuous cdf F (·) and continuous,

differentiable a.e., and square-integrable pdf f(·). The players are awarded with prizes

based on the ranking of their output; that is, the player whose output is ranked r (where

r = 1 corresponds to the highest output, r = 2 to the second highest, etc.) receives a

prize with utility Vr.
9 For brevity, we will refer to Vr as “prizes” in what follows. Ties

occur with probability zero. Prizes are nonconstant, decreasing in rank and normalized

so that V1 ≥ V2 ≥ . . . ≥ Vn ≥ 0, V1 > Vn, and
∑n

r=1 Vr = 1.

Assuming all players other than i choose effort e∗, the expected utility of player i from

effort ei is

U (i)(ei, e
∗) =

n∑
r=1

p(i,r)(ei, e
∗)Vr − c(ei), (1)

where p(i,r)(ei, e
∗) – the probability for player i’s output to be ranked r – is

p(i,r)(ei, e
∗) =

(
n− 1

r − 1

)∫
F (ei − e∗ + x)n−r[1− F (ei − e∗ + x)]r−1dF (x).

Here and below, integration over X is implied unless noted otherwise. The symmetric

first-order condition, U
(i)
ei (e∗, e∗) = 0, takes the form

c′(e∗) =
n∑
r=1

βr,nVr, (2)

where coefficients βr,n ≡ p
(i,r)
ei (e∗, e∗) are given by

βr,n =

(
n− 1

r − 1

)∫
F (x)n−r−1[1− F (x)]r−2[n− r − (n− 1)F (x)]f(x)dF (x). (3)

The solution of Eq. (2) (which is unique if it exists) is the only candidate for the symmetric

equilibrium effort level e∗. Sufficient conditions on the primitives of the model that

9Thus, we allow for risk-averse players with utility separable in prizes and effort costs. See Drugov
and Ryvkin (2019) for the analysis of optimal prize allocation in this case.
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guarantee the equilibrium existence are discussed in detail by Drugov and Ryvkin (2018).

From this point on, we assume that those conditions are satisfied, and the e∗ solving (2)

is indeed the equilibrium.10

For a fixed prize schedule, equilibrium effort e∗ is affected by noise through coefficients

βr,n, Eq. (3). These coefficients can be positive or negative, and have the property∑n
r=1 βr,n = 0. It is, therefore, convenient to introduce cumulative coefficients Br,n =∑r
k=1 βk and utility differentials Dr = Vr − Vr+1 ≥ 0 (for r = 1, . . . , n − 1) and apply

“summation by parts” to the right-hand side of (2). Equation (2) then becomes

c′(e∗) =
n−1∑
r=1

Br,nDr. (4)

Coefficients Br,n are given by

Br,n =
(n− 1)!

(n− r − 1)!(r − 1)!

∫
F (x)n−r−1[1− F (x)]r−1f(x)dF (x), (5)

with Bn,n = 0 and Br,n > 0 for all r = 1, . . . , n− 1. Three alternative representations of

coefficients Br,n are useful in what follows.

Inverse quantile density representation Let F−1(z) = inf{x : F (x) ≥ z} denote the

left-continuous quantile function of noise, and let m(z) = f(F−1(z)) denote the inverse

quantile density function. Through the probability integral transformation, z = F (x),

coefficients Br,n can be written as

Br,n =
(n− 1)!

(n− r − 1)!(r − 1)!

∫ 1

0

zn−r−1(1− z)r−1m(z)dz. (6)

Order statistics representation Let fµ:ν(·), 0 < µ ≤ ν, denote the pdf

fµ:ν(x) =
Γ(ν + 1)

Γ(µ)Γ(ν − µ+ 1)
F (x)µ−1[1− F (x)]ν−µf(x). (7)

Here, Γ(µ) =
∫∞
0
tµ−1 exp(−t)dt is the gamma function defined for µ > 0 and equal to

(µ− 1)! when µ is a positive integer. For positive integer µ and ν, Eq. (7) gives the pdf

10The key restrictions on the primitives are as follows: (i) function c(·) has a second derivative bounded
from below; that is, there exists a c0 > 0 such that c′′(e) ≥ c0 on [0, ē]; (ii) pdf f(·) and its derivative,
|f ′(·)|, are bounded by fm, f

′
m <∞, respectively; and (iii) c0 is “large enough” compared to fm and f ′m.

For details, see Drugov and Ryvkin (2018).
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of the µ-th order statistic in a sample of ν i.i.d. draws of X. However, (7) is a valid pdf

also when µ and ν are not integer. Equations (5) and (6) then give

Br,n =

∫
fn−r:n−1(x)dF (x) =

∫ 1

0

fB(z;n− r, r)m(z)dz, (8)

where fB(z;µ, ν) is the pdf of the beta distribution with parameters (µ, ν), which is also

the pdf of order statistic (µ : ν) of the uniform distribution on [0, 1].

Entropy representation For a random variable with square-integrable pdf f(·), the

Rényi entropy of order 2, also known as “collision entropy,” is defined as H2[f ] =

− log
[∫
f(x)2dx

]
(Rényi, 1961).11 For brevity, we will refer to H2 simply as “entropy” in

what follows. Equation (5) can then be written in the form

Br,n = Ar,n

∫
fn−r+1

2
:n
2
(x)2dx = Ar,n exp

(
−H2

[
fn−r+1

2
:n
2

])
, (9)

Ar,n =
(n− 1)!

(n− r − 1)!(r − 1)!

[
Γ( r+1

2
)Γ(n−r+1

2
)

Γ(n
2

+ 1)

]2
.

3 General prize schedules

In this section we consider arbitrary prize schedules. We start by introducing the disper-

sive order, and then formulate our main result: The dispersive order is both necessary

and sufficient to unambiguously rank noise distributions in terms of the equilibrium ef-

forts they generate (Proposition 1). We then consider two common special cases of the

dispersive order – stretching and scaling transformations, the latter being hitherto the

primary case discussed in the literature. We finish the section by discussing two-prize

schedules, which emerge as optimal prize schedules for risk-neutral players.

We will use subscripts such as X or Y to denote objects pertaining to different random

variables representing the noise. The dispersive order (Lewis and Thompson, 1981) is

defined as follows.

Definition 1 X is more dispersed than Y in the dispersive order if for all z, z′ ∈ [0, 1]

such that z′ > z

F−1X (z′)− F−1X (z) ≥ F−1Y (z′)− F−1Y (z),

and the inequality is strict in some subset of [0, 1] of positive measure.

11The general expression for the Rényi entropy of order α is Hα[f ] = 1
1−α log

[∫
f(x)αdx

]
.
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The definition is rather intuitive: X is more dispersed than Y if the distance between any

two quantiles of X is at least as large as the distance between the same quantiles of Y .

As discussed by Shaked and Shanthikumar (2007), whenever X is more dispersed than

Y , Var(X) ≥ Var(Y ); the converse, however, is not true. Similarly, the dispersive order

for variables with equal means implies SOSD, but the converse is not true.

The following proposition shows that the dispersive order is a necessary and sufficient

condition for the ranking of equilibrium efforts in general.12

Proposition 1 e∗X < e∗Y for all admissible prize schedules and tournament sizes n if and

only if X is more dispersed than Y in the dispersive order.

The “if” part of Proposition 1 follows directly from representation (6) of coefficients Br,n

and the fact that X being more dispersed than Y in the dispersive order is equivalent to

mX(z) ≤ mY (z) for all z ∈ [0, 1] (Shaked and Shanthikumar, 2007). The “only if” part

also uses representation (6). In the proof, we show that for any two random variables

X and Y such that mX(z) > mY (z) in some interval, a prize scheme can be constructed

such that for a sufficiently large n this interval plays the dominant role in determining

equilibrium effort.

An important special case which satisfies the dispersive order, allows for an explicit

characterization of equilibrium effort, and incorporates several important examples is

when additional dispersion is generated by a “stretching” transformation.

Definition 2 Function φ : X → R is a stretching transformation if it is strictly monotone

and for any x, x′ ∈ X such that x′ > x

|φ(x′)− φ(x)| ≥ x′ − x,

with strict inequality in some subset of X of positive measure.

For differentiable functions, Definition 2 is equivalent to the requirement that |φ′(x)| ≥ 1

for all x ∈ X , with strict inequality in some subset of X of positive measure.

Proposition 2 Suppose X = φ(Y ) where φ is a stretching transformation. Then X is

more dispersed than Y and hence e∗X < e∗Y .

12Proposition 1 also applies to tournaments with a stochastic number of players, see Section 5.1.
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For an explicit characterization (and a proof) for a differentiable φ, notice that FX(x) =

FY (φ−1(x)), which implies fX(x) = 1
|φ′(φ−1(x))|fY (φ−1(x)) and F−1X (z) = φ(F−1Y (z)); there-

fore,

mX(z) = fX(F−1X (z)) =
1

|φ′(F−1Y (z))|
mY (z) ≤ mY (z),

with strict inequality in some subset of [0, 1] of positive measure. The result follows

immediately from representation (6).

A straightforward example of stretching is a scaling transformation, X = σY with σ >

1 (cf. Theorem 3.B.4 in Shaked and Shanthikumar, 2007). A parameterized cdf F (x, σ) is

said to have a scale parameter σ if it satisfies F (x, σ) = F (x
σ
, 1). The corresponding scaled

pdf is f(x, σ) = 1
σ
f(x

σ
, 1). For example, the standard deviation of a zero-mean normal

distribution, the length of the support of a uniform distribution, the expected value of

an exponential distribution and the scale of the Gumbel distribution (and hence 1
r
, where

r is the discriminatory power of the Tullock contest) are scale parameters. Explicitly, in

the case of scaling φ′(x) = σ, which gives mX(z) = 1
σ
mY (z); therefore, equilibrium effort

is decreasing in σ.

Let us finish this section by discussing two-prize schedules, V1 = . . . = Vs > Vs+1 =

. . . = Vn for some s; that is, ranks r = 1, . . . , s receive the same high prize V1 and ranks

r > s receive the same low prize Vs+1. Such prize schedules are optimal for risk-neutral

players, with the location of s determined by the properties of the failure (or hazard)

rate of the distribution of noise (Drugov and Ryvkin, 2018). Two-prize schedules may

also be optimal for risk-averse players under some conditions. For example, the extreme

punishment schedule, with s = n − 1, is optimal when the distribution of noise is DFR

(has a decreasing failure rate) (Drugov and Ryvkin, 2019). The winner-take-all (WTA)

prize schedule, with s = 1, is optimal under a wide range of conditions as well.

Let V (s,n) denote a two-prize schedule in a tournament of n players with s high prizes.

In this case, Ds > 0 and Dr = 0 for all r 6= s; therefore, the equilibrium effort is

determined by a single coefficient Bs,n, cf. (4), and hence by a single entropy of order

statistic Xn−s+1
2

:n
2
, cf. (9).13

Consider a sequence of tournaments with increasing n and two-prize schedules V (sn,n)

13When support [x, x] is finite, the entropy reaches its maximum for the uniform distribution. Hence,
the effort-minimizing distribution of noise is the one with Xn−s+1

2 :n2
uniform; that is, its cdf Fmin(x) sat-

isfies FB
(
Fmin(x); n−s+1

2 , s+1
2

)
= x−x

x−x , where FB(z;µ, ν) is the regularized incomplete beta function, or

the cdf of the beta distribution with parameters (µ, ν) (Paris, 2010). For example, for WTA tournaments

(s = 1), Fmin(x) =
(
x−x
x−x

) 2
n

.
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such that sn
n

= α ∈ (0, 1). Under these two-prize schedules, a fixed fraction α of top

performers, or players in the (1− α)-th quantile, receive a high prize. Representation (8)

shows that Bsn,n = E(m(Zn−sn:n−1)), where Zn−sn:n−1 is the order statistic of the uniform

distribution on [0, 1]. For sn = αn, these order statistics are asymptotically normally

distributed with mean 1 − α and variance (1−α)α
n

(Arnold, Balakrishnan and Nagaraja,

1992); therefore, Bsn,n → m(1−α). Thus, in large two-prize tournaments the equilibrium

effort is determined by the inverse quantile density of noise at 1− α.

4 Winner-take-all tournaments

In this section we study the effect of noise on effort in winner-take-all tournaments. A

restriction to a particular prize schedule allows for conditions weaker than the dispersive

order to guarantee a ranking of equilibrium effort. We start by showing that the entropy

representation (9) has an intuitively appealing interpretation. Then, noting that the

ranking of the relevant entropy may change with the number of players, we introduce

quantile stochastic dominance – new stochastic orders which rank equilibrium effort for

any number of players. Finally, we introduce yet another stochastic order for the case of

two players.

Winner-take-all (WTA) tournaments are characterized by two-prize schedules V (1,n),

with only the best performer receiving the high prize. WTA schedules are optimal in

small tournaments with symmetrically distributed noise (Krishna and Morgan, 1998), as

well as in tournaments of arbitrary sizes where noise is sufficiently light-tailed (Drugov

and Ryvkin, 2018, 2019). WTA schedules also emerge naturally in many environments

where prize sharing is impossible for institutional reasons; for example, there may be only

one job vacancy or one managerial position at a certain level in an organization, or only

one contractor is needed to complete a competitively allocated project.

In WTA tournaments, equilibrium effort is determined by coefficient B1,n, cf. Eq. (4).

We will sometimes use B1,n[f ] to explicitly denote the coefficient B1,n corresponding to a

noise distribution with pdf f(·). From (9), the entropy representation of B1,n is

B1,n[f ] =
4(n− 1)

n2

∫ [n
2
F (x)

n
2
−1f(x)

]2
dx =

4(n− 1)

n2
B1,2[fn

2
:n
2
]

=
4(n− 1)

n2
exp(−H2[fn

2
:n
2
]). (10)

Thus, coefficient B1,n in a tournament of n players can be represented as an appropriately

12



rescaled coefficient B1,2 in a tournament of two symmetric players each having the cdf of

noise Fn
2
:n
2
(x). The latter coefficient can then be expressed through the entropy of pdf

fn
2
:n
2
.

Lemma 1 In a WTA tournament of n players, equilibrium effort decreases in the entropy

of a distribution with pdf fn
2
:n
2
.

Representation (10) and Lemma 1 have an appealing interpretation when n is even.

Instead of the original n-player tournament, consider a tournament of two players where

each player has access to n
2

independent draws from the original noise distribution and

selects the highest draw.14 Another, though less precise, interpretation is that the n

players are split arbitrarily into two equal subgroups with n
2

players each. Then fn
2
:n
2

is

the pdf of noise of the two players whose shocks are the largest in each subgroup, and the

player with a larger shock between these two wins the tournament.

While intuitively appealing, Lemma 1 is not very useful in practice because entropy

ordering is not preserved by order statistics. That is, if n = 2 and H2[fX ] > H2[fY ] (and

hence e∗X < e∗Y for n = 2), it does not imply that H2[fXn
2 :n2

] > H2[fYn
2 :n2

] (and e∗X < e∗Y )

for n > 2.

While the sufficiency part of Proposition 1 still applies,15 the dispersive order is rela-

tively strong, and in many cases of interest it does not rank distributions. For example,

two (different) distributions cannot be ranked by the dispersive order when they have

the same finite support (Theorem 3.B.14. in Shaked and Shanthikumar, 2007). However,

the restriction to WTA prizes schedules also allows for the development of other, weaker

methods of comparing the entropy of order statistics.

4.1 Quantile stochastic dominance orders

The standard FOSD and SOSD orders represent the first two levels in the hierarchy of

progressively weaker stochastic orders of random variables (Marshall, Olkin and Arnold,

2011). These orders can be defined through inequalities for cdfs and their integrals. Here,

we introduce a similar hierarchy of quantile stochastic dominance orders that progressively

relax the dispersive order and are based on inequalities for inverse quantile densities and

their integrals.

14This is the case in some Olympic sports where participants have several attempts and choose the
best result, such as discus throw, shot put, javelin throw, long jump, triple jump, etc.

15The necessity part of Proposition 1 does not apply anymore because the prize structure is fixed.
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For a random variable X, let M̄
(0)
X (z) = mX(z), and recursively define functions

M̄
(k)
X (z) =

∫ 1

z
M̄

(k−1)
X (t)dt. Function M̄

(1)
X (z) =

∫ 1

z
mX(t)dt is the quantile analog of

survival function F̄X(x) = 1 − FX(x); however, since the inverse quantile density mX(z)

is not normalized, the value of M̄
(1)
X (0) = exp(−H2[fX ]) is determined by the entropy and

can differ across random variables.

Definition 3 Y dominates X in quantile stochastic dominance of order k (QSD(k)) if

M̄
(k)
Y (z) ≥ M̄

(k)
X (z) for all z ∈ [0, 1].

QSD(0) is the dispersive order; QSD(1) and QSD(2) are similar to the FOSD and SOSD

orders, respectively. It is easy to see that the orders are progressively weaker: If Y

dominates X in QSD(k) than it also dominates X in QSD(k′) for all k′ > k.

Proposition 3 Suppose there exists a k ≥ 1 such that

(a) M̄
(l)
Y (0) ≥ M̄

(l)
X (0) for all l = 1, . . . , k − 1;

(b) Y dominates X in QSD(k).

Then e∗Y ≥ e∗X in WTA tournaments for any n ≥ 2.

To understand how Proposition 3 works, suppose first that n = 2. Then we have

B1,2[fY ]−B1,2[fX ] =
∫ 1

0
[mY (z)−mX(z)]dz. The dispersive order requires that ∆m(z) =

mY (z) −mX(z) ≥ 0 for all z, but in fact e∗Y ≥ e∗X will hold even if ∆m(z) changes sign

multiple times, as long as
∫ 1

0
∆m(z)dz ≥ 0. For a general n ≥ 2, we have B1,n[fX ] =

(n− 1)
∫ 1

0
mX(z)zn−2dz, cf. (6). Thus, e∗Y ≥ e∗X for all n ≥ 2 if and only if∫ 1

0

mY (z)zn−2dz ≥
∫ 1

0

mX(z)zn−2dz ∀n ≥ 2. (11)

Inequality (11) has the form of an inequality between two expectations of zn−2 with

different unnormalized densities, mX and mY . Note that mX(z) = −M̄ (1)′
X (z); integrating

(11) by parts, obtain

[M̄
(1)
Y (0)− M̄ (1)

X (0)]1n=2 + (n− 2)

∫ 1

0

[M̄
(1)
Y (z)− M̄ (1)

X (z)]zn−3dz ≥ 0 ∀n ≥ 2. (12)

As seen from (12), QSD(1) is sufficient for any n ≥ 2. Moreover, for n > 2 the first term in

(12) is zero, and the second term has exactly the same structure as (11), with m replaced

by M̄ (1). Integrating by parts again will produce a similar structure involving M̄ (2), etc.,

while terms in condition (a) of Proposition 3 will arise due to boundary conditions.
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Figure 2: Example of QSD(1). Left : The pdfs of the absolute value (solid red line) and uniform
distributions (dashed green line). Center : Quantile survival functions. Right : Equilibrium
efforts for winner-take-all tournaments of n players, with prize normalized to one and cost of
effort e2

2 , for the uniform distribution (green diamonds) and the absolute value distribution (red
circles).

Proposition 3 provides a sufficient condition for the ranking of equilibrium efforts for

any n ≥ 2. For a given n, a weaker condition can be formulated.

Corollary 1 Suppose any one of the following conditions holds:

(a) M̄
(n−1)
Y (0) ≥ M̄

(n−1)
X (0);

(b) Y dominates X in QSD(k) for some k ≤ n− 1.

Then e∗Y ≥ e∗X in WTA tournaments with n players.

Condition (a) in Corollary 1 can be obtained by integrating (11) by parts n − 2 times,

whereas condition (b) is stronger and sufficient for (a).

Example of QSD(1) Consider a uniform distribution, fX(x) = 1
2
1[−1,1](x), and the

absolute value distribution, fY (x) = |x|1[−1,1](x), see Figure 2. Since the two distributions

have the same finite support, the dispersive order does not rank them (the inverse quantile

density functions, mX(z) = 1
2

and mY (z) =
√
|2z − 1|, intersect). However, Y dominates

X in QSD(1). Indeed, computing the survival functions yields

M̄
(1)
X (z) =

1− z
2

, M̄
(1)
Y (z) =

{
1+(1−2z)2/3

3
, z ≤ 1

2
1−(2z−1)2/3

3
, z > 1

2

and M̄
(1)
Y (z) ≥ M̄

(1)
X (z) for all z ∈ [0, 1]. With QSD(1) in place, condition (a) of Proposi-

tion 3 is void; hence, e∗Y ≥ e∗X in WTA tournaments for any n ≥ 2, cf. Figure 2.
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Figure 3: Example of QSD(2): the triangular distribution with pdf fX(x) = 1 − |x| on [−1, 1]
(dashed blue line) and the absolute value distribution with pdf fY (x) = |x| on [−1, 1] (solid red
line). Left : Survival functions M̄ (1)(z). Right : Functions M̄ (2)(z).

Example of QSD(2) Consider the example in the Introduction, with the triangular

distribution, fX(x) = (1 − |x|)1[−1,1](x), and the absolute value distribution, fY (x) =

|x|1[−1,1](x), shown in Figure 1. The two distributions are not ranked according to the

QSD(0) (the dispersive order) or QSD(1). Indeed, the survival functions

M̄
(1)
X (z) =

{
2−(2z)3/2

3
, z ≤ 1

2
(2(1−z))3/2

3
, z > 1

2

, M̄
(1)
Y (z) =

{
1+(1−2z)3/2

3
, z ≤ 1

2
1−(2z−1)3/2

3
, z > 1

2

intersect at z = 1
2
, cf. Figure 3. Hence, compute functions M̄ (2)(z):

M̄
(2)
X (z) =

{
1−2z
3

+ (2z)5/2

15
, z ≤ 1

2
(2(1−z))5/2

15
, z > 1

2

, M̄
(2)
Y (z) =

|1− 2z|5/2

15
+

4− 5z

15
.

As seen from Figure 3, M̄
(2)
Y (z) ≥ M̄

(2)
X (z). It also shows that M̄

(1)
Y (0) = M̄

(1)
X (0), which

is equivalent to the two distributions having the same entropy.16 Hence, both conditions

(a) and (b) of Proposition 3 are satisfied. Then, e∗Y ≥ e∗X in WTA tournaments for any

n ≥ 2 as we saw in Figure 1.

QSD(1) and upper-tail conditional entropy Order QSD(1) is an appropriately

modified version of first-order stochastic dominance that has an interpretation through

conditional entropy.

16This means that e∗X = e∗Y for n = 2. As shown by Ryvkin and Drugov (2020), e∗ is the same for
n = 2 and n = 3 when the distribution of noise is symmetric, see Figure 1.
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Definition 4 X is more dispersed than Y in the upper-tail conditional entropy order if

H2[fX|X≥F−1
X (z)] ≥ H2[fY |Y≥F−1

Y (z)] for all quantiles z ∈ [0, 1].

Lemma 2 The upper-tail conditional entropy order is equivalent to QSD(1).

Indeed, the inequality in Definition 4 can be written in the form

M̄
(1)
Y (z) ≥ M̄

(1)
X (z) ∀z ∈ [0, 1], (13)

As discussed above, QSD(1) (or the upper-tail conditional entropy order) is weaker

than the dispersive order as it allows for multiple sign changes of ∆m(z). It is necessary,

however, that the last sign change be −+, because otherwise condition (13) will not hold

for z sufficiently close to 1. It is easy to see that when ∆m(z) is single-crossing −+,

condition (13) is equivalent to
∫ 1

0
∆m(z)dz ≥ 0, i.e., to the requirement that B1,2[fY ] ≥

B1,2[fX ].

Corollary 2 Suppose that ∆m(z) is single-crossing −+ and B1,2[fY ] ≥ B1,2[fX ]. Then

B1,n[fY ] ≥ B1,n[fX ], and hence e∗Y ≥ e∗X , for any n ≥ 2.

The dispersive order condition, ∆m(z) ≥ 0, can be thought of as a requirement that

conditional entropy over any interval of quantiles is ranked. In contrast, condition (13)

only requires that the upper-tail entropies are ranked. QSD of higher orders places even

more weight on the upper tail. This is consistent with the intuition that, as n increases, the

upper tail of the distribution of noise plays an increasingly important role in determining

the equilibrium effort (Ryvkin and Drugov, 2020).

The role of the upper tail can also be understood by considering the marginal benefit

of effort in the symmetric equilibrium, B1,n =
∫
fn−1:n−1(x)f(x)dx, cf. Eq. (8). It is equal

to the probability density of Xi−Xn−1:n−1 at zero. Indeed, player i wins the tournament

when her effort surpasses Xn−1:n−1 – the largest shock among the remaining n−1 players.

As n increases, Xn−1:n−1 FOSD-shifts towards the upper tail, and dispersion in the upper

tail of the distribution determines B1,n.

4.2 Spread order for n = 2

When there are two players, the equilibrium effort is determined by

B1,2[f ] =

∫
f(x)2dx = exp(−H2[f ]). (14)
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Making the pdf “flatter” in some way should increase its entropy and hence reduce equi-

librium effort. Having in mind how, say, the normal distribution changes as its variance

changes, consider a partial order that we call spread.

Definition 5 X is a spread of Y (or fX is a spread of fY ) if

(a) fX and fY are unimodal;

(b) there exist x1 < x2 such that fX crosses fY from above at x1, then from below at x2;

(c) the modes of both fX and fY are between x1 and x2.

Condition (b) implies that the cdfs FX and FY cross once. Hence, the spread is a special

case of single-crossing cdfs that have been studied by Diamond and Stiglitz (1974), Ham-

mond (1974) and Johnson and Myatt (2006), among others. While it may seem intuitive

that the spread implies the ranking of entropies, further restrictions are needed for this to

be the case in general (see the counterexample in the Appendix). The following Lemma

provides a sufficient condition. Denote by x̂ the intersection point of the two cdfs where

FX(x̂) = FY (x̂). It is easy to see that x1 ≤ x̂ ≤ x2.

Lemma 3 Suppose that fX is a spread of fY and

fX(x̂) + fY (x̂) ≥ 2 max{fX(x1), fX(x2)}. (15)

Then B1,2[fX ] ≤ B1,2[fY ] (and e∗X ≤ e∗Y for n = 2).

To understand the intuition for condition (15) note that fX and fY are FOSD-ranked

on each side of x̂. If both modes coincide with x̂, then the two pdfs are monotone on each

side of x̂, and fX has a higher entropy than fY .17 Since the modes may not coincide, there

are non-monotone parts of the densities, and condition (15) effectively guarantees that

they do not contribute enough to reverse the entropy ordering. It is satisfied in several

easy-to-check situations, such as when fX has its mode at x̂ or when fX and fY intersect

at the same level, fX(x1) = fX(x2).

17Indeed, since fX and fY are increasing and Y FOSD X, for any increasing function u(x) we have∫ x
x
fY (x)u(x)dx ≥

∫ x
x
fX(x)u(x)dx. Using u(x) = fY (x), obtain

∫ x
x
fY (x)2dx ≥

∫ x
x
fX(x)fY (x)dx; using

u(x) = fX(x), obtain
∫ x
x
fY (x)fX(x)dx ≥

∫ x
x
fX(x)2dx. Combining the two inequalities, obtain the

result. This was shown first by Gerchak and He (2003). For symmetric distributions this implies that
the peakedness order (X is smaller than Y in the peakedness order if |Y − x̂| FOSD |X − x̂|, Birnbaum
(1948)) leads to the entropy ranking.
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5 Extensions

In this Section we briefly discuss three extensions of the initial model: When the number

of players is stochastic (Section 5.1), when players are asymmetric (Section 5.2), and when

the number of players is endogenous due to free entry (Section 5.3).

5.1 Stochastic number of players

Suppose that the number of players is stochastic, following an arbitrary distribution.

Indeed, in many situations the players do not know how many other players are competing.

This is the case in open innovation contests such as those conducted under the Longitude

Act, the Orteig Prize, or the XPRIZE Foundation. In promotion tournaments, workers

may not know how many of their colleagues are considered for the same promotion.

For WTA tournaments, this setting is considered in detail in Ryvkin and Drugov

(2020). For our purposes here, suppose that the number of tournament participants, K,

is stochastic. The principal commits to a prize allocation rule V contingent on the realized

number of participants, K = k. That is,

V = ((V1,1), (V1,2, V2,2), . . . , (V1,n, . . . , Vn,n)),

where Vr,k is the prize allocated to a player ranked r when there are k participants.

The usual monotonicity and budget constraints apply, with V1,k ≥ . . . ≥ Vk,k ≥ 0 and∑k
r=1 Vr,k ≤ 1 for all k. Note that a prize schedule independent of the number of partici-

pants is a special case of this more general allocation rule. Equation (2) then becomes

c′(e∗) = ẼK

K∑
r=1

βr,KVr,K , (16)

where ẼK denotes expectation over the number of players from a viewpoint of a partic-

ipating player.18 Since each βr,k = Br,k − Br−1,k is linear in the inverse quantile density

m(z), cf. Eq. (6), the expectation in (16) is affected by the dispersive order in the same

way as the right-hand side of (4), i.e., Proposition 1 is still valid.

18This distribution is different from the original distribution of K because a participating player knows
about her or his own participation (cf., e.g., Harstad, Kagel and Levin, 1990).
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5.2 Asymmetric players

In tournament models with additive noise à la Lazear and Rosen (1981), heterogeneous

players are typically introduced as having an ability ai which adds to their effort, so that

player i’s output is yi = ei + ai + Xi. Consider the case of two players and one prize

normalized to 1, and let ∆a = a1 − a2 denote the difference in abilities. The equilibrium

effort is the same for both players, e∗1 = e∗2 = e∗, with e∗ given by the first-order condition

c′(e∗) =

∫
f(x+ ∆a)f(x)dx = g(∆a),

where g(·) is the pdf of X1−X2, which is symmetric around zero and has a peak at zero.

As an example, suppose that Xi ∼ N(0, σ
2

2
) and hence g(·, σ) – the corresponding pdf

of X1−X2 – is N(0, σ2). Let e∗(σ,∆a) denote the resulting equilibrium effort. For σ′ > σ,

we have e∗(σ′, 0) < e∗(σ, 0) because an increase in σ leads to the dispersive order, which is

sufficient for the symmetric case. It is straightforward to show, however, that e∗(σ′,∆a) <

(>)e∗(σ,∆a) if ( 1
σ2 − 1

σ′2
)∆a2 < (>) log σ′

σ
. In other words, the equilibrium effort increases

in σ when players are sufficiently asymmetric; hence, in general, Proposition 1 does not

hold for asymmetric players.

This example is generic, in the following sense. For any discrete change in a parameter

of the distribution of noise, by continuity g(∆a) will move in the same direction as g(0)

for a sufficiently small ∆a; therefore, the effect will be similar to the case of symmetric

players. However, if this change in the parameter does not affect the support of g(·), then

necessarily g(·) will change in the other direction in some intervals of its support, i.e., the

effect will have the opposite direction for some values of ∆a, to keep the total mass equal

to 1.

5.3 Endogenous number of players

Let e∗X,n denote the symmetric equilibrium effort in a tournament with total prize money

normalized to 1, n players, and noise X. We will assume that the equilibrium exists and

the participation constraint is satisfied, π∗X,n = 1
n
− c(e∗X,n) ≥ 0, for all n ≤ N . Here,

N ≥ 2 is the number of potential tournament participants. Suppose also that π∗X,n is

decreasing in n for n ≤ N .

Consider a two-stage game where at the first stage the N potential players simulta-

neously and independently decide whether to enter the tournament, or to stay out and

receive an outside option ω > 0. At the second stage, all entrants observe how many
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others have entered and choose effort. We will consider a pure strategy equilibrium where

some number of player nX enter and exert effort e∗X,nX
, and N −nX players stay out. The

equilibrium number of entrants is determined by conditions19

1

nX
− c(e∗X,nX

) ≥ ω,
1

nX + 1
− c(e∗X,nX+1) < ω. (17)

Suppose Y is a different noise such that e∗X,n ≥ e∗Y,n for all n ≤ N . For example, Y

can be dominated by X in the dispersive order. We will explore under what conditions

e∗X,nX
≥ e∗Y,nY

; that is, effort is ranked in the same way in the equilibrium with endogenous

participation.

First, we show that nX ≤ nY . By contradiction, suppose nX > nY ; then nX ≥ nY + 1

and hence
1

nY + 1
− c(e∗Y,nY +1) ≥

1

nX
− c(e∗Y,nX

) ≥ 1

nX
− c(e∗X,nX

). (18)

The first inequality holds because π∗Y,n is decreasing in n, and the second one holds by our

assumption about noise Y . However, from (17), the initial expression in (18) is strictly

below ω, whereas the final expression is weakly above ω, which is impossible.

Second, we compare c(e∗X,nX
) to c(e∗Y,nY

). When nX = nY , the comparison is trivial;

suppose, therefore, that nX < nY and hence nX + 1 ≤ nY . From (17),

c(e∗X,nX+1) >
1

nX + 1
− ω ≥ 1

nY
− ω ≥ c(e∗Y,nY

).

Thus, we can show that either e∗X,nX
≥ e∗Y,nY

or e∗X,nX+1 > e∗Y,nY
. When effort is decreasing

in the number of players, this implies the result e∗X,nX
≥ e∗Y,nY

holds in general. Also, in

the “large contest” approximation the two inequalities are identical. But when effort is

increasing or nonmonotone in n and the number of players is small, the discreteness of n

plays a role.

Let us now consider the total cost of effort. Define total equilibrium cost of effort in

a tournament of n players as CX,n = nc(e∗X,n). To compare total equilibrium costs in the

case of endogenous participation, CX,nX
and CY,nY

, rewrite parts of (17) for X and Y as

(nX + 1)c(e∗X,nX+1) > 1− (nX + 1)ω, nY c(e
∗
Y,nY

) ≤ 1− nY ω.
19For concreteness, we assume that indifference is resolved in favor of entry.
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If nX = nY , then CX,nX
≥ CY,nY

holds. Suppose that nX < nY , i.e., nX + 1 ≤ nY . Then

(nX + 1)c(e∗X,nX+1) > 1− (nX + 1)ω ≥ 1− nY ω ≥ nY c(e
∗
Y,nY

).

Thus, we have shown that either CX,nX
≥ CY,nY

or CX,nX+1 > CY,nY
. In the “large

contest” approximation, the two inequalities are identical. Also, the second inequality

implies the first provided CX,n is decreasing in n. That is, the total cost of effort de-

creases with noise in large contests or when CX,n is decreasing in n. For a small n, and

without restrictions imposed on CX,n, there is a correction for discreteness similar to the

comparison of equilibrium efforts above.

6 Concluding remarks

It has been the common wisdom since the beginning of the literature that when more noise

is injected into a tournament, players’ effort is reduced, at least under full participation.

However, it has remained unknown which details of noise are responsible for this effect. In

this paper, we show that the key factor is the informational content of noise, rather than

the associated level of risk. Information, characterized by the dispersive order and various

forms of entropy, plays a role due to strategic interactions in tournaments: Marginal

incentives are determined by the probability density of differences between shocks, as

opposed to deviations of shocks from a deterministic threshold.

We show that the dispersive order is both necessary and sufficient to rank equilibrium

effort across tournaments with arbitrary prize schedules. For two-prize tournaments, we

show that effort is determined by an appropriately defined Rényi entropy of order statistics

of noise. We also introduce new quantile stochastic dominance (QSD) orders that are

similar to the standard stochastic dominance defined for inverse quantile densities. The

simplest of these orders – QSD(1) – is related to upper-tail conditional entropy. These

orders are weaker than the dispersive order and allow for the ranking of equilibrium effort

in winner-take-all tournaments.

Our results have empirical implications in settings where the distribution of fluctua-

tions does not follow the standard unimodal pattern and hence risk and entropy can move

in opposite directions when parameters of the distribution change. Important examples

are settings characterized by bimodal distributions. In the presence of bimodality (or,

more generally, multimodality), risk increases while entropy remains unchanged or may

go down when the distance between the peaks of the distribution increases and the peaks
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become more narrow. For example, recent trends in growing political polarization (Dixit

and Weibull, 2007; Fiorina and Abrams, 2008) and polarization of skills and wages in

the labor market (Autor, Katz and Kearney, 2006) point at the bimodality in various

dimensions of preferences and income of consumers. Bimodal fluctuations have also been

identified in macroeconomic variables due to feedback loops arising from interactions of

the economy with the financial sector (Brunnermeier and Sannikov, 2014).20 Examples

of bimodality outside economics include fluctuations in medical costs (Patterson, 2011),

mortality times (Gunst et al., 2010), time intervals in human communication (Wu et al.,

2010), and failure times of various devices (Fischer et al., 2000).

Our results extend to tournaments with stochastic and endogenous participation, with

caveats regarding the effects of discreteness in the equilibrium number of entrants in the

latter case. For heterogeneous players, the ranking of equilibrium effort by the dispersive

order and related entropy orders survives under small asymmetries in ability, but it can

be reversed when players are sufficiently asymmetric.

More broadly, the results of this paper show that tournament incentives can be affected

in nontrivial ways by the properties of noise. However, the existing empirical literature

on tournaments and contests using natural data (e.g., Ehrenberg and Bognanno, 1990;

Knoeber and Thurman, 1994; Eriksson, 1999) or experiments (for a review, see Dechenaux,

Kovenock and Sheremeta, 2015) provides virtually no guidance on such effects. One

exception we are aware of is the experiment of List et al. (2014) who study effort in

tournaments with different noise distributions, focusing on the effects of changes in the

number of agents. We hope that our results will lead to more research linking effort in

tournaments to the properties of noise.
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Appendix

Proof of Proposition 1 The sufficiency of the dispersive order follows directly from

representation (6) for coefficients Br,n and the fact that X being more dispersed than Y

is equivalent to mX(z) ≤ mY (z) (with strict inequality in some interval) (Shaked and

Shanthikumar, 2007). To see this, note that Definition 1 implies F−1X (z) − F−1Y (z) is

increasing in z, and the result follows by differentiation.

For necessity, consider X and Y such that ∆m(z) = mY (z) − mX(z) < 0 in some

interval (z1, z2) ⊂ [0, 1]. Restricting attention to two-prize schedules, with Ds > 0 for

some s ∈ {1, . . . , n − 1} and Dr = 0 for r 6= s, it is sufficient to show that there exist

(s, n) such that BX,s,n > BY,s,n. From (8),

BX,s,n −BY,s,n = −
∫ 1

0

fB(z;n− s, s)∆m(z)dz. (19)

Function fB(z;n − s, s) is single-peaked, with a unique maximum at z∗ = n−s−1
n−2 . For a

sufficiently large n, s = sn can be chosen such that z∗ is arbitrarily close to the middle

of the interval (z1, z2). With sn chosen this way, we have fB(z;n − sn, sn) → fB(z; 1 +

(n − 2)z∗, (n − 1) − (n − 2)z∗), which is the distribution of the z∗-th sample quantile of

the uniform distribution on [0, 1]. Since z∗ ∈ (0, 1), this is a central order statistic that

is asymptotically N(z∗, z
∗(1−z∗)
n−1 ) (Arnold, Balakrishnan and Nagaraja, 1992). Therefore,

BX,s,n −BY,s,n → −∆m(z∗) > 0.

Proof of Proposition 3 Consider a WTA tournament with n ≥ 2 players and noise

X. The equilibrium effort in it is determined by B1,n[fX ] = (n − 1)
∫ 1

0
mX(z)zn−2dz.

For k = 0, the result holds due to Proposition 1; therefore, suppose k ≥ 1. Note that

mX(z) = −M̄ (1)′
X (z), M̄

(1)
X (z) = −M̄ (2)′

X (z), . . ., M̄
(k−1)
X (z) = −M̄ (k)′

X (z). Integrating by
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parts k times, obtain

B1,n[fX ] = −(n− 1)M̄
(1)
X (z)zn−2|10 + (n− 1)(n− 2)

∫ 1

0

M̄
(1)
X (z)zn−3dz

= M̄
(1)
X (0)1n=2 +

(n− 1)!

(n− 3)!

∫ 1

0

M̄
(1)
X (z)zn−3dz

= M̄
(1)
X (0)1n=2 −

(n− 1)!

(n− 3)!
M̄

(2)
X (z)zn−3|10 +

(n− 1)!

(n− 4)!

∫ 1

0

M̄
(2)
X (z)zn−4dz

= M̄
(1)
X (0)1n=2 + 2!M̄

(2)
X (0)1n=3 +

(n− 1)!

(n− 4)!

∫ 1

0

M̄
(2)
X (z)zn−4dz

. . .

=
k∑
l=1

l!M̄
(l)
X (0)1n=l+1 +

(n− 1)!

(n− 2− k)!

∫ 1

0

M̄
(k)
X (z)zn−2−kdz

= (n− 1)!M̄
(n−1)
X (0)1k≥n−1 +

(n− 1)!

(n− 2− k)!

∫ 1

0

M̄
(k)
X (z)zn−2−kdz.

The result follows directly from condition (a) and Definition 3.

Proof of Lemma 2 We need to show that condition M̄
(1)
Y (z) ≥ M̄

(1)
X (z) is equivalent to

the upper-tail conditional entropy order. Indeed,

M̄
(1)
X (z) =

∫ 1

z

mX(t)dt =

∫ x

F−1
X (z)

fX(x)2dx = (1− z)2
∫ x

F−1
X (z)

fX|X≥F−1
X (z)(x)2dx;

therefore, M̄
(1)
Y (z) ≥ M̄

(1)
X (z) is equivalent to∫ y

F−1
Y (z)

fY |Y≥F−1(z)(x)2dx ≥
∫ x

F−1
X (z)

fX|X≥X≥F−1
X (z)(x)2dx,

which is equivalent to H[fX|X≥F−1
X (z)] ≥ H[fY |Y≥F−1

Y (z)].

Proof of Lemma 3 Let [x, x] denote the union of supports of X and Y . Define

∆B1,2 =

∫ x

x

[f 2
Y (x)− f 2

X(x)]dx =

∫ x

x

f+(x)f−(x)dx,

where f±(x) = fY (x)± fX(x). Note that f−(x) ≤ 0 for x ∈ [x, x1]∪ [x2, x] and f−(x) ≥ 0
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for x ∈ [x1, x2]. Thus, we can write

∆B1,2 = −
∫ x1

x

f+(x)|f−(x)|dx+

∫ x̂

x1

f+(x)f−(x)dx+

∫ x2

x̂

f+(x)f−(x)dx−
∫ x

x2

f+(x)|f−(x)|dx.

By the mean-value theorem for definite integrals, there exist x∗1 ∈ (x, x1), x
∗
2 ∈ (x1, x̂),

x∗3 ∈ (x̂, x2) and x∗4 ∈ (x2, x) such that

∆B1,2 = −f+(x∗1)

∫ x1

x

|f−(x)|dx+f+(x∗2)

∫ x̂

x1

f−(x)dx+f+(x∗3)

∫ x2

x̂

f−(x)dx−f+(x∗4)

∫ x

x2

|f−(x)|dx.

Recall that FX(x̂) = FY (x̂), which implies
∫ x̂
x
fX(x)dx =

∫ x̂
x
fY (x)dx, and hence

∫ x̂
x
f−(x)dx =

0 and
∫ x̂
x1
f−(x)dx =

∫ x1
x
|f−(x)|dx. Similarly,

∫ x2
x̂
f−(x)dx =

∫ x
x2
|f−(x)|dx. This gives

∆B1,2 = [f+(x∗2)− f+(x∗1)]

∫ x1

x

|f−(x)|dx+ [f+(x∗3)− f+(x∗4)]

∫ x

x2

|f−(x)|dx.

It follows from the condition f+(x̂) ≥ 2 max{fX(x1), fX(x2)} that f+(x̂) ≥ f+(x1), which

implies f+(x∗2) ≥ f+(x1) and hence f+(x∗2) ≥ f+(x∗1). Similarly, f+(x∗3) ≥ f+(x∗4), which

implies ∆B1,2 ≥ 0.

Counterexample for the spread order The spread order alone (e.g., without condi-

tion (15)), is not sufficient to generate unambiguous entropy rankings, as seen from the

following example.

In this example we use piece-wise constant functions fX and fY , which are discontin-

uous. This is not a problem, because any such function can be approximated arbitrarily

closely by a smooth and continuous function. Also, the statement of Lemma 3 is true for

discontinuous functions as long as they are L2.

Define functions fX and fY on support [0, 1] as follows:

fX(x) =


1.1, x ∈ [0, 0.25)

1.7, x ∈ [0.25, 0.5)

0.6, x ∈ [0.5, 1]

, fY (x) =



0.95, x ∈ [0, 0.125)

1.15, x ∈ [0.125, 0.25)

1.7, x ∈ [0.25, 0.5)

0.7, x ∈ [0.5, 0.75)

0.55, x ∈ [0.75, 1]

.

It is easy to check that both functions have the same integral equal to one and that fX is
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Figure 4: Functions fX (red solid line) and fY (blue dashed line). fX is a spread of fY but
generates higher efforts. Condition (15) of Lemma 3 is not satisfied.

a spread of fY , see Figure 4. In particular, x1 = 0.125 and x2 = 0.75.

Note that condition (15) of Lemma 3 is not satisfied since the two CDFs intersect at

x̂ = 0.625 and fX(x̂) + fY (x̂) = 1.3 < 2 max{fX(x1), fX(x2)} = 2fX(x1) = 2.2.

Function fX has a lower entropy than fY because
∫ 4

0
fX(x)2dx = 1.205 >

∫ 4

0
fY (x)2dx =

1.19875. Hence, a spread alone does not guarantee that the entropy increases and hence,

efforts go down.
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