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A consumption event is memorable if the memory of it affects well-being
at times after the material consumption. We develop an axiomatic model of
memorable consumption in a dynamic setting. Preferences are represented by
the present value of the sum of utilities derived at each date from the current
consumption and from recollecting the past. Our model accommodates well-
known phenomena in psychology, such as the peak-end rule, duration neglect,
and adaptation trends. We provide foundations for a prominent special case of
memory that has the Markovian property. The model is illustrated in application
to life-cycle consumption-savings decisions and asset pricing.

1 Introduction

Psychology and behavioral science have widely recognized that one’s subjective well-being

at any point in time is not determined simply by the consumption at that moment — the

recollection of past experiences plays a crucial role. This idea is at the core of a well-known

literature initiated by Kahneman and is supported by sizable experimental evidence.1 Evok-

ing early ideas of Bentham (1789) and Edgeworth (1881), Kahneman describes hedonic ex-

periences as consisting of sequences of moments that give rise to two distinct measurements,

so-called ‘moment utility’ and ‘remembered utility.’ The former expresses the instant de-

gree of pain or pleasure associated with moments, while the latter refers to the judgement

arising from the ex post recollection of the overall experience.

∗We thank Fabio Maccheroni, Sujoy Mukerji, Pietro Ortoleva, Leonardo Pejsachowicz, Larry Samuelson,
Aleh Tsyvinski, and especially Itzhak Gilboa for many valuable discussions, and participants of RUD 2018,
14th Csef-Igier Symposium, 42nd AMASESMeeting, TUS Conference 2018 (PSE), CHOpWorkshop (PSE),
Theory Days (Bocconi), SAET 2019, as well as seminars at Queen Mary University, Royal Holloway, and
University College London for comments. The authors gratefully acknowledge the financial support of the
Investissements d’Avenir program (ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047) and CHOp
(ANR-17-CE26-0003).

†Economics and Decision Sciences Department, HEC Paris, minardi@hec.fr,
http://www.hec.fr/minardi/

‡New Economic School, asavochkin@nes.ru, http://pages.nes.ru/asavochkin/
1Among many, see Elster and Loewenstein (1992), Varey and Kahneman (1992), Diener, Suh, Lucas,

and Smith (1999), Kahneman, Diener, and Schwarz (1999), Kahneman (2000a, 2000b), and Kahneman and
Thaler (2006). The idea that past memories may influence well-being goes back, at least, to Smith (1759).
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When viewed through the lens of modern economics, one problematic aspect of that

discourse is that its central concepts of utility are not linked to choice behavior. Experienced

utilities reflect hedonic states, such as the perceived intensity of pain or pleasure, and

their measurements are traditionally based on self-reports of these feelings. While such a

methodology is common practice in psychology, the possibility that memories may affect

well-being remains an elusive idea from an economic perspective: understanding the precise

nature of the variables being measured is essential for making predictions and studying the

implications for economic policy.2

This paper focuses on consumption events that we refer to as memorable. For instance,

life achievements or exotic vacations can have enduring effects on a person long after the

corresponding events have taken place. Our goal is to tighten the link between theory and

empirical evidence by modeling the notion of memorability within the revealed-preference

paradigm. We develop a theory of preferences in which one’s well-being at a given point in

time is affected not only by the current material consumption, but also by the recollection

of past memorable events. Our agent recognizes that her current choices may generate

valuable memories that will affect her future well-being. Through this channel, memorability

also affects choice behavior.3 Moreover, the effect of past memories may well depend on

various features of one’s consumption history, such as the intensity or the frequency of the

experiences, thereby allowing for a rich dynamic. From an applied perspective, memorable

effects may be relevant in different contexts, such as households’ consumption patterns and

financial planning, as well as employment decisions and the labor market in general.

The first contribution of this paper is to develop axiomatic foundations for a dynamic

model of memorable consumption. Our axiomatization separates, behaviorally, the material

effect of consumption in the present moment from its memorable effect experienced in

subsequent periods. Moreover, it allows us to determine whether an agent perceives a

particular consumption experience as memorable or ordinary. If consumption is represented

by a bundle of distinct goods, we can identify which goods are memorable. Hence, the trait

2See Kahneman, Wakker, and Sarin (1997) and Kahneman (1999) for a more formal treatment of the
measurement issue and a discussion of the main difficulties.

3Kahneman and Krueger (2006) suggest that individuals’ choices are often influenced by the way past
consumption experiences are recollected (giving rise to remembered utilities) and not simply by the con-
sumption profiles themselves. Weber and Johnson (2006) make a similar point by studying how memories
may affect preferences.
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of being memorable is endogenously derived and subjective, thus varying across individuals.

Our second contribution is to develop a theory of Markovian memory as a special case of

the general model. With this additional structure, we identify key features of the memory

effect, such as longevity and strength, and make interpersonal comparisons along these

dimensions. The Markovian specification is useful for reasoning about memory as a dynamic

variable and is suitable for using standard dynamic programming methods in applications.

We illustrate the broader economic relevance of the model in two classic contexts from

macro and finance. First, we introduce memorable consumption into the standard linear-

quadratic consumption-savings problem and examine its implications for life-cycle patterns

of consumption and savings. Second, we add memorable effects to a Lucas tree economy

and study the impact on the risk-free interest rate.

1.1 The model’s essential components

We study memorable consumption in a dynamic framework of preferences over consumption

streams of different finite length.4 A typical consumption stream of length t is denoted by

f = (f0, f1, . . . , ft−1), where fτ ∈ C ⊆ RN for N ≥ 1 is the consumption bundle at time

τ = 0, . . . , t − 1. In its simplest and most general form, our agent evaluates a stream f

according to the following criterion:

V (f) = t−1

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)]. (1)

As in the standard theory of exponential discounting, the parameter β ∈ (0,1) is a discount

factor, and the value of u(fτ) represents the agent’s direct utility of consuming bundle fτ at

time τ . The novel component here is M(fτ−1, . . . , f0,0,0, . . .), which represents the agent’s

utility derived from the memory of the consumption history (fτ−1, . . . , f0). The expression

u(fτ)+M(fτ−1, . . . , f0,0,0, . . .) captures the agent’s total subjective well-being that can be

attributed to time τ . The value ofM(fτ−1, . . . , f0,0,0, . . .) is positive for pleasant memories;

however, M is allowed to take negative values to represent unpleasant memories that the

agent would prefer not to carry over into the future, if possible.

The function M in the above representation is identified uniquely, up to multiplying by

a positive constant jointly with u. If M equals zero for all streams, then our representation

4In our formal setup, the domain of preferences consists of lotteries over such streams.
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reduces to the standard exponential discounting. In this case, no consumption experience is

memorable for the agent from the point of view of its effects on choice. Consumption in our

model is represented by points in RN for arbitraryN ≥ 1. Hence, the role of memories can be

analyzed for the aggregate consumption (N = 1) or for single consumption bundles (N > 1).

If consumption is represented by bundles and the memorable effects of consumption are

separable across goods, then the analyst can learn from observed choices which goods in

the bundles are memorable and which are “ordinary.”

To better define the scope of this paper, we note that memorability is not the only po-

tential reason for the past to affect the current utility. One striking example of history

dependence is the well-known Mom’s Treat, discussed by Machina (1989, p. 1643) and dat-

ing back to much earlier literature on interpersonal fairness. Suppose that a mom has a

single indivisible treat that she can give either to her daughter or to her son. In principle,

she is indifferent between giving the treat to either child. However, if her son got a treat just

yesterday, she will strictly prefer to give the treat to her daughter today. Naturally, such a

preference does not rely on whether a treat to a child is a memorable experience — it is

guided by concerns about fairness. There are many other reasons for history dependence,

including an intrinsic preference for variety,5 habit formation, and anticipatory feelings.

Therefore, we emphasize that our model is not a universal theory of history-dependent

utility; rather, we are interested in the phenomenon of memorability, its effect on individ-

ual choices, and its relevance for economic analysis. Our focus manifests distinctly in the

proposed axiomatization and in the corresponding uniqueness results.

1.2 Special cases and applied relevance

Representation (1) provides a general structure for analyzing different processes by which

the memorable effect of past consumption may accrue over time. We look closely at three

special cases of that functional form.

Peak-end rule Our first example provides a time-dependent specification of the mem-

ory function M that accommodates the so-called peak-end rule and duration neglect (see

5E.g., a person would prefer to accompany his popcorn with different movies on two consecutive nights,
even if both movies are not memorable.
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Fredrickson and Kahneman, 1993). In these experimentally observed phenomena, the rec-

ollection of a prolonged experience is driven by only two salient points — the peak of the

intensity and the most recent moment — while neglecting the duration of the experience.

Adaptation trends Our second example proposes a time-dependent specification of the

memory function M that captures the agent’s adaptation to repeated similar experiences.6

In particular, an experience becomes memorable and generates utility at later dates de-

pending on its contrast with previous experiences. The proposed specification can be used

in a wide range of contexts, from capturing the role of breaks in repeated consumption expe-

riences to thinking about prevention of adaptation in the design of compensation schemes.

Furthermore, our specification can be used in job-search models to account for psycholog-

ical factors such as job satisfaction or to study the impact of unemployment history on

future behavior.7

Markovian memory We study in more detail a special case of representation (1) in

which memory evolves according to a time-invariant Markov law. A consumption stream

f = (f0, . . . , ft−1) is evaluated according to

V (f) = t−1

∑
τ=0

βτ[u(fτ) +mτ−1], (2)

where mτ is computed as mτ = ψ(mτ−1, fτ) for τ = 0, . . . , t−2 and m−1 = 0. The key feature

of this specification is that the utility of memorable consumption can be thought of as a

“stock” variable that is determined at each point in time only by its value in the previous

period and the current consumption. Such recursive specification has the advantage of

being highly tractable and amenable to being used in macroeconomic applications. With

the additional Markovian structure of memory, we provide a comparative statics analysis

and identify two independent channels through which memories can affect the overall utility

in representation (2). One channel is related to the persistence of memory in the agent’s

mind and, hence, to the rate at which past memories decay. The other one is related to

6See, e.g., Diener (1984) and Frederick and Loewenstein (1999) for classic surveys on the topic of sub-
jective well-being and adaptation.

7Job satisfaction is often treated as a factor in job mobility, as supported by empirical evidence (Free-
man, 1978). See Arulampalam (2001) for evidence on the correlation between past unemployment and
future wages.
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the sensitivity of the agent’s memory to consumption and the ability of consumption to

generate new memories.

We apply our Markovian specification to two well-known contexts in macroeconomics

and finance. In macroeconomics, we introduce memorable consumption into a standard

linear-quadratic consumption-savings problem. In equilibrium, the solution exhibits two

key features: 1) the higher sensitivity of consumption to income shocks in comparison with

the standard models; and 2) the negative dependence of the optimal consumption on the

accumulated stock of memory, which highlights the potential relevance of memorable con-

sumption in explaining some well-known puzzles about life-cycle dynamics of consumption

and savings. In finance, we extend the classic Lucas tree asset pricing model to allow for

memorable effects of consumption. With this extension, the memorability of consumption

modifies the incentives to reallocate consumption across time periods in different states of

the economy. We illustrate the impact of memorability on the levels, the volatility, and the

dynamic profile of the risk-free interest rate.

The rest of the paper is organized as follows. We next discuss the related literature.

Section 2 presents our two applications. Section 3 presents the general model and illustrates

its applicability with two examples of time-dependent laws of motion for memory. Section 4

provides a foundation for the special case of time-invariant Markovian dynamics and a

comparative statics analysis. Section 5 concludes with a brief summary.

1.3 Related Literature

Our theory entails a particular kind of violation of time separability, which places it in

stark contrast with other history-dependent phenomena, most notably habit formation.

Two forces drive decision making in our model — the joy of instantaneous consumption

and the joy of memories. We assume that the agent’s preferences may violate time separa-

bility solely in the memory component. Only the latter is influenced by the history; indeed,

memories generated by a fine dining experience may depend on the reference point set by

past experiences of that sort. Yet our agent’s tastes do not change over time, and the direct

utility obtained from the current consumption is not affected by the history, as happens,

for example, in models of habit formation. Our axiomatization captures precisely that:

6

Date: 2019-10-08 18:48:36 Revision: 89c72c7



potential history dependence in memory and history independence in the direct value of

consumption. It is worth noting that the differing assumptions about time separability be-

tween our model and habit formation lead to opposite predictions. Indeed, habit formation

typically strengthens the desire for consumption smoothing. On the contrary, investments

in memorable goods frequently generate lumpy patterns of consumption, as Hai, Krueger,

and Postlewaite (2015) argue.

While the role of memories in consumption decisions was discussed much earlier (see,

e.g., Elster and Loewenstein, 1992), the notion of a memorable good was first formalized

by Hai et al. (2015) and Gilboa, Postlewaite, and Samuelson (2016). In these papers, the

distinction between ordinary goods and memorable goods is exogenously given. The key

feature of those models is that the consumption of the memorable good generates addi-

tional flows of utility only if it exceeds a threshold level determined by previous memorable

experiences. They show that optimal consumption profiles of memorable goods exhibit

spikes that cannot be justified by the issue of divisibility, which is key in studying durable

goods. Hai et al.’s (2015) theoretical findings are complemented by an empirical analysis

that points out stark differences among memorable goods, durable, and non-durable goods.

Moreover, their empirical evidence indicates that memorable goods may play an important

role in reducing the magnitude of the welfare losses due to consumption fluctuations and in

rationalizing the evidence on the excess sensitivity of consumption to anticipated income

shocks. From a theoretical viewpoint, Gilboa et al. (2016) provide an axiomatic foundation

of the static utility structure u(x, y)+ v(y, z) at the basis of their applied model. The term

u(x, y) represents the current utility of consuming the ordinary good x and the memorable

good y; the term v(y, z) is the memory utility generated by consuming y currently and z

in the past.

We pursue a different line of research. Our axiomatic model is cast in a temporal frame-

work. We treat memorability as a subjective trait and let agents reveal through their choices

whether consumption of a particular good is memorable or not.8 Moreover, we allow for a

richer set of laws of motion for the evolution of memory, which support various observations

made in psychology. Our additional contribution is the study of the Markovian evolution, a

8There is also a lesser point of departure: in our model, memory starts to give the agent additional utility
from the moment after the material consumption has taken place; in the other papers, instead, material
consumption gives rise to memories and starts to generate utility exactly when the good is consumed.
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highly tractable and particularly convenient specification for macroeconomic applications.

2 Memorable consumption in Macro and Finance:

Two illustrations

Before presenting our theory in full detail, we illustrate the economic relevance of memorable

consumption in two classic contexts — consumption-savings decisions and consumption-

based asset pricing.

2.1 Consumption-savings decisions with memorable effects

This section introduces memorable effects of consumption that follow our Markovian speci-

fication (2) into a simple linear-quadratic consumption-saving problem. We then solve such

a problem and analyze the implications of memorability for the optimal levels of consump-

tion, responses to income shocks, and lifetime paths of consumption and savings.

Suppose that, in periods t = 0,1,2 . . ., a consumer receives income yt that is stochastic

and i.i.d. across time. There are no borrowing constraints, hence she can reallocate income

between periods by borrowing or saving at the gross interest rate R > 0. The time horizon

is infinite, and the future is discounted using discount factor β ∈ (0,1). For simplicity, we

assume that there is only one good (N = 1). Utility from physical consumption is given

by u(c) = c − 1
2
c2; utility from consuming memories conforms to a convenient special case

of (2) where m = v(m̃) with v(m̃) = bm̃ − 1
2
am̃2, a, b > 0, and the memory stock m̃ follows

an AR(1)-type law.9 Thus, the consumer faces the following maximization problem:

maximize
{ct}∞t=0,{st}

∞

t=0
,{m̃t}∞t=0 adapted

E0 [∞∑
t=0

βt (ct − 1
2
c2t + bm̃t−1 −

1

2
am̃2

t−1)]
s.t. ct + st = yt +Rst−1 for t = 0,1, . . .,

m̃t = αm̃t−1 + (1 − α)ct for t = 0,1, . . .,
m̃−1 = 0,
s−1 is given.

(3)

Finally, assume that R = 1
β
, s−1 ≥ 0, and E[y] > 0.

9We provide all details of this specification in Section 4.3.3 (Example 3). Note, also, that this example
extends our specification (2) by considering infinite consumption streams.
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Our goal here is to see how memorability of consumption changes the standard Perma-

nent-Income-type solution of the model.10

The Lagrangian of the problem is

L = E0 [∞∑
t=0

βt (ct − 1
2
c2t + bm̃t−1 −

1

2
am̃2

t−1

−λt (ct + st − yt − 1

β
st−1) − µt(m̃t − αm̃t−1 − (1 − α)ct)) ]

and the First-Order Conditions become

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − ct − λt + (1 − α)µt = 0

− λt +Et[λt+1] = 0
β(b − am̃t) − µt + βαEt[µt+1] = 0.

By combining this system with the constraints, we eventually obtain the following solution:

ct = ((1 − β)yt + βE[y] + 1 − β
β

st−1) (1 + κ) − κm̃t−1, (4)

where κ ≥ 0 is a constant given by

κ =

√
1 − 2β(α2 − a(1 −α)2) + β2(α2 + a(1 − α)2)2 − (1 − β(α2 − a(1 −α)2))

2α(1 − βα) .11

Expression (4) has an intuitive interpretation. If the effect of memorability is absent

(a = 0 or α = 1), then κ = 0 and we recover Hall’s (1978) classic result that “consumption

follows a random walk.” In this case, the agent consumes the sum of the fraction (1−β) of
the income shock yt−E[y], the average income E[y], and the interest from savings 1−β

β
st−1;

the fraction β of her income shock and the body of the savings are kept as savings. In

the presence of memorability (a > 0, 0 < α < 1), we observe that the agent exhibits a

stronger reaction to income shocks and consumes more out of them (κ > 0). Albeit framed

within a simplified setting, our finding suggests that memorable consumption may help

explain the well-known empirical evidence on excess sensitivity of consumption to income

10Doing that, we will ignore the usual issues related to non-monotonicity of the utility from consumption
and the exact structure of conditions at infinity.

11This consumption rule is supported by µt that depends on state variables also linearly, µt =
((1 − β)yt + βE[y] + 1−β

β
st−1 − m̃t−1)κ′ + β

1−βα
(b − am̃t−1), with a suitably chosen constant κ′.
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changes.12 Moreover, the optimal level of consumption is negatively correlated with the

stock of memory — it increases as the stock of memory decreases, and vice versa. Such a

negative relationship suggests that material consumption (of memorable goods) and con-

sumption of memories behave as substitutes. This distinguishing feature contrasts typical

patterns observed in habit formation models where the habit stock and the consumption

level move in a complementary way, reinforcing each other.

To further illustrate, assume for a moment that there is no income uncertainty and

yt = E[y] for all t. Then, the consumption rule can be rewritten as ct = c̄t + κ(c̄t − m̃t−1),
where c̄t = E[y] + 1−β

β
st−1. In the standard linear-quadratic consumption-savings model,

the expression for c̄t corresponds to the permanent income. In our model, it becomes a

reference that determines the level of consumption, taking into account the accumulation

of memory. If m̃t−1 = c̄t, then the agent is in a steady state, and both her consumption

and the stock of memory will stay constant; if m̃t−1 exceeds c̄t, then she will consume less

than c̄t and opt for depleting part of her stock of memory; and, if m̃t−1 has not reached

c̄t, then she will consume more than c̄t in order to build up her stock of memory. From

the viewpoint of life-cycle profiles, these dynamics imply that agents tend to under-save

and over-consume when they are young (as they start with m̃−1 = 0 < c̄0). As the stock of

memory accumulates in subsequent periods, the gap will reduce and over-consumption will

attenuate. If we compare consumption paths across agents, then those with higher κ over-

consume more at young age, save less, and approach the steady state with lower savings.

This behavior is rational, and can be interpreted as hidden savings in the form of investment

in pleasant memories that substitutes for investment in financial assets. Furthermore, these

dynamics may represent one key source of support for the empirical evidence according to

which individuals consume too little at retirement age compared to the predictions of the

canonical model.

The magnitude of the agent’s excessive reaction to income shocks (relative to predictions

of the standard model), as well as features of the life-cycle consumption pattern such as

over-consumption when young, depend on the parameters of preferences through the value

of κ. Holding everything else fixed, κ is an increasing function of the parameter a that,

jointly with b, captures the strength of memorable effects of consumption. Hence, stronger

12See, e.g., the surveys of Attanasio (1999) and Jappelli and Pistaferri (2010).

10

Date: 2019-10-08 18:48:36 Revision: 89c72c7



memorable effects lead to greater over-consumption at young ages, as well as stronger

reactions to income shocks. As a function of the longevity of memory that is captured by

the parameter α, κ has an inverse U-shape. Indeed, as α approaches one, memory becomes

very persistent and is hardly affected by consumption. In the limit, the law of motion for

memory takes the form of m̃t = m̃t−1, and additional investments in future memory are

fruitless. As α approaches zero, instead, memory loses its lasting effect, and the decision

problem transforms into the standard question of consuming today versus tomorrow. The

effect of memorability is the greatest at intermediate levels of α.

2.2 Consumption-based asset pricing with memorable effects

This section introduces memorable effects into a classic Lucas tree framework (Lucas, 1978).

Consider an exchange economy with a representative consumer. There is a single productive

unit that costlessly produces a stochastic output dt at time t = 0,1,2, . . .. We first analyze

the case of i.i.d. dividends and then the more general Markovian case. The output is assumed

to be not storable, so the only way to reallocate wealth across periods is given by holding

assets. Let zt denote the share holding at the beginning of period t; owning zt = 1 is an

entitlement to all output produced at t. After the dividend is paid, shares are traded at the

price pt that the consumer takes as given. Note that this is a standard setup, traditionally

interpreted as a tree that produces a fruit in each period.

Utility from physical consumption in each time period is given by u(c), where u is a

strictly increasing, strictly concave and twice differentiable function. The consumer dis-

counts the future with the discount factor β ∈ (0,1). The stock of memory represented by

the variable m̃ is assumed to be Markovian and evolves according to the linear (AR(1)-like)
law: m̃t = αm̃t−1+(1−α)ct. The contribution of the stock of memory m̃t−1 to the consumer’s

time-t utility is v(m̃t−1), where v(m̃) = bm̃ − 1
2
am̃2 and a, b > 0 are parameters. Similar to

the previous application, this specification corresponds to a special case of our Markovian

model (2), in which we use m̃ as our state variable instead of m = v(m̃). We assume that

the economy operates in a region in which we always have that v′(m̃) > 0. Our consumer

11
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faces the following maximization problem:

maximize
{ct}∞t=0,{zt}

∞

t=0
,{m̃t}∞t=0 adapted

E0 [∞∑
t=0

βt (u(ct) + bm̃t−1 −
1

2
am̃2

t−1)]
s.t. ct + ptzt = (pt + dt)zt−1 for t = 0,1, . . .,

m̃t = αm̃t−1 + (1 − α)ct for t = 0,1, . . .,

m̃−1 = 0,

z−1 is given.

(5)

The Lagrangian of the problem is

L = E0 [∞∑
t=0

βt (u(ct) + bm̃t−1 −
1

2
am̃2

t−1

−λt(ct + ptzt − (pt + dt)zt−1) − µt(m̃t − αm̃t−1 − (1 − α)ct)) ]
and the First-Order Conditions are

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u′(ct) − λt + (1 −α)µt = 0

− λtpt + βEt[λt+1(pt+1 + dt+1)] = 0
β(b − am̃t) − µt + βαEt[µt+1] = 0.

As in the original Lucas model, the market clearing condition in the goods market means

that ct = dt for all t.

The pricing kernel (stochastic discount factor) that prices one-period-ahead returns at

time t takes the familiar form

Mt+1 =
βλt+1

λt
.

Let us examine the equilibrium risk-free interest rate in this model. Given the first-order

maximality and market clearing conditions, the risk-free interest rate at time t can be

computed as

Rf
t =

1

Et[Mt+1] =
1

β

λt

Et[λt+1] =
1

β

u′(dt) + (1 − α)µt

Et[u′(dt+1)] + (1 − α)Et[µt+1] . (6)

Memorable consumption affects Rf
t through the values of the multiplier µt and Et[µt+1].
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To formally study its effects, we first consider the special case of i.i.d. dividends. In this

case, the risk-free rate can be written as13

R
f
t =

1

β

u′(dt) + aβ(1 −α)( 1
1−βαm̃

∗ − 1
1−βα2 m̃t − βα(1−α)

(1−βα)(1−βα2)E[d])
E[u′(d)] + aβ(1 − α)( 1

1−βαm̃
∗ − α

1−βα2 m̃t − 1−α
(1−βα)(1−βα2)E[d]) , (7)

where m̃∗ = b
a
is the level of the stock of memory that gives the agent the highest utility

(the “bliss point”), E[d] is the expected dividend (E[d] = E[dτ ] for all τ), and E[u′(d)]
is the expected value of the marginal utility. As can be seen from the above expression,

the interest rate depends on the current stock of memory m̃t, as well as on the parameters

a and α, which capture the strength of memory effects and the persistence of memory,

respectively.

To interpret (7), fix, first, the stock of memory at its long-term average, m̃t = E[d]. Then,
the expression for Rf

t becomes

R
f
t =

1

β

u′(dt) + aβ(1−α)
1−βα (m̃∗ −E[d])

E[u′(d)] + aβ(1−α)
1−βα (m̃∗ −E[d]) .

In the absence of memory, the risk-free interest rate is high (above 1
β
) in “bad” states of

the world — the ones in which dt < (u′)−1(E[u′(d)]). Similarly, the rate is low (below 1
β
)

in “good” states — the ones in which dt > (u′)−1(E[u′(d)]). The presence of memory has

a “moderating” effect on the interest rates: in comparison with the no-memory case, the

interest rate decreases towards 1
β
in bad states and increases towards 1

β
in good states.

If the current stock of memory m̃t in (7) is allowed to vary, then additional effects will

emerge. Suppose that the stock of memory is below its long-term average (m̃t < E[d]); then,
the interest rate shifts upward. In comparison with the no-memory case, the interest rate

increases even further in the good state, whereas in the bad state the effect of memory may

be ambiguous. (See Figure 1.) Suppose, instead, that the current stock of memory is above

its long-term average (m̃t > E[d]); then, the interest rate shifts downward. Compared to

the no-memory case, in the bad state the interest rate decreases even further, whereas in

the good state the effect of memory may be ambiguous.

In the general Markovian case, the above effects remain present.14 Figure 1 illustrates a

13All computations concerning this application are relegated to Appendix C.
14See Appendix C, in particular Eq. (28), for an analytical expression for the interest rate in the general

case.
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Figure 1.— Risk-free interest rates (gross) for two states. The interest

rates are plotted as a function of the parameter ρ that captures the per-

sistence of the state in the Markov process: ρ = 0 corresponds to the i.i.d.

case, and ρ = 1 means that the state does not change with time (in which

case, there is no uncertainty in the economy).

typical picture of the interest rates in a two-state process.

We conclude this section by fixing the observable implications of the model in this ex-

ample.

• The presence of memorable consumption changes the level of the risk-free interest

rate. Past memories become a substitute for material consumption, thus making

agents behave as if they were more patient. This way, memorability may contribute

to explaining the well-known risk-free rate puzzle.15

• Memorable consumption has an impact on the volatility of the interest rates and asset

returns over time. Indeed, the effects of memorable consumption may have different

signs in different states. In our two-state example, in good states the agents prefer to

consume more and save less, which decreases the demand for saving and moderates

the fall of the interest rate. By contrast, in bad states the agents are less eager to

15The puzzle stems from empirically observable risk-free rates that are too low. In the standard frame-
work with time-separable power utility, these rates could be explained by discount factors that are unreal-
istically high (see, e.g., Campbell (2003) for a discussion).
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borrow because memories from the past can alleviate low current consumption, and,

hence, the interest rate does not rise that high.

• Finally, the dynamics of interest rates also change. With memorability, the interest

rate depends not only on the current state of the economy, but also on the length

of the runs of good or bad states in the past.16 Thus, even if the stochastic process

that governs dividends has the simplest Markovian structure, long (or double-dip)

downturns in the economy have stronger impacts on the interest rates in comparison

with ordinary cyclic downturns. In the former case, the stock of memory suffers a

deeper depletion and agents become increasingly eager to consume.

The natural next question is to investigate the effect of memorable consumption on the

price of risky assets. This lengthy analysis is outside of the scope of this paper.

3 The general model

This section presents our general model of memorable consumption. Our goal is to propose

a minimal deviation from the standard exponential discounting paradigm that allows cap-

turing the essential features of memorable consumption and distinguishing it from other

forms of history-dependent consumption.

3.1 Setup

Let C ⊆ RN for some N ∈ N be the space of consumption bundles, which we assume to be

nondegenerate and connected. Its typical element is denoted by c = (c1, . . . , cN). The set

Ft = Ct for t ∈ N represents the collection of consumption streams of finite length t, with the

typical element given by f = (f0, f1, . . . , ft−1). Also, let ⦸ denote the stream of length zero

and let F0 = {⦸}. We denote by F = ⋃∞t=0Ft the collection of all consumption streams of

finite length. The sets Ft for t ∈ N are endowed with the sup-norm topology. For an element

f ∈ F , let ℓ(f) ∶= t if f ∈ Ft.

For t ∈ N, let Lt = ∆ (Ft) be the space of lotteries (probability distributions with finite

support) over streams of length t, and let L = ∆(F) be the space of lotteries over all

16Although the uncertainty in the economy is Markovian, the interest rates now depend on two state
variables — the state of Nature and the accumulated stock of memory.
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consumption streams of finite length. The agent’s behavior is described by a preference

relation (complete preorder) ≿ on L.
As usual, for every P,Q ∈ L and α ∈ [0,1], the lottery αP + (1 − α)Q ∈ L is defined

by αP (f) + (1 − α)Q(f) for every f ∈ F . The spaces Lt for t ∈ N are endowed with the

weak-* topology: A net {Pα}α in Lt converges to P ∈ Lt iff, for any continuous and bounded

function U ∶ Ft → R, we have ∫ U dPα → ∫ U dP .

Throughout the paper, we use the following notation.

Notation. For any f = (f0, f1, . . . , fk) and h = (h0, h1, . . . , hm) in F and P ∈ L,
• let h∣f ∈ F denote the concatenated stream (h0, h1, . . . , hm, f0, f1, . . . , fk).
• let h∣P denote the lottery Q obtained from P by prepending h to the streams in the

support of P : Formally, Q is defined as Q(f) = P (f ′) if f = h∣f ′ for some f ′ ∈ F , and
Q(f) = 0 otherwise.

As usual, we identify a degenerate lottery that gives some stream f ∈ F with probability

one with the stream itself.

3.2 Axioms

We next introduce the behavioral properties that characterize memorable consumption.

They are organized into three groups: properties pertaining to the framework of lotteries

over consumption streams; key axioms capturing memorability effects; and few technical

assumptions.

Framework assumptions Our first three assumptions are standard for models that deal

with both time and uncertainty.

Axiom A1 (Stationarity). There exists a consumption bundle that we identify with 0 such

that, for any P,Q ∈ L, we have

P ≿ Q ⇔ (0)∣P ≿ (0)∣Q.
The above axiom is closely related to the standard formulation of Koopmans (1960): it

guarantees consistency and stability of the agent’s tastes over time.

Axiom A2 (Impatience). For any c ∈ C such that (c) ≻ (0), we have

(c) ≻ (0, c) ≻ (0).
16
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As usual, Impatience ensures that the present is more valuable than the future.17 Note

that Stationarity and Impatience guarantee that our agents make dynamically consistent

choices, regardless of whether or not the consumption has any memorable effects.

Axiom A3 (Independence). For any P,Q,R ∈ L and α ∈ (0,1], we have

αP + (1 − α)R ≿ αQ + (1 − α)R ⇔ P ≿ Q.

Independence is the classic property that delivers the underlying expected utility form.

Overall, the above framework assumptions guarantee that our agent behaves in a per-

fectly standard way in terms of attitudes toward time and risk.

Axioms pertinent to memory The next two key axioms delineate the behavioral fea-

tures of memorable consumption that distinguish it from other forms of history-dependent

phenomena.

The first axiom asserts that preferences between streams that differ only in the last-period

consumption are independent of the consumption in previous periods.

Axiom A4 (Risk Preference Consistency). For any f, g ∈ F and p, q ∈ L1, we have

f ∣p ≿ f ∣q ⇒ g∣p ≿ g∣q.
This axiom guarantees that tastes remain unchanged after varying histories. One implica-

tion is that it rules out various types of backward-looking reference-dependent evaluations

of the current consumption, such as those arising from habit formation, preferences for

intrinsic variety, and exposure to experience goods.

Furthermore, since the streams f and g can have different lengths, the above axiom

posulates that tastes and risk attitudes remain unchanged with the passage of time. In par-

ticular, this averts potential psychological effects that the realization of extreme outcomes

may have on future risk-taking behavior.

The second axiom is concerned with tradeoffs between memories and consumption.

Axiom A5 (Memory-Consumption Tradeoff Consistency). For any t ∈ N, f, g ∈ Ft, and

p, q ∈ L1, we have

f ∣p ≿ g∣(1
2
p + 1

2
q) ⇔ f ∣(1

2
p + 1

2
q) ≿ g∣q.

17In comparison to the standard formulation, our Impatience axiom involves comparisons of streams of
different length; this is needed in order to isolate the time effects from the memorable effects.
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To interpret this axiom, consider the following tradeoff between consumption in a fixed

(the last) period and pleasant memories that are generated by the consumption stream

from period zero to the second-to-last. Suppose that changes in the initial part of the

consumption stream can be counterbalanced by replacing a consumption lottery p in the

last period with a lottery that is a midpoint between p and some q. The axiom postulates

that, in this case, a similar replacement in the last period of the midpoint between p and q

with q — which is a replacement that has the same distance and direction in the space of

last-period consumption lotteries — should have the same counterbalancing effect. Thus, it

calibrates the relative effects of memory and consumption in quantitative terms. Note that,

together with the other assumptions, this axiom implies the following simple property: for

all f, g ∈ Ft, and p, q ∈ L1, we have that f ∣p ≿ g∣p if and only if f ∣q ≿ g∣q.18 This property

means that the desirability of f versus g is independent of last-period consumption. Thus, it

rules out additional effects on the subjective well-being that the agent may obtain in early

periods from the mere anticipation of her consumption in the last period (say, positive

anticipation of high consumption p versus negative anticipation of low consumption q).19

The full-fledged Memory-Consumption Tradeoff Consistency rules out additional forms of

forward-looking psychological effects.

The axioms of this section clearly hold in the standard model of discounted expected util-

ity. It is noteworthy, however, that they express consistency properties that hold only with

respect to the last-period consumption. The last period becomes significant in our theory

(different from all preceding periods) because, effectively, the consumption in that period is

never memorable, as there are no subsequent periods in which a memory generated in that

period can be enjoyed. Hence, our axioms allow for reference dependence in memory (as

illustrated by our examples later on) but rule out reference dependence in the direct value

of consumption. In turn, they formally capture our intention to model memorable con-

sumption in isolation from other behavioral phenomena, including habit formation (ruled

out by Risk Preference Consistency) and anticipation (ruled out by Memory-Consumption

Tradeoff Consistency).

18We refer to Lemma 8 in the Appendix for a proof of this statement.
19Note that the simplest forms of anticipation effect — for instance, the case of a consumption p in a

stream f ∣p, where f ∈ Ft, giving a constant f -independent utility boost in each of the first t periods — is
ruled out by the Risk Preference Consistency axiom. Indeed, that axiom asserts that p has the same value
after the initial stream f of an arbitrary length t as after the stream g = ⦸ of length zero.

18
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Technical requirements We conclude with few technical assumptions.

Axiom A6 (Continuity). (i) For all P ∈ L and all t ∈ N, the sets {Q ∈ Lt ∶ Q ≿ P} and
{Q ∈ Lt ∶ P ≿ Q} are closed. (ii) For all P,Q,R ∈ L, the sets {α ∈ [0,1] ∶ αP +(1−α)Q ≿ R}
and {α ∈ [0,1] ∶ R ≿ αP + (1 −α)Q} are closed.

Axiom A7 (Nondegeneracy). There exist c∗, c∗ ∈ C such that (c∗) ≻ (0) ≻ (c∗).

3.3 Basic representation

The following notation will be useful for stating the results throughout.

Notation. Let C∞0 denote the set of infinite sequences of elements of C for which only finitely

many elements are distinct from 0, where 0 is the element of C given by the Stationarity

axiom.

The space C∞0 is endowed with the following topology: a net {f (α)}α converges to some

f in C∞0 if and only if, for some T ∈ N such that ft = 0 for all t ≥ T , there exists an index α0

such that f
(α)
t = 0 for all α ≥ α0 and t ≥ T , and sup0≤t≤T ∣ft−f (α)t ∣ converges to zero. We also

say that a function Φ ∶ C∞0 → R is finite-horizon-bounded if and only if, for any T ∈ N, there

exists K > 0 such that, for any f ∈ C∞0 such that ft = 0 for all t ≥ T , we have ∣Φ(f)∣ ≤K.

We are ready to provide a behavioral characterization of preferences that exhibit mem-

orable effects of consumption.

Theorem 1. Let ≿ be a complete preorder on L. The following statements are equivalent:

(i) ≿ satisfies Axioms (A1)–(A7);

(ii) there exist a scalar β ∈ (0,1), a continuous and bounded function u ∶ C → R such that

u(0) = 0 and its range contains positive and negative numbers, and a continuous and

finite-horizon-bounded function M ∶ C∞0 → R with M(0,0, . . .) = 0, such that

V (P ) = ∑
f∈suppP

P (f) ℓ(f)−1

∑
t=0

βt[u(ft) +M(ft−1, . . . , f0,0,0, . . .)] (8)

is a utility representation of ≿ on L.
Theorem 1 delivers a preference representation that enriches the standard exponential

discounting formula to accommodate the memorable effects of consumption. The usual
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parameters of the evaluation formula are the scalar β, which represents the discount factor,

and the function u, which measures the utility of a bundle of goods at the time of material

consumption. Besides its direct value, consumption generates additional utilities in the

future, and their flow is measured by a novel object — the function M . Given a stream

f , the overall utility that the agent obtains at time t is calculated as the sum u(ft) +
M(ft−1, . . . , f0,0,0, . . .), in which the second term specifies the utility derived from the

recollection of past memorable experiences. Thus, representation (8) can be interpreted as

if the agent engages in two forms of consumption, the material one and the consumption of

memories, giving rise to behaviorally distinct utilities. The notation for the arguments of

the function M is backward-looking: first goes the most recent past consumption, then the

second-to-most-recent, and so on. The sequence of arguments ends with an infinite sequence

of zeroes since, at each point in time, the preceding history is assumed to be finite.20 Note

that, if the agent does not perceive any good as memorable, we have M(⋅) = 0, and the

representation reduces to the standard exponential discounting model.

The parameters β, u, andM that capture the agent’s preferences are identified uniquely,

as shown next. In comparison to the standard uniqueness results in utility theory, the only

minor difference is that the functions u and M are unique only up to a positive multi-

plicative factor, whereas arbitrary additive constants are not allowed because we impose

the convention of assigning the numeric value 0 to the neutral element identified by the

Stationarity axiom. Importantly, our uniqueness result ensures that our model cannot be

reinterpreted in terms of other history-dependent phenomena.

Proposition 2. Two triples (β,u,M) and (β̂, û, M̂) represent the same binary relation ≿

on L as in Theorem 1 if and only if β = β̂, û = λu, and M̂ = λM for some λ > 0.

3.4 Time- and history-dependent memory

One well-known heuristic about the way people recollect prolonged experiences is called

the peak-end rule. Originally introduced by Fredrickson and Kahneman (1993), it builds

upon the view that any hedonic experience can be thought of as consisting of a sequence

20A single memory function operating on infinite (but vanishing) streams could be replaced by a collec-
tion of functions operating on finite streams — M1(f0), M2(f1, f0), and so on. Specifying functions in this
way would require imposing additional constraints — it must be that M2(⋅,0) ≡M1(⋅), and so on.
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of moments that can be identified, for instance, by the unfolding of time. According to the

peak-end rule, the evaluation of a retrospective experience, whether positive or negative, is

determined by the average of only two salient moments: the most intense value — namely,

the peak — and the value experienced at its end — namely, the end.21 One notable impli-

cation is that the duration of an experience has no impact on its recollection. For instance,

a short, but rather exotic, vacation may generate more intense memories than a longer, but

more ordinary, vacation. This pattern, dubbed duration neglect, is observed in numerous

experimental studies suggesting that prolonging an unpleasant experience by adding some

extra moments of diminished discomfort may mitigate the subsequent assessment of the

overall experience.22 Our next example proposes a simple specification of the function M

that accommodates the empirical evidence on the peak-end rule and duration neglect.

Example 1 (Peak-end rule). Let the function M from representation (8) be defined as

M(0, . . . ,0´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
t

, fk, . . . , fk−l+1,0, fk−l−1, . . . , f0,0,0, . . .) = βt 1

2
(u(fj∗) + u(fk))K, (9)

for streams f ∈ F such that u(fj) > 0 for all j ∈ Z+ with k − l < j ≤ k, where t, k ∈ Z+,

l ∈ N, and l ≤ k + 1. Moreover, j∗ ∈ Z+ satisfies k − l < j∗ ≤ k and u(f(j∗)) ≥ u(f(j)) for
all j ∈ Z+ with k − l < j ≤ k. For streams that do not conform to the above pattern, set

M equal to zero.23 In this example, we identify the periods of no memorable “experiences”

(as understood in the works of Kahnemann) with zero consumption, and the duration of an

experience with the number of consecutive positive consumptions: in specification (9), the

most recent memorable experience lasted l periods. The parameter K > 0 is responsible for

the magnitude of the memory effect (relative to ordinary utility from consumption), and the

factor βt ∈ (0,1) leads to exponential decay of memory once the experience is over.

Note, also, that the rule (9) can be applied not only to the overall consumption (that

is, to fτ representing the entire bundle consumed in period τ), but also to one particular

dimension of the consumption, such as a generalized “vacation good.”

21For experimental evidence, see, e.g., Ariely and Carmon (2000), Fredrickson (2000), Kahneman (2000a,
2000b), and references therein.

22E.g., Varey and Kahneman (1992) and Kahneman, Fredrickson, Schreiber, and Redelmeier (1993).
23This example focuses on positive experiences; nevertheless, it can be easily adapted to cover negative

experiences, as well.
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To further illustrate, consider a stream of one-dimensional consumption (f0, f1, . . . , f10) =
(2,6,0,0,1,3,1,1,0,0,0), and suppose that u(x) = x and K = 1. Then, the sequence of

memory terms

M(f0,0,0, . . .),M(f1, f0,0,0, . . .), . . . ,M(f10, f9, . . . , f0,0,0, . . .)
is given by 2,6,6β,6β2,1,3,2,2,2β,2β2,2β3.

Another important class of behavioral regularities related to past memories is studied

in the well-known adaptation-level theory in psychology.24 The most relevant economic

prediction of the theory is that repeated exposure to the same good experience will gradually

attenuate the initial feeling of pleasure; similarly, persistent exposure to the same bad

experience will make the feeling of discomfort wane.

Our model is not intended to capture full-fledged adaptation-level theory. Indeed, our

axioms imply that the current utility from consumption is not reference-dependent. How-

ever, the memorability of experiences and their value at the time of recollection may well

depend on the past history of similar experiences and exhibit adaptation features, as shown

next.

Example 2 (Adaptation). Let the function M from representation (8) be defined as

M(ft, . . . , f0,0,0, . . .) = G(ft,A(ft−1, . . . , f0,0,0, . . .)), (10)

for all f ∈ F and t ∈ Z+, where A ∶ C∞0 → R is defined as A(ft, . . . , f0,0,0, . . .) = α∑∞τ=0(1 −
α)τft−τ , α ∈ (0,1), and G ∶ R×R→ R is a continuous function that is monotone in the first

argument and such that G(0,0) = 0.
The function A(ft−1, . . . , f0,0,0, . . .) represents the adaptation level acquired from con-

sumption up to time t−1 and sets the reference point for new memories at time t. The for-

mula for A can be equivalently written as A(ft, . . . , f0,0,0, . . .) = αft+(1−α)A(ft−1, . . . , f0,0,
0, . . .), making it clear that the coefficient α is the weight attributed to the most recent expe-

rience in determining the new adaptation level. The function G measures the utility value

of the memory from consuming bundle x after a history of consumption summarized by

24See Helson (1947, 1948) for origins of the theory that started with the perceptual adaptation in vision.
For more recent works, see, e.g., Frederick and Loewenstein (1999) and Diener, Lucas, and Scollon (2006).
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the reference level r. In Tversky and Griffin’s (1991) terminology, A(ft−1, . . . , f0,0,0, . . .)
corresponds to the endowment level accumulated up to time t, whereas G quantifies the

contrast effect. The simplest specification for G can be G(x, r) = max{x − r,0}, in which a

positive flow of memory utility is generated only if the most recent consumption exceeds the

reference level. A more general specification for G may accommodate a broader spectrum of

adaptation trends in memories’ recollection and, in particular, may not necessarily require

new experiences to beat the prior record. Indeed, a person may have very high standards for

fine dining and, at the same time, enjoy pleasant memories from having coffee and pastries

in some regular bakery.25 This is consistent with our subjective approach to memorability.

Adaptation-level theory gives rise to a number of well-known patterns. For instance, it

suggests that introducing an interval of lower consumption in a lengthy stream of positive

consumption may make the agent appreciate it more.26 Within our setup, we can exemplify

this idea by considering the following preference of the agent over mixtures of consumption

streams:

1

3
(c, c,0, c, c,0, . . .) + 1

3
(0, c, c,0, c, c, . . .) + 1

3
(c,0, c, c,0, c, . . .) ≻

2

3
(c, c, c, c, c, c, . . .) + 1

3
(0,0,0,0,0,0, . . .).

According to the standard discounted expected utility, the agent should be indifferent be-

tween them because, at each date, she consumes c with two thirds probability and zero with

one third probability on both the left-hand and right-hand sides. However, if memorability

is taken into account, a constant stream of high consumption may generate less memory

(and less utility from memory) than streams in which high consumption is interrupted. Our

model can easily accommodate such a preference through a suitable choice of parameters.

Furthermore, our model suggests a behaviorally founded reason for preferring intermittent

consumption — if the utility from recollecting past experiences follows an adaptation pro-

cess, then an intermittent profile will generate higher utility flows from memory than will

an equivalent constant one. This observation has prescriptive implications, and our model

25In an empirical study, Diener et al. (2006) suggest that individuals may have multiple adaptation
points. They also report evidence on the heterogeneity of the adaptation process across individuals.

26This prediction is supported by evidence from psychology and marketing. See, e.g., Ariely and Za-
uberman (2000) and Nelson and Meyvis (2008).
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may offer new insights into, for instance, designing optimal wage schemes, promotions, or

unemployment benefits.27

4 Markovian memory

This section studies a prominent special case of our general representation that is partic-

ularly suitable for applications in macroeconomics and repeated games, as illustrated in

Section 2. Specifically, we provide a behavioral characterization according to which the

memory of past consumption follows a Markovian law of motion: the value of memories

(i.e., the utility derived from them) at any time t is determined only by the corresponding

value at time t − 1 and the consumption at time t, and it does not depend directly on the

patterns of consumption at earlier dates. Hence, the utility from memorable consumption

can be thought of as a “stock” variable that is driven by the current consumption and

evolves according to a time-invariant Markov process.

4.1 The Markovian property

We start by introducing the notion of a tradeoff between memory and consumption.

Definition 1. We say that the memory after a stream f k-dominates the consumption z,

where k > 0, f ∈ F , and z ∈ C, if
(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z). (11)

We denote relationship (11) by f ≿m∶k z. A similar strict preference

(f ∣0) ≻ 1

k + 1
f +

k

k + 1
(f ∣z)

is denoted by f ≻m∶k z.

To understand the gist of this definition, observe that the left-hand side of (11), in

comparison to the right-hand side, offers the agent a greater chance of enjoying the memory

of f in the subsequent time period — on the left-hand side, the probability of enjoying such

27See, e.g., Kahneman and Thaler (1991) for a discussion of the implications of adaptation for job
satisfaction.
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a memory is one, while on the right-hand side it is only k
k+1 , a difference of 1

k+1 . In exchange

for that, the right-hand side offers the agent a potentially higher level of consumption

in the last period, z instead of zero.28 The additional consumption of z is available to the

agent with probability k
k+1 . Thus, the pattern in (11) describes a preference for enjoying the

memory produced by f over the direct benefits of consuming z. Moreover, this preference

is quantified: if the agent prefers the left-hand side, then, loosely speaking, the pleasure of

the memory produced by f is at least k times greater than the pleasure of consuming z.29

The notion of consumption-memory tradeoff allows us to compare consumption streams

in terms of their value for generating future memories. As formally stated next, a stream f

memory-wise dominates another stream g if, for any consumption bundle z that the agent

is willing to give up to enjoy the memory of g, she is willing to give it up to enjoy the

memory of f a fortiori.

Definition 2. For f, g ∈ F , we say that f generates a higher value of memory for the next

period in comparison to g if

g ≿m∶k z ⇒ f ≿m∶k z for all k > 0 and z ∈ C.
We denote such a relationship between streams f and g by f R≿ g. Extending this definition,
we say that f generates a strictly higher value of memory in comparison to g if

g ≿m∶k z ⇒ f ≻m∶k z for all k > 0 and z ∈ C,
and we denote this relationship by f S≿ g. Finally, we say that f generates the same value

of memory as g if

g ≿m∶k z ⇔ f ≿m∶k z for all k > 0 and z ∈ C,
and we denote this relationship by f I≿ g.

The above definitions achieve two important goals. First, they provide a behavioral notion

of what it means for one consumption stream (f0, . . . , ft−1) to produce a higher-valued

28The use of the neutral element 0 on the left-hand side of the above definition is convenient but not
mandatory. This and subsequent definitions can be modified to use a different reference point for measuring
tradeoffs.

29As is usually the case, it is the usage of lotteries that allows us to give cardinal meaning to relationships
between utility levels.
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memory for the period t relative to another stream (g0, . . . , gt−1), regardless of the utilities

that these streams generate for periods 0, . . . , t − 1. We will use this property shortly to

set up the Markovian case. Second, these definitions enable the comparison of the value of

memory for streams of different lengths. As a consequence, they can be used to verify that it

is, indeed, behaviorally meaningful to attribute the memory utility M(ft−1, . . . , f0,0,0, . . .)
to date t in the general representation (8).

We apply the above definition to formulate our key axiom for the Markovian represen-

tation.

Axiom A8 (Markovian Property). For any f, g ∈ F ,
f I≿ g ⇒ (f ∣c) I≿ (g∣c) for all c ∈ C.

The antecedent of this property considers the situation in which the memory effect of f

is equivalent to that of g. That is, both streams generate the same value of memory in the

period following the consumption of their respective last component. The axiom maintains

that if these two streams are extended by an additional period of identical consumption,

then the value of memories remains the same. This captures the idea of a Markovian process:

the memory generated by the extended stream depends only on the memory generated by

the original stream and the last-period consumption.

Our next theorem shows that this property, together with our basic axioms (A1)–(A7),

delivers a convenient time-invariant Markovian representation.

For a function ψ ∶ I × C → R, where I ⊆ R and 0 ∈ I, we say that it is normalized if

ψ(0,0) = 0, and it is recursively bounded if all sets It for t ∈ N ∪ {0} defined recursively as

I0 = {0} and It = ψ(It−1,C) for t ∈ N are bounded.

Theorem 3. Let ≿ be a complete preorder on L. The following statements are equivalent:

(i) ≿ satisfies Axioms (A1)–(A7) and (A8);

(ii) there exist a scalar β ∈ (0,1), a continuous and bounded function u ∶ C → R with u(0) =
0, an interval I of R that contains 0, and a normalized, continuous, and recursively

bounded function ψ ∶ I × C → I with rangeψ = I such that a utility representation of

≿ on L is V (P ) = ∑f∈suppP P (f)V (f) for all P ∈ L, where V (f) for all f ∈ F is
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computed as

V (f) = ℓ(f)−1

∑
t=0

βt[u(ft) +mt−1],
where mτ = ψ(mτ−1, fτ) for τ = 0, . . . , ℓ(f) − 2,

m−1 = 0.

(12)

According to representation (12), the evaluation of a stream f at any time t is given

by u(ft) +mt−1, where u(ft) is the material utility of ft and mt−1 is the stock of memory

accumulated up to time t. The function ψ describes the process of incorporating the memory

effect of consuming ft into mt−1, giving rise to the next-period value, mt. Similar to all

specifications of the memory utility discussed earlier, memory may have long-lasting effects

here, as well. However, the dependence of mt on consumption in periods t − 1, . . . ,1,0 is

encapsulated in the previous stock of memory, mt−1. This is the nature of our Markovian

evolution of memory. Note that such a recursive process of computing the values of mt is

particularly tractable because the function ψ is independent of time.

Theorem 3 represents preferences in terms of quadruples of the form (β,u, I,ψ). These
quadruples are essentially unique, as shown next.

Proposition 4. Two quadruples (β,u, I,ψ) and (β̂, û, Î , ψ̂) represent the same binary re-

lation ≿ on L as in Theorem 3 if and only if β̂ = β and there exists λ > 0 such that û = λu,

Î = λI, and ψ̂(m,c) = λψ(m/λ, c) for all m ∈ Î and c ∈ C.

4.2 Properties of the memory evolution function

In studying possible specifications for the law of motion of memory, monotonicity of the

function ψ in its first or second argument stands out as a desirable feature. These mono-

tonicity properties have natural behavioral counterparts, as shown next.

Axiom A9 (Monotonicity in Memory). For any f, g ∈ F , f R≿ g implies (f ∣c) R≿ (g∣c)
for any c ∈ C.

This axiom prescribes that the relationship between any two non-degenerate streams f

and g in terms of value of memory is preserved if they are both extended by one period of
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extra consumption c.30

Axiom A10 (Monotonicity in Consumption). For any x, y ∈ C, (x) ≿ (y) implies (f ∣x) R≿
(f ∣y) for any f ∈ F .

This axiom simply ensures that a better bundle in terms of direct consumption should

generate a greater value of memory if adjoined to any consumption stream.

The following proposition confirms that each of these properties is equivalent to the

monotonicity of the memory evolution function in the respective argument.

Proposition 5. Suppose that ≿ is a complete preorder on L that satisfies Axioms (A1)–

(A8), and let (β,u, I,ψ) be its representation as in Theorem 3. Then:

(i) ≿ satisfies Monotonicity in Memory if and only if ψ(m1, c) ≥ ψ(m2, c) for all m1,m2 ∈

I such that m1 ≥m2 and all c ∈ C;
(ii) ≿ satisfies Monotonicity in Consumption if and only if ψ(m,c1) ≥ ψ(m,c2) for all

m ∈ I and all c1, c2 ∈ C such that u(c1) ≥ u(c2).

4.3 Comparative statics analysis

This section presents a formal comparative statics analysis for our model. We propose two

ways to compare agents to determine whether one of them is more sensitive to memorable

experiences than the other. This inquiry is useful for the purpose of developing parametric

examples of the memory evolution function.

As is standard in comparative statics analyses, we start by disentangling the effects of

memorable consumption from other unrelated determinants of decision making. To this

end, we consider agents who differ in their attitudes toward memorable consumption, but

are identical in assessing atemporal risk (including deterministic consumption bundles).31

The following routine definition formalizes these assumptions.

Definition 3. We say that ≿1 and ≿2 on L have the same risk attitude if

(p) ≿1 (q) ⇔ (p) ≿2 (q) for all p, q ∈ L1. (13)

30Incidentally, note that Monotonicity in Memory implies the Markovian property.
31The other relevant component of individual tastes is the time attitude. As will be clear later, our

comparative statics’ definitions allow the agents to differ in that dimension.
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If (β1, u1, I1, ψ1) and (β2, u2, I2, ψ2) are representations of ≿1 and ≿2, respectively, as in

Theorem 3, then they have the same risk attitude if and only if there exists λ > 0 such that

u2 = λu1.

The next definition introduces a key tool for comparing individuals. It builds upon the

notion of a tradeoff between immediate consumption and memories and extends Definition 2

from a single agent to comparisons across different agents.

Definition 4. Let ≿1 and ≿2 on L have the same risk attitude. For f, g ∈ F , we say that f

generates a higher value of memory for the next period for ≿1 in comparison to g for ≿2 if

g ≿m∶k2 z ⇒ f ≿m∶k1 z for all k > 0 and z ∈ C.
We denote the above relationship by f ≿1R≿2 g. We also say that f generates a strictly

higher value of memory for ≿1 in comparison to g for ≿2 if

g ≿m∶k2 z ⇒ f ≻m∶k1 z for all k > 0 and z ∈ C.
We denote this relationship by f ≿1S≿2 g. Finally, we say that f generates the same value

of memory for ≿1 as g for ≿2 if

g ≿m∶k2 z ⇔ f ≿m∶k1 z for all k > 0 and z ∈ C.
We denote this relationship by f ≿1I≿2 g.
4.3.1 Comparative persistence of memory

We now study the comparative attitudes towards memorable consumption. Our first defi-

nition provides a way to infer from choice behavior whether memory has a more persistent

effect for one agent compared to another.

Definition 5. Let ≿1 and ≿2 on L satisfy Monotonicity in Memory (A9) and have the same

risk attitude.

(a) Positive memorable consumption has longer effects for ≿2 in comparison to ≿1 if, for

any f, g ∈ F such that f ≿1I≿2 g, we have that:

f R≿1 (0) ⇒ (g∣0) ≿2R≿1 (f ∣0).
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(b) Negative memorable consumption has longer effects for ≿2 in comparison to ≿1 if, for

any f, g ∈ F such that f ≿1I≿2 g, we have that:

(0) R≿1 f ⇒ (f ∣0) ≿1R≿2 (g∣0).
Parts (a) and (b) provide symmetric definitions that distinguish between positive and

negative experiences. Consider Part (a) first. We consider two consumption streams, f

and g, that produce the same stock of memories for Agent 1 and 2, respectively.32 The

antecedent of the implication formula defines the sign of the stock of memory: if stream

f generates a higher value of memory than the neutral element (0) for Agent 1, then it

must be that f brings pleasant memories to her. Note that this assumption, together with

f ≿1I≿2 g, implies that g has a higher value of memory than (0) for Agent 2, as well. Thus,
Part (a) restricts attention to comparisons of agents with equivalent baggage of positive

experiences. Now, extend streams f and g by adding one last period of zero consumption.

That is, consider the pair of streams f ∣0 and g∣0 such that its only difference from pair

f and g is that the extended streams allow both agents to enjoy their memories for one

extra period. (Note that Monotonicity in Memory guarantees that the extended streams

f ∣0 and g∣0 keep generating positive memories like the initial streams f and g.33) Then, we

say that a positive memory has longer effects for Agent 2 than for Agent 1 if g∣0 generates

a higher value of memory for Agent 2 than f ∣0 does for Agent 1. We interpret this pattern

as evidence that g persists longer in Agent 2’s mind than does f in Agent 1’s.

Part (b) presents a symmetric notion for unpleasant experiences. Here, the indices of 1

and 2 are reversed in the consequent because, when studying the effects of negative expe-

riences, we seek to capture the greater absolute value of the effect.

Proposition 6 provides a characterization of the behavioral concept developed above in

terms of the Markovian representation and shows the way in which comparative memory

persistence is determined by the Markovian function ψ.

32Note that it would not be sufficient to consider one common stream for both agents. From a subjective
viewpoint, the same stream may give rise to memories of different value for different agents. By considering
different streams and letting individuals express their preferences, we take this aspect fully into account.

33Monotonicity in Memory can be dropped in this definition. Then, to preserve the same sign for the
memories of the extended streams, we would need to strengthen the consequent by adding (f ∣0) R≿1 (0)
in Part (a) and (0)R≿1 (f ∣0) in Part (b).
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Proposition 6. Suppose that ≿1 and ≿2 are complete preorders on L that satisfy Ax-

ioms (A1)–(A8) and Monotonicity in Memory (A9), and have the same risk attitude. Let

(β1, u, I1, ψ1) and (β2, u, I2, ψ2) be their representations, as in Theorem 3. Then,

(i) ≿2 exhibits longer effects of positive memory if and only if ψ2(m,0) ≥ ψ1(m,0) for all
m ∈ I1 ∩ I2 such that m ≥ 0;

(ii) ≿2 exhibits longer effects of negative memory if and only if ψ2(m,0) ≤ ψ1(m,0) for all
m ∈ I1 ∩ I2 such that m ≤ 0.

4.3.2 Comparative strength of memory

The comparative statics analysis can be performed along another dimension that reflects

how easy it is for an agent to generate valuable memory. More precisely, we propose a

ranking criterion that is based on the minimal level of consumption sufficient to maintain

the stock of memory at a particular level. The ranking is going to reflect how sensitive the

agent’s memory is to her consumption. At the same time, since the stock of memory in the

Markovian specification is measured in terms of its utility, this criterion can be interpreted

as a way to compare the strength of the effects of memorable consumption — the smaller

the consumption that maintains a particular level of utility from memory, the stronger is

the effect of memorable consumption on the agent’s behavior.

Definition 6. Let ≿1 and ≿2 on L have the same risk attitude.

(a) Positive memorable consumption has stronger effects for ≿2 in comparison to ≿1 if, for

any f1, f2 ∈ F such that f1 ≿1I≿2 f2 and f1 R≿1 (0), we have that

(i) if (f1∣x) R≿1 f1, (f2∣y) R≿2 f2, and (y) ≿2 (x) ≿2 (0) for some x, y ∈ C, then
(f2∣x)R≿2 f2 and (f1∣y)R≿1 f1;

(ii) if (f1∣x) S≿1 f1, (g∣y) S≿2 f2, and (y) ≿2 (x) ≻2 (0) for some x, y ∈ C, then

(f2∣x) S≿2 f2 and (f1∣y) S≿1 f1.
(b) Negative memorable consumption has stronger effects for ≿2 in comparison to ≿1 if, for

any f1, f2 ∈ F such that f1 ≿1I≿2 f2 and (0)R≿1 f1, we have that

(i) if f1 R≿1 (f1∣x), f2 R≿2 (f2∣y), and (0) ≿2 (x) ≿2 (y) for some x, y ∈ C, then
f2 R≿2 (f2∣x) and f1 R≿1 (f1∣y);
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(ii) if f1 S≿1 (f1∣x), f2 S≿2 (f2∣y), and (0) ≻2 (x) ≿2 (y) for some x, y ∈ C, then
f2 S≿2 (f2∣x) and f1 S≿1 (f1∣y).

Analogously to the previous notion of comparative persistence, Part (a) considers the

case in which a stock of memory represents positive experiences for Agent 2 (and, hence,

for Agent 1, as well). Suppose that two streams, f1 and f2, produce the same stock of

memory for Agents 1 and 2, respectively, as revealed by the comparative relation ≿1I≿2 .
Suppose, also, that x and y are consumption bundles that make the extended streams

f1∣x and f2∣y more valuable memory-wise than the original streams f1 and f2 for them.

Importantly, suppose that the bundle y is weakly preferred to x (by both agents, clearly).

Then, the axiom prescribes that x and y are interchangeable, in that they both increase

the stock of memory for both individuals. This requirement rules out two situations that

conflict with the intuitive idea of sensitivity of memory to consumption and the strength of

memory effects. The first situation is that a bundle x increases the stock of memory for less

sensitive Agent 1 (weaker memory effects), while it fails to do so for more sensitive Agent 2,

for whom memory gets increased only by a better bundle y. The second situation is that

a bundle y increases the stock of memory for more sensitive Agent 2 (stronger memory

effects), while it fails to do so for less sensitive Agent 1, for whom memory gets increased

by a worse bundle x.

Part (a)(ii) repeats the same requirement for strict increases of the stock of memory,

and Part (b) states a symmetric definition for negative stocks of memory and consumption

levels (in which case the rankings of streams are reversed again to capture the absolute

magnitude of the effect).

The next proposition translates the behavioral notion of comparative strength into a

parametric characterization.

Proposition 7. Suppose that ≿1 and ≿2 are complete preorders on L that satisfy Ax-

ioms (A1)–(A8) and have the same risk attitude. Let (β1, u, I1, ψ1) and (β2, u, I2, ψ2) be
their representations as in Theorem 3.

(a) For i = 1,2, let c+i ∶ Ii ⇉ R and c̊+i ∶ Ii ⇉ R be correspondences (possibly, empty valued)

defined as c+i (m) = {r ≥ 0 ∶ u(c) = r for some c ∈ C and ψi(m,c) ≥ m} and c̊+i (m) =
{r > 0 ∶ u(c) = r for some c ∈ C and ψi(m,c) >m}. Then, positive memory has stronger
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effects for ≿2 in comparison to ≿1 if and only if c+2(m) and c̊+2(m) are dominated by

c+1(m) and c̊+1(m), respectively, in the strong set order for all m ∈ I1 ∩ I2 ∩R+;

(b) For i = 1,2, let c−i ∶ Ii ⇉ R and c̊−i ∶ Ii ⇉ R be correspondences (possibly, empty valued)

defined as c−i (m) = {r ≤ 0 ∶ u(c) = r for some c ∈ C and ψi(m,c) ≤m} and c̊−i (m) = {r <
0 ∶ u(c) = r for some c ∈ C and ψi(m,c) < m}. Then, negative memory has stronger

effects for ≿2 in comparison to ≿1 if and only if c−2(m) and c̊−2(m) dominate c−1(m) and
c̊−1(m), respectively, in the strong set order for all m ∈ I1 ∩ I2 ∩R−.

4.3.3 Examples

As an illustration, we present two parametric rules for the evolution of memory and analyze

the traits of longevity and strength in terms of the parameters of these rules.

Example 3. Suppose that Agents 1 and 2 are characterized by a Markovian memory repre-

sentation with the same β and u, and their evolution functions ψi have the following linear

autoregressive form:

ψi(m,c) = αim + (1 − αi)Kiu(c), (14)

where αi ∈ (0,1) and Ki > 0 for i = 1,2.

As follows from Proposition 6, the agent with longer positive memory has greater values

of ψi(m,0) ≡ αim for all non-negative values of m. Therefore, Agent 2’s positive memory

has a longer effect if and only if α2 ≥ α1 (and if and only if Agent 2’s negative memory has

a longer effect). Note that the longevity of memory is controlled only by the parameter α

and is unaffected by changes in K.

Next, we apply Proposition 7. The strength of the effect of positive memory is determined

by the ordering of the set of solutions of inequalities αim+(1−αi)Kiu(c) ≥m for i = 1,2 —

that is, u(c) ≥ 1
Ki

m — for all non-negative values of m, as well as for the set of solutions

of similar strict inequalities. Such a set for Agent 2 is dominated if and only if 1
K2
≤ 1

K1
.

Hence, Agent 2’s positive memory has a stronger effect if and only if K2 ≥ K1. Similar to

longevity, the strength of memory effect is controlled by one parameter — namely, K —

and this is independent of any changes in the other parameter, α.

Note that the specifications of the evolution of memory in the applications of Section 2
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can be thought of as belonging to the same class as (14). Indeed, consider the following

generalization of (14). Let v ∶ R → R be a strictly increasing function with v(0) = 0,

w ∶ C → R be another function, and let the law for the evolution of memory be defined as

ψ(m,c) = v(αv−1(m) + (1 −α)w(c)),
where α ∈ (0,1).34 We can then change variables by defining m̃t = v−1(mt) and rewrite the

Markovian representation (12) as

V (f) = ℓ(f)−1

∑
t=0

βt[u(ft) + v(m̃t−1)],
where m̃τ = αm̃τ−1 + (1 −α)w(fτ) for τ = 0, . . . , ℓ(f) − 2,

m̃−1 = 0.

(15)

Here, the stock of memory m̃t is measured in different “units” in comparison with (12),

which leads to a specification convenient for applications: AR(1)-type law for memory

and (potentially) non-linear function in the agent’s objective. In Section 2, the utility

specification is, indeed, given by (15) with v(m̃) = bm̃ − 1
2
am̃2, a, b > 0, and w(c) = c.

Example 4. Suppose that Agents 1 and 2 are characterized by a Markovian memory repre-

sentation with the same β and u, and their evolution functions ψi have the following form:

ψi(m,c) = αimax{m,Kiu(c)} + (1 − αi)Kiu(c), (16)

where αi ∈ [0,1] and Ki > 0 for i = 1,2.

As in the previous example, Agent 2’s positive memory has a longer effect if and only if

α2 ≥ α1. Note that the case αi = 1 corresponds to maximum longevity. In this case, memory

of a single positive experience never decays, and continues to contribute to the agent’s

per-period utility forever (or until a stronger positive experience occurs). To compare the

strength of effects across agents, we need, again, to order the sets of solutions of inequalities

αimax{m,Kiu(c)}+(1−αi)Kiu(c)} ≥m, as well as αimax{m,Kiu(c)}+(1−αi)Kiu(c)} >
m, for i = 1,2. The solutions of the weak inequalities become trivial for α = 1. However, weak

and strict inequalities, together, unambiguously determine the way agents are compared:

Agent 2’s positive experience has stronger memory effects if and only if K2 ≥K1.
34Example 3 corresponds to v(m) =m and w(c) =Kiu(c).
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5 Conclusion

We have presented a model of memorable consumption in temporal setup: the agent makes

choice over dated consumption streams, as well as lotteries over them. The model allows

to elicit from observables whether consumption is memorable or not for the agent. Due

to the uniqueness properties, we can distinguish between the utility derived from material

consumption and the utility derived from the “consumption of memories;” moreover, those

utilities can be rightfully attributed to time periods. Our axioms consist of testable prop-

erties that distinguish memorable effects from other types of history-dependent behavior

that violate time separability.

We devote special attention to the case of Markovian evolution of memory: we propose

a novel Markovian axiom and characterize an analytically tractable representation that

should be particularly useful for macro and other dynamic applications. The Markovian

setting brings to the fore two independent channels through which agents can be com-

pared — according to the strength of memory effects and to the longevity of their memory.

The model is illustrated with two examples in the classical settings of the consumption-

savings problem and asset pricing in a Lucas tree economy.

Appendix

A Proof of the basic representation

Lemma 8. Suppose that ≿ is a preference relation on L that satisfies the Memory-Con-

sumption Tradeoff Consistency and Continuity axioms. Then, for any t ∈ N, f, g ∈ Ft, and

p, q ∈ L1, we have

f ∣p ≿ g∣p ⇔ f ∣q ≿ g∣q.
Proof. First, we claim that, for any n ∈ N, and for any t ∈ N, f, g ∈ Ft, and p, q ∈ L1,

f ∣p ≿ g∣(n−1
n
p + 1

n
q) ⇔ f ∣( 1

n
p + n−1

n
q) ≿ g∣q. (17)

Indeed, for n = 1, this statement is a triviality. Suppose that it holds for some n ∈ N, and that

f ∣p ≿ g∣( n
n+1p +

1
n+1q) for some t ∈ N, f, g ∈ Ft, and p, q ∈ L1. Let q′ ∶= 1

n+1p +
n

n+1q. Note that
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n−1
n
p + 1

n
q′ = n

n+1p +
1

n+1q and, hence, it follows from assumptions that f ∣( 1
n
p + n−1

n
q′) ≿ g∣q′.

Now, observe that q′ is the midpoint between 1
n
p + n−1

n
q′ and q. Therefore, by Memory-

Consumption Tradeoff Consistency, f ∣q′ ≿ f ∣q, which completes the inductive step.

Now, the claim of the lemma follows from (17) by taking the limit n → ∞. Indeed, fix

arbitrary t ∈ N, f, g ∈ Ft, and p, q ∈ L1. If f ∣p ≻ g∣p then, by continuity, for all sufficiently

large n, we have f ∣p ≻ g∣(n−1
n
p + 1

n
q), which gives f ∣( 1

n
p + n−1

n
q) ≻ g∣q by the previous step

and, in the limit as n → ∞, f ∣q ≿ g∣q. If g∣p ≻ f ∣p, then the claim similarly holds. By the

symmetry of the claim with respect to renaming p and q, the only remaining case is f ∣p ∼ g∣p
and f ∣q ∼ g∣q, in which the claimed equivalence holds, as well.

Lemma 9. Let X be a connected separable topological space, Y a convex subset of a sepa-

rable topological vector space, and ≽ a continuous complete preorder on X × Y that has the

following properties:

(i) There exist x,x′, x0 ∈ X and y, y′, y0 ∈ Y such that (x, y0) ≻ (x′, y0) and (x0, y) ≻
(x0, y′).

(ii) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x′, y)⇒ (x, y′) ≽ (x′, y′).
(iii) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x, y′)⇒ (x′, y) ≽ (x′, y′).
(iv) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x′, 1

2
y + 1

2
y′)⇔ (x, 1

2
y + 1

2
y′) ≽ (x′, y′).

Then, there exist a continuous function Ux ∶ X → R and a continuous affine function

Uy ∶ Y → R such that

(x, y) ≽ (x′, y′) ⇔ Ux(x) +Uy(y) ≥ Ux(x′) +Uy(y′).
Proof. To verify the conditions of Wakker (1989, Th. III.4.1), observe that the assumptions

of the lemma immediately guarantee the existence of two essential coordinates and that

the coordinate independence property is satisfied.

It remains to show that the hexagon condition holds. Indeed, suppose that a, b, c ∈X and

u, v,w ∈ Y are such that (b, u) ≍ (a, v)35 and (c, u) ≍ (b, v) ≍ (a,w). Our goal is to show

that (c, v) ≍ (b,w). Let r = 1
2
u + 1

2
w. We claim that

(a, r) ≍ (a, v). (18)

35Here, we use ≍ to denote the symmetric part of ≽.
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If (b, u) ≻ (a, r) then, on the one hand, (a, v) ≻ (a, r). On the other hand, (b, u) ≻ (a, r)
implies by (iv) that (b, r) ≻ (a,w), which means that (b, r) ≻ (b, v). We obtained a contradic-

tion with (iii). The situation (a, r) ≻ (b, u) similarly leads to a contradiction. We conclude

that (a, r) ≍ (b, u) ≍ (a, v). Then, observe that (c, u) ≍ (b, v) ≍ (b, r), where the first part

holds by assumption and the second follows from (18) and (iii). Then, (c, r) ≍ (b,w) by (iv).

As follows from (18) and (iii), we also have (c, r) ≍ (c, v). The desired relationship follows

by transitivity.

Now, we can apply Wakker (1989, Th. III.4.1) to obtain that there exist nonconstant

continuous functions Ux ∶ X → R and Uy ∶ Y → R such that

(x, y) ≽ (x′, y′) ⇔ Ux(x) +Uy(y) ≥ Ux(x′) +Uy(y′). (19)

It remains to show that Uy must be affine. Indeed, (19) and property (iv) imply that, for

any y, y′ ∈ Y ,
Uy(y) −Uy(12y + 1

2
y′) ≥ Ux(x′) −Ux(x)⇔ Uy(12y + 1

2
y′) −Uy(y′) ≥ Ux(x′) −Ux(x)

for all x,x′ ∈ X .

(20)

Fix an arbitrary [a, b] ⊆ rangeUx, where a < b, and let ε ∈ (0, b−a). Then, the arbitrariness
of x and x′ in (20) gives that, for any y, y′ ∈ Y such that ∣Uy(y) −Uy(y′)∣ ≤ ε,

Uy(y) −Uy(12y + 1
2
y′) = Uy(12y + 1

2
y′) −Uy(y′).

Applying it repeatedly, this equation can be extended to all y, y′ ∈ Y . Moreover, it can be

rewritten as Uy(12y+ 1
2
y′) = 1

2
Uy(y)+ 1

2
Uy(y′). By continuity, it implies that Uy is affine.

Proof of Theorem 1. Only if part. Suppose that ≿ is a complete preorder on L that

satisfies Axioms (A1)–(A7). Throughout the proof, we will write zt for t ∈ N to denote an

element of Ft such that zt = (0,0, . . . ,0).
Step 1. On the subset L1 ⊂ L, ≿ admits an expected utility representation: there exists a

continuous and bounded function u ∶ C → R such that p ≿ q⇔ Ep[u] ≥ Eq[u] for all p, q ∈ L1.
Let u be normalized such that u(0) = 0. Moreover, Nondegeneracy directly implies that the

range of u admits both positive and negative values.
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Step 2. Independence, Part (ii) of Continuity, and Nondegeneracy ensure that the condi-

tions of the mixture space theorem (Herstein and Milnor, 1953) are satisfied and, therefore,

there exists an affine function V ∶ L → R that represents ≿ on L: P ≿ Q⇔ V (P ) ≥ V (Q)
for all P,Q ∈ L. By the uniqueness of the expected utility representation on L1, it must be

that the restriction of V to L1 is a positive affine transformation of the mapping p↦ Ep[u]
for p ∈ L1. Normalizing if necessary, assume that V (p) = Ep[u] for all p ∈ L1. Note that, by

the continuity axiom, V must be continuous when restricted to convex sets Lt for all t ∈ N.
Step 3. Risk Preference Consistency and Stationarity imply that, for all f, g ∈ F and

p, q ∈ L1,
f ∣p ≿ f ∣q ⇔ g∣p ≿ g∣q ⇔ p ≿ q.

Hence, by the uniqueness of the expected utility representation, it must be that for all t ∈ N,

there exist αt ∶ Ft → R and βt ∶ Ft → R++ such that

V (f ∣p) = αt(f) + βt(f)Ep[u] for all f ∈ Ft and p ∈ L1.
Step 4. This step establishes an alternative representation for ≿ restricted to Ft ×L1 for

all t ∈ N: we claim that there exist continuous functions Wt ∶ Ft → R such that

f ∣p ≿ g∣q ⇔ Wt(f) +Ep[u] ≥Wt(g) +Eq[u]
for all f, g ∈ Ft and p, q ∈ L1.

If, for some t ∈ N, we have f ∣p ∼ zt∣p for all f ∈ Ft and p ∈ L1, then, as follows from

Stationarity, we can let Wt(f) = 0 for all f ∈ Ft.

Otherwise, we obtain the claim by Lemma 9: Assumption (iv) holds due to Memory-

Consumption Tradeoff Consistency, (iii) by Risk Preference Consistency, (ii) by Lemma 8,

and (i) with respect to the second coordinate holds by Nondegeneracy and Stationarity.

Therefore, there exist continuous Wt ∶ Ft → R and continuous affine W ′
t ∶ L1 → R such

that f ∣p ≿ g∣q ⇔ Wt(f) +W ′
t (p) ≥ Wt(g) +W ′

t (q) for all f, g ∈ Ft and p, q ∈ L1. Then, as
follows from Risk Preference Consistency, p ≿ q⇔W ′

t (p) ≥W ′
t (q) for all p, q ∈ L1. Hence,

by the uniqueness of the expected utility representation, it must be that, for all t ∈ N, W ′
t

are positive affine transformations of our representation of ≿ restricted to L1 obtained in

Step 1. Then, normalizing if necessary, we can assume that, for all t ∈ N, W ′
t (p) = Ep[u] for

all p ∈ L1.
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Step 5. For all t ∈ N, the range of the mapping (f, p) ↦ Wt(f) + Ep[u] is convex, and,

therefore, by the uniqueness of ordinal representations, there must exist continuous and

strictly increasing functions ζt ∶ R→ R such that V (f ∣p) = αt(f) + βt(f)Ep[u] = ζt(Wt(f)+
Ep[u]) for all f ∈ Ft and p ∈ L1. Observe that, for any t ∈ N and any fixed f ∈ Ft, the

left-hand side of this equality is an affine function of p ∈ L1. Hence, ζt(⋅) must be positive

affine functions for all t ∈ N: ζt(x) = At + Btx for some At ∈ R and Bt ∈ R++. If we let

W̃t(f) ∶= At +BtWt(f) for all t ∈ N and f ∈ Ft, we obtain:

V (f ∣p) = W̃t(f) +BtEp[u] for all t ∈ N, f ∈ Ft, and p ∈ L1. (21)

Step 6. The Impatience axiom asserts that (c) ≻ (0, c) ≻ (0) for all c ∈ C such that

(c) ≻ (0). By taking the limit c→ 0 in the above and using continuity, we obtain (0,0) ∼ (0).
Using Stationarity and mathematical induction, it can be seen that zt ∼ (0) and V (zt) = 0;
in turn, by (21), we also have W̃t(zt) = 0.

Let β ∶= B1 and note that Impatience implies that β < 1. For any c ∈ C, let pc ∈ L1 be

defined as pc ∶= βδc+(1−β)δ0, and observe that V (0, c) = βu(c) = Epc[u] = V (pc), where the
first equality holds by (21) and the last equality by construction of V in Step 2. For any t ∈ N,

Stationarity gives that zt∣0∣c ∼ zt∣pc and, hence, by (21), Bt+1u(c) = BtEpc[u] = Btβu(c).
Since c was arbitrarily chosen, we have that Bt = βt for all t ∈ N and

V (f ∣p) = W̃t(f) + βt
Ep[u] for all t ∈ N, f ∈ Ft, and p ∈ L1. (22)

This equation holds also for t = 0 by letting W̃0 ∶= 0.

Step 7. Let M0 ∶ F0 → R be zero and Mt ∶ Ft → R for t ∈ N be defined as

Mt(ft−1, . . . , f0) ∶= β−t(W̃t(f0, . . . , ft−1) − V (f0, . . . , ft−1)). (23)

Using this definition in (22), we obtain that, for all t ∈ N and f ∈ Ft+1,

V (f0, . . . , ft−1, ft) = V (f0, . . . , ft−1) + βtMt(ft−1, . . . , f0) + βtu(ft).
Then, for all t ∈ N ∪ {0},

V (f0, . . . , ft) = t

∑
τ=0

βτ[u(fτ) +Mτ(fτ−1, . . . , f0)] for all f ∈ Ft+1.

Step 8. We claim that, for all t ∈ N and P ∈ L, V (zt∣P ) = βtV (P ). First, recall that
it was shown in Step 6 that V (zt∣0) = 0 for all t ∈ N. Now, fix t ∈ N, and observe that,
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by Stationarity, both P ↦ V (P ) and P ↦ V ((0)∣P ) are representations of the restriction

of ≿ to L. Hence, by uniqueness of affine representations, there exists b > 0 such that

V ((0)∣P ) = bV (P ) for all P ∈ L. As follows from (22), it must be that b = β. The claim

now follows by induction. Note that, by (22), we also have W̃ℓ(f)+t(zt∣f) = βtW̃ℓ(f)(f) for
all t ∈ N and f ∈ F .

Step 9. Now, we can define M ∶ C∞0 → R for all h ∈ C∞0 by letting M(h) = Ml(h) for an
arbitrary l ∈ N such that hτ = 0 for all τ ≥ l. (Note that, by the result of the previous step,

this definition does not depend on the choice of l.) Then, for all t ∈ N ∪ {0},
V (f0, . . . , ft) = t

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)] for all f ∈ Ft+1.

Step 10. Observe that M is continuous in the specified topology: for any t ∈ N, M(f)
coincides with Mt(f) for all f that are zero starting from time t. Functions Mt for t ∈ N

are defined through V and Wt that are continuous (Steps 2 and 4).

Furthermore, M is finite-horizon-bounded: for that, it is sufficient to show that Mt for

all t ∈ N are bounded. Indeed, note that we can rewrite (23) in Step 7 as Mt(ft−1, . . . , f0) =
β−t(V (f0, . . . , ft−1,0)−V (f0, . . . , ft−1)) for all f ∈ Ft. Then, the function V restricted to Ft

is bounded by the von Neumann-Morgenstern expected utility theorem because ≿ restricted

to Lt is a continuous preference relation. Representation (8) is now proven.

If part. Suppose that ≿ admits a utility representation via a function V , as specified

in (8). We next show that the axioms hold.

Stationarity. Let 0 ∈ C denote an element that is mapped by u into 0 ∈ R. Then, equa-

tion (8) gives V ((0)∣P ) = βV (P ) for all P ∈ L, which implies that (0)∣P ≿ (0)∣Q⇔ P ≿ Q

for all P,Q ∈ L.
Impatience. If (c) ≻ (0) for some c ∈ C, then, by (8), u(c) > 0. Then, V (c) = u(c) > βu(c) =

V (0, c) > 0.
Independence. Follows directly from the representation.

Risk Preference Consistency. For any f, g ∈ F and p, q ∈ L1, we have by (8) that f ∣p ≿
f ∣q⇔ Ep[u] ≥ Eq[u]⇔ g∣p ≿ g∣q.

Memory-Consumption Tradeoff Consistency. Define S ∶ Ft → R as

S(f) ∶= t−1

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)] + βtM(ft−1, . . . , f0,0,0, . . .).
40

Date: 2019-10-08 18:48:36 Revision: 89c72c7



Then, for any t ∈ N, f, g ∈ Ft, and p, q ∈ L1, we have by (8) that

f ∣p ≿ g∣(1
2
p + 1

2
q) ⇔ S(f) + βtEp[u] ≥ S(g) + βt (1

2
Ep[u] + 1

2
Eq[u]) ⇔

S(f) − S(g) ≥ βt (1
2
Eq[u] − 1

2
Ep[u]) ⇔

S(f) + βt (1
2
Ep[u] + 1

2
Eq[u]) ≥ S(g) + βtEq[u] ⇔ f ∣(1

2
p + 1

2
q) ≿ g∣q.

Continuity. For each t ∈ N, the mapping Ft → R defined as f ↦ ∑t−1
τ=0 β

τ[u(fτ) +
M(fτ−1, . . . , f0,0,0, . . .)] is continuous and bounded by the corresponding properties of u

andM . Hence, when restricted to Lt, V defined by (8) is continuous in the weak-* topology,

which establishes the first part of the axiom. The second part follows immediately from the

expected utility structure of V .

Nondegeneracy. The property follows directly from the fact that the range of u contains

both positive and negative values.

Proof of Proposition 2. Let (β,u,M) and (β̂, û, M̂) represent the same binary relation

≿ on L as in Theorem 1. By Wakker (1989, Obs. III.6.6′), there exist λ > 0 and d, d′ ∈ R such

that û = λu+d, and M̂ = λM+d′. As required by Theorem 1, it must be that u(0) = 0 = û(0).
Thus, d = 0 = d′, implying that û = λu and M̂ = λM . Moreover, it clearly must be that β = β̂

for the two triples to represent the same binary relation. The sufficiency of the conditions

can be directly verified.

B Proofs of Theorem 3 and Related Results

We start with a preliminary lemma that will be useful to prove Theorem 3.

Lemma 10. Suppose that a complete preorder ≿ on L satisfies Axioms (A1)–(A7), and let

(β,u,M) be its representation as in Theorem 1. Then, for all z ∈ C and k > 0,

(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z) ⇔ M(fℓ(f)−1, . . . , f0,0,0, . . .) ≥ ku(z).
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Proof. Let t ∶= ℓ(f). Using representation (8), we obtain

(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z) ⇔

V (f) + βtM(ft−1, . . . , f0,0,0, . . .) ≥
1

k + 1
V (f) + k

k + 1
[V (f) + βtu(z) + βtM(ft−1, . . . , f0,0,0, . . .)] ⇔

M(ft−1, . . . , f0,0,0, . . .) ≥ ku(z).

Proof of Theorem 3. Only if part. Suppose that ≿ is a complete preorder on L that

satisfies the specified axioms.

Step 1. Let V ∶ L → R be a utility representation of ≿ as in (8), with β, u, and M as

specified in Theorem 1. Let I ∶= {M(ft−1, . . . , f0,0,0, . . .) ∣ f ∈ Ft, t ∈ N} and note that I

contains 0 bacause M(0,0, . . .) = 0. Define ψ ∶ I × C → I as follows: For r ∈ R and c ∈ C,
ψ(r, c) ∶= M(c, ft−1, . . . , f0,0,0, . . .), where f ∈ Ft for some t ∈ N is an arbitrary act such

that M(ft−1, . . . , f0,0,0, . . .) = r.
Step 2. We claim that, in the above definition of ψ, the value of ψ(r, c) is independent

of the choice of f . Indeed, fix an arbitrary c ∈ C, and let f ∈ F and f ′ ∈ F be such that

M(ft−1, . . . , f0,0,0, . . .) =M(f ′t′−1, . . . , f ′0,0,0, . . .), where t = ℓ(f) and t′ = ℓ(f ′). Let f̂ ∈ Ft−1

and f̂ ′ ∈ Ft′−1 be the truncated streams: f = f̂ ∣ft−1 and f ′ = f̂ ′∣f ′t−1. We have

M(ft−1, . . . , f0,0,0, . . .) ≥ ku(z)⇔M(f ′t′−1, . . . , f ′0,0,0, . . .) ≥ ku(z) for all z ∈ C and k > 0,

and, therefore, by Lemma 10,

f̂ ∣ft−1 ≿m∶k z ⇔ f̂ ′∣f ′t−1 ≿m∶k z for all z ∈ C and k > 0.

By Axiom A8, we have

f ∣c ≿m∶k z ⇔ f ′∣c ≿m∶k z for all z ∈ C and k > 0.

Applying Lemma 10 again, and since z and k are arbitrary, we conclude thatM(c, ft−1, . . . ,
f0,0,0, . . .) =M(c, f ′t′−1, . . . , f ′0,0,0, . . .).

Step 3. Now, we show that rangeψ = I. Let r ∈ I be chosen arbitrarily. By definition,

r = M(ft−1, . . . , f0,0,0, . . .) for some t ∈ N and f ∈ Ft. Let r̃ =M(ft−2, . . . , f0,0,0, . . .), and
observe that ψ(r̃, ft−1) = r by the result of the previous step. Hence, r ∈ rangeψ.
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Step 4. We claim that ψ is recursively bounded. Indeed, the sets It, t ∈ N ∪ {0} defined
recursively as I0 = {0} and It = ψ(It−1,C) for t ∈ N coincide with {M(ft−1, . . . , f0,0, . . .) ∣ f ∈
Ft} and, hence, are bounded for all t ∈ N ∪ {0} because M is finite-horizon bounded.

Step 5. Finally, we prove that ψ is continuous. Suppose, by contradiction, that ψ is not

continuous: there exist sequences {rn}∞n=1 in I and {cn}∞n=1 in C such that rn → r ∈ I,

cn → c ∈ C, ψ(rn, cn) → K ∈ R ∪ {−∞,+∞} as n → ∞, but K ≠ ψ(r, c). Passing to a

subsequence, we can assume that the sequence {rn}∞n=1 is either increasing or decreasing.

Note that I = ⋃∞t=1 It, where It = {M(ft−1, . . . , f0,0,0, . . .) ∣ f ∈ Ft}. Recall that M is

continuous; for each t ∈ N, Ft is connected and, hence, It is an interval; moreover, 0 ∈ It.

Therefore, we can find some t ∈ N such that r ∈ It and rn ∈ It for all n ∈ N. Let f (1) and

f in Ft be such that M (f (1)t−1 , . . . , f
(1)
0 ,0,0, . . .) = r1 and M (ft−1, . . . , f0,0,0, . . .) = r. For

n ∈ N, n ≥ 2, let f (n) ∶= (1 − γn)f (1) + γnf , where, for each n ∈ N, n ≥ 2, γn is chosen

such that M (f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .) = rn, which is possible by continuity. Passing to a

subsequence, {γn}∞n=1 converges, and, hence, {f (n)}∞n=1 converges to some f (∞) ∈ Ft. Observe

that r = limn→∞ rn = limn→∞M (f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .) =M (f (∞)t−1 , . . . , f

(∞)
0 ,0,0, . . .) by the

continuity of M . By the result of Step 2, we have ψ(rn, cn) =M (cn, f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .)

for all n ∈ N and ψ(r, c) = M (c, f (∞)t−1 , . . . , f
(∞)
0 ,0,0, . . .); by the continuity of M , we have

limn→∞M (cn, f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .) = M (c, f (∞)t−1 , . . . , f

(∞)
0 ,0,0, . . .); and we obtain that

limn→∞ψ(rn, cn) = ψ(r, c), a contradiction to our assumption.

If part. Assume that there exist a scalar β ∈ (0,1), a function u ∶ C → R, and a function

ψ ∶ I × C → I for some interval I ⊆ R as described in the theorem, such that V (P ) =
∑f∈suppP P (f)V (f) for all P ∈ L, where V (f) is computed as in (12).

Let M ∶ C∞0 → R be defined as follows. For h = (h0, h1, . . . , ht−1,0,0, . . .) ∈ C∞0 , where

t ∈ N ∪ {0}, let m−1 = 0; for τ = 0, . . . , t − 1, mτ = ψ(mτ−1, hτ); and, finally, M(h) = mt−1.

Note that in this construction, the value of M(h) does not depend on the choice of t as

long as hτ = 0 for all τ ≥ t.

Clearly, M satisfies the normalization condition M(0,0, . . .) = 0.
Next, observe that it is also finite-horizon-bounded: for any T ∈ N ∪ {0}, the range of

M when restricted to the set {f ∈ C∞0 ∶ ft = 0 for all t ≥ T} can be computed recursively as

I0 = {0} and It = ψ(It−1,C) for t ∈ N and is bounded since ψ is recursively bounded.
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Finally, we establish the continuity of M . Suppose that a net {h(α)}α converges to some

h in C∞0 . Hence, for some T ∈ N such that ht = 0 for all t ≥ T , there exists an index α0

such that h
(α)
t = 0 for all α ≥ α0 and t ≥ T , and sup0≤t≤T ∣ht − h(α)t ∣ converges to zero. Then,

M (h(α)) = ψ (ψ (. . . ψ (0, h(α)T−1) , . . . , h(α)1 ) , h(α)0 )→M(h) = ψ(ψ(. . . ψ (0, hT−1) , . . . , h1), h0)
because of the continuity of ψ.

Thus, we can apply the converse direction of Theorem 1 to conclude that Axioms (A1)–

(A7) hold. It remains to show that Axiom (A8) holds, as well.

Suppose that f, g ∈ F and x, y ∈ C are such that

f ∣x ≿m∶k z ⇔ g∣y ≿m∶k z for all z ∈ C and k > 0.

By Lemma 10, this gives

M(x, fℓ(f)−1, . . . , f0,0,0, . . .) ≥ ku(z)⇔M(y, gℓ(g)−1, . . . , g0,0,0, . . .) ≥ ku(z) ∀z ∈ C, k > 0.
Due to the arbitrariness of z and k and the fact that rangeu takes both positive and negative

values, it must be that M(x, fℓ(f)−1, . . . , f0,0,0, . . .) = M(y, gℓ(g)−1, . . . , g0,0,0, . . .). Fix an

arbitrary c ∈ C. Then, M(c, x, fℓ(f)−1, . . . , f0,0,0, . . .) = ψ(M(x, fℓ(f)−1, . . . , f0,0,0, . . .), c) =
ψ(M(y, gℓ(g)−1, . . . , g0,0,0, . . .), c) =M(c, y, gℓ(g)−1, . . . , g0,0,0, . . .). By Lemma 10, again,

f ∣x∣c ≿m∶k z ⇔ g∣y∣c ≿m∶k z for all z ∈ C and k > 0.

Proof of Proposition 4. We will prove the necessity by using the fact that Theorem 3

is a special case of the general representation in Theorem 1. Let (β,u, I,ψ) and (β̂, û, Î , ψ̂)
represent the same binary relation ≿ on L as in Theorem 3.

Define M ∶ C∞0 → R recursively via ψ in the same way as in the proof of the “if part” of

Theorem 3, and, similarly, M̂ via ψ̂. As pointed out in that proof, such functionsM and M̂

satisfy the properties of Theorem 1. By the uniqueness result for the general representation

(Proposition 2), β = β̂, and there exists λ > 0 such that û = λu and M̂ = λM . Now, fix

arbitrary r ∈ Î and c ∈ C. Let t ∈ N and f ∈ Ft be such that r = M̂(ft−1, . . . , f0,0,0, . . .), and
note that r = λM(ft−1, . . . , f0,0,0, . . .). Then, by the construction of the functions M and

M̂ , we have M̂(c, ft−1, . . . , f0,0,0, . . .) = ψ̂(r, c) and M(c, ft−1, . . . , f0,0,0, . . .) = ψ ( 1λr, c),
which gives ψ̂(r, c) = λψ ( 1

λ
r, c).

The sufficiency of the conditions can be verified directly.
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Proof of Proposition 5. Part (i). Suppose that ≿ satisfies Monotonicity in Memory. Let

m1,m2 ∈ I such that m1 ≥ m2. By construction of I, there exist f, g ∈ F such that m1 =

M(ft−1, . . . , f0,0,0, . . .) and m2 = M(gt′−1, . . . , g0,0,0, . . .), where t = ℓ(f) and t′ = ℓ(g).
Then, M(gt′−1, . . . , g0,0,0, . . .) ≥ ku(z) implies M(ft−1, . . . , f0,0,0, . . .) ≥ ku(z) for all z ∈ C
and k > 0, which, by Lemma 10, is equivalent to f R≿ g. By Monotonicity in Memory, we

have (f ∣c)R≿ (g∣c) for all c ∈ C. Using Lemma 10, again, and the Markovian representation,

it follows that ψ(m2, c) ≥ ku(z) ⇒ ψ(m1, c) ≥ ku(z) for all z ∈ C and k > 0. Since z and k

are arbitrary, we conclude that ψ(m1, c) ≥ ψ(m2, c).
Part (ii). Suppose that ≿ satisfies Monotonicity in Consumption. Let m ∈ I and c1, c2 ∈ C

such that u(c1) ≥ u(c2). Then, there exists f ∈ F such that m = M(ft−1, . . . , f0,0,0, . . .)
where t = ℓ(f). Since (c1) ≿ (c2), we have (f ∣c1)R≿ (f ∣c2). By Lemma 10 and the Markovian

representation, ψ(m,c2) ≥ ku(z)⇒ ψ(m,c1) ≥ ku(z) for all z ∈ C and k > 0. Since z and k

are arbitrary, we conclude that ψ(m,c1) ≥ ψ(m,c2).
The sufficiency of the conditions for both parts can be verified directly.

Proof of Proposition 6. Part (a). Assume that ≿2 exhibits longer effects of positive mem-

ory. Fix an arbitrary m ∈ I1 ∩ I2 ∩ R+. By construction of I1 and I2, we can find f, g ∈ F
such that m = M1(ft−1, . . . , f0,0,0, . . .) = M2(gt′−1, . . . , g0,0,0, . . .) ≥ 0, where t = ℓ(f) and
t′ = ℓ(g). Then, M1(ft−1, . . . , f0,0,0, . . .) ≥ ku(z)⇔M2(gt′−1, . . . , g0,0,0, . . .) ≥ ku(z) for all
z ∈ C and k > 0. Hence, by definition, f ≿1I≿2 g. By the definition of longer effects of positive

memory, this implies that (g∣0) ≿2R≿1 (f ∣0). As follows from Lemma 10 and the Markovian

formula for the M1 and M2 functions, this relationship is equivalent to

ψ1(m,0) ≥ ku(z)⇒ ψ2(m,0) ≥ ku(z) for all z ∈ C and k > 0.

Since z and k are arbitrary, we conclude that ψ2(m,0) ≥ ψ1(m,0).
Part (b). Assume that ≿2 exhibits longer effects of negative memory. Let m ∈ I1∩I2∩R−.

Similarly to the above argument, we can find f, g ∈ F such thatm =M1(ft−1, . . . , f0,0,0, . . .) =
M2(gt′−1, . . . , g0,0,0, . . .) ≤ 0. Thus, we have that (0) R≿1 f ≿1I≿2 g, and Definition 5b im-

plies that (f ∣0) ≿1R≿2 (g∣0). Monotoncity in Memory ensures that (0)R≿1 (f ∣0). Using the

Markovian representation, we obtain

ψ2(m,0) ≥ ku(z)⇒ ψ1(m,0) ≥ ku(z)⇒ 0 ≥ u(z) for all z ∈ C and k > 0.
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Thus, it must be that 0 ≥ ψ1(m,0) ≥ ψ2(m,0).
The converse implication for both parts is routine.

Proof of Proposition 7. Part (a). Assume that positive memory has stronger effects for

≿2 in comparison to ≿1. Letm ∈ I1∩I2∩R+. By construction of I1 and I2, we can find f, g ∈ F
such that m = M1(ft−1, . . . , f0,0,0, . . .) = M2(gt′−1, . . . , g0,0,0, . . .) ≥ 0, where t = ℓ(f) and
t′ = ℓ(g). Then, f ≿1I≿2 g R≿2 (0).

Pick arbitrary r ∈ c+1(m) and s ∈ c+2(m). If r > s, the conclusion immediately holds. Thus,

assume that s ≥ r. By definition of c+i (m) for i = 1,2, there exist x, y ∈ C such that u(x) = r,
u(y) = s, ψ1(m,x) ≥ m, and ψ2(m,y) ≥ m. This means that (y) ≿2 (x), (f ∣x) R≿1 f , and
(g∣y)R≿2 g. The conditions of part (a) of Definition 6 are therefore satisfied. It follows that

(f ∣y) R≿1 f and (g∣x) R≿2 g. Using the representation, the latter patterns are equivalent

to having ψ1(m,y) ≥ m, and ψ2(m,x) ≥ m, respectively. We conclude that s ∈ c+1(m) and
r ∈ c+2(m), that is, c+1(m) dominates c+2(m) in the strong set order. The proof that c̊+1(m)
dominates c̊+2(m) is analogous, and hence, we omit it.

Vice versa, assume that c+1(m) and c̊+1(m) dominate c+2(m) and c̊+2(m) for all m ∈ I1 ∩

I2 ∩R+. Let f, g ∈ F such that f ≿1I≿2 g R≿2 (0). Using the representation, this means that

M1(ft−1, . . . , f0,0,0, . . .) =M2(gt′−1, . . . , f0,0,0, . . .) =m ≥ 0 for some m ∈ I1 ∩ I2 ∩R+, where

t = ℓ(f) and t′ = ℓ(g). Moreover, suppose that (f ∣x) R≿1 f , (g∣y) R≿2 g, and (y) ≿2 (x) ≿2
(0) for some x, y ∈ C. Again, by the representation, we have ψ1(m,x) ≥ m, ψ2(m,y) ≥ m,

and clearly u(y) ≥ u(x) ≥ 0. Thus, there exist r, s ∈ R+ such that u(x) = r, u(y) = s, and
r ∈ c+1(m), s ∈ c+2(m). Since c+1(m) dominates c+2(m), it follows that s ∈ c+1(m) and r ∈ c+2(m).
By definition of c+i (m), we conclude that ψ1(m,y) ≥m and ψ2(m,x) ≥m. Similarly, it can

be shown that part (ii) of Definition 6 follows from the fact that c̊+1(m) dominates c̊+2(m).
Part (b). The proof is similar to the proof of Part (a). For the sake of completeness,

we next prove the “Only If” direction. Assume that negative memory has stronger effects

for ≿2 in comparison to ≿1. Let m ∈ I1 ∩ I2 ∩ R−. Then we can find f, g ∈ such that m =

M1(ft−1, . . . , f0,0,0, . . .) =M2(gt′−1, . . . , g0,0,0, . . .) ≤ 0. Then, (0) R≿1 f ≿1I≿2 g.
Let r ∈ c−1(m) and s ∈ c−2(m). Without loss of generality, assume r ≥ s. By definition

of c−i (m) for i = 1,2, there exist x, y ∈ C such that u(x) = r, u(y) = s, ψ1(m,x) ≤ m, and

ψ2(m,y) ≤ m. This means that (x) ≿2 (y), f R≿1 (f ∣x), and g R≿2 (g∣y). By part (b) of

Definition 6, it follows that f R≿1 (f ∣y) and g R≿2 (g∣x). Using the representation, we have
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ψ1(m,y) ≤m, and ψ2(m,x) ≤m. Thus, s ∈ c−1(m) and r ∈ c−2(m), that is, c−2(m) dominates

c−1(m) in the strong set order. Similarly, it can be shown that c̊−2(m) dominates c̊−1(m).

C For Online Publication: Calculations for Section 2.2

From the First-Order Conditions, we have µt = β(b − am̃t) + βαEt [µt+1]. Then:

Et [µt+1] = Et [β(b − am̃t+1)] + βαEt+1 [µt+2] (24)

=
T

∑
τ=1

Et [β(βα)τ−1(b − am̃t+τ)] + (βα)TEt [µt+T+1] = ∞∑
τ=1

Et [β(βα)τ−1(b − am̃t+τ)]
=

βb

1 − βα
− βa

∞

∑
τ=0

(βα)τEt [m̃t+τ+1] . (25)

Iteratively using the constraint m̃t = αm̃t−1 + (1 − α)ct yields m̃t+τ+1 = ατ+1m̃t + (1 −
α)∑τ+1

j=1 α
τ+1−jct+j . Recall, also, that in equilibrium ct = dt for all t. Thus, we can rewrite

the last component of (24) as

∞

∑
τ=0

(βα)τEt [m̃t+τ+1] = ∞∑
τ=0

(βα)τατ+1m̃t +

∞

∑
τ=0

(βα)τ(1 − α) τ+1∑
j=1

ατ+1−j
Et[dt+j] (26)

=
α

1 − βα2
m̃t + (1 − α) ∞∑

j=1

∞

∑
τ=j−1

(βα)τατ+1−j
Et[dt+j]

=
α

1 − βα2
m̃t + (1 − α) ∞∑

j=1

α1−j (βα2)j−1
1 − βα2

Et[dt+j]
=

α

1 − βα2
m̃t +

1 − α

1 − βα2

∞

∑
j=1

(βα)j−1Et[dt+j]. (27)

I.i.d. case Assume that the dividend is i.i.d with mean d̄; then, Et[dt+j] = E[dt+j] = d̄.
Thus, we can rewrite (27) as

∞

∑
τ=0

(βα)τEt [m̃t+τ+1] = α

1 − βα2
m̃t +

1 − α

1 − βα2

d̄

1 − βα
.
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The latter can be plugged into the expressions for Et [µt+1] and µt:

Et [µt+1] = βb

1 − βα
−

βαa

1 − βα2
m̃t −

β(1 − α)a
1 − βα2

d̄

1 − βα

=
β

1 − βα
[b − a(α(1 − βα)

1 − βα2
m̃t +

1 − α

1 − βα2
d̄)] ;

µt = β(b − am̃t) + β2α

1 − βα
[b − a(α(1 − βα)

1 − βα2
m̃t +

1 −α

1 − βα2
d̄)]

=
β

1 − βα
[b − a( 1 − βα

1 − βα2
m̃t +

βα(1 −α)
1 − βα2

d̄)] .
Plugging the above expressions into (6), we obtain the following formulation of Rf

t :

R
f
t =

1

β

u′(dt) + aβ(1 − α)( 1
1−βαm

∗ −
1

1−βα2mt −
βα(1−α)

(1−βα)(1−βα2)E[dt+1])
E[u′(dt+1)] + aβ(1 − α)( 1

1−βαm
∗ −

α
1−βα2mt −

1−α
(1−βα)(1−βα2)E[dt+1]) ,

where m∗ = b
a
.

Markovian case Assume that the dividend is represented by a vector Y with components

corresponding to each state of a Markov process with transition matrix P . We have

∞

∑
j=1

(βα)j−1Et[dt+j] = ∞∑
j=1

(βα)j−1P jY = (I − βαP )−1PY ;
Et [µt+1] = β

1 − βα
b −

βα

1 − βα2
am̃t −

β(1 −α)
1 − βα2

a(I − βαP )−1PY ;
= βa [ 1

1 − βα
m̃∗ −

α

1 − βα2
m̃t −

1 −α

1 − βα2
(I − βαP )−1PY ] ;

µt =
β

1 − βα
b −

β

1 − βα2
am̃t −

β2α(1 −α)
1 − βα2

a(I − βαP )−1PY.
Hence, the expression for the risk-free interest rate in the Markovian case is:

R
f
t =

1

β

u′(dt) + aβ(1 −α)( 1
1−βαm

∗ −
1

1−βα2mt −
βα(1−α)
(1−βα2) (I − βαP )−1PY )

E[u′(dt+1)] + aβ(1 − α)( 1
1−βαm

∗ −
α

1−βα2mt −
1−α

(1−βα2)(I − βαP )−1PY ) . (28)
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