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Abstract

Tournaments are settings where agents’ performance is determined jointly by effort
and luck, and top performers are rewarded. We study the impact of the “shape of
luck” – the details of the distribution of performance shocks – on incentives in tour-
naments. The focus is on the effect of competition, defined as the number of rivals
an agent faces, which can be deterministic or stochastic. We show that individual
and aggregate effort in tournaments are affected by an increase in competition in
ways that depend critically on the shape of the density and failure (hazard) rate of
shocks. When shocks have heavy tails, aggregate effort can decrease with stronger
competition.
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1 Introduction

[...] because the contests that mete out society’s biggest prizes are so

bitterly competitive, talent and effort alone are rarely enough to ensure

victory. In almost every case, a substantial measure of luck is also

necessary.

Robert H. Frank,

“Success and Luck: Good Fortune and the Myth of Meritocracy”

Luck, or lack thereof, plays a crucial role in people’s lives. The success stories we observe

in business, academia, sports or the arts can often be traced back to a “lucky moment” or

an unlikely sequence of events that defined the future path of success. Notable examples

are the stories of Bill Gates and Microsoft, Da Vinci’s Mona Lisa and actor Bruce Willis.

In fact, a lucky break, or sequence of breaks, underlying a success story is not an exception

but a rule (Mlodinow, 2009; Frank, 2016).1

Luck is especially important in winner-take-all (WTA) settings where rewards accrue

to the select few. Examples include R&D competition, admission to top universities, job

applications for an attractive position or competition for promotion in organizations. Ca-

reers in professional sports or the arts are predicated almost entirely on WTA incentives.

When many hard-working, equally able people are trying to achieve the same thing, suc-

cess requires a nontrivial amount of luck. As the number of competitors increases, so does

the chance that someone else will get a better draw, which should discourage individual

effort. Yet, economists typically believe that competition provides incentives in markets,

at least on the aggregate, leading to larger output, lower prices and higher efficiency (e.g.,

Ruffin, 1971). In symmetric auctions, revenue increases in the number of bidders (McAfee

and McMillan, 1987a). For R&D competition, empirical evidence shows a positive effect

of competition on investment in innovation even at the individual firm level (Vives, 2008).

In this paper, we study the effect of competition on incentives in WTA settings with a

significant luck component. To do so, we utilize the classic rank-order tournament model

1When Bill Gates was growing up, he was one of 50 or so students in the world who, by sheer chance,
had access to a programming terminal allowing to run code with instant feedback (Frank, 2016). The
key contract between IBM and Microsoft, which transformed the latter into a world-dominating software
company, was signed due to a series of random events; Microsoft did not even develop the initial version
of its famous operating system DOS (Mlodinow, 2009). Mona Lisa was not considered an exceptional
work of art until it was stolen from Louvre in 1911. The newspaper coverage of the painting’s theft and
recovery two years later created its global fame (Watts, 2011). Bruce Willis acted for seven years in small
roles in New York, his main income coming from bartending. He flew to Los Angeles for personal reasons,
went to a few television auditions, and got a role in Moonlighting far from being everyone’s top choice.
The first season flopped, but the second one became a hit, and the rest is history (Mlodinow, 2009).
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of Lazear and Rosen (1981). Agents’ output is given by effort distorted by additive noise,

and the agent whose output is the highest wins the tournament and receives a fixed prize.

The idiosyncratic noise is synonymous with luck in this model, and different distributions

of noise allow for different “shapes of luck.”

The contribution of this paper is to answer a very basic question: How are individual

and aggregate effort in tournaments affected by an increase in the number of competitors?

We consider both deterministic and stochastic settings. We show that the shape of the

distribution of noise – specifically, of its density and failure (hazard) rate – is crucial for

any prediction about the effect of competition on effort. There is not a single compara-

tive static, either for individual or aggregate effort, that cannot be reversed for at least

some distribution of noise. Individual and aggregate equilibrium effort can be increasing,

decreasing or nonmonotone in the number of players. We systematize and provide new

general results for these effects, both when the number of players is known and when it is

random. The results have many testable implications, as well as far-reaching applications

for tournament design.

In order to cleanly delineate the effects of the number of players and the distribution of

noise, we focus on a setting with symmetric players; that is, we assume away differences in

ability. While these differences undoubtedly play a critical role in success across the society

at large, the most intense competition takes place, and the impact of luck is especially

pronounced, in stratified sub-tournaments among (roughly) equally able contestants.2

Then, in the symmetric pure-strategy equilibrium, there are no differences in effort, and

the winner is the luckiest player, i.e., the one with the highest realization of noise.

A general intuition for our results is the following. Suppose there are n players,

and let X(i:n) denote the i-th order statistic among n realizations of noise. A marginal

increase in a player’s effort in the symmetric equilibrium is pivotal – that is, it makes

this player the winner – if his noise realization is equal to the highest realization of noise

among the other n − 1 players. This means, formally, that the equilibrium effort is

determined by the expectation of the density of noise with respect to X(n−1:n−1), which is

stochastically increasing in n. The comparative statics for monotone densities then follow

2For example, each year thousands of top high school graduates compete for admission to elite uni-
versities; the presence of unqualified applicants in the mix is largely irrelevant. A similar stratification
happens naturally in the job market for academic positions or in competition among papers submitted
to top journals. Even if quality varies substantially in the initial pool, the actual competition boils down
to a subset where quality is very close and, inevitably, luck comes into play. It is also widely believed
that tournaments become inefficient as agents’ heterogeneity increases (Lazear and Rosen, 1981). Thus,
tournament-based incentives are most likely to emerge in settings with symmetric agents.
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immediately. For example, in the case of the uniform noise distribution the number

of players does not affect the individual equilibrium effort. More generally, adapting

results from Athey (2002), we show that the unimodality of the distribution of noise

leads to the individual equilibrium effort being unimodal in the number of players. We

provide a general characterization of the equilibrium comparative statics for unimodal

noise distributions, from which all existing results follow as special cases.

Turning to aggregate effort, we start with the case where costs of effort are quadratic.

Using arguments similar to the ones in the previous paragraph, we show that aggregate

effort can be written as the expectation of the failure (hazard) rate of noise with respect

to X(n−1:n). Then, aggregate effort is increasing in the number of players if the noise

distribution has increasing failure rate (IFR), such as the normal, uniform and Gumbel

distributions. The comparative statics are reversed for distributions with decreasing fail-

ure rates (DFR), such as Pareto. We then generalize these results for cost functions more

or less convex than quadratic in the sense of the convex transform order (Shaked and

Shanthikumar, 2007).

The most counterintuitive results are obtained for aggregate effort in the presence of

a heavy tail in the distribution of noise. Such noise distributions, most notably power

laws (Gabaix, 2016), are typically characterized by a decreasing or (interior) unimodal

failure rate. Our results then imply a reduction in aggregate effort with the number of

players, at least in sufficiently large tournaments. Thus, under heavy-tailed shocks the

standard intuition about the effects of competition on effort breaks down. A principal

whose goal is to maximize aggregate effort or investment, e.g., in a promotion tournament

or an R&D race, would benefit from restricting the number of participants. Heavy-tailed

fluctuations are common in many areas often associated with tournament incentives, such

as sales of creative and innovative products or the financial sector. Our results suggest

that restricting competition can be beneficial in these settings.

We then extend the analysis to WTA tournaments with a stochastic number of players.

In many situations, the number of competitors is unknown to the tournament participants

at the time they decide how much to invest in competition. This is the case, for example,

in coding contests where an unknown and potentially very large number of coders submit

their solutions such as The Netflix Prize;3 in hiring tournaments where a job seeker does

3The Netflix Prize competition where the task was to improve the Netflix recommendation algorithm
for movies ran for three years overall and about 40,000 teams registered at some point. The final stage
lasted 30 days and the two best teams tied in terms of the score. One of the teams won because it
submitted its solution twenty minutes before the rival (The New York Times, 2009).
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not know how many others she is up against; or in promotion tournaments where an

employee may not know how many of her colleagues the management is considering for a

senior position.

Following the literature on auctions with a stochastic number of bidders (e.g., McAfee

and McMillan, 1987b; Harstad, Kagel and Levin, 1990; Levin and Ozdenoren, 2004), we

assume an arbitrary distribution of the number of players and explore the effects on

equilibrium effort of changes in the parameters of the distribution leading to first-order

stochastic dominance (FOSD); that is, we explore the effects of a stochastic increase in the

number of players. Similar to the case with a known number of players, the unimodality of

the distribution of noise plays a key role in robust comparative statics. We show that the

preservation of unimodality under uncertainty requires an additional log-supermodularity

condition imposed on the distribution of the number of players. This condition follows

from arguments similar to those of Athey (2002) for the preservation of single-crossing

under uncertainty. The condition is rather weak; it is satisfied, for example, by the

family of power series distributions which includes the distributions usually used in the

literature with stochastic number of players such as Poisson, binomial, negative binomial

and logarithmic distributions.

Finally, we study the design of optimal tournaments with stochastic participation and

look at two issues. The first issue is whether the uncertainty about the number of players

increases or decreases equilibrium effort. The second issue is whether the contest designer

should disclose the realized number of players. Among the 40,000 teams registered for

The Netflix Prize competition many were not active. Should Netflix have disclosed the

number of active participants?

Relation to prior literature

Starting with the seminal contributions of Tullock (1980) and Lazear and Rosen

(1981), there is by now a large theoretical literature on tournaments using the respective

models.4 An important feature of these models distinguishing them from “perfectly dis-

criminating” contests or all-pay auctions (e.g., Hillman and Riley, 1989; Baye, Kovenock

and De Vries, 1996; Siegel, 2009; Moldovanu and Sela, 2001) is the presence of uncertainty,

or “noise,” in the winner determination process.

Yet, the existing analysis of general tournament models is quite scarce. For tractabil-

ity reasons, most of the literature uses either the Tullock CSF (also known as the lottery

contest) and its lottery-form generalizations satisfying the axioms of Skaperdas (1996),

4See surveys by, e.g., Konrad (2009), Connelly et al. (2014), Corchón and Serena (2018).
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or the Lazear-Rosen tournament with two players.5 Relatively little is known about the

basic comparative statics of the WTA tournament model in general. While the symmetric

equilibrium effort decreases in the number of players in the Tullock contest (see, for exam-

ple, surveys by Nitzan, 1994; Corchón and Serena, 2018), it is independent of the number

of players in a Lazear-Rosen tournament when the distribution of noise is uniform. For

general tournaments with a fixed number of players, Gerchak and He (2003) provide an

important first step showing that the equilibrium effort is decreasing in the number of

players when the noise density is decreasing or unimodal and symmetric, and increasing

when the density is increasing. Even less is known about the behavior of aggregate ef-

fort beyond the Tullock contest and Lazear-Rosen tournament with uniformly distributed

noise where it is increasing in the number of players.

There is no study of general rank-order tournaments with a stochastic number of play-

ers. The previous literature is restricted to the Tullock contest model (and its lottery-form

generalizations), which we generalize. Myerson and Wärneryd (2006) compare aggregate

equilibrium effort in the case of an arbitrary distribution of group size with expectation

µ with the case when the number of players is equal to µ with certainty. Münster (2006)

and Lim and Matros (2009) study the comparative statics of effort when the distribution

of contest size is binomial.6 Fu, Jiao and Lu (2011) study the effect of disclosure of the

number of participating players on aggregate effort. Boosey, Brookins and Ryvkin (2018)

provide results on the effects of disclosure in contests between groups with stochastic

sizes. More generally, our paper is related to the literature on games with population

uncertainty, including auctions7 and Poisson games.8

The rest of the paper is organized as follows. Section 2 sets up the WTA tournament

model with additive or multiplicative noise. Section 3 focuses on tournaments with a

deterministic number of players. Section 4 analyzes the case of a stochastic number of

players. Section 5 provides technical results on the existence of equilibrium and the preser-

vation of unimodality under uncertainty that are used throughout the paper. Section 6

concludes. The proofs are contained in Appendix A.

5Notable exceptions are the papers analyzing optimal prize structures in tournaments with risk-averse
players (Nalebuff and Stiglitz, 1983; Green and Stokey, 1983; Krishna and Morgan, 1998; Akerlof and
Holden, 2012) and heterogeneity (Balafoutas et al., 2017). See also a survey of the earlier literature by
McLaughlin (1988).

6Münster (2006) also explores the effect of risk-aversion in the same setting.
7For a theoretical analysis of auctions with a stochastic number of bidders see, e.g., McAfee and

McMillan (1987b), Harstad, Kagel and Levin (1990) and Levin and Ozdenoren (2004).
8See, e.g., Myerson (1998, 2000); Makris (2008, 2009); De Sinopoli and Pimienta (2009); Mohlin,

Östling and Wang (2015); Kahana and Klunover (2015, 2016).
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2 Model setup

2.1 Preliminaries

There are k ≥ 2 identical, risk-neutral players indexed by i ∈ K = {1, . . . , k}. All players

simultaneously and independently choose efforts ei ∈ R+. The cost of effort ei to player

i is c(ei), where function c : R+ → R+ is strictly increasing,9 strictly convex, and twice

differentiable on (0, emax], where emax ≡ c−1(1) < ∞. Furthermore, c(0) = c′(0) = 0.

Efforts ei are perturbed by random additive shocks Xi to generate the players’ output

levels yi = ei + Xi. Shocks Xi are i.i.d. with cumulative distribution function (cdf)

F (·) and probability density function (pdf) f(·) defined on interval support U = [x, x],

where the bounds x and x may be finite or infinite.10 We assume that f(·) is atomless,

continuous, piecewise differentiable, and square-integrable. The winner of the tournament

is the player whose output is the highest.11 The winner receives a prize normalized to

one, whereas all other players receive zero.12

For a given vector of efforts (e1, . . . , ek), the probability of player i ∈ K winning the

tournament is given by

Pr(i wins) = Pr(yi > yj ∀j ∈ K \ {i}) = Pr(ei +Xi > ej +Xj ∀j ∈ K \ {i})

=

∫
U

 ∏
j∈K\{i}

F (ei − ej + x)

 dF (x). (1)

Consider a symmetric pure strategy Nash equilibrium in which all players choose effort

e∗ > 0. Using (1), the expected payoff of player i ∈ K from some deviation effort ei is

πi(ei, e
∗) =

∫
U

F (ei − e∗ + x)k−1dF (x)− c(ei). (2)

9Throughout this paper, unless noted otherwise, “increasing” will mean nondecreasing and “decreas-
ing” will mean nonincreasing. When distinctions are important, “strictly increasing” and “strictly de-
creasing” will be used.

10In this type of models, it is typically assumed that the shocks are zero-mean. While this assumption
can be made without loss of generality, it is not necessary because the probability of winning is determined
by differences in shocks. Moreover, shocks can be i.i.d. conditional on an additive common component.

11Ties are broken randomly but, under the assumption of atomless f(·), occur with probability zero.
12A more general setting could involve up to n distinct prizes; however, in this paper we are not

concerned with optimal contract design, and use the simplest “winner-take-all” prize structure. In a
follow-up paper (Drugov and Ryvkin, 2018), we extend the techniques developed here to study the
optimal allocation of prizes and related issues.
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The symmetric first-order condition for payoff maximization, ∂πi(ei,e
∗)

∂ei

∣∣∣
ei=e∗

= 0, gives

c′(e∗) = bk ≡ (k − 1)

∫
U

F (x)k−2f(x)dF (x). (3)

Note that c′(·) is a strictly increasing function; therefore, if Eq. (3) has a solution then it

is positive and unique for k ≥ 2. Such a solution, denoted e∗k, is a natural candidate for

the symmetric pure strategy equilibrium effort. In Section 5.1, we discuss the existence

of equilibrium in detail and formulate sufficient conditions on the primitives of the model

for e∗k to be the equilibrium.

Assuming it exists, the symmetric equilibrium effort e∗k is determined entirely by co-

efficients bk defined in (3), and most of the analysis that follows revolves around the

properties of these coefficients. Let F−1(z) = inf{x ∈ U : F (x) ≥ z} denote the quantile

function of the distribution of noise. Introduce also an unnormalized density function

m(z) = f(F−1(z)), known as the inverse quantile density function (Parzen, 1979). Inher-

iting its properties from f(·), function m(·) is continuous, piecewise differentiable, and

integrable. Using the probability integral transformation z = F (x), it will sometimes be

convenient to rewrite bk in Eq. (3) as

bk = (k − 1)

∫ 1

0

zk−2m(z)dz =

∫ 1

0

m(z)dzk−1 = E(m(Z(k−1:k−1))). (4)

Here, Z(k−1:k−1) is the (k − 1)-th order statistic of k − 1 i.i.d. uniform random variables

on [0, 1]. Representation (4) separates the effects of the number of players, k, from the

effects of the distribution of noise. The latter are contained entirely in the inverse quantile

density m(·), while the former are determined by a family of FOSD-ordered highest order

statistics of the uniform distribution with cdfs zk−1.

2.2 Multiplicative noise

Via simple transformations of the distribution of noise and the cost of effort, the additive

noise model above accommodates tournaments with multiplicative noise where player i’s

output is given by yi = eiXi and Xi are i.i.d. with a nonnegative support. The probability

of player i winning the tournament of k players can then be written as

Pr(i wins) = Pr(eiXi > ejXj ∀j ∈ K \ {i}) = Pr(êi + X̂i > êj + X̂j ∀j ∈ K \ {i}),
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where êi = ln ei and X̂i = lnXi. Note that êi is no longer restricted to nonnegative values.

Defining F̂ (x) = F (exp(x)) as the cdf of the transformed shocks X̂i, and ĉ(ê) = c(exp(ê))

as the cost function for the transformed effort ê, this model reduces to a tournament

model with additive noise, and all results go through.

Specifically, the first-order condition (3) for the transformed equilibrium effort, ê∗k =

ln e∗k, is ĉ′(ê∗k) = b̂k, where b̂k is based on distribution F̂ . Interestingly,

ĉ′(ê) = c′(exp(ê)) exp(ê) = c′(e)e;

therefore, the first-order condition for the original equilibrium effort is c′(e∗k)e
∗
k = b̂k. This

leads to the following proposition.

Proposition 1 The symmetric equilibrium effort in a tournament with multiplicative

noise is the same as in the tournament with additive noise distributed with cdf F̂ (x) =

F (exp(x)) and the cost of effort cm(e) =
∫ e

0
c′(t)tdt.

Tullock contests

As an illustration, consider contests with the CSF of Tullock (1980). The probability

of player i winning the contest of size k is given by
eri∑k
j=1 e

r
j

, where r > 0 is a parameter

measuring the level of noise (the “discriminatory power” of the contest) such that a lower

r corresponds to higher noise. The cost of effort is linear, c(e) = c0e. Following Jia (2008),

this probability of winning can be written as Pr(eiXi > ejXj ∀j ∈ K \ {i}) where Xj > 0

are i.i.d. with the generalized inverse exponential distribution with cdf F (x) = exp(−x−r).
That is, the Tullock contest can be represented as a tournament with multiplicative

noise. We can now use Proposition 1 to find the corresponding tournament with additive

noise. The transformed shocks X̂i = lnXi have the generalized extreme value type-I (or

Gumbel) distribution with cdf F̂ (x) = F (exp(x)) = exp[− exp(−rx)] and pdf f̂(x) =

r exp[−rx − exp(−rx)] (see Jia, Skaperdas and Vaidya, 2013). This pdf is unimodal,

with a maximum at zero, and skewed to the right. The transformed cost of effort is

cm(e) =
∫ e

0
c0tdt = c0e2

2
. The first-order condition then takes the form c0e

∗
k = b̂k, where b̂k

is given by Eq. (4) with m(z) = f̂(F̂−1(z)) = −rz ln z:

b̂k = −r(k − 1)

∫ 1

0

zk−1 ln zdz =
r(k − 1)

k2
, (5)

which gives the well-known equilibrium effort in the Tullock contest, e∗k = r(k−1)
c0k2

.
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This approach can be further generalized to cover contests with a CSF of the form
g(ei)∑k
j=1 g(ej)

, where g(·) is a strictly increasing “impact function,” and a possibly nonlin-

ear cost of effort c(ei). By introducing effective efforts wi = g(ei) and costs C(xi) =

c(g−1(wi)), such models are reduced to the Tullock contest with r = 1, and the results

apply. Specifically, Proposition 1 implies that the symmetric equilibrium level of effective

effort, w∗, satisfies the equation k−1
k2

= C ′(w∗)w∗, where C ′(w) = c′(g−1(w))
g′(g−1(w))

. Substituting

back w∗ = g(e∗k), we obtain for the equilibrium effort k−1
k2

=
c′(e∗k)g(e∗k)

g′(e∗k)
.

3 Tournaments with deterministic group size

3.1 Individual equilibrium effort

Before formulating our main results, we summarize the existing results and develop some

intuition. As discussed in Section 2, the properties of the symmetric equilibrium effort

are determined by coefficients bk, see Eq. (3). These coefficients represent the marginal

benefit of effort in equilibrium, and can be written as

bk =

∫
U

f(x)dF (x)k−1 =

∫
U

f(x)f(k−1:k−1)(x)dx, (6)

where F (x)k−1 is the cdf of the (k − 1)-th order statistic among k − 1 i.i.d. draws from

distribution F , and f(k−1:k−1)(x) = d
dx
F (x)k−1 is the corresponding pdf. Indeed, in the

symmetric equilibrium player i wins the tournament if her realization of noise, Xi, exceeds

X(k−1:k−1) = maxj 6=iXj – the largest shock among the other k − 1 players. A marginal

increase in the player’s effort is then pivotal when there is a tie between the two shocks,

i.e., it is determined by the probability density of Xi − X(k−1:k−1) at zero, cf. Eq. (6).

This representation immediately leads to comparative statics results for monotone pdfs

f(x).

Lemma 1 (i) If f(x) is increasing (decreasing) then e∗k is increasing (decreasing) for

k ≥ 2.

(ii) e∗k is constant for k ≥ 2 if and only if f(x) is a uniform distribution.

Indeed, the order statistics X(k−1:k−1) are FOSD-increasing in k; therefore, the realizations

of noise from the upper tail of f(x) become more important as k increases. For example,

if f(x) is increasing then the probability of having relevant noise realizations increases

with k, resulting in a higher equilibrium effort. Part (i) and the “if” part of part (ii) of

10



Lemma 1 have been proved by Gerchak and He (2003). The “only if” part of part (ii) is

proved in Appendix A using the representation (4) for coefficients bk.

The intuition behind representation (6) allows us to also obtain large-k asymptotic

results for an arbitrary f(x). As discussed above, as k increases, bk is determined by

increasingly higher order statistics X(k−1:k−1) whose probability density shifts to the right;

hence, the asymptotic behavior of bk is determined by the shape of the upper tail of pdf

f(x). Specifically, a decreasing (increasing) upper tail of f(x) will lead to a decreasing

(increasing) bk for large k. The following lemma states the result formally.

Lemma 2 Define x̂ = inf{x′ ∈ U : f(x) is monotone for x > x′}. If f(x) is decreasing

(increasing) for x > x̂, then there exists a k̂ such that e∗k is decreasing (increasing) for all

k > k̂.

Point x̂ defined in Lemma 2 determines the location of the “last” interior peak or dip

of f(x). If pdf f(x) is monotone, x̂ = x and bk is either decreasing or increasing for all

k ≥ 2, by Lemma 1. If f(x) is nonmonotone, bk is asymptotically decreasing or increasing

depending on the behavior of the “last” monotone part of f(x). Lemma 2 is proved in

Appendix A using the representation (4) for coefficients bk.

We now turn to the main results of this section. Unimodal distributions are an

important class for which universal global properties of coefficients bk can be established.

To this end, we turn to representation (4) of coefficients bk as expectations of the inverse

quantile density, and make use of Lemma 7 in Section 5.2 on the properties of expectations

of unimodal functions. Note that m(z) has the same monotonicity as f(x), and for a

higher k the weights in the expectation E(m(Z(k−1:k−1))) shift to the right; that is, the

same intuition as in representation (6) applies.

Proposition 2 (i) If f(x) is unimodal then e∗k is unimodal for k ≥ 2.

(ii) If f(x) is unimodal and symmetric then e∗2 = e∗3, and e∗k is decreasing for k ≥ 3.

(iii) If f(x) is symmetric (not necessarily unimodal) then e∗2 = e∗3.

Part (i) of Proposition 2 is the main result of this section, and it follows directly from

Lemma 7. Indeed, considering the representation (4) with cdf H(z, k) = zk−1, it is

straightforward to show that −Hk(z, k) = zk−1(1− z) is log-supermodular. Parts (ii) and

(iii) are special cases, which have been proved by Gerchak and He (2003) (we provide a

direct proof in Appendix A for completeness).

Part (i) of Proposition 2 shows that the unimodality of bk (and hence, of the equi-

librium effort e∗k) is a common property of unimodal noise distributions. Note that it

11



relies only on the FOSD-ordering of cdfs H(z, k) = zk−1 and the log-supermodularity of

−Hk(z, k), but not on the specific order-statistic structure of H(z, k). The unimodality

result can, therefore, be extended to other settings, such as the case when the number of

players is stochastic (see Section 4). In contrast, parts (ii) and (iii) are more specialized

and rely on the functional form of H(z, k).

Additionally, Proposition 2 allows us to characterize the behavior of bk for U-shaped

distributions such that −f(x) is unimodal. Of interest is the case when f(x) is U-shaped

and nonmonotone (when f is monotone, Lemma 1 applies).

Corollary 1 (i) If f(x) is U-shaped and nonmonotone then e∗k is U-shaped for k ≥ 2.

(ii) If f(x) is U-shaped, nonmonotone and symmetric then b2 = b3, and e∗k is increasing

for k ≥ 3.

Part (i) is a direct corollary of Proposition 2(i), while part (ii) is a special case that follows

from part (ii) of the proposition and has been proved by Gerchak and He (2003).

For an example of an interior unimodal sequence bk, consider the type I generalized

logistic distribution, which has cdf F (x) = 1
(1+exp(−x))a

with parameter a > 0 (Johnson,

Kotz and Balakrishnan, 1995). The standard logistic distribution is obtained for a = 1.

Then, bk = a(k−1)
k(ak+1)

. Since bk+1 − bk ∝ 1 + a − ak(k − 1) is decreasing in k, bk is either

monotonically decreasing or interior unimodal. In particular, bk reaches the maximum at

k̂ if a = 1

k̂2−k̂−1
; cf. Figure 1. Figure 2 shows an example of an interior U-shaped sequence

bk.

The unimodality of f is not necessary for the unimodality of bk (and e∗k), but it is a

tight condition. That is, a non-unimodal distribution of noise can produce a non-unimodal

sequence bk. For an example, consider m(z) = 0.22z3 − 0.39z2 + 0.2z which gives rise

to a non-unimodal bk, see Figure 3.13 At the same time, a non-unimodal f(x) does not

necessarily lead to a non-unimodal sequence bk. For example, a bimodal mixture of two

normal distributions with f(x) = 1
2
fN(−12,4)(x) + 1

2
fN(12,4)(x), where fN(µ,σ2)(x) is the

normal pdf with mean µ and variance σ2, generates a decreasing sequence bk.

More generally, one may ask whether there is any “higher-order” universality in the

behavior of bk (and e∗k) for multimodal densities. The answer is yes, to some extent. Part

(i) of Proposition 2 relies on the fact that m′(z) is single-crossing and zk−1(1− z) is log-

supermodular in (z, k). As mentioned in Section 5.2, log-supermodularity is also known

13This function m(z) corresponds to the quantile function F−1(z) = − 5
2 ln

(
22 z2 − 39 z + 20

)
+

195
√

239
239 arctan

(
(44 z−39)

√
239

239

)
+ 5 ln z; there is no closed-form expression for F (x).
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Figure 1: Left : The pdf f(x) of the type I generalized logistic distribution with a = 1
6 . Right :

Individual equilibrium effort e∗k as a function of k for effort cost function c(e) = 1
2e

2.

Figure 2: Left : The pdf f(x) of a distribution with cdf F (x) = 0.2 tan(2x) + 0.7 defined on
[−0.646, 0.491]. Right : Individual equilibrium effort e∗k (blue diamonds, left scale) and aggregate
equilibrium effort E∗k (red squares, right scale) as a function of k for effort cost function c(e) =
1
2e

2.

as total positivity of order 2 (TP2), a special case of total positivity of order r (TPr).

The variation-diminishing property of totally positive kernels (Karlin, 1968) states that

13



Figure 3: Left : m(z) = 0.22z3 − 0.39z2 + 0.2z. Right : Individual equilibrium effort e∗k as a
function of k for effort cost function c(e) = 1

2e
2.

if function v : S1 × S2 → R, with S1, S2 ⊆ R, is TPr
14 and function φ : S2 → R changes

sign j ≤ r − 1 times on S2 then function φ̃(x) =
∫
S2
v(x, y)φ(y)dy changes sign at most j

times on S1. Moreover, if φ̃ changes sign exactly j times then it follows the same sequence

of sign changes as φ. It can be shown that zk−1(1− z) is, in fact, TP∞ (Marshall, Olkin

and Arnold, 2011, p. 759); therefore, if m′(z) has any number j of sign changes then

bk+1 − bk will have at most j sign changes. We conclude that if f(x) has j modes, bk will

have at most j modes, and if bk has exactly j modes then the sequence of local minima

and maxima of bk will follow the shape of f(x). The case of unimodal (or U-shaped) f(x)

is special because m′(z) has at most one sign change, and hence bk is either monotone or

interior unimodal (or U-shaped). Figure 3 illustrates a case when bk and f(x) both have

two modes, and bk follows the shape of f(x).

14Function v is TPr if for all l = 1, . . . , r and all sequences x1 < . . . < xl, y1 < . . . < yl (xi ∈ S1,
yj ∈ S2),

det

 v(x1, y1) . . . v(x1, yl)
...

...
v(xl, y1) . . . v(xl, yl)

 ≥ 0.
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3.2 Aggregate equilibrium effort

From the tournament designer’s perspective, it is of eminent interest how aggregate equi-

librium effort E∗k = ke∗k changes with the number of players. To gain some intuition, note

that the change in aggregate effort when the number of players increases from k − 1 to

k, ∆E∗k = E∗k − E∗k−1, can be written as ∆E∗k = e∗k + (k − 1)∆e∗k, where ∆e∗k = e∗k − e∗k−1

is the change in individual effort. An increase in the number of players affects aggregate

effort in two ways: The direct positive effect, represented by the term e∗k, and the indirect

equilibrium effect, (k − 1)∆e∗k, which can be positive or negative. Obviously, aggregate

effort will increase in k when e∗k ≥ e∗k−1, i.e., whenever individual effort is increasing in k.

It is, however, also possible to have aggregate effort increasing in k when e∗k is decreasing

or nonmonotone. For example, in the Tullock contest with linear costs individual effort

e∗k = r(k−1)
k2

is decreasing but aggregate effort E∗k = r(k−1)
k

is increasing in k. Also, unlike

the comparative statics of e∗k, the comparative statics of E∗k can be sensitive to the shape

of the cost function c(e). The reason is that E∗k = kc′−1(bk), where c′−1(·) is the inverse

marginal cost of effort.

In fact, if ∆e∗k < 0 for some k (i.e., bk < bk−1), it is always possible to find parameters

such that aggregate effort will be decreasing in k as well. To see this, consider a cost

function of the form c(e) = c0e
ξ, ξ > 1, which leads to the individual effort e∗k =

(
bk
c0ξ

) 1
ξ−1

and

∆E∗k = (k − 1)

(
bk−1

c0ξ

) 1
ξ−1

[
k

k − 1

(
bk
bk−1

) 1
ξ−1

− 1

]
, (7)

which immediately implies the following result.

Lemma 3 Suppose c(e) = c0e
ξ, ξ > 1. Then E∗k ≥ E∗k−1 if and only if bk

bk−1
≥
(
k−1
k

)ξ−1
.

One consequence of Lemma 3 is that for any k ≥ 3 it is always possible to find a sufficiently

large ξ such that E∗k ≥ E∗k−1. The intuition is that a higher ξ makes the cost function more

convex and hence, reduces the sensitivity of the equilibrium effort to its marginal benefit,

i.e., bk. Then, for a sufficiently high ξ the direct positive effect of a higher number of

players dominates the indirect equilibrium effect. On the other hand, ξ can be arbitrarily

close to 1 in which case the equilibrium effort becomes infinitely sensitive to bk;
15 therefore,

if bk < bk−1 for some k, it is always possible to find a ξ > 1 such that the condition of

Lemma 3 does not hold and hence E∗k < E∗k−1.

15As ξ gets closer to 1, it becomes more difficult to satisfy the equilibrium existence conditions, but
for any given ξ they can always be satisfied for a sufficiently high c0 and/or a sufficiently dispersed
distribution of noise (see Section 5.1).
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For illustration, compare tournaments with group sizes k = 2 and 3. It follows from

Proposition 2 that b3 ≥ b2, and hence E∗3 > E∗2 , when f(x) is symmetric or increasing.

However, if f(x) is decreasing (and nonconstant), we have b3 < b2, in which case E∗3 < E∗2

for ξ < 1 +
ln
(
b2
b3

)
ln( 3

2)
. For example, consider the distribution of noise with cdf F (x) = xα

and pdf f(x) = αxα−1 on [0, 1], with α > 1
2
.16 This gives m(z) = αz

α−1
α and bk = α2(k−1)

αk−1
;

therefore, b3
b2

= 2(2α−1)
3α−1

< 1 if and only if α < 1, i.e., f(x) is decreasing. For α = 3
4
, we

obtain E∗3 < E∗2 for ξ < 1 +
ln( 5

4)
ln( 3

2)
≈ 1.55.

Despite the presence of these two often countervailing effects, there are very simple

and powerful sufficient conditions for the monotonicity of aggregate effort with respect

to the number of players. Before we proceed, let us remind the reader of some basic

concepts from duration analysis. For a random variable X with pdf f(x) and cdf F (x),

the failure (or hazard) rate is defined as h(x) = f(x)
1−F (x)

. A distribution is characterized

as having increasing failure rate (IFR) if h(x) is increasing, and decreasing failure rate

(DFR) if h(x) is decreasing. IFR is implied by the log-concavity of pdf f(x), while DFR

is implied by the log-convexity of f(x) provided f(x) = 0. The exponential distribution,

with f(x) = λ exp(−λx), has a constant failure rate λ and hence is both IFR and DFR.

Most standard distributions fall into one of the monotone failure rate classes. As we show

below, the behavior of aggregate effort is determined by the failure rate.

Note that bk in (4) can be rewritten as

bk =
1

k

∫ 1

0

m(z)

1− z
dFB(z; k − 1, 2) =

1

k
E(hq(Z(k−1:k))). (8)

Here, FB(z; k−1, 2) is the cdf of the beta distribution with parameters k−1 and 2, which

is also the cdf of Z(k−1:k), the (k − 1)-th order statistic from k i.i.d. draws of the uniform

distribution on [0, 1]. Function hq(z) = m(z)
1−z is the hazard quantile function, which is a

quantile representation of failure rate h(x) and has the same monotonicity properties.

We start with the simplest case when the cost of effort is quadratic, c(e) = c0e
2.

In this case aggregate effort is proportional to kbk, and from Eq. (8) we have kbk =

E(hq(Z(k−1:k))). Since order statistics Z(k−1:k) are FOSD-ordered in k, this immediately

implies the monotonicity of E∗k for monotone failure rates. Moreover, it can be shown

that the cdf FB(z; k − 1, 2) satisfies the appropriate log-supermodularity condition, and

hence Lemma 7 can be applied for unimodal and U-shaped failure rates. The results are

summarized as follows.

16The restriction α > 1
2 ensures that m(z) is integrable on [0, 1].
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Lemma 4 Suppose the cost of effort is quadratic, c(e) = c0e
2. Then

(i) If f(x) is IFR (DRF) then E∗k is increasing (decreasing) for k ≥ 2.

(ii) If f(x) is exponential, with f(x) = λ exp(−λx), then E∗k = λ
2c0

is constant for k ≥ 2.

(iii) If f(x) has a unimodal (U-shaped) failure rate then E∗k is unimodal (U-shaped) for

k ≥ 2.

To understand the role of the failure rate in Lemma 4, note that representation (8) can be

rewritten through the original distribution of noise in the form bk = 1
k
E(h(X(k−1:k))), where

X(k−1:k) is the second highest order statistic among k noise realizations. The intuition,

therefore, is similar to the one for coefficients bk = E(f(X(k−1:k−1))) discussed in Section

3.1. Indeed, winning the tournament can be interpreted as both surpassing X(k−1:k−1),

the highest realization among the other k− 1 players, and surpassing X(k−1:k), the second

highest realization among all k players. Note that the failure rate can be written as h(x) =
f(x)

1−F (x)
= f(x|X ≥ x), i.e., the pdf of noise at X = x conditional on X ≥ x. However, only

realizations of noise exceeding X(k−1:k) can lead to winning; therefore, E(h(X(k−1:k))) =

E(f(X(k−1:k)|X ≥ X(k−1:k))) gives exactly the relevant conditional expectation. In order

to obtain bk, it needs to be multiplied by Pr(X ≥ X(k−1:k)) = 1
k
, cf. (8), which makes

this representation suitable for aggregate effort as it conveniently subsumes the effect of

multiplier k.

Part (i) of Lemma 4 for IFR distributions generalizes the result for the Tullock con-

test with linear costs. Indeed, as shown in Section 2.2, the properties of equilibrium in

such a contest are equivalent to those of a tournament with a quadratic cost and Gumbel

distribution of noise, which is IFR. To understand the behavior of E∗k for DFR distribu-

tions, note that such a distribution has a decreasing density which falls faster than its

cdf is increasing. Hence, individual effort is decreasing (see Lemma 1(i)), and so fast that

aggregate effort decreases too. For a simple example, consider the F2,2-distribution whose

pdf and cdf are f(x) = 1
(1+x)2

and F (x) = x
1+x

defined for x ≥ 0. Then, bk = 2
k(k+1)

and

aggregate effort E∗k = 2
k+1

is strictly decreasing with the number of players.

For part (iii), examples of distributions with interior unimodal failure rates include

the F -distribution and beta distribution for some parameters, and the lognormal distri-

bution (for details, see Bagnoli and Bergstrom, 2005). Figure 2 provides an example of a

distribution with a U-shaped failure rate, which generates a U-shaped aggregate effort.

For noise distributions with multimodal failure rates, the same generalization as dis-

cussed at the end of Section 3.1 applies.

Lemma 3 shows that a “more convex” cost function is more likely to lead to aggregate
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effort increasing in the number of players. While in Lemma 3 this result is restricted to

power cost functions, which are naturally ordered in convexity by parameter ξ, it is, in

fact, very general. Specifically, Lemma 4 can be extended to cost functions that are, in a

well-defined sense, more or less convex than quadratic. This leads to Proposition 3 below

which is the main result of this section.

For two strictly increasing functions c1 and c2, we define function c1 to be more

convex than c2 if c1(c−1
2 (·)) is convex. This definition is equivalent to requiring that there

exists a strictly increasing, convex function u such that c1(e) = u(c2(e)); indeed, defining

t = c2(e), obtain u(t) = c1(c−1
2 (t)). This partial order is related to the likelihood ratio

order of random variables, whereby a random variable X is said to be smaller than random

variable Y if the ratio of pdfs fY (x)
fX(x)

is increasing in x. An equivalent condition is that

FY (F−1
X (z)) is convex (Shaked and Shanthikumar, 2007). In our case, it implies that the

ratio of marginal costs
c′1(e)

c′2(e)
is increasing in e. The definition of a less convex function is

analogous.

It follows that a cost function c(e) is more convex than quadratic if c(
√
t) is convex

in t or, equivalently, the ratio c′(e)
e

is increasing. Thus, a cost function is more convex

than quadratic if the marginal cost increases faster than linear. For thrice differentiable

functions, this condition implies c′′′ ≥ 0, and is equivalent to it provided c′(0) = 0. Indeed,

the condition that c′(e)
e

is increasing is equivalent to c′′(e)e ≥ c′(e), which implies that

c′(e) is convex. Conversely, if c′(0) = 0, the convexity of c′(e) implies c′′(e)e ≥ c′(e). A

less convex than quadratic function has c′′′ ≤ 0.

We are now in a position to formulate the main result.

Proposition 3 If f(x) is IFR and c(e) is more convex than quadratic (DFR and c(e) is

less convex than quadratic), then E∗k is increasing (decreasing) for k ≥ 2.

Proposition 3 generalizes part (i) of Lemma 4 and provides very general sufficient condi-

tions for monotonicity of aggregate effort in WTA tournaments. When the distribution of

noise is IFR and effort costs are sufficiently sensitive, a tournament designer can benefit

from additional participants; the opposite is true, i.e., aggregate effort is maximized by

k = 2, if noise is DFR and effort costs are not very sensitive. If the conditions of Propo-

sition 3 do not hold, the competing direct and indirect effects of the number of players

can lead to nonmonotonicities in aggregate effort.
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4 Tournaments with stochastic group size

Consider now a setting in which the number of players in the tournament, K, is a random

variable taking nonnegative integer values. The maximal possible number of players n ≥ 2

can be finite or infinite. Let p = (p0, p1, . . . , pn) denote the probability mass function (pmf)

of K, where pk = Pr(K = k) is the probability of having k players in the tournament,

with
∑n

k=0 pk = 1. The expected number of players k̄ =
∑n

k=0 kpk is finite. Operationally,

it is convenient to think about a set of potential participants N = {1, . . . , n} from which

a subset K ⊆ N is randomly drawn such that Pr(|K| = k) = pk, and subsets of the same

cardinality |K| have the same probability of being drawn. Each player is informed if she

is selected, but is not informed about the value of K.

Let Si denote a random variable equal to 1 if player i ∈ N is selected for participation

and zero otherwise, and let K̃ = (K|Si = 1) denote the random number of players in

the tournament from the perspective of a participating player. The distribution of K̃ is

updated as (see, e.g., Harstad, Kagel and Levin, 1990)

p̃k = Pr(K̃ = k) =
pkk

k̄
, k = 1, . . . , n. (9)

Equation (9) can be understood as follows (cf. Myerson and Wärneryd, 2006). Suppose

n is finite (for an infinite n, a similar argument applies in the limit n→∞). For a given

k, the probability for player i to be selected for participation is Pr(Si = 1|K = k) = k
n
;

thus,

p̃k = Pr(K = k|Si = 1) =
Pr(Si = 1|K = k)pk∑n
l=0 Pr(Si = 1|K = l)pl

=
k
n
pk∑n

l=0
l
n
pl
,

which gives (9).

Consider a symmetric pure strategy equilibrium in which all participating players

choose effort e∗ > 0. From Eq. (2), the expected payoff of a participating player i from

some deviation effort ei is

πi(ei, e
∗) =

n∑
k=1

p̃k

∫
U

F (ei − e∗ + x)k−1dF (x)− c(ei). (10)

The symmetric first-order condition for payoff maximization, ∂πi(ei,e
∗)

∂ei

∣∣∣
ei=e∗

= 0, gives

c′(e∗) = Bp ≡
n∑
k=1

p̃k(k − 1)

∫
U

F (x)k−2f(x)dF (x). (11)
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Changing the variable of integration to z = F (x), obtain, similar to (4),

Bp =
n∑
k=1

p̃k(k − 1)

∫ 1

0

zk−2m(z)dz =

∫ 1

0

m(z)dG̃(z). (12)

Here, G̃(z) =
∑n

k=1 p̃kz
k−1 denotes the probability-generating function (pgf) of distribu-

tion p̃.

Let e∗p denote the unique positive solution of (11), assuming that it exists and it is

the symmetric pure strategy equilibrium.17 When p is degenerate at some k, Eq. (11)

reduces to the deterministic group size case, Eq. (3). As before, since c′(e∗) is strictly

increasing in e∗, the comparative statics of equilibrium effort e∗p with respect to parameters

of distribution p are determined entirely by coefficients Bp.

Using Eqs. (12) and (9), and the definition of bk, Eq. (3), coefficients Bp can also be

written as

Bp =
n∑
k=1

p̃kbk = Ep̃(bK) =
1

k̄

n∑
k=2

pkkbk =
1

k̄
Ep(KbK |K ≥ 2)Prp(K ≥ 2). (13)

Here, Ep(·) and Prp(·) denote expectation and probability with respect to distribution p.

Note that the summation in (13) can start with k = 2 instead of k = 1 because b1 = 0.

Representation (13) shows, as expected, that only group sizes k ≥ 2 contribute to the

equilibrium effort.

The uniform distribution of noise

The effects of stochastic participation are straightforward when the distribution of

noise is uniform. In this case, bk = b2 for any k ≥ 2 (see Lemma 1(ii)). Equation (12)

then gives

Bp = b2

(
G̃(1)− G̃(0)

)
= b2

(
1− p1

k̄

)
, (14)

leading to the following result.

Lemma 5 Suppose f(x) is a uniform distribution. Then e∗p ≤ e∗k for any k ≥ 2, with

equality if and only if p1 = 0.

Lemma 5 states that for a uniform distribution of noise the individual equilibrium

effort of participating players in a tournament with stochastic group size cannot be higher

17Conditions similar to those in Proposition 9 can be formulated to ensure existence.
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than with deterministic group size, and is strictly lower if the probability for a player to

be alone in the tournament is not zero.

4.1 Individual equilibrium effort

We are interested in the effects of changes in distribution p on coefficients Bp, which

then monotonically map into equilibrium effort e∗p. In particular, we explore how Bp

responds to a stochastic increase (in an appropriate sense) in the number of players

in the tournament. To this end, consider a parameterized family of (updated) group

size distributions {p̃(θ)}θ∈Θ, where Θ ⊆ R is an interval of the real line or an ordered

set of discrete numbers. Let P̃ (θ) and G̃(z, θ) denote the corresponding cmf and pgf,

respectively.

Suppose an increase in θ leads to a stochastic increase in the number of players in

the FOSD sense; that is, assume that P̃k(θ) is decreasing in θ for all k = 1, . . . , n. The

following Lemma covers situations where in the deterministic case individual equilibrium

effort is monotone in the number of players. It is a straightforward extension of Lemma

1(i) and Proposition 2(ii-iii) to the stochastic case.

Lemma 6 Suppose an increase in θ leads to a stochastic increase in K̃.

(i) If f(x) is increasing then e∗p is increasing in θ.

(ii) If f(x) is decreasing and p1(θ) = 0 for all θ ∈ Θ then e∗p is decreasing in θ.

(iii) If f(x) is interior unimodal and symmetric, p1(θ) = 0 for all θ ∈ Θ, and n ≥ 4, then

e∗p is decreasing in θ.18

Part (i) of Lemma 6 is the simplest case that does not require any additional restric-

tions. Indeed, increasing f(x) implies that the sequence {bk}nk=2 is increasing and hence

{bk}nk=1 is increasing as well because b1 = 0. Parts (ii) and (iii) of Lemma 6 provide

conditions for when {bk}nk=2 is decreasing. However, since b1 = 0, the sequence {bk}nk=1 is

then nonmonotone unless one-player tournaments are ruled out, that is, p1 = 0. It is a

rather common provision in many tournaments that competition will be canceled if fewer

than a pre-specified number of participants sign up.

Parts (ii) and (iii) of Lemma 6 point to the following observation. When {bk}nk=2 is

decreasing, the only way e∗p can be nonmonotone with respect to an upward probabilistic

18If f(x) is symmetric (not necessarily unimodal), then e∗2 = e∗3, see Proposition 2(iii). Hence, if n = 3,
then e∗p is independent of θ. If p1(θ) > 0 for some θ, this makes the sequence {bk}3k=1 increasing and then
e∗p is increasing in θ.
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shift in p̃ is if p1 > 0. Put differently, the possibility for a player to find herself alone in

the tournament is the only mechanism through which the individual equilibrium effort

can be nonmonotone in θ. One example is the Tullock contest, for which bk = r(k−1)
k2

decreases monotonically for k ≥ 2, and Lim and Matros (2009) found that the individual

equilibrium effort is nonmonotone in q for K ∼ Binomial(n, q). This is a consequence of

the fact that p1(q) = nq(1− q)n−1 > 0. If the distribution of group size is replaced with a

truncated binomial distribution such that p1(q) = 0 for all q ∈ [0, 1], the nonmonotonicity

goes away. Of course, the nonmonotonicity can still arise even when p1 = 0 if {bk}nk=2 is

nonmonotone; for example, if it is interior unimodal, see Proposition 4 below.

Extending the main result of the deterministic setting, namely, that a unimodal f(x)

results in a unimodal sequence {ek}nk=2 (Proposition 2(i)), requires an additional assump-

tion imposed on the distribution of updated group size, p̃. Let G̃θ(z, θ) ≤ 0 denote the

derivative or the first difference of its pgf with respect to θ. The following proposition is

an application of Lemmas 8 and 9 in Section 5.2 on the preservation of unimodality under

uncertainty.

Proposition 4 Suppose an increase in θ leads to a stochastic increase in K̃ and

(a) f(x) is unimodal;

(b) −G̃θ(z, θ) is log-supermodular; that is, the ratio R(z, θ, θ′) = G̃θ(z,θ′)

G̃θ(z,θ)
is increasing in z

for all θ′ > θ.

Then e∗p is unimodal in θ.

The log-supermodularity condition (b) of Proposition 4 is satisfied by the two distri-

butions used most prominently in the literature to model population uncertainty – the

Poisson and binomial distributions. These distributions, along with the negative bino-

mial and logarithmic distributions, belong to a family known as power series distributions

(PSD) that are characterized by pmfs of the form

pk(θ) =
akθ

k

A(θ)
. (15)

Here, ak are nonnegative numbers, θ ≥ 0 is a parameter, and A(θ) =
∑∞

k=0 akθ
k (it is

assumed that the sum exists) is the normalization function (Johnson, Kemp and Kotz,

2005). The pgf of PSD distributions is G(z, θ) = A(θz)
A(θ)

. Proposition 4 is applicable to the

whole PSD family due to the following three properties.

Proposition 5 For any pmf p in the PSD family (15)
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(i) the updated pmf p̃ is also in the PSD family;

(ii) Gθ(z, θ) ≤ 0;

(iii) −Gθ(z, θ) is log-supermodular.

Property (i) states that the PSD family is closed under the participation updating

(9). In some cases, the updated distribution is of the same type as the initial distribution.

For example, for K ∼ Binomial(n, q) we have pk =
(
n
k

)
qk(1 − q)n−k (for k = 0, . . . , n)

and p̃k =
(
n−1
k−1

)
qk−1(1 − q)n−k (for k = 1, . . . , n); that is, (K̃ − 1) ∼ Binomial(n − 1, q).

Similarly, for K ∼ Poisson(λ) we have pk = exp(−λ)λk

k!
(for k = 0, 1, . . .) and p̃k = exp(−λ)λk−1

(k−1)!

(for k = 1, 2, . . .); that is, (K̃ − 1) ∼ Poisson(λ). It is possible, however, for the updated

distribution to be of a different type (albeit still within the PSD family). For example,

for K ∼ Logarithmic(θ), where θ ∈ (0, 1), we have pk = − θk

k ln(1−θ) , k̄ = − θ
(1−θ) ln(1−θ) , and

p̃k = (1− θ)θk−1; that is, K̃ has the geometric distribution with parameter 1− θ.
Property (ii) shows that PSD distributions are FOSD-ordered by parameter θ. Finally,

property (iii) ensures that condition (b) of Proposition 4 is satisfied, and hence e∗p is

unimodal in θ for any PSD distribution provided f(x) is unimodal.

4.2 Aggregate effort

In this section, we explore the effects of changes in the distribution of the number of

players on expected aggregate effort E∗p = k̄e∗p = k̄c′−1(Bp(θ)). As in Section 3.2, this

problem simplifies substantially when the cost function is quadratic, c(e) = c0e
2, in which

case E∗p = k̄
2c0
Bp(θ). Using (13), it can be written as

E∗p =
k̄

2c0

n∑
k=1

p̃kbk =
1

2c0

n∑
k=0

pkkbk =
n∑
k=0

pkE
∗
k = Ep(E

∗
K).

Here, E∗k = kbk
2c0

is the aggregate equilibrium effort in a tournament with deterministic size

k, and the expectation is taken over the original group size distribution p. Lemma 4 and

Proposition 3 then lead to the following results.

Proposition 6 Suppose an increase in θ leads to an FOSD increase in the number of

players K.

(i) If f(x) is IFR and c(e) is more convex than quadratic (DFR and c(e) is less convex

than quadratic) then E∗p is increasing (decreasing) in θ.

(ii) If f(x) has a unimodal (U-shaped) failure rate, −Gθ(z, θ) is log-supermodular and

c(e) = c0e
2, then E∗p is unimodal (U-shaped) in θ.
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The proof of part (i) follows exactly the same steps as that of Proposition 3, while

part (ii) follows from part (iii) of Lemma 4 and Lemmas 8 and 9. Two interesting special

cases are the exponential distribution, which has a constant failure rate and generates

aggregate effort E∗k that is independent of k, and the uniform distribution, which generates

individual effort that is independent of k (for k ≥ 2, in both cases). When effort costs are

quadratic, from part (ii) of Lemma 4, for the exponential distribution with parameter λ

we have E∗k = λ
2c0

for k ≥ 2, which gives E∗p = λ
2c0

∑n
k=2 pk = λ

2c0
(1 − P1(θ)) where P1(θ)

is either constant or decreasing in θ; thus, E∗p is either constant or increasing in θ. An

important special case when E∗p is constant is when P1(θ) = 0, i.e., there are always at

least two participants in the tournament. For the uniform distribution, Eq. (14) gives

E∗p = b2(k̄−p1(θ))
2c0

, which is increasing in θ if p′1(θ) = 0 or p′0(θ) = 0 (in the latter case,

0 ≥ P ′1(θ) = p′0(θ) + p′1(θ) = p′1(θ)).

Note that, unlike in Proposition 4, the condition for a stochastic increase in the number

of players pertaining to Proposition 6 is formulated in terms of the original distribution

of group size p(θ), and not the updated distribution p̃(θ). Condition p′0(θ) = 0 holds, in

particular, in cases when p0(θ) = 0, i.e., the tournament is guaranteed to have at least

one participant; more generally, it holds when the FOSD shift in K does not affect the

probability of having no participants in the tournament.

Propositions 4 and 6(ii) can be generalized to the cases of multimodal density and fail-

ure rate, respectively, under the assumptions that −G̃θ(z, θ) and −Gθ(z, θ), respectively,

are TPr for some r ≥ 2, cf. the discussion at the end of Section 3.1.

4.3 Applications to tournament design

In this section, we investigate two optimal design questions for tournaments with stochas-

tic participation: (i) how the level of uncertainty in the number of players affects aggregate

effort, and (ii) whether it is optimal, from an ex ante perspective, to disclose the realized

number of players.

4.3.1 The effect of uncertainty in the number of players

Is uncertainty in the number of players beneficial or detrimental for aggregate effort? The

following proposition provides a general answer for any two distributions of the number

of players ranked by second-order stochastic dominance (SOSD).
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Proposition 7 Consider two group size distributions, p and p′, with the same mean

k̄ =
∑n

k=0 kpk such that there are always at least two players (p0 = p1 = p′0 = p′1 = 0)

and p′ SOSD p. Suppose that f ′(x) is piecewise differentiable and continuous and f ′(x)

is finite. Then, E∗p′ ≥ (≤)E∗p if f(x) is log-concave (log-convex); moreover, the inequality

is strict if f(x) is strictly log-concave (log-convex).

Proposition 7 says that higher uncertainty reduces expected aggregate effort if noise

has a log-concave distribution. For a log-convex noise distribution the relationship is

reversed. The comparison between aggregate efforts E∗p′ and E∗p is equivalent to a com-

parison between individual efforts e∗p′ and e∗p since the mean group size k̄ is the same for

the two distributions, which amounts to a comparison between Bp′ and Bp, cf. Eq. (11).

From Eq. (13), Bp is proportional to the expectation of KbK conditional on K ≥ 2,

and the assumption that there are always at least two players makes this expectation

unconditional. Jensen’s inequality can then be applied if kbk is concave (convex) in k for

k ≥ 2, which is the case when f(x) is log-concave (log-convex).

As a special case, Proposition 7 allows for a comparison of aggregate effort between

tournaments with deterministic and stochastic group sizes. It implies that the presence

of uncertainty in the number of players, as opposed to a tournament where the number

of players is fixed and equal to k̄, reduces expected aggregate effort in the Tullock contest

(since the Gumbel distribution is log-concave) and increases it for many heavy-tailed

distributions such as Pareto (which is log-convex). This is in contrast to the two existing

studies – restricted to Tullock contests – comparing aggregate effort in contests with

deterministic and stochastic participation: Myerson and Wärneryd (2006) and Lim and

Matros (2009). Both show that uncertainty in the number of players always reduces

aggregate effort.19

However, Proposition 7 is more general than that and relates the ranking of expected

aggregate effort to the SOSD order of group size distributions. It also shows that the

presence of heavy tails in the distribution of noise reverses the prevailing “intuition” that

uncertainty in the number of players is detrimental for aggregate effort.

19Proposition 7 is not a direct generalization of Myerson and Wärneryd (2006) and Lim and Matros
(2009) because these two papers allow for the possibility of having fewer than two players in the contest,
under additional restrictions. A version of Proposition 7 directly generalizing Myerson and Wärneryd
(2006) and Lim and Matros (2009) is more nuanced and is available in the extended working paper version
of this paper.
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4.3.2 Optimal disclosure of the number of players

When the number of players K is stochastic, it might be possible for the tournament

designer to reveal the realization of K to the players before they choose their efforts.

Assuming commitment power, when does the tournament designer prefer to (commit

to) disclose K? Lim and Matros (2009) show that in a standard Tullock contest with

the binomial distribution of the number of players aggregate effort is independent of

disclosure. Fu, Jiao and Lu (2011) generalize this result to contests with CSFs of the

form g(ei)∑k
j=1 g(ej)

. They show that full disclosure (no disclosure) is optimal if g(e)
g′(e)

is strictly

convex (concave), while the indifference is recovered when g(e)
g′(e)

is linear. The following

proposition generalizes these results to arbitrary tournaments and arbitrary distributions

of the number of players.

Proposition 8 Suppose bk is non-constant for k ≥ 1 in the support of p and c′(·) is

nonlinear. Then it is optimal to disclose (not disclose) the number of participants in the

tournament if c′′′ ≤ (≥)0.

Disclosure creates a mean-preserving variation in the marginal benefit of effort. In-

deed, without disclosure the (expected) marginal benefit of effort is c′(e∗p) = Bp = Ep̃(bK),

cf. (13), whereas with disclosure the realization of K is observed effort is chosen accord-

ing to c′(e∗k) = bk. Such variation then increases (decreases) expected individual effort if

the marginal cost function is concave (convex); that is, if c′′′ ≤ (≥)0. For a quadratic

cost function (i.e., when c′(·) is linear) disclosure is irrelevant. Note that the nature of

coefficients bk does not affect the optimality of disclosure. The only special case is when

bk is constant in the support of p for k ≥ 1 (for example, noise is uniformly distributed

and p1 = 0), in which case disclosure does not matter.

The results of Fu, Jiao and Lu (2011) are recovered as a special case by introducing

effective effort y = g(e), which transforms their CSF into the lottery form and the cost

of effort into c(y) = g−1(y). Following Section 2.2, the resulting cost of effort in the

corresponding tournament with additive noise is cm(y) =
∫ y

0
c′(t)tdt, which gives the

marginal cost c′m(y) = c′(y)y = y
g′(g−1(y))

= g(e)
g′(e)

.

A similar effect of a (mean-preserving) variation in the marginal benefit of effort

emerges in static biased contests (see Drugov and Ryvkin, 2017) and dynamic contests

where revealing interim information is equivalent to biasing the next stage (see Lizzeri,

Meyer and Persico, 1999, 2002; Aoyagi, 2010). Parallel results regarding the role of c′′′

hold in those settings as well.
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5 Technical results

5.1 Equilibrium existence

Equilibrium existence and comparative statics are two separate issues, and in the rest

of the paper we have focused on the latter. In this section, however, we address the

equilibrium existence, which so far did not receive an adequate treatment in the literature

on Lazear-Rosen tournaments. It is generally understood that a symmetric pure strategy

equilibrium exists if the variance of shocks Xi is sufficiently large and/or the effort cost

function c(·) is sufficiently convex (see, e.g., Nalebuff and Stiglitz, 1983), but general

sufficient conditions for equilibrium existence have remained unknown.20

For e∗k to be the unique symmetric equilibrium, it is sufficient to require that (i) Eq.

(3) has a solution; (ii) payoff function πi(ei, e
∗), Eq. (2), is strictly concave in ei.

21 The

main difficulty is in the “revenue” part of the payoff function that may not be globally

concave because, in general, F (·) is not concave; moreover, even if F (·) is concave, F (·)k−1

may not be, for a sufficiently large k. At the same time, c(·) is strictly convex, and hence

a version of sufficient conditions can be obtained if the convexity of c(·) is restricted in

some way. The simplest approach is to impose a uniform restriction on c′′(·) on [0, emax].22

Let fm = sup{f(x) : x ∈ U}, f ′max = sup{f ′(x) : x ∈ U} and f ′min = inf{f ′(x) : x ∈ U}
denote the tight, possibly infinite, bounds of pdf f(·) and its derivative f ′(·) on U . We

impose the following restrictions on the pdf of noise.

Assumption 1 (a) f(·) is uniformly bounded; that is, fm <∞.

(b) f ′(·) is uniformly bounded above or below or both; that is, either f ′max <∞ or f ′min >

−∞ or both.

Proposition 9 Suppose Assumption 1 is satisfied and

(a) There exists a c0 > 0 such that c′′(e) ≥ c0 for all e ∈ [0, emax].

(b) c0 > D ≡ min{D+, D−}, where

D+ = (k − 1)[(k − 1)f 2
m + f ′max], D− = (k − 1)(f 2

m − f ′min). (16)

(c) kc(c′−1(fm)) ≤ 1.

20For WTA Tullock contests, equilibrium existence and uniqueness are well-understood, see Szi-
darovszky and Okuguchi (1997).

21Since πi(0, e
∗) ≥ 0, conditions (i) and (ii) automatically imply that the symmetric equilibrium payoff

is positive, πi(e
∗
k, e
∗
k) > 0.

22Any effort ei > emax is strictly dominated.
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Then e∗k is the unique equilibrium in the tournament

Conditions (a) and (b) in Proposition 9 guarantee the global strict concavity of payoff

function (2) in ei, while condition (c) ensures that Eq. (3) has a solution. The conditions

are consistent with the intuition described above. For a given tournament model, they are

easier to satisfy as noise becomes more dispersed (leading to a decrease in fm, f ′max and

|f ′min|). Additionally, conditions (b) and (c) are harder to satisfy as k increases. Overall,

the conditions of Proposition 9 are rather strong because the global strict concavity of

the payoff function is not necessary. An alternative approach can be to impose a weaker

restriction on c(·) but restrict attention to particular families of noise distributions. In

contrast, for the purposes of this paper we have chosen to formulate conditions with

maximum flexibility for the shape of the distribution of noise, at the expense of a rather

restrictive positivity of c′′(·) and substantial noise dispersion.

A quadratic cost function, c(e) = c0
2
e2, satisfies condition (a). Generally, functions

satisfying condition (a) have the form c(e) = c0
2
e2 + κ(e), where κ : [0, emax] → R+ is

convex. Note that a function can satisfy the condition even if it is less convex than

quadratic. For example, function c(e) = c1e
ξ has a positive second derivative bounded

below by c0 = ξ(ξ − 1)c1e
ξ−2
max when ξ ∈ (1, 2].

5.2 Preservation of unimodality under uncertainty

Throughout this paper, we explore the comparative statics of individual and aggregate

equilibrium effort in tournaments with respect to the number of players. First, in Section

3, we assume that this number, k, is fixed; then, in Section 4, we allow k to be a realization

of a nonnegative integer random variable with some probability mass function (pmf).

In the latter case, we explore the comparative statics with respect to changes in the

parameters of the pmf ranked according to FOSD.

In both cases, we show that robust comparative statics for individual effort can be

obtained for unimodal distributions of noise f(x), whereas for aggregate effort the same

holds for noise distributions with a unimodal failure rate h(x) = f(x)
1−F (x)

. These compara-

tive statics amount to preservation of unimodality under uncertainty. Indeed, coefficients

bk, Eq. (4), which determine the comparative statics of individual effort in the case of

deterministic group size, can be written as expectations of inverse quantile density of the

form bk =
∫ 1

0
m(z)dH(z, k), where H(z, k) = zk−1 is a family of cdfs FOSD-ordered by

parameter k. Our first lemma in this section provides a necessary and sufficient condition

for such expectations, generally of the form γ(θ) =
∫ 1

0
u(z)dH(z, θ), where H(z, θ) are
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FOSD-ordered in θ, to be unimodal in θ for all unimodal functions u(z). Turning to the

case of stochastic group size, equilibrium effort is determined by discrete expectations of

the form χ(θ) =
∑n

k=1 pk(θ)uk, where {uk}nk=1 is some sequence and p(θ) = {pk(θ)}nk=1 is

an FOSD-ordered family of pmfs. The second lemma in this section establishes a neces-

sary and sufficient condition for such expectations to be unimodal in θ for all unimodal

sequences uk. We start with some definitions. All missing proofs are in Appendix A.

Definition 1 A function (or sequence) u : S → R, where S ⊆ R, is unimodal if there

exists x̂ ∈ S such that u(·) is increasing for x ≤ x̂ and decreasing for x ≥ x̂. A function

(or sequence) is interior unimodal if it is unimodal and nonmonotone.

Definition 2 A function v : S1 × S2 → R, where S1, S2 ⊆ R, is log-supermodular if for

all x1, x
′
1 ∈ S1, x2, x

′
2 ∈ S2, such that x′1 > x1 and x′2 > x2,

v(x1, x
′
2)v(x′1, x2) ≤ v(x1, x2)v(x′1, x

′
2).

In other words, for all x′2 > x2 the ratio r(x1, x2, x
′
2) =

v(x1,x′2)

v(x1,x2)
is increasing in x1.

Consider integrals of the form γ(θ) =
∫ 1

0
u(z)dH(z, θ), where u(z) : [0, 1] → R is

an integrable, continuous and piecewise differentiable function and H(z, θ) is a cdf of a

random variable Z|θ defined on [0, 1] and parameterized by θ ∈ Θ ⊆ R.23 We assume

that an increase in θ leads to an upward probabilistic shift, in the FOSD sense, of Z|θ;
that is, H(z, θ) is decreasing in θ for all z ∈ [0, 1] and θ ∈ Θ. Let Hθ(z, θ) ≤ 0 denote the

derivative of H(z, θ) with respect to θ if θ is a continuous parameter (in which case we

assume that H(z, θ) is differentiable) or the first difference, H(z, θ + d)−H(z, θ), if θ is

a discrete index with step size d > 0.

Lemma 7 γ(θ) is unimodal for all unimodal functions u(z) if and only if −Hθ(z, θ) is

log-supermodular; that is, the ratio r(z, θ, θ′) = Hθ(z,θ′)
Hθ(z,θ)

is increasing in z for any θ′ > θ.

Consider now sums of the form χ(θ) =
∑n

k=1 pk(θ)uk, where uk is a nonnegative

sequence and p(θ) = (p1(θ), . . . , pn(θ)) is a pmf parameterized by θ ∈ Θ ⊆ R. We use

Pk(θ) =
∑k

l=1 pl(θ) to denote the corresponding cumulative mass function (cmf), with

Pn(θ) = 1. The upper bound of the sum, n ≥ 2, can be finite or infinite and applies

23Variables Z|θ do not have to have the same support; rather, we assume that [0, 1] includes all of their
supports, and H(0, θ) = 1−H(1, θ) = 0 for all θ ∈ Θ.
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uniformly for all values of θ.24 We assume that an increase in θ shifts the distribution

p(θ) upward in the FOSD sense. Let P ′k(θ) ≤ 0 denote the derivative or the first difference

of the cmf with respect to θ.

Lemma 8 χ(θ) is unimodal for all unimodal sequences uk if and only if −P ′k(θ) is log-

supermodular; that is, the ratio r(k, θ, θ′) =
P ′k(θ′)

P ′k(θ)
is increasing in k for any θ′ > θ.

In some cases, the log-supermodularity condition of Lemma 8 may be difficult to check

directly because there is no closed-form expression for the cmf Pk(θ). The following lemma

shows that a similar ratio condition can instead be checked for the probability-generating

function (pgf) of distribution p(θ), defined as G(z, θ) =
∑n

k=1 pk(θ)z
k−1. Probabilities

pk(θ) can be recovered from it as pk(θ) = 1
(k−1)!

G(k−1)(0, θ). Moreover, the pgf can be

related to the cmf P (θ) as

n∑
k=1

Pk(θ)z
k−1 =

G(z, θ)− zn−1

1− z
. (17)

It follows from Eq. (17) that G(z, θ) is decreasing in θ whenever Pk(θ) is decreasing

in θ for all k; that is, G(z, θ) behaves as an FOSD-ordered family of cdfs (except that

G(0, θ) = p1(θ), which is, generally, nonzero). Let Gθ(z, θ) ≤ 0 denote, similar to Hθ(z, θ)

in Lemma 7, either the derivative or the first difference of G(z, θ) with respect to θ.

Lemma 9 −Gθ(z, θ) is log-supermodular if and only if P ′k(θ) is log-supermodular; that

is, the ratio R(z, θ, θ′) = Gθ(z,θ′)
Gθ(z,θ)

is increasing in z for any θ′ > θ if and only if the ratio

r(k, θ, θ′) in Lemma 8 is increasing in k for any θ′ > θ.

The increasing ratio conditions in Lemmas 7, 8 and 9 are well-known in the literature

on comparative statics under uncertainty (Athey, 2002). They are also known as total

positivity of order 2 (Karlin, 1968), and increasing likelihood ratio properties when ap-

plied to parameterized probability density functions (see, e.g., Shaked and Shanthikumar,

2007). The results of this section are most closely related to those of Athey (2002) on

the comparative statics of expectations of the form γ(θ) =
∫ 1

0
u(z)dH(z, θ) for single-

crossing functions u(z). Lemma 7 is a straightforward corollary of these results applied

to unimodal functions, i.e., functions with a single-crossing derivative. Indeed, assuming

24This is not to say that p(θ) has support independent of θ ∈ Θ; rather, n = supθ∈Θ n(θ), where n(θ)
is the upper bound of the support of p(θ). The definitions of p(θ) are extended to the uniform support
so that pk(θ) = 0 and Pk(θ) = 1 for k > n(θ).
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u(1) is finite (which is the case for interior unimodal functions) and integrating by parts,

γ(θ) = u(1)−
∫ 1

0
u′(z)H(z, θ)dz, where u′(z) is single-crossing and hence, following Athey

(2002), γ′(θ) = −
∫ 1

0
u′(z)Hθ(z, θ)dz is single-crossing, i.e., γ(θ) is unimodal, if −Hθ(z, θ)

is log-supermodular. Lemma 8 is a discrete version of Lemma 7 and follows similarly

via “summation by parts.” Lemma 9, however, is less straightforward; the equivalence

of log-supermodality of a discrete cmf and the corresponding pgf is a new result with

potentially broader applications.

6 Conclusion

Tournament incentives are ubiquitous. Students applying to universities, researchers com-

peting for grants, R&D firms competing for innovation, job candidates applying for an

opening or employees competing for promotion, and numerous other examples, are sit-

uations where participants’ outcomes are determined jointly by ability, effort and luck.

Differences in ability stratify the playing field to some extent, but competition is the most

fierce, and luck plays the biggest role, in tournaments among equally able contestants.

It is traditionally believed that competition increases productivity, fosters innovation,

and promotes economic growth. However, it is also easy to imagine how competition may

discourage effort in winner-take-all environments where luck plays a significant role. Our

results demonstrate that there is a nontrivial interplay between the two effects, and the

nature of shocks – the “shape of luck” – matters for the willingness to compete.

We show that individual effort reacts to an increase in competition, be it deterministic

or stochastic, in a way that essentially follows the shape of the density of noise. As long

as the density is unimodal, individual effort is also unimodal in the number of players, but

it can be increasing, deceasing or nonmonotone when the distribution of noise is skewed.

Aggregate effort behaves similarly, but following the shape of the failure rate of noise.

Hence, the presence of heavy tails – a decreasing or interior unimodal failure rate – in the

distribution of noise can lead to a reduction in aggregate effort with competition.

Heavy-tailed distributions, including the Pareto distribution (also known as the family

of power laws), have been widely identified in economics, finance and other domains. For

example, it has been known for a long time that economic variables such as income (Pareto,

1896), city sizes (Auerbach, 1913), firm sizes (Axtell, 2001), stock market movements

(Mandelbrot, 1963) and CEO compensation (Roberts, 1956) follow power laws. More

recently, power laws have been found to describe demand for books at Amazon (Chevalier
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and Goolsbee, 2003) and movie ratings in Netflix (Bimpikis and Markakis, 2016).25 The

nature of innovation as an unlikely breakthrough resulting from a large number of mostly

unsuccessful attempts produces heavy tails in the value, quality and financial returns of

inventions (Fleming, 2007).

Our results predict diverging effects of competition on aggregate effort (or investment)

in tournaments characterized by different types of noise. Given the various contradictory

findings and nonmonotonicities in the literature on the effects of competitive pressure on

innovation (e.g., Aghion et al., 2005; Vives, 2008), our results provide an independent

mechanism through which different reactions to competitive pressure may arise across

industries, or even within the same industry across time.

To date, there is virtually no empirical research on the effects of variation in the shape

of shocks on behavior in tournaments. The existing studies of tournaments using natural

data (e.g., Ehrenberg and Bognanno, 1990; Knoeber and Thurman, 1994; Eriksson, 1999)

treat noise as a nuisance and do not attempt to estimate its distribution. Similarly,

laboratory experiments typically rely on a specific distribution of noise in their winner

determination process – most often, a lottery contest or uniformly distributed additive

shocks (for a review, see Dechenaux, Kovenock and Sheremeta, 2015) – and do not explore

variation in its shape. We only know of one exception. List et al. (2014) study how

effort depends on the number of players in tournaments with varying noise densities.

They consider distributions with constant, increasing and decreasing densities and find,

consistent with theory, that the comparative statics of individual effort follow similar

patterns. However, all three distributions in their study are light-tailed with increasing

failure rates, and, consistent with our results, they observe aggregate effort increasing in

the number of players in all three cases.

Our last comment is methodological. The techniques developed in this paper can be

extended to many applications of general tournament models, including optimal contract

design and dynamic tournaments,26 giving a new life to the literature that so far has been

limited to considering a number of special cases.

25See Gabaix (2016) for a survey of many identified power laws and their underlying mechanisms.
Many patterns outside economics are described by power laws as well, such as the frequency of words in
natural languages (Zipf, 1949), the intensity of earthquakes (Christensen et al., 2002) or popularity in
social networks (Barabási and Albert, 1999).

26For example, in a companion paper (Drugov and Ryvkin, 2018), we use them to obtain new general
results on the optimal allocation of prizes.
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A Proofs

Proof of the “only if” part of part (ii) of Lemma 1 Let mk =
∫ 1

0
zkm(z)dz denote

the moments of the inverse quantile density. Suppose bk = b2 for all k ≥ 2. This implies,

from (4), (k+1)mk = b2 and hence mk = b2
k+1

for all k = 0, 1, . . .. The moment-generating

function of m(z), defined as µ(x) = E(exp(xZ)), can be written in the form of expansion

over moments, µ(x) =
∑∞

k=0
mk
k!
xk, which gives

µ(x) =
∞∑
k=0

b2

(k + 1)!
xk =

b2

x
(exp(x)− 1).

This is the moment-generating function of an (unnormalized) uniform distribution on

[0, 1], implying m(z) is a constant and F is uniform.

Proof of Lemma 2 Recall from (4) that bk =
∫ 1

0
m(z)dzk−1; therefore, integrating by

parts,

bk − bk+1 =

∫ 1

0

m(z)d(zk−1 − zk) = −
∫ 1

0

zk−1(1− z)m′(z)dz.

Let ẑ = F−1(x̂) and suppose m(z) is decreasing and nonconstant on (ẑ, 1) (the case of an

increasing and nonconstant m(z) is proved similarly). Then

bk − bk+1 = −
∫ ẑ

0

zk−1(1− z)m′(z)dz +

∫ 1

ẑ

zk−1(1− z)|m′(z)|dz

≥
∫ 1

ẑ

zk−1(1− z)|m′(z)|dz −
∫ ẑ

0

zk−1(1− z)|m′(z)|dz

≥ ẑk−1

∫ 1

ẑ

(1− z)|m′(z)|dz −M2

∫ ẑ

0

zk−1dz = M1ẑ
k−1 − M2ẑ

k

k
= ẑk−1

(
M1 −

M2ẑ

k

)
.

Here, M1 =
∫ 1

ẑ
(1 − z)|m′(z)|dz > 0 is independent of k and M2 > 0 is bounded (the

existence of M2 follows, for example, from the mean-value theorem for definite integrals).

The last expression becomes positive for a sufficiently large k.
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Proof of Proposition 2 Define

∆bk+3 = bk+3 − bk+2 =

∫ 1

0

[
(k + 2)zk+1 − (k + 1)zk

]
m(z)dz, k = 0, 1, . . . , n− 3. (18)

Integrating by parts, obtain

∆bk+3 =

∫ 1

0

m(z)d(zk+2 − zk+1) =

∫ 1

0

zk+1(1− z)m′(z)dz. (19)

For part (ii), the symmetry of f(x) around its mean µ implies f(x) = f(2µ − x) and

F (x) = 1 − F (2µ − x) for all x ∈ U . Letting z = F (x) = 1 − F (2µ − x), obtain

1 − z = F (2µ − x), F−1(1 − z) = 2µ − x and m(1 − z) = f(F−1(1 − z)) = f(2µ − x) =

f(x) = f(F−1(z)) = m(z). Thus, the symmetry of the distribution of noise implies

m(z) = m(1− z) and m′(z) = −m′(1− z) for all z ∈ [0, 1].

This gives, via a change of variable z → 1− z,

∆bk+3 = −
∫ 1

2

0

z(1− z)[(1− z)k − zk]m′(z)dz,

which immediately implies that ∆b3 = 0 and ∆bk+3 < 0 for k > 0.

For part (iii), note that b2 =
∫ 1

0
m(z)dz and, if m(z) = m(1− z) (which only requires

symmetry but not unimodality of f),

b3 = 2

∫ 1

0

zm(z)dz = 2

∫ 1

0

(1− z)m(1− z)dz = 2

∫ 1

0

(1− z)m(z)dz = 2b2 − b3,

which implies b2 = b3.

Proof of Lemma 4 For a quadratic cost function, E∗k ∝ E(hq(Z(k−1:k))) and part (i)

follows immediately from the the FOSD ordering of order statistics Z(k−1:k) in k. Part (ii)

follows by direct computation. For part (iii), the result follows from Lemma 7 due to the

log-supermodularity of |FB
k (z; k − 1, 2)|. Indeed, recall that FB(z;x, y) is the regularized

incomplete beta function, and its properties include (Paris, 2010)

FB(z;x+ 1, y) = FB(z;x, y)− zx(1− z)y

xB(x, y)
,
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where B(x, y) is the beta function. This gives

FB
k (z, k − 1, 2) = FB(z; k, 2)− FB(z; k − 1, 2) = − zk−1(1− z)2

(k − 1)B(k − 1, 2)
,

and, for some z′ > z,
FB
k (z′, k − 1, 2)

FB
k (z, k − 1, 2)

=

(
z′

z

)k−1
(1− z′)2

(1− z)2

is increasing in k.

Proof of Proposition 3 For concreteness, suppose f(x) is IFR. Then, by Lemma 4, kbk

is increasing in k. Treating k ≥ 2 as a continuous parameter, which is justified because

bk, Eq. (4), is differentiable in k, gives (kbk)
′ = bk + kb′k ≥ 0, where the prime denotes

partial derivative with respect to k. In general, E∗k = ke∗k; therefore, (E∗k)
′ = e∗k + k(e∗k)

′.

Differentiating the first-order condition c′(e∗k) = bk with respect to k obtain c′′(e∗k)(e
∗
k)
′ =

b′k, which gives (e∗k)
′ =

b′k
c′′(e∗k)

and hence (E∗k)
′ = e∗k +

kb′k
c′′(e∗k)

.

Suppose c(e) is more convex than e2. Then c(
√
t) is convex in t, which implies

∂2

∂t2
c(
√
t) =

∂

∂t

[
c′(
√
t)

2
√
t

]
=
c′′(
√
t)
√
t− c′(

√
t)

4t3/2
≥ 0,

i.e., c′′(e)e ≥ c′(e). Therefore, c′′(e∗k)e
∗
k ≥ c′(e∗k) = bk and, using the condition bk+kb′k ≥ 0,

(E∗k)
′ = e∗k +

kb′k
c′′(e∗k)

≥ e∗k −
bk

c′′(e∗k)
≥ 0.

For the case when f(x) is DFR and c(e) is less convex than e2 the derivation is similar.

Proof of Proposition 5 (i) From (9),

p̃k =
kpk
k̄

=
kakθ

k∑∞
k=1 kakθ

k
=
ãkθ

k

Ã(θ)
,

where ãk = kak and Ã(θ) =
∑∞

k=1 ãkθ
k; that is, p̃k also has the PSD form.
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(ii) Recall that G(z, θ) = A(θz)
A(θ)

. This gives

Gθ(z, θ) =
A′(θz)z

A(θ)
− A′(θ)

A(θ)

A(θz)

A(θ)

=

∑∞
k=0 kakθ

k−1zk

A(θ)
−
∑∞

k=0 kakθ
k−1

A(θ)

∑∞
k=0 akθ

kzk

A(θ)

=
1

θ

(
E(KzK)− E(K)E(zK)

)
=

1

θ
Cov(K, zK) ≤ 0.

(iii) Let Ak(θ) = 1
A(θ)

∑k
l=0 alθ

l denote the cmf of a PSD distribution. We will prove

that |A′k(θ)| is log-supermodular; the result then follows by Lemma 9. Note that

A′k(θ) =
1

A(θ)2

k∑
l=0

∑
m≥0

alamθ
l+m−1(l −m) = − 1

A(θ)2

k∑
l=0

∑
m≥k+1

alamθ
l+m−1(m− l).

Consider some θ′ > θ and let β = θ′

θ
> 1. For convenience, introduce the notation

αlm = alamθ
l+m−1(m− l). The ratio r(k, θ, θ′) from Lemma 8 is

A′k(θ′)

A′k(θ)
= A(θ)2

A(θ′)2
Nk
Dk

, where

Nk =
k∑
l=0

∑
m≥k+1

βl+m−1αlm, Dk =
k∑
l=0

∑
m≥k+1

αlm.

We need to show that Nk
Dk

is increasing in k, or, equivalently, that Nk+1Dk −NkDk+1 ≥ 0.

Notice that Nk+1 can be expressed through Nk as follows:

Nk+1 = Nk −
k∑
l=0

βl+kαl,k+1 +
∑

m≥k+2

βm+kαk+1,m.

Similarly,

Dk+1 = Dk −
k∑
l=0

αl,k+1 +
∑

m≥k+2

αk+1,m;

42



therefore,

Nk+1Dk −NkDk+1 =

(
Nk −

k∑
l=0

βl+kαl,k+1 +
∑

m≥k+2

βm+kαk+1,m

)
Dk

−Nk

(
Dk −

k∑
l=0

αl,k+1 +
∑

m≥k+2

αk+1,m

)

=
k∑
l=0

αl,k+1(Nk − βl+kDk) +
∑

m≥k+2

αk+1,m(βm+kDk −Nk).

It can be shown that each of the two terms in the last line is nonnegative. We demonstrate

it explicitly for the first term; for the second term, the derivation is similar.

k∑
l=0

αl,k+1(Nk − βl+kDk) =
k∑
l=0

∑
m≥k+1

k∑
l′=0

(
βl
′+m−1αl′mαl,k+1 − βl+kαl′mαl,k+1

)
=

k∑
l=0

∑
m≥k+1

k∑
l′=0

(
βl+m−1αlmαl′,k+1 − βl+kαl′mαl,k+1

)
≥

k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+k (αlmαl′,k+1 − αl′mαl,k+1)

=
k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+kalamal′ak+1θ
l+m−1+l′+k [(m− l)(k + 1− l′)− (m− l′)(k + 1− l)]

=
k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+kalamal′ak+1θ
l+m−1+l′+k(m− k − 1)(l − l′)

=
∑

m≥k+1

βkamak+1θ
m−1+k(m− k − 1)

k∑
l=0

k∑
l′=0

βlalal′θ
l+l′(l − l′).

The sum over l and l′ can be rewritten as

k∑
l=0

k∑
l′=0

βlalal′θ
l+l′(l − l′) = Ak(θ)

2A(θ)2[E(βLL)− E(βL)E(L)]

= Ak(θ)
2A(θ)2Cov(βL, L) ≥ 0.

Here, L is understood as a random variable with support 0, 1, . . . , k and pmf alθ
l

Ak(θ)A(θ)
.

The covariance is nonnegative because β > 1.
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Proof of Proposition 7 First, we prove that if f(x) is log-concave (log-convex) then

kbk is concave (convex) in k for k ≥ 2. Integrating (4) by parts twice, obtain

E∗k = kbk = k(k − 1)

∫ 1

0

zk−2m(z)dz = k

[
m(z)zk−1|10 −

∫ 1

0

zk−1m′(z)dz

]
= km(1)−m′(z)zk|10 +

∫ 1

0

zkm′′(z)dz = km(1)−m′(1) +

∫ 1

0

zkm′′(z)dz.

This gives the second difference

∆2E∗k = E∗k+2 − 2E∗k+1 + E∗k =

∫ 1

0

zk(1− z)2m′′(z)dz ≤ (≥)0

for m′′(·) ≤ (≥)0, which holds when f(x) is log-concave (log-convex), with strict inequality

if f(x) is strictly log-concave (log-convex).

Second, we compare E∗p = k̄e∗p to E∗p′ = k̄e∗p′ . This is equivalent to comparing e∗p and

e∗p′ , i.e., it is sufficient to compare Bp to Bp′ or, from (13),
∑

k≥2 pkkbk to
∑

k≥2 p
′
kkbk.

Because p0 = p1 = p′0 = p′1 = 0, both sums represent unconditional expectations, and

we are comparing Ep(KbK) to Ep′(KbK). The result then follows from the definition of

second-order stochastic dominance.

Proof of Proposition 8 Without disclosure, the expected aggregate effort in the tour-

nament is E∗p = k̄e∗p = k̄c′−1(Bp), where, from (13), Bp = Ep̃(bK). With disclosure, the

expected aggregate effort is Ep(Kc
′−1(bK)), which can be rewritten as

Ep(Kc
′−1(bK)) =

n∑
k=1

pkkc
′−1(bk) = k̄

n∑
k=1

p̃kc
′−1(bk) = k̄Ep̃(c

′−1(bK)).

Thus, comparing E∗p and Ep(Kc
′−1(bK)) is equivalent to comparing c′−1(Ep̃(bK)) and

Ep̃(c
′−1(bK)).

It follows that when bk is not constant in the support of p̃, and c′−1 is concave (convex)

and nonlinear for at least some distinct values of bk, disclosure is not optimal (optimal).

The concavity (convexity) of c′−1 is equivalent to the convexity (concavity) of c′, i.e., to

the condition c′′′ ≥ (≤)0.

Proof of Proposition 9 We start by showing that condition (c) guarantees the existence

of a unique e∗k solving (3). Recall that c′(·) is strictly increasing and c′(0) = 0. It

is, therefore, sufficient to show that c′(emax) > bk. Condition (c) implies c′−1(fm) ≤

44



c−1( 1
k
); therefore, fm ≤ c′(c−1( 1

k
)) < c′(c−1(1)) = c′(emax). Representation (4) gives

bk =
∫ 1

0
m(z)dzk−1 ≤ fm, which produces the desired result.

Next, we use conditions (a) and (b) to show that payoff function (2) is strictly concave

in ei. Let R(e) =
∫ x
x
F (e− e∗ + x)k−1dF (x) and suppose c′′(e) ≥ c0 > 0 on [0, emax]. We

need to show that R′′(e) < c0. For convenience, let ∆e = e − e∗. Differentiating R(e)

once, obtain

R′(e) = (k − 1)

∫ x

x

F (∆e+ x)k−2f(∆e+ x)dF (x). (20)

We need to evaluate the second derivative R′′(e). Note that the integrand in (20) is

nonzero only for x ∈ [max{x, x−∆e},min{x, x−∆e}], and is continuous and piecewise

differentiable in this interval under our assumptions; however, the integrand may be

discontinuous on U . We, therefore, consider the cases when ∆e ≥ 0 and ∆e < 0 separately.

(i) Suppose that ∆e ≥ 0. Then the interval of integration in (20) is [x, x−∆e] and

R′′(e) = (k − 1)

[
(k − 2)

∫
U

F (∆e+ x)k−3f(∆e+ x)2dF (x)

+

∫
U

F (∆e+ x)k−2f ′(∆e+ x)dF (x)− f(x)f(x−∆e)

]
≤ (k − 1)[(k − 2)f 2

m + f ′max].

(ii) Suppose that ∆ < 0. Then the interval of integration in (20) is [x−∆e, x] and

R′′(e) = (k − 1)

[
(k − 2)

∫
U

F (∆e+ x)k−3f(∆e+ x)2dF (x)

+

∫
U

F (∆e+ x)k−2f ′(∆e+ x)dF (x) + F (x)k−2f(x)f(x−∆e)

]
≤ (k − 1)[(k − 1)f 2

m + f ′max].

Thus, D+ = (k−1)[(k−1)f 2
m+f ′max] is a bound such that c0 > D+ ensures R′′(e)−c0 < 0.

An alternative bound on R′′(e) can be obtained by transforming (20) via a change of

variables x+ ∆e→ x into the form

R′(e) = (k − 1)

∫ x

x

F (x)k−2f(x−∆e)dF (x). (21)

In this case the integrand is nonzero, continuous and piecewise differentiable for x ∈
[max{x, x+ ∆e},min{x, x+ ∆e}]. We consider the same two cases as above.
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(i) For ∆e ≥ 0, the interval of integration in (21) is [x+ ∆e, x] and

R′′(e) = (k − 1)

[
−
∫
U

F (x)k−2f ′(x−∆e)dF (x)− F (x+ ∆e)k−2f(x)f(x+ ∆e)

]
≤ −(k − 1)f ′min.

(ii) For ∆e < 0, the interval of integration in (21) is [x, x+ ∆e] and

R′′(e) = (k − 1)

[
−
∫
U

F (x)k−2f ′(x−∆e)dF (x) + F (x+ ∆e)k−2f(x)f(x+ ∆e)

]
≤ (k − 1)(f 2

m − f ′min).

This produces bound D− = (k− 1)(f 2
m− f ′min) such that c0 > D− implies R′′(e)− c0 < 0.

Since both bounds are valid, condition c0 > min{D+, D−} is sufficient.

Note that condition (c) automatically implies that πi(e
∗
k, e
∗
k) = 1

k
− c(e∗k) ≥ 0. Using

the bound bk ≤ fm derived above, obtain kc(e∗k) = kc(c′−1(bk)) ≤ kc(c′−1(fm)) ≤ 1.

Proof of Lemma 7 (i) Sufficiency: When u(z) is monotone, it follows immediately that

γ(θ) is monotone. Suppose that u(z) is interior unimodal; in this case, u(1) is finite.

Integrating by parts, obtain

γ(θ) = u(1)−
∫ 1

0

u′(z)H(z, θ)dz. (22)

Let ẑ ∈ (0, 1) denote a mode of u(z). Differentiating, or taking the first difference, with

respect to θ, and splitting the integral in (22), obtain

γ′(θ) = −
∫ ẑ

0

u′(z)Hθ(z, θ)dz −
∫ 1

ẑ

u′(z)Hθ(z, θ)dz

=

∫ ẑ

0

u′(z)|Hθ(z, θ)|dz −
∫ 1

ẑ

|u′(z)||Hθ(z, θ)|dz. (23)
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Suppose γ′(θ) ≤ 0 for some θ and consider a θ′ > θ. Then (23) gives

γ′(θ′) =

∫ ẑ

0

u′(z)|Hθ(z, θ
′)|dz −

∫ 1

ẑ

|u′(z)||Hθ(z, θ
′)|dz

=

∫ ẑ

0

u′(z)r(z, θ, θ′)|Hθ(z, θ)|dz −
∫ 1

ẑ

|u′(z)|r(z, θ, θ′)|Hθ(z, θ
′)|dz

≤ r(ẑ, θ, θ′)

∫ ẑ

0

u′(z)|Hθ(z, θ)|dz − r(ẑ, θ, θ′)
∫ 1

ẑ

|u′(z)||Hθ(z, θ
′)|dz = r(ẑ, θ, θ′)γ′(θ) ≤ 0.

Here, the first inequality follows from the assumption that r(z, θ, θ′) is increasing in z.

Thus, we showed that γ(θ) is unimodal.

(ii) Necessity: Suppose that there exist θ′ > θ and a z ∈ [0, 1] such that r(z, θ, θ′) is

decreasing in z. The proof consists in showing that a unimodal function u(z) can then

be constructed such that γ(θ) is not unimodal. By continuity, there exists an interval

of positive length [z1, z2] where r(z, θ, θ′) is strictly decreasing. First, define a unimodal

function u(z) such that it is nonzero only withing this interval. Furthermore, u(z) can

be defined in a way that γ′(θ) = 0. For example, it can be defined as a piecewise linear

function such that u′(z) =
∫ z2
ẑ
|Hθ(z, θ)|dz for z ∈ (z1, ẑ) and |u′(z)| =

∫ ẑ
z1
|Hθ(z, θ)|dz

for z ∈ (ẑ, z2). In this case, it follows from (23) that γ′(θ) = 0. Finally, we modify

this u(z) “slightly” to make γ′(θ) negative. For example, choose some ε > 0 and set

u′(z) =
∫ z2
ẑ
|Hθ(z, θ)|dz − ε for z ∈ (z1, ẑ). Then

γ′(θ′) =

∫ ẑ

z1

u′(z)r(z, θ, θ′)|Hθ(z, θ)|dz −
∫ z2

ẑ

|u′(z)|r(z, θ, θ′)|Hθ(z, θ
′)|dz

= r(z∗1 , θ, θ
′)

∫ ẑ

z1

u′(z)|Hθ(z, θ)|dz − r(z∗2 , θ, θ′)
∫ z2

ẑ

|u′(z)||Hθ(z, θ
′)|dz

= r(z∗1 , θ, θ
′)

[∫ z2

ẑ

|Hθ(z, θ)|dz − ε
] ∫ ẑ

z1

|Hθ(z, θ)|dz

− r(z∗2 , θ, θ′)
∫ z2

ẑ

|Hθ(z, θ
′)|dz

∫ ẑ

z1

|Hθ(z, θ)|dz

= (r(z∗1 , θ, θ
′)− r(z∗2 , θ, θ′))

∫ ẑ

z1

|Hθ(z, θ)|dz
∫ z2

ẑ

|Hθ(z, θ
′)|dz

− εr(z∗1 , θ, θ′)
∫ z2

ẑ

|Hθ(z, θ)|dz.

Here, z∗1 ∈ (z1, ẑ) and z∗2 ∈ (ẑ, z2) exist due to the mean-value theorem for definite

integrals. Note that z∗2 > z∗1 and hence the first term in the last expression is positive,
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while the second term can be made arbitrarily small via the choice of ε; therefore, an

ε > 0 can be chosen such that γ′(θ′) > 0. Thus, γ(θ) is not unimodal.

Proof of Lemma 8 (i) Sufficiency: Rewrite χ(θ) as follows:

χ(θ) = p1(θ)u1 + p2(θ)u2 + . . .+ pn−1(θ)un−1 + pn(θ)un

= P1(θ)u1 + (P2(θ)− P1(θ))u2 + . . .+ (Pn−1(θ)− Pn−2(θ))un−1 + (Pn(θ)− Pn−1(θ))un

= un + P1(θ)(u1 − u2) + P2(θ)(u2 − u3) + . . .+ Pn−1(θ)(un−1 − un)

= un −
n−1∑
k=1

Pk(θ)∆uk+1,

where ∆uk+1 = uk+1 − uk. This “summation by parts” representation is similar to inte-

gration by parts and expresses the expectation χ(θ) through the cmf P (θ) and the first

difference of uk. Taking the derivative, or the difference, with respect to θ, obtain

χ′(θ) = −
n−1∑
k=1

P ′k(θ)∆uk+1 =
n−1∑
k=1

|P ′k(θ)|∆uk+1.

Let k̂ denote a mode of uk such that ∆uk+1 ≥ (≤)0 for k < (≥)k̂. This gives

χ′(θ) =
∑
k<k̂

|P ′k(θ)|∆uk+1 −
∑
k≥k̂

|P ′k(θ)||∆uk+1|.

Suppose that χ′(θ) ≤ 0 for some θ and consider a θ′ > θ. Then

χ′(θ′) =
∑
k<k̂

|P ′k(θ′)|∆uk+1 −
∑
k≥k̂

|P ′k(θ′)||∆uk+1|

=
∑
k<k̂

|P ′k(θ)|r(k, θ, θ′)∆uk+1 −
∑
k≥k̂

|P ′k(θ)|r(k, θ, θ′)|∆uk+1|

≤ r(k̂, θ, θ′)
∑
k<k̂

|P ′k(θ)|∆uk+1 − r(k̂, θ, θ′)
∑
k≥k̂

|P ′k(θ)||∆uk+1| = r(k̂, θ, θ′)χ′(θ) ≤ 0.

Here, the first inequality follows from the assumption that r(k̂, θ, θ′) is increasing in k.

(ii) Necessity: Suppose that there exist θ′ > θ and k such that r(k − 1, θ, θ′) >

r(k, θ, θ′). As in the proof of Lemma 7, we will show that it is possible to construct a

unimodal sequence uk such that χ(θ) is not unimodal. Set ul = a for all l ≤ k − 1 and

ul = b for all l ≥ k + 1; furthermore, set uk > max{a, b}. The resulting sequence uk is
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interior unimodal with mode k and satisfies ∆uk > 0, ∆uk+1 < 0, and ∆ul = 0 for all

l 6= k, k + 1. Then

χ′(θ) = |P ′k−1(θ)|∆uk − |P ′k(θ)||∆uk+1|.

Choosing a, uk and b so that ∆uk = |P ′k(θ)| − ε for some ε > 0 and |∆uk+1| = |P ′k−1(θ)|,
obtain χ′(θ) = −ε|P ′k−1(θ)| < 0. However,

χ′(θ′) = |P ′k−1(θ′)|∆uk − |P ′k(θ′)||∆uk+1|

= r(k − 1, θ, θ′)|P ′k−1(θ)|(|P ′k(θ)| − ε)− r(k, θ, θ′)|P ′k(θ)||P ′k−1(θ)|

= (r(k − 1, θ, θ′)− r(k, θ, θ′))|P ′k(θ)||P ′k−1(θ)| − εr(k − 1, θ, θ′)|P ′k−1(θ)|.

The first term on the last line is strictly positive, while the second term can be made

arbitrarily small through the choice of ε; thus, an ε > 0 can be chosen such that χ′(θ′) > 0,

i.e., χ(θ) is not unimodal.

Proof of Lemma 9 (i) Sufficiency: By differentiating, or taking the first difference of,

Eq. (17) with respect to θ, obtain

n∑
k=1

P ′k(θ)z
k−1 =

Gθ(z, θ)

1− z
,

which gives, for some θ′ > θ,

R(z, θ, θ′) =
|Gθ(z, θ

′)|
|Gθ(z, θ)|

=

∑n
k=1 |P ′k(θ′)|zk−1∑n
k=1 |P ′k(θ)|zk−1

=

∑n
k=1 |P ′k(θ)|r(k, θ, θ′)zk−1∑n

k=1 |P ′k(θ)|zk−1
. (24)

Define a pmf αk(z) =
|P ′k(θ)|zk−1∑n
l=1 |P ′l (θ)|zl−1 and the corresponding cmf Ak(z) =

∑k
l=1 αk(z). Then

(24) can be written as an expectation R(z, θ, θ′) =
∑n

k=1 αk(z)r(k, θ, θ′) of an increasing

random variable r(K, θ, θ′). This expectation is increasing in z provided an increase in

z leads to an FOSD increase in distribution α(z), i.e., if Ak(z) is decreasing in z. The

derivative of Ak(z) is

A′k(z) =
d

dz

(∑k
l=1 |P ′l (θ)|zl−1∑n
l=1 |P ′l (θ)|zl−1

)
=

1

(
∑n

l=1 |P ′l (θ)|zl−1)2

k∑
l=1

n∑
l′=1

|P ′l (θ)||P ′l′(θ)|zl+l
′−3(l − l′)

=
1

(
∑n

l=1 |P ′l (θ)|zl−1)2

k∑
l=1

n∑
l′=k+1

|P ′l (θ)||P ′l′(θ)|zl+l
′−3(l − l′) ≤ 0. (25)
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(ii) Necessity: Define ∆rl+1 = r(l + 1, θ, θ′) − r(l, θ, θ′), and suppose that ∆rk+1 < 0

for some k and θ′ > θ. Using the same “summation by parts” transformation as at the

start of the proof of Lemma 8, write

R(z, θ, θ′) = r(n, θ, θ′)−
n−1∑
l=1

Al(z)∆rl+1,

which gives, differentiating with respect to z,

Rz(z, θ, θ
′) =

n−1∑
l=1

|A′l(z)|∆rl+1.

Choose Pl(θ) so that P ′l (θ) = 0 for all l 6= k, k + 1 and P ′k(θ), P
′
k+1(θ) < 0. Equation (25)

then gives

A′k(z) =
−|P ′k(θ)||P ′k+1(θ)|z2k−2

(|P ′k(θ)|zk−1 + |P ′k+1(θ)|zk)2
< 0

and A′l(z) = 0 for all l 6= k; therefore, we obtain Rz(z, θ, θ
′) = |A′k(z)|∆rk+1 < 0, which is

a contradiction.
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