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Abstract

I study ambiguity attitudes in Uzi Segal�s recursive non-expected utility model. I show that
according to this model, the negative certainty independence axiom over simple lotteries is
equivalent to a robust, or global form of ambiguity aversion that requires ambiguity averse
behavior irrespective of the number of states and the decision maker�s second-order belief.
Thus, the recursive cautious expected utility model is the only subclass of Segal�s model
that robustly predicts ambiguity aversion. Similarly, the independence axiom over lotteries
is equivalent to a robust form of ambiguity neutrality. In fact, any non-expected utility
preference over lotteries coupled with a suitable second-order belief over three states pro-
duces either the Ellsberg paradox or the opposite mode of behavior. Finally, I propose a
de�nition of a mean-preserving spread for second-order beliefs that is equivalent to increas-
ing ambiguity aversion for every recursive preference that satis�es the negative certainty
independence axiom.
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1 Introduction

In the literature on decision making under uncertainty, �ambiguity� refers to situations

in which the probabilities of some events are not so clear, whereas the term �risk� is

reserved for those situations that involve objectively de�ned probabilities. Following Ells-

berg�s (1961) classic examples, which became known as the �Ellsberg paradox,�a tendency

to prefer risky bets (i.e., lotteries) to ambiguous bets has emerged as a common behav-

ioral pattern in experimental studies. One of the earliest models of such ambiguity averse

behavior is Segal�s (1987) theory of recursive non-expected utility preferences.

Segal�s model predicts certain connections between attitudes towards ambiguity and

risk that make this model unique in the related literature. The starting point of the

theory is that, absent objectively de�ned probabilities, the decision maker (DM) deems

likely several probability distributions over the states of nature. More speci�cally, the DM

holds a (subjective) second-order belief that attaches a probability to any given (�rst-order)

probability distribution over the states. Then, with the help of this second-order belief, an

ambiguous act� a function that assigns prizes to states� is evaluated as if it is a compound

lottery, i.e., a lottery over lotteries. Thus, according to this theory, ambiguity aversion is

closely related to aversion towards compound risk, as opposed to one-shot or simple risk.

In particular, the DM can exhibit Ellsberg-type choices only if she violates the reduction of

compound lotteries axiom. Moreover, the reduction of compound lotteries axiom fails only

if the independence axiom fails over simple lotteries, implying that Ellsberg-type choices

under ambiguity necessitate violations of the independence axiom under risk, as in Allais�

(1953) classic examples.1

In a related experiment that studies the interplay between attitudes towards ambiguity,

and compound and simple risk, Halevy (2007) �nds that the behavior of 40 percent of his

subjects comply with the predictions of Segal�s theory. More recently, Dean and Ortoleva

(2015) also report a signi�cant correlation between ambiguity aversion and (i) aversion

towards compound risk; (ii) Allais�common ratio and common consequence e¤ects.2

Aside from a second-order belief, the only other primitive of Segal�s theory is a pref-

erence relation over simple lotteries, which directly in�uences the DM�s attitude towards

ambiguity. While, in principle, one can incorporate any risk preference into the theory,

Segal focuses on Quiggin�s (1982) rank dependent utility (RDU) model. One of the main

1Seo�s (2009) theory of second-order subjective expected utility also explains Ellsberg-type choices with
the failure of the reduction of compound lotteries axiom. However, that model assumes expected utility
preferences over simple lotteries, unlike Segal�s theory. The two models also generate di¤erent attitudes
towards the timing of the resolution of uncertainty (see Appendix A).

2On the other hand, Abdellaoui, Klibano¤ and Placido (2015) �nd only a weak association between
attitudes towards compound risk and ambiguity.
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�ndings of Segal (1987, Theorem 4.2) shows that given a risk preference that admits an

RDU representation with a convex probability distortion function, under some further as-

sumptions, the theory does indeed generate Ellsberg-type choices over binary bets, which

involve only a good prize and a bad one.

More recently, Dillenberger (2010) has shown that according to Segal�s model, an ax-

iom about simple lotteries, called �negative certainty independence�(NCI), is equivalent to

another axiom about compound lotteries, called �preference for one-shot resolution of un-

certainty�(PORU). NCI is a generalization of the independence axiom over simple lotteries

that accommodates Allais�common ratio and common consequence e¤ects. In turn, PORU

asserts that the reduced form of a compound lottery should be preferred to that lottery.

Although Dillenberger is not directly concerned with ambiguity, given the aforementioned

relation between ambiguous acts and compound lotteries in Segal�s model, the equivalence

between NCI and PORU suggests that risk preferences that satisfy NCI may provide a

good alternative to the RDU model for the purposes of modeling ambiguity aversion.

Speci�cally, in light of the role of second-order beliefs in Segal�s theory, PORU can be

interpreted as saying that the DM would deem uncertain acts more valuable if she were able

to convert ambiguity into risk by replacing her second-order belief with the reduced form

of that belief. Hence, if PORU holds, for any second-order belief on any state space, the

reduced form of that belief will act as a �benchmark�that quali�es the DM as ambiguity

averse. Consequently, a risk preference that satis�es PORU (or NCI) possesses a global

ambiguity aversion property in the sense that it implies ambiguity aversion irrespective of

the second-order beliefs or the number of states (Artstein-Avidan and Dillenberger, 2011).

On the other hand, modern de�nitions of ambiguity aversion do not impose a restriction

on �rst-order distributions that can act as a benchmark (see Epstein, 1999; Ghirardato

and Marinacci, 2002; and, Dean and Ortoleva, in press). What implications does this

approach entail in Segal�s model? Does there exist an ambiguity averse recursive preference

with a benchmark that is distinct from the reduced form of the second-order belief in

question? If so, is it possible to devise an alternative, non-standard method of reduction

that systematically generates benchmarks from second-order beliefs for a given class of risk

preferences that may as well violate NCI? After all, is NCI a necessary consequence of the

global ambiguity aversion property?

Motivated by these questions, in the �rst part of the present paper, I provide an in-

depth analysis of the relation between NCI and ambiguity aversion in Segal�s theory. My

�rst result (Theorem 1) shows that the global ambiguity aversion property does, indeed,

imply NCI. This holds true despite the fact that the benchmark for an ambiguity averse

preference can actually be distinct from the reduced form of the associated second-order

belief. In Section 3.2, I provide an example of this sort where the DM exhibits an Ellsberg
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paradox with two urns. The known distribution in the risky urn acts as a benchmark and

is distinct from the reduced form of the DM�s belief about the ambiguous urn, whereas the

Ellsberg-type behavior disappears if we change the composition of the risky urn so as to

make it consistent with the DM�s reduced form belief.

However, it turns out that if a second-order belief possesses a certain property, which I

call �uniform separability,�then the only possible benchmark for that belief is its reduced

form.3 While the class of uniformly separable beliefs is truly special in many ways, the

proof of Theorem 1 shows that, at the same time, this class is rich enough to deduce NCI

from the global ambiguity aversion property: If a risk preference induces ambiguity averse

behavior for every uniformly separable belief, then it must also satisfy NCI. To summarize,

uniformly separable beliefs provide a �su¢ ciently rich�class of examples where the mode

of behavior demanded by NCI is a necessary consequence of ambiguity aversion. On the

other hand, in general, unlike NCI or PORU, ambiguity aversion cannot be viewed as a

statement on reduced form beliefs.

As noted by Ellsberg himself, global ambiguity aversion may be too demanding from a

descriptive point of view (see Machina, Ritzberger, Yannelis and Ellsberg, 2011, Section 2).

Indeed, some experimental evidence indicates that people may prefer not to know the exact

probabilities when the likelihood of a gain appears to be small (e.g., Kocher, Lahno, and

Trautmann, 2016). However, one can think of many applications in which the analyst may

want to abstract from such cases. For example, the aforementioned evidence on unlikely

gains may not be so relevant for an analysis of a stock market that is expected to perform

well with a moderate or high likelihood. Or, to check if ambiguity aversion can lead to

another phenomenon in a particular framework, the analyst may want to perform a clear-cut

comparison of ambiguity aversion and neutrality/loving that does not depend on the details

of second-order beliefs. The main message of Theorem 1 is that, in potential applications of

Segal�s theory, if we want a model that is guaranteed to generate ambiguity averse behavior,

we must select a risk preference that satis�es NCI. Otherwise, the model may well produce

non-ambiguity averse behavior (or, only a partial form of ambiguity aversion), depending

on the exact structure of the risk preference and the second-order belief selected by the

analyst, and how the two primitives of the model interact with each other.

Cerreia-Vioglio, Dillenberger and Ortoleva (2015) have recently provided a utility repre-

sentation theorem for risk preferences that satisfy NCI, called a �cautious expected utility�

(CEU) representation.4 As a corollary of Theorem 1, it follows that the class of CEU pref-

erences coincides with the class of risk preferences that have the global ambiguity aversion

3Roughly speaking, a uniformly separable second-order belief deems possible only a collection of uniform
distributions supported over pairwise disjoint sets.

4Perhaps the best known non-expected utility model within this class is Gul�s (1991) theory of disap-
pointment aversion (see Artstein-Avidan and Dillenberger, 2011).
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property. By contrast, as shown by Dillenberger (2010, Proposition 3), the RDU model

violates NCI generically. Hence, Theorem 1 also implies that a generic RDU preference

lacks the global ambiguity aversion property. To illustrate this point, in Section 3.3, I

show that when there are four states, as opposed to the binary case in Segal (1987), the

(symmetry, elasticity and convexity) conditions considered by Segal are no longer su¢ cient

for a recursive RDU preference to be ambiguity averse.5

Upon combining Theorem 1 with a dual result, it also follows that the class of risk

preferences that are globally ambiguity neutral coincides with the class of expected utility

preferences. In other words, if a risk preference violates the independence axiom, it will

necessarily generate a paradoxical form of ambiguity aversion or the opposite mode of

behavior, at least in one instance, depending on the number of states and the speci�cation

of a second-order belief. Here, �paradoxical�means that the behavior is incompatible with

any �rst-order belief. Theorem 2 makes precise what sort of a paradox we can expect to

observe in practice. The answer turns out to be surprisingly simple: The risk preference

coupled with a suitable second-order belief will generate either the Ellsberg paradox or the

opposite in a two-urn experiment with three states and binary acts.

Finally, I investigate a dual question: Holding risk preferences constant, how can we

manipulate a given second-order belief to obtain a more ambiguity averse recursive prefer-

ence? Such a manipulation method will �nd more applications if it functions independently

of the details of risk preferences, just as the classical mean-preserving spread operation over

monetary lotteries, à la Rothschild and Stiglitz (1970). Assuming NCI as a minimal re-

quirement on risk preferences, Theorem 3 shows that a mean-preserving spread operation

over second-order beliefs characterizes such increase in ambiguity aversion. That is, a

second-order belief � is a mean-preserving spread of another second-order belief �0 if and

only if for any risk preference that satis�es NCI, � induces a more ambiguity averse pref-

erence than that induced by �0. Aside from the di¤erences in primitives, the notion of a

mean-preserving spread characterized in this theorem is a stronger version of its classical

counterpart for monetary lotteries.

Throughout the paper, I utilize a de�nition of ambiguity aversion that was recently

proposed by Dean and Ortoleva (in press). In line with my purposes, this de�nition is

tailored for non-expected utility preferences over lotteries.6 Moreover, as I noted earlier, the

5As usual, this means that no �rst-order distribution can qualify the preference relation as ambiguity
averse, while Dillenberger�s (2010) Proposition 3 should be interpreted as a statement on a particular
distribution, namely the reduced form of the DM�s second-order belief. A recursive RDU preference may
fail to pass a test of ambiguity aversion based on the reduced form beliefs� in line with Dillenberger�s
Proposition 3� and yet, exhibit Ellsberg-type choices. The aforementioned example in Section 3.2 describes
such a preference relation. By contrast, the example in Section 3.3 depicts a paradoxical form of ambiguity
loving which rules out Ellsberg-type choices.

6Speci�cally, according to Dean and Ortoleva, a preference relation is (absolutely) ambiguity averse if
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de�nition does not impose a restriction on �rst-order beliefs that can act as a benchmark.

This contrasts with Segal�s (1987) analysis which focuses on reduced form beliefs.

1.1 Related Literature

Earlier work on Segal�s (1987) theory includes Artstein-Avidan and Dillenberger (2011),

and Dillenberger and Segal (2015a,b).

The focus of Artstein-Avidan and Dillenberger is mainly on risk, but they also note that

NCI implies global ambiguity aversion. The contribution of my Theorem 1 is the converse

implication, which allows me to single out the recursive CEU model as the only class within

recursive preferences that robustly predicts ambiguity aversion.

The main point of Dillenberger and Segal (2015a) is that the recursive disappointment

aversion model� a particular form of recursive CEU preferences� accommodates not only

Ellsberg-type choices, but also some related phenomena about non-binary acts that were

recently pointed out by Machina (2009, 2014).

Finally, Dillenberger and Segal (2015b) show that the theory of recursive preferences

can also be used to model a non-global form of ambiguity aversion, in line with the afore-

mentioned experimental evidence on violations of global ambiguity aversion. Speci�cally,

they model a DM who dislikes ambiguity when the likelihood of a gain is moderate or

large, while having the opposite attitude when a gain appears to be unlikely. Naturally,

this version of the theory is distinct from the recursive CEU model.

In the next section, I formulate Segal�s (1987) theory in the framework of Anscombe

and Aumann (1963), which o¤ers a compact way of modelling preferences over simple and

compound lotteries as well as subjective acts.7 Sections 3 and 4 are devoted to global

ambiguity aversion and neutrality, respectively. In Section 5, I discuss the notion of a

mean-preserving spread for second-order beliefs. The appendix contains all proofs and

some further supplementary material.

2 Model

Throughout the paper, �(A) denotes the set of all probability measures on a set A with

�nite support. Given l 2 �(A) and B � A, l(B) represents the probability of B. I write

it is relatively more ambiguity averse than a probabilistically sophisticated preference (i.e., a benchmark),
where relative ambiguity aversion is de�ned as in Ghirardato and Marinacci (2002). In Section 3, I relate
this de�nition to the corresponding de�nitions of Epstein (1999) and Ghirardato and Marinacci (2002).

7While my �ndings can also be formulated in a more basic setup with purely subjective acts and simple
lotteries, I have chosen the Anscombe-Aumann model to be able to relate my �ndings to earlier results on
compound risk.
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l(a) in place of l(fag). Since the support of l is a �nite set, we have
P

a2A l(a) = 1 for every

l 2 �(A). For fl1; :::; lng � �(A) and f�1; :::; �ng � [0; 1] with
Pn

i=1 �
i = 1, the mixturePn

i=1 �
ili is the element of �(A) that attaches the probability

Pn
i=1 �

ili(a) to any a 2 A.
Similarly, �2(A) := �(�(A)) stands for the set of all probability measures on �(A) with

�nite support, and the mixture operation on this set is de�ned analogously.

X := [x�; x
�] � R denotes a set of monetary prizes with x� < x�. The elements of

�(X) represent (simple or one-shot) lotteries. In turn, �2(X) is considered as the set of

compound lotteries.

Let S be a nonempty, �nite state space. An act refers to a function that maps S into

�(X). H stands for the set of all acts. The primitive of the model is a binary relation %
on �(H) that represents the preferences of a DM.
The following table summarizes my notation for some generic objects.

For generic elements of: X �(X) �2(X) H �(H) S �(S) �2(S)

I write: x; y; z p; q; r P;Q f; g F;G s � �

The DM does not (necessarily) know the distribution of the states. Rather, she holds

a second-order belief � 2 �2(S), where �(�) represents the probability that the �correct�

distribution of the states is given by � 2 �(S).
Dp, D� and Df stand for the degenerate elements of �2(X), �2(S) and �(H), respec-

tively. Dp attaches probability 1 to the lottery p 2 �(X), and similarly for D� and Df . In

turn, �x and �s denote the degenerate elements of �(X) and �(S) supported at x and s,

respectively.

I identify f with Df , and p with the constant act that returns p at every state, 1Sp.

That is, for every p 2 �(X) and f 2 H,

p � 1Sp; f � Df .

Hence, �(X) � H � �(H). By the former inclusion, we also have �2(X) � �(H).
I say that an act f is purely subjective if for every state s, f(s) is equal to �x for some

x 2 X. HX denotes the set of all such acts, which do not involve objective uncertainty.

2.1 Representation Notion

De�nition 1. A certainty equivalence function c is a map from �(X) onto X, continuous
in the topology of weak convergence, and such that:

(i) p �fosd (>fosd)q ) c(p) � (>)c(q):
(ii) c(�x) = x for every x 2 X:
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Here, �fosd stands for the �rst order stochastic dominance relation on �(X), with the
asymmetric part >fosd. On the other hand, property (ii) is a normalization condition which

implies c(�c(p)) = c(p). Thus, if we think of c as a utility function that represents the DM�s

preferences over simple lotteries, it follows that the utility of the certain prize c(p) is the

same as the utility of the lottery p, meaning that c(p) is the certainty equivalent of p. Every

transitive, complete and continuous preference relation on�(X) can be represented by such

a normalized utility function provided that the relation is also monotonic with respect to

�fosd. Speci�cally, given any continuous function u : �(X) ! R that represents such a
preference relation, we can let c(p) := v�1(u(p)) for every p 2 �(X), where v : X ! R
is de�ned as v(x) := u(�x) for x 2 X. It is also clear that c is uniquely de�ned given the
preference relation over �(X).

For f 2 HX and � 2 �(S), set

�f :=
X
s2S

�(s)f(s).

�f is the lottery induced by the purely subjective act f in the event that the states are

distributed according to �. Our DM assigns the probability �(�) to this event, and hence,

thinks of f as a compound lottery that returns the lottery �f with probability �(�). Then,

in a recursive fashion, she replaces �f with its certainty equivalent, c(�f ). Thereby, the

DM reduces the compound lottery in question into a simple lottery that returns c(�f ) with

probability �(�). To summarize, an act f 2 HX is equivalent to the following lottery in

�(X):

�f :=
X

�2�(S)

�(�)�c(�f ):

Moreover, under a classical monotonicity assumption (see property (A2) in Appen-

dix A), any f 2 H is equivalent to the purely subjective act that returns �c(f(s)) at every

s 2 S. Let us denote the latter act as c � f , and set �f := �c�f for f 2 H.
We end up with the following representation upon extending the recursive method of

evaluation above to lotteries over acts.

De�nition 2. A recursive representation for % consists of a � 2 �2(S) and a certainty

equivalence function c such that, for every F;G 2 �(H),

F % G , c

 X
f2H

F (f)�c(�f )

!
� c

 X
f2H

G(f)�c(�f )

!
.

A recursive preference refers to a binary relation % on �(H) that can be represented with
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a pair (�; c) as above.

Let us write U(F ) in place of c
�P

f2H F (f)�c(�f )

�
. Observe that U(Df ) = c

�
�c(�f )

�
=

c(�f ) for any f 2 H. Moreover, it is easily checked that f = 1Sp implies �f = �c(p).

Hence, U(p) � U(D1Sp) = c(�c(p)) = c(p) for any p 2 �(X). In particular, p % q if and

only if c(p) � c(q) for any p; q 2 �(X). It also follows that U(f) � U(Df ) = c(�f ) =

U(�f ) for any f 2 H. Thus, f � �f , just as I claimed earlier. Finally, for a compound

lottery P 2 �2(X), we have U(P ) � c
�P

p2�(X) P (p)�c(�1Sp)

�
= c

�P
p2�(X) P (p)�c(p)

�
=

U
�P

p2�(X) P (p)�c(p)

�
. That is,

P �
X

p2�(X)

P (p)�c(p). (1)

This means that the DM reduces a compound lottery into a simple lottery in a recursive

fashion, just as in the evaluation of purely subjective acts.

While Segal�s (1987) original formulation of recursive preferences focuses on purely

subjective acts, the formulation above incorporates the lottery-valued acts into the theory

via the (monotonicity) assumption f � c � f . This assumption seems to be coherent with
the general logic of recursive preferences. Suppose, for example, that the DM believes that

the states are distributed according to a �rst-order distribution �. Then, c � f � �c�f ,

whereas �c�f :=
P

s2S �(s)�c(f(s)). Moreover, by property (1), the lottery
P

s2S �(s)�c(f(s))

is equivalent to the compound lottery that returns f(s) with probability �(s). Hence, in

this case, f � c � f means that the DM is indi¤erent between f and the compound lottery

that returns f(s) with probability �(s).

Let us now turn to the interplay between risk and ambiguity attitudes.

3 Global Ambiguity Aversion

Throughout the remainder of the paper, by a preference relation I mean a complete and

transitive binary relation. Following Dean and Ortoleva (in press), a preference relation %
on �(H) is said to be ambiguity neutral if there exists a �� 2 �(S) such that

f � ��f 8f 2 HX . (2)

Intuitively, this means that the DM converts subjective uncertainty (or ambiguity) into

risk using the distribution ��. Alternatively, the DM behaves as if she is probabilistically
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sophisticated in the sense of Machina and Schmeidler (1992, 1995).8 ;9

For recursive preferences, a natural way to model such behavior is to select a degenerate

second-order belief. Indeed, � = D� implies �f = �c(�f ), and hence, f � �f for every

f 2 HX .

De�nition 3. Let % and %0 be a pair of preference relations on�(H). % ismore ambiguity
averse than %0 (or, equivalently, %0 is more ambiguity loving than %) if:
(i) f % �x ) f %0 �x 8f 2 HX and x 2 X.
(ii) p % q , p %0 q 8p; q 2 �(X).
In turn, % is (absolutely) ambiguity averse (resp. loving) if it is more ambiguity averse

(resp. loving) than an ambiguity neutral preference.

Conditions (i) and (ii) mean that % displays a weaker desire for uncertain acts than

%0, while the two relations agree on the ranking of lotteries. This de�nition of relative
ambiguity aversion has become a standard approach since the seminal work of Ghirardato

and Marinacci (2002). De�ning absolute ambiguity aversion relative to ambiguity neutral

preferences, as above, is also a fairly standard practice.10

Ambiguity aversion (or neutrality), by itself, does not impose any restriction on risk

preferences. However, as we shall see momentarily, the picture changes radically if we

demand the DM to be ambiguity averse in a global sense, as follows.

De�nition 4. A preference relation %c on �(X) represented by a certainty equivalence
function c has the global ambiguity aversion property if the recursive preference represented

by (�; c) is ambiguity averse for any (�nite) state space S and any � 2 �2(S).

Global ambiguity aversion is a robustness criterion that demands the DM to exhibit

ambiguity aversion irrespective of her second-order belief and the number of states. While,

in reality, ambiguity aversion may rarely be so robust, as noted in the introduction, in

potential applications the analyst may well want to focus on risk preferences that possess

this property.

Recall that according to a recursive representation (�; c), the utility of a compound

lottery P is given by U(P ) = c
�P

p2�(X) P (p)�c(p)

�
, which depends only on c. Let %2c

8As a minor di¤erence, Machina and Schmeidler (1995) go a step further and demand property (2)
to hold for every f 2 H, where ��f :=

P
s2S ��(s)f(s). This property is too demanding for my purposes

because, when combined with the assumption f � c � f , it entails some independence properties for risk
preferences.

9Conceptually, Dean-Ortoleva de�nition of ambiguity neutrality agrees with that of Epstein (1999),
except that Epstein works in a Savagean setup with purely subjective acts.
10As a key di¤erence, Ghirardato and Marinacci (2002) propose to take as ambiguity neutral the class

of subjective expected utility preferences. In models of ambiguity with expected utility preferences over
lotteries, this approach seems to produce perfectly sensible predictions. For my purposes Dean-Ortoleva
approach is more suitable because it is tailored for non-expected utility preferences over lotteries.
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denote the preference relation on �2(X) represented by the same function, U(�). The
following two properties about risk preferences were introduced by Dillenberger (2010).

Negative Certainty Independence (NCI). For every p; q 2 �(X); x 2 X and � 2 [0; 1];

p %c �x ) �p+ (1� �)q %c ��x + (1� �)q.

Preference For One-Shot Resolution of Uncertainty (PORU). For every P 2
�2(X), X

p2�(X)

P (p)p %2c P .

As noted by Dillenberger (2010) and Cerreia-Vioglio et al. (2015), NCI accommodates

Allais� common ratio and common consequence e¤ects under risk. The main idea that

underlies this axiom is that a certain prize have an intrinsic appeal, which disappears upon

mixing that prize with another lottery. Hence, if p is better than �x despite the certainty

appeal of the latter, then a mixture of p with q must also be better than the corresponding

mixture of �x with q. This is the content of NCI.

To interpret PORU, note that the overall probability of the prize x under the compound

lottery P can be computed as
P

p2�(X) P (p)p(x). Thus,
P

p2�(X) P (p)p is the reduced form

of P from a statistical point of view. PORU asserts that the DM should prefer the reduced

form a compound lottery to that lottery itself. If a compound lottery is viewed as a dynamic

stochastic process with two stages, this axiom describes a preference for one-shot resolution

of uncertainty, as opposed to gradual resolution.

Dillenberger (2010) proves that NCI and PORU are equivalent to each other. The

next theorem takes a step further: NCI and PORU are equivalent to the global ambiguity

aversion property.

Theorem 1. Let %c be a preference relation on �(X) represented by a certainty equiva-
lence function c. The following three statements are equivalent.

(i) %c satis�es NCI.
(ii) %2c satis�es PORU.
(iii) %c has the global ambiguity aversion property.

I proceed with some preliminary observations to provide insight into Theorem 1.

Lemma 1. Given a state space S, let % be a recursive preference on �(H) represented by
(�; c). Then, % is ambiguity averse if and only if there exists a �� 2 �(S) such that

��f % �f 8f 2 HX .

10



Since �f � f , Lemma 1 means that an ambiguity averse DM would attach larger values to

uncertain acts if she were able to form a �rst-order belief ��. Given a recursive preference

% that is ambiguity averse, a benchmark belief (or distribution) refers to such a ��.
Just as the reduced form of a compound lottery, the reduced form of a second-order

belief � is the �rst-order distribution �� de�ned as

�� :=
X

�2�(S)

�(�)�. (3)

Alternatively, for any state s, ��(s) =
P

�2�(S)
�(�)�(s) is the expectation of �(s) with respect

to �. Thus, �� can also be viewed as the mean of �.

A central issue in this paper is that De�nition 3 (or equivalently, Lemma 1) does not

impose a restriction on �rst-order distributions that can act as a benchmark. Following

Segal (1987), one can also think of an alternative de�nition that takes �� as �the�benchmark:

��f % �f 8f 2 HX . (4)

In what follows, I say that a recursive preference % represented by (�; c) is mean ambiguity
averse if the property (4) holds. In Section 3.2 below, I will show that this alternative

de�nition is more restrictive than De�nition 3, both conceptually and behaviorally.

Since �� is the reduced form of the belief �, PORU� preference for reduced form lotteries�

implies a global form of mean ambiguity aversion. This is the content of the related obser-

vation of Artstein-Avidan and Dillenberger (2011). Consequently, NCI also implies mean

ambiguity aversion, in a global sense. For the sake of completeness, I provide a short proof

of this fact in the proof of Theorem 1, in Appendix C.

The contribution of Theorem 1 is the converse implication, that global ambiguity aver-

sion implies NCI. A key observation with regard to this part of the theorem is that for a

special class of second-order beliefs, De�nition 3 is equivalent to mean ambiguity aversion.

Suppose that the state space S can be partitioned into n sets, S1; :::; Sn, each having the

same cardinality. Let �i denote the uniform distribution over Si and consider a second-

order belief � of the form � =
Pn

i=1 �
iD�i for some f�1; :::; �ng � [0; 1] with

Pn
i=1 �

i = 1.

I refer to such a second-order belief � as uniformly separable.

The proof of Theorem 1 shows that for a uniformly separable �, the only possible

benchmark is the mean, ��. The following example illustrates this fact in a particular case

with four states.

Example 1. Suppose S consists of four distinct points, s11; s12; s21; s22. Let � = 1
2
D�1 +

1
2
D�2, where �1 and �2 are the uniform distributions supported over S1 = fs11; s12g and

11



S2 = fs21; s22g, respectively. For any S 0 � S, let fS0 denote the act de�ned as fS0(s) := �x�
for s 2 S 0, and fS0(s) := �x� for s 2 SnS 0. Then

�fS0 = �(S
0)�x� + (1� �(S 0)) �x� 8� 2 �(S), (5)

while �fS0 =
1
2
�c(�1

fS
0 )
+ 1

2
�c(�2

fS
0 )
.

Fix a certainty equivalence function c, and denote by % the recursive preference repre-
sented by (�; c). Let us now show that for any S 0 with two states, we have

�fS0 �
1

2
�x� +

1

2
�x�. (6)

Indeed, S 0 = S1 implies �1
fS0
= �x� and �2fS0 = �x�, so that �fS0 =

1
2
�x�+

1
2
�x�. Symmetrically,

S 0 = S2 also implies �fS0 =
1
2
�x�+

1
2
�x�. It remains only one case to consider: S

0\S1 = fs1ig
for some i 2 f1; 2g, while S 0 \ S2 = fs2jg for some j 2 f1; 2g. In this case, �1

fS
0 =

�1(S 0)�x�+(1� �1(S 0)) �x� = �1(s1i)�x�+(1� �1(s1i)) �x� = 1
2
�x�+

1
2
�x�. Similarly, �

2
fS0
also

equals 1
2
�x� +

1
2
�x�, implying �fS0 = �c( 12 �x�+ 1

2
�x� )

� 1
2
�x� +

1
2
�x�.

By (5) and (6), we have ��fS0 % �fS0 if and only if ��(S
0) � 1=2. In turn, if the latter

inequality holds for every S 0 with two states, then �� is necessarily equal to the uniform

distribution over S, which is nothing but �� := 1
2
�1 + 1

2
�2. �

A risk preference %c with the global ambiguity aversion property must also induce an
ambiguity averse preference for every uniformly separable belief �. As we just discussed,

for such a belief, the only possible benchmark is ��. Thus, if %c has the global ambiguity
aversion property, then

��f %c �f for any f 2 HX and any uniformly separable �. (7)

The main step in the remainder of the proof of Theorem 1 is to show that the class of

uniformly separable beliefs is rich enough to derive NCI from property (7). Speci�cally,

given some arbitrarily selected p; q 2 �(X) and � 2 [0; 1], if p(x) is a rational number for
every x, there exist a uniformly separable belief � on a suitably selected set S and an act

f 2 HX such that

��f = �p+ (1� �)q and �f = ��c(p) + (1� �)q:

By (7), this yields �p + (1� �)q %c ��c(p) + (1� �)q, while monotonicity with respect to
�fosd implies ��c(p) + (1 � �)q %c ��x + (1 � �)q for any x with p %c �x. It follows that
�p+ (1� �)q %c ��x + (1� �)q for any such x, as demanded by NCI.
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3.1 Cautious Expected Utility

Under some mild regularity assumptions, Cerreia-Vioglio et al. (2015) show that a pref-

erence relation on the closure of �(X) satis�es NCI if and only if it can be represented

by a certainty equivalence function of the form c(p) = infv2W v
�1(Ep(v)) for some non-

empty W � C" (X), where C" (X) is the set of all continuous, real functions on X that are

strictly increasing, while Ep(v) :=
P

x2X p(x)v(x). This representation depicts a DM who

behaves as if she is unsure how to evaluate a given lottery. The DM has in mind several

von Neumann-Morgenstern functions, v; computes the certainty equivalent, v�1(Ep(v)), of

a given lottery p according to each v; and then, in a cautious way, she selects the worst cer-

tainty equivalent to evaluate the lottery. Hence the name cautious expected utility (CEU)

representation.

We obtain the following result as a corollary of Theorem 1 and the representation

theorem of Cerreia-Vioglio et al. (2015).

Corollary 1. Let %c be a preference relation on �(X) represented by a certainty equiv-
alence function c that is uniformly continuous on �(X).11 The following two statements

are equivalent.

(i) %c has the global ambiguity aversion property.
(ii) There exists a nonempty set W � C" (X) such that c(p) = inf

v2W
v�1(Ep(v)) for every

p 2 �(X).

Here, c is demanded to be uniformly continuous because we need to extend this function

(continuously) to the closure of �(X) to be able to apply the representation theorem of

Cerreia-Vioglio et al. (2015).12 For brevity, I omit the proof of Corollary 1, which boils

down to showing that if c satis�es NCI on �(X) and is uniformly continuous, then the

extension of c to the closure of �(X) also satis�es NCI on this larger domain.

3.2 Ambiguity Aversion vs Mean Ambiguity Aversion

In general, given a DM who does not reduce compound lotteries in a standard way, there

seems to be no reason to attach a special importance to the reduced form of the DM�s

belief. On the other hand, it is not so clear what we gain in practice from the generality

11Recall that the topology of weak convergence is metrizable. Let d denote a compatible metric on �(X).
c is uniformly continuous on �(X) if for each " > 0 there exists a  > 0 such that d(p; q) <  implies
jc(p)� c(q)j < " for every p; q 2 �(X). The existence of such a uniformly continuous certainty equivalence
function can be characterized along the lines of Kopylov (2016).
12The proof of Cerreia-Vioglio et al. builds upon the expected multi-utility theorem of Dubra, Maccheroni

and Ok (2004). The latter theorem focuses on a continuous preorder on the closure of �(X), and the
compactness of this set is crucial for the theorem (see Evren, 2008).

13



embodied in De�nition 3. In this section, I will show that there do exist ambiguity averse

recursive representations (�; c) with a benchmark that is distinct from ��. Since NCI im-

plies mean ambiguity aversion, in such cases, the risk preference %c must violate NCI. By
Theorem 1, then, such c will induce non-ambiguity averse behavior in some other context,

with a di¤erent second-order belief. To summarize, it follows that the di¤erence between

De�nition 3 and mean ambiguity aversion matters at a local level, but not at a global level.

I will illustrate the local distinction between the two de�nitions with the rank dependent

utility (RDU) model. Given a p 2 �(X), let x1; :::; xm denote the points in the support of
p, where x1 � x2 � � � � � xm. An RDU functional u : �(X) ! R is de�ned by a pair of
strictly increasing functions v : X ! R and 	 : [0; 1]! [0; 1], with 	(0) = 0 and 	(1) = 1,

such that

u(p) = v(x1) +
mX
j=2

�
v(xj)� v(xj�1)

�
	

 
mP
i=j

p(xi)

!
.

In turn, c(p) := v�1(u(p)) gives the corresponding certainty equivalence function.

The function 	 re�ects how the DM distorts probabilities in her mind. When this func-

tion is convex, the DM distorts probabilities in a pessimistic way, by e¤ectively increasing

the probability of smaller prizes.

Suppose there are two states of nature. Let % denote a recursive preference on �(H)
represented by (�; c) where c is as in the RDU model above. Assuming that � is symmetric

around its mean ��, Segal�s (1987) Theorem 4.2 provides su¢ cient conditions on the function

	 that imply mean ambiguity aversion. Speci�cally, this theorem demands	 to be a convex

function such that (i) the elasticity of 	 is non-decreasing in the sense that 	(�)	(�0) �
	(��0) for every �; �0 2 [0; 1]; and (ii) the elasticity of the function � ! 1 � 	(1 � �) is
non-increasing for � 2 [0; 1].
As Segal also notes, it is easy to construct a convex function	 that violates the elasticity

assumptions above. In such cases, the conclusion of Segal�s Theorem 4.2 may fail, meaning

that % need not be mean ambiguity averse. In Appendix B, I give an example of this

sort, where �� is distinct from the uniform distribution over the two states. Let �� denote

the uniform distribution. The preference relation % in this example satis�es the property
��f % �f for every f 2 HX . (In fact, ��f � �f whenever f is not constant across the states.)
Thus, the relation % is ambiguity averse but not mean ambiguity averse.
To see what this may entail in practice, consider an Ellsberg-type experiment with

two urns each containing a given number of balls. At a later stage, the experimenter will

randomly extract a ball from each urn. Each ball is either blue (b) or orange (o). The

composition of urn 1 (the risky urn) is known to the subject, and the fraction of blue balls

in this urn is a control variable, denoted as �. Urn 2 is ambiguous in the sense that its

exact composition is unknown. Yet, the subject has a bit of further information. Given a
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small number " in the interval (0; 1=6), the subject is told that:

(I) The fraction of blue balls in urn 2 is greater than or equal to 2".

As usual, each state s represents the event that the ball extracted from the ambiguous

urn is of color s. Thus, S := fb; og. Pick a pair of prizes x and x0 with x > x0. For i = 1; 2;
let f bi denote the bet that pays x if the color of the ball extracted from urn i is b, and that

pays x0 otherwise. f oi is de�ned analogously. Put di¤erently,

f b2(s) :=

(
�x if s = b

�x0 if s = o
; f o2(s) :=

(
�x if s = o

�x0 if s = b
;

while

f b1 := ��x + (1� �)�x0 ; f o1 := (1� �)�x + ��x0.

The example that I construct in Appendix B is based on a particular second-order belief

�. Speci�cally, � = 1
2
D�1 +

1
2
D�2, where the distributions �1 and �2 are as in the following

table.
b o

�1 1
2
+ 3" 1

2
� 3"

�2 1
2
� " 1

2
+ "

Since �(�1) = �(�2) = 1=2, the mean �� is the distribution that sits in the middle of the

interval between �1 and �2. Thus, ��(b) = 1
2
�1(b) + 1

2
�2(b) = 1

2
+ ", while ��(o) = 1

2
� ".

Note that ��(b) also sits in the middle of the interval [2"; 1], which is quite reasonable given

the property (I).

As before, let �� denote the uniform distribution, so that ��(b) = ��(o) = 1=2. The convex

function 	 that I describe in Appendix B implies

f o2 � ��fo2 and f s2 � ��fs2 for s = b; o. (8)

Observe that given a speci�c value of � and the distribution � 2 �(S) with �(b) = �,
we have �fs2 = f s1 for s = b; o. In particular, if � = ��(b), then ��fo2 = f o1. Thus, the left

hand side of (8) means that when the fraction of blue balls in the risky urn equals ��(b),

i.e., 1
2
+ ", then for bets on orange balls, the subject strictly prefers the ambiguous urn to

the risky one. This follows from the absence of mean ambiguity aversion.

Similarly, with � = ��(b), we have ��fs2 = f s1 for s = b; o. Hence, the right hand side

of (8) means that when the risky urn contains an equal number of blue and orange balls,

then� just as in a classical Ellsberg paradox with two urns� the subject strictly prefers the

risky urn to the ambiguous one, irrespective of the color that she is betting on.

Finally, note that f b1 % ��fb2 for � � 1=2, while f o1 % ��fo2 for � � 1=2. Thus, the right
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hand side of (8) also implies that

@� 2 [0; 1] with f s2 � f s1 for s = b; o. (9)

In other words, the subject will not exhibit the opposite of the Ellsberg paradox, irrespective

of the composition of the risky urn. (On a related note, the expression (9) remains true

upon replacing � with %, which means that the subject is not ambiguity loving according
to De�nition 3.)

More generally, in the context of similar experiments with two urns, if the subject weakly

prefers any given bet on the risky urn to the corresponding bet on the ambiguous urn, we can

immediately conclude that the subject is ambiguity averse according to De�nition 3. This

holds true irrespective of the composition of the risky urn, and precludes the possibility that

an alternative composition may lead to a paradoxical form of ambiguity loving behavior.

By contrast, Ellsberg-type choices can be taken as evidence of mean ambiguity aversion

only if the composition of the risky urn coincides with the DM�s mean belief, ��, about the

ambiguous urn. In light of the example above, even a classical form of the Ellsberg paradox

with a 50-50 distributed risky urn does not guarantee mean ambiguity aversion if there is

a reason to suspect a mean belief about the ambiguous urn that is distinct from the 50-50

distribution. (Indeed, the only role of property (I) above is to motivate such a mean belief.)

Thus, it seems fair to conclude that, at a local level, the notion of mean ambiguity aversion

is too demanding.

3.3 Non-Robustness of RDU

The discussion above also attests to the fact that, at a local level, there is no shortage of

ambiguity averse preferences within the recursive RDUmodel. Yet, according to Theorem 1,

the recursive CEUmodel is the only subclass of recursive preferences that robustly generates

ambiguity averse behavior. In this section, I will give an example which shows that an RDU

preference may induce non-ambiguity averse behavior, even if it satis�es all assumptions

in Segal�s (1987) Theorem 4.2. As usual, the absence of ambiguity aversion means that

the preference relation does not admit any benchmark. To this end, following the proof of

Theorem 1, I will utilize a uniformly separable belief, which also necessitates four states,

as opposed to the case of binary states considered by Segal.

Example 2. Consider a modi�ed version of the experiment in Section 3.2 so that there
are four di¤erent colors: dark blue (db), light blue (lb), dark yellow (dy) and light yellow

(ly). As before, the exact composition of the risky urn (urn 1) is known to the subject.

Further, the subject is told that urn 2 contains four balls in total, an equal number of
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dark and light blue balls, and an equal number of dark and light yellow balls. However,

she is not given any information about the ratio of the total number of blue balls to that

of yellow balls, which makes urn 2 ambiguous. The set of states is S := fdb; lb; dy; lyg, and
each state represents the event that the corresponding color will be extracted from urn 2.

The subject�s preference relation admits a recursive representation (�; c), where c is as

in the RDU model de�ned in Section 3.2. More speci�cally, 	 is a strictly convex function,

which may as well satisfy the aforementioned elasticity assumptions in Theorem 4.2 of Segal

(1987).

The information about the ambiguous urn leaves three cases to consider: (B) all balls

in this urn may be blue, two of them being dark blue and two of them light blue; (Y ) the

symmetric case in which all balls are yellow; (M) the urn may contain exactly one ball of

each color. Let �K denote the distribution on S that corresponds to case K, so that

�B(db) = �B(lb) =
1

2
; �Y (dy) = �Y (ly) =

1

2
and �M(s) =

1

4
8s 2 S.

The subject happens to attach zero probability to �M . So, � := 1
2
D�B +

1
2
D�Y , which

is a uniformly separable belief. Hence, as we have seen in Example 1 above, the only

distribution that can act as a benchmark is �� := 1
2
�B + 1

2
�Y = �M . It remains to show

that �� cannot be a benchmark either.

To this end, let x := c
�
1
2
�x� +

1
2
�x�
�
, and de�ne a non-binary bet f � on urn 2 as

f �(s) =

8><>:
x if s 2 fdb; lbg;
x� if s = dy;

x� if s = ly:

Set p := 1
2
�x� +

1
2
�x�. Observe that for any � 2 �(S), we have �f� = �(dy)�x� +

�(fdb; lbg)�x + �(ly)�x�. Thus,

�Bf� = �x; �Yf� = p; and �Mf� =
1

4
�x� +

1

2
�x +

1

4
�x�.

By the �rst two equalities, �f� = 1
2
�c(�x) +

1
2
�c(p). Since x = c(p), it follows that �f� = �x.

Moreover, x = c(p) also implies v(x) = u(p) = v(x�) + (v(x�)� v(x�))	(12). Using the
latter equality and the de�nition of u(�Mf�), it can easily be seen that

v(x)� u(�Mf�) = (v(x�)� v(x�))
�
	(1

2
)
�
1�	(3

4
)
�
�
�
1�	(1

2
)
�
	(1

4
)
�
. (10)
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Note that, by strict convexity of 	,

	(1=2)

0:5
>
	(1=4)

0:25
and

1�	(3=4)
0:25

>
1�	(1=2)

0:5
.

Upon multiplying these two inequalities and canceling the term 0:5� 0:25, we get

	(1=2) (1�	(3=4)) > 	(1=4) (1�	(1=2)) :

Thus, equation (10) implies v(x) > u(�Mf�), which means �x � �Mf� . Since �f� = �x and

��f� = �
M
f� , it follows that �f� � ��f�. So, �� is not a benchmark either. �

As in Section 3.2, in this example, we can think of the color distribution in the risky urn

as a potential benchmark. Hence, the absence of ambiguity aversion means that irrespective

of the speci�cation of the risky urn, there always exists a bet on the ambiguous urn that

the subject strictly prefers to the corresponding bet on the risky urn. This behavior is

not compatible with any �rst-order belief about the states. Indeed, such a belief would

make the DM indi¤erent between the two urns at least for one speci�cation of the risky

urn, namely, the one that coincides with the DM�s belief about the ambiguous urn. In this

sense, the subject exhibits a paradoxical form of ambiguity loving.13

It is also useful to compare Example 2 with Dillenberger�s (2010) Proposition 3. The

latter result shows that any RDU preference over lotteries that violates the independence

axiom must also violate NCI. Given the link between NCI and the mean ambiguity aversion

property, this result can be interpreted as saying that the recursive preference induced by

an RDU functional will violate the mean ambiguity aversion property, at least for some

second-order beliefs. However, by itself, this cannot be taken as evidence of a form of

ambiguity loving, or the absence of ambiguity aversion. Indeed, such a preference relation

can even exhibit a classical form of the Ellsberg paradox as we have seen in Section 3.2.

In Example 2, a uniformly separable belief closes the gap between De�nition 3 and mean

ambiguity aversion. It is this feature of the example that leads to a paradoxical form of

ambiguity loving from the absence of mean ambiguity aversion.

4 Global Ambiguity Neutrality

The following is a straightforward extension of De�nition 4.

De�nition 5. A preference relation %c on �(X) represented by a certainty equivalence
function c has the global ambiguity neutrality (resp. loving) property if the recursive pref-

13This observation can also be viewed as an additional argument as to why De�nition 3 outperforms the
concept of mean ambiguity aversion, locally.
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erence represented by (�; c) is ambiguity neutral (resp. loving) for any state space S and

any � 2 �2(S).

In this section, as a �rst order of business, I shall utilize Theorem 1 to obtain a char-

acterization of global ambiguity neutrality. Speci�cally, we will see that this property is

equivalent to the independence axiom. To this end, the �rst point to note is that:

Lemma 2. Given a state space S, a recursive preference on �(H) is ambiguity neutral if
and only if it is ambiguity averse and loving.

This lemma is a simple consequence of the fact that a recursive preference is monotonic

with respect to �fosd over�(X). (For the details, see the proof of Lemma 2 in Appendix C.)
While Theorem 1 focuses on global ambiguity aversion, a dual of this result can also

be established with symmetric arguments. That is, the following three statements are

equivalent.

(i) %c satis�es the dual of NCI: �x %c p ) ��x + (1� �)q %c �p+ (1� �)q.
(ii) %2c satis�es the dual of PORU: P %2c

P
p2�(X) P (p)p.

(iii) %c has the global ambiguity loving property.

By Lemma 2, global ambiguity neutrality is equivalent to the conjunction of global

ambiguity aversion and loving. In turn, NCI and its dual in statement (i) above are jointly

equivalent to the classical independence axiom:

p %c r ) �p+ (1� �)q %c �r + (1� �)q:

Indeed, by monotonicity w.r.t. �fosd, it is plain that this axiom is equivalent to the condition
�p+(1��)q �c ��c(p)+(1��)q, and that the latter property is equivalent to the conjunction
of NCI with its dual. Finally, note that PORU and its dual are jointly equivalent to the

reduction of compound lotteries axiom:

P �2c
X

p2�(X)

P (p)p:

To summarize, we obtain the following characterization of global ambiguity neutrality.

Corollary 2. Let %c be a preference relation on �(X) represented by a certainty equiva-
lence function c. The following three statements are equivalent.

(i) %c satis�es the independence axiom.
(ii) %2c satis�es the reduction of compound lotteries axiom.
(iii) %c has the global ambiguity neutrality property.
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Given a recursive representation (�; c), if %c satis�es the independence axiom, then
� can be replaced with D�� (or, with the mean belief ��) without altering the associated

preference relation over �(H). Thus, the recursive expected utility model characterized in
Corollary 2 is nothing but Anscombe and Aumann�s (1963) expected utility theory.

As noted in the discussion of Example 2, the absence of ambiguity aversion, according

to De�nition 3, is equivalent to a paradoxical form of ambiguity loving, �paradoxical� in

the sense that the behavior cannot be explained with any �rst-order belief. Analogously,

the failure of the global ambiguity neutrality property will necessarily lead to a paradoxical

mode of behavior. In principle, such behavior may involve complicated acts on a large

state space. I shall next show that we can, in fact, focus on a classical paradox in a simple

environment to check the global ambiguity neutrality property.

4.1 An Experimental Characterization

Consider a modi�ed version of the experiment in Section 3.2 with three colors: blue (b),

orange (o), and white (w). Both urns containm balls. The composition of urn 2 is unknown,

while urn 1 contains exactlymk balls of color k, wheremb+mo+mw = m. Set k := mk=m

for k = b; o; w. Furthermore, for i = 1; 2 and k = b; o; w, let fki denote the bet that pays

x� if the color of the ball extracted from urn i is k, and that pays x� otherwise.

Given a certainty equivalence function c on�(X), by a recursive subject of type c I mean

a subject who evaluates the bets described above according to a recursive representation

(�; c), in line with the available information. Speci�cally, the subject takes S := fb; o; wg
as the state space, her preference relation % over �(H) admits a recursive representation
(�; c), and she identi�es the bets as follows:

fk1 := k�x� +
�
1� k

�
�x� for k = b; o; w,

fk2(s) :=

(
�x� if s = k

�x� if s 2 Snfkg
for k = b; o; w.

I say that the subject exhibits the Ellsberg paradox if

fk1 � fk2 for k = b; o; w:

In turn, the subject exhibits the anti-Ellsberg paradox if

fk1 � fk2 for k = b; o; w:

Observe that given a � 2 �(S), we have �fk2 = �(k)�x� + (1� �(k))�x�. Thus, �fk2 % fk1
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if and only if �(k) � k. Since �(b) + �(o) + �(w) = 1 = b + o + w, a subject with a
�rst-order belief � cannot exhibit either paradox. In particular, if the subject�s preferences

over �(X) satis�es the independence axiom, she may not exhibit either paradox. The next

result establishes the converse of this statement, in a global sense.

Theorem 2. Let %c be a preference relation on �(X) represented by a certainty equiva-
lence function c. The following two statements are equivalent.

(i) %c satis�es the independence axiom.
(ii) A recursive subject of type c exhibits neither Ellsberg nor anti-Ellsberg paradox for any
� 2 �2(S) and for any speci�cation of the parameters m;mb;mo and mw in the experiment

above.

Since Segal (1987), it is well-known that the independence axiom over �(X) entails

ambiguity neutrality within the class of recursive preferences. By establishing the converse,

Corollary 2 and Theorem 2 provide full characterizations of the interplay between the

independence axiom and ambiguity neutrality. The message of Theorem 2 is much stronger:

The failure of the independence axiom (or the global ambiguity neutrality property) will

lead to a classical paradox with only three states and binary acts, for at least one second-

order belief.14

5 Increasing Ambiguity Aversion

This section studies how we can manipulate a given second-order belief to increase the

strength of ambiguity aversion, irrespective of the details of risk preferences. As a minimal

requirement, I will focus on risk preferences that satisfy NCI because selecting a larger class

is likely to trivialize the problem.

Consider a �xed state space S, and a pair of second-order beliefs, �; �0 2 �2(S).

De�nition 6. � is a mean-preserving spread of �0 if there exists an � 2 [0; 1] such that

�0 = ��+ (1� �)D��. (11)

Observe that the mean of D�� is simply ��. Since the expectation operator is linear,

equation (11) implies ��0 = ��� + (1 � �)�� = ��. That is, �0 and � have the same mean.

Moreover, �0(�) = ��(�) � �(�) for any �rst-order distribution � that is distinct from

��. Thus, � can be obtained from �0 by transferring some mass from �� to other �rst-order

14On a related note, the recursive CEU model cannot be characterized in a way that is directly analogous
to Theorem 2. Indeed, by Segal�s (1987) Theorem 4.2, a subclass of the recursive RDU model also predicts
ambiguity aversion consistently, insofar as the binary acts are concerned.
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distributions. In this sense, � embodies a larger amount of second-order uncertainty than

�0 does. As a peculiar feature, equation (11) also implies that � and �0 induce the same

relative likelihood for any pair of �rst-order distributions that are distinct from ��.

To see why De�nition 6 entails �increasing ambiguity aversion,��x a certainty equiv-

alence function c. Let % and %0 denote the preference relations on �(H) represented by
(�; c) and (�0; c), respectively. Along the lines of Lemma 1, it can be shown that % is more
ambiguity averse than %0 if and only if

�0f % �f 8f 2 HX .

Fix an f 2 HX , and note that equation (11) implies

�0f :=
X

�2�(S)

�0(�)�c(�f ) =
X

�2�(S)

(��(�) + (1� �)D��(�)) �c(�f )

= �
X

�2�(S)

�(�)�c(�f ) + (1� �)
X

�2�(S)

D��(�)�c(�f )

= ��f + (1� �)�c(��f ).

If c satis�es NCI, then, ��f % �f as we have seen earlier. Equivalently, �c(��f ) % �f . Fur-

thermore, as noted by Dillenberger (2010, Lemma 2), NCI implies convexity, meaning that

�q + (1� �)p % q whenever p % q. It follows that �0f = ��f + (1� �)�c(��f ) % �f . So, % is
more ambiguity averse than %0, as we sought.
The converse implication requires a further assumption. I say that �0 is regular if

�0(�s) = 0 8s 2 S. (12)

Geometrically, this amounts to saying that the vertices of the simplex �(S) have zero

probability, which is a rather mild assumption. I will clarify the role of this assumption

momentarily.

In what follows, the properties of a certainty equivalence function c (such as NCI, risk

aversion or loving) refer to the corresponding properties of the risk preference %c.

Theorem 3. Let �; �0 2 �2(S), and suppose �0 is regular. Then, the following two

statements are equivalent.

(i) � is a mean-preserving spread of �0.

(ii) The recursive preference represented by (�; c) is more ambiguity averse than that rep-
resented by (�0; c) for every certainty equivalence function c that satis�es NCI.

Moreover, the same conclusion obtains if statement (ii) is restricted to risk averse (resp.

loving) certainty equivalence functions that satisfy NCI.
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Theorem 3 shows that, under the regularity assumption (12), taking a mean-preserving

spread of a second-order belief is equivalent to increasing ambiguity aversion embodied in

that belief for every risk-preference that satis�es NCI.

As shown by Cerreia-Vioglio et al. (2015, Theorem 3), risk averse preference relations

over lotteries that satisfy NCI correspond to CEU representations with a set of utility

indices, W , that consists of concave functions on X. Similarly, risk loving CEU preferences

are characterized by convex utility indices.15 The �nal statement in Theorem 3 means that

both of these subclasses lead to the same characterization of increasing ambiguity aversion

as the class of all CEU preferences.

In the proof of Theorem 3, to show that (ii) implies (i), I consider several CEU rep-

resentations, each giving a particular certainty equivalence function. That � and �0 must

have the same mean follows from expected utility functionals. The remaining links between

� and �0 are established by further functional forms, carefully selected in relation to the

distributions in the supports of � and �0.

The regularity condition (12) is indispensable in the statement of Theorem 3 because, as

a consequence of the time-neutrality property of recursive preferences, the degenerate belief

D�� cannot be distinguished behaviorally from a dual belief ��� that attaches the probability

��(s) to the degenerate �rst-order distribution �s, for every s 2 S.16 For risk preferences that
satisfy NCI, it can be shown that a convex combination ofD�� and ��� is also indistinguishable

from these two beliefs.

One way to deal with this issue may be to replace equation (11) with an expression of

the form

�0 2 ��+ (1� �)[D��],

where [D��] stands for the set of all second-order beliefs that are behaviorally equivalent to

D��. However, the present approach based on equation (11) has several advantages. First,

it seems to be easier to interpret (11) as a de�nition of a mean-preserving spread. Indeed,

aside from the di¤erences in primitives, this de�nition is a special version of the classical

mean-preserving spread operation over monetary lotteries. A direct analogue of the classical

de�nition would qualify ��̂+ (1� �)� as a mean-preserving spread of ��̂+ (1� �)D�� for

every �̂; � 2 �2(S).17 Since � = ��+(1��)�, upon letting �̂ = �, we see that De�nition 6
15Risk aversion (resp. loving) refers to a negative (resp. positive) attitude towards the classical mean-

preserving spread operation over monetary lotteries.
16If we think of a second-order belief as a dynamic stochastic process with two stages, time-neutrality

entails that as long as only one stage involves uncertainty, it does not matter whether that stage is the
�rst one or the second. (See Appendix A for a formal statement of the time-neutrality property.)
17Ergin and Gul (2009) apply this classical de�nition, formulated in a slightly di¤erent way, to compound

lotteries, in order to characterize second-order risk aversion in their model of second-order probabilistic
sophistication.
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is a particular case of this classical formula.

Moreover, the present approach can also be useful in alternative models which do not

possess the time-neutrality property, such as the smooth ambiguity model of Klibano¤,

Marinacci and Mukerji (2005), and the second-order subjective expected utility model of

Seo (2009). In fact, in these models, even the classical formula described above can be

utilized to increase the strength of ambiguity aversion. Thus, it can be shown that in a

certain sense, equation (11) describes the most general mean-preserving spread operation

for second-order beliefs that functions well both in Segal�s theory (assuming NCI) and the

aforementioned theories based on a second-order expected utility operator.

6 Concluding Remarks

In this paper, I have studied Segal�s (1987) theory of recursive preferences with a focus on

the relations between (i) risk and ambiguity attitudes; (ii) the structure of second-order

beliefs and the strength of ambiguity aversion.

While second-order beliefs is a natural starting point, Segal�s theory can be extended

in a straightforward way to include higher order beliefs, say, in �n(S) := �(�n�1(S)) for

n = 3; 4; ::: It is also a simple exercise to verify that within the recursive CEU model, the

strength of ambiguity aversion increases with the degree of the belief, n, holding constant

the expectations with lower degrees. In fact, following Dillenberger (2010, Proposition 6),

it may be possible to model even extreme forms of ambiguity aversion by increasing the

degree of beliefs arbitrarily. Thus, in potential applications, it may also be worthwhile to

consider higher order beliefs.

As another venue for future research, an axiomatic description of Segal�s model in

the Anscombe-Aumann setup is not yet available. Speci�cally, it is an open problem to

provide a behavioral description of a DM who converts acts into compound lotteries with

the help of a second-order belief. To this end, the main di¢ culty is that the Anscombe-

Aumann setup does not accommodate second-order acts that assign prizes to �rst-order

distributions, as opposed to states. In particular, absent second-order acts, one cannot

formulate direct analogues of Machina and Schmeidler�s (1992) axioms that characterize

�rst-order probabilistic sophistication. Another notable approach to this problem is due to

Ergin and Gul (2009), who consider a richer state space which e¤ectively equips the model

with acts that are comparable to the second-order acts that I just described. A more

detailed discussion of the axiomatic features of Segal�s model can be found in Appendix A

below.
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Appendix
A. More on Behavioral Properties of Recursive Preferences

The following property formalizes the idea that the DM converts acts into compound

lotteries with the help of a second-order belief.

A0: Second-Order Probabilistic Sophistication. There exists a � 2 �2(S) such that

f �
P

�2�(S)
�(�)D�f for every f 2 HX .

As I noted earlier, a behavioral description of (A0) in the Anscombe-Aumann setup

is not yet available. Apart from Segal�s (1987) recursive preferences, this property also

underlies the second-order subjective expected utility model of Seo (2009).

Along the lines of Segal (1990), it can easily be shown that the recursive representation

in De�nition 2 is characterized by the following six properties, in addition to (A0).

A1: Time-Neutrality. p �
P
x2X

p(x)D�x for any p 2 �(X).

A2: Monotonicity. For any f; g 2 H, if f(s) % g(s) for every s 2 S, then f % g.

A3: Recursivity. For any p; q 2 �(X), P 2 �2(X), and � 2 (0; 1],

p % q , �Dp + (1� �)P % �Dq + (1� �)P:

A4: More Is Better. For any x; y 2 X, �x % �y if and only if x � y.

A5: Continuity. fF : F % Gg and fF : F - Gg are closed subsets of �(H) for any
G 2 �(H), where �(H) is endowed with the topology of weak convergence associated with
the product topology on H.

A6: Weak-Order. % is transitive and complete.

Time-neutrality asserts that a compound lottery that is degenerate in the second stage is

equivalent to the reduced form of that lottery. When the two stages involved in a compound

lottery represent di¤erent points in time, this property entails indi¤erence towards the

timing of the resolution of uncertainty, which is a key di¤erence between the models of

Segal (1987) and Seo (2009).

As noted in Section 2.1, the most important implication of the monotonicity axiom is

that f � c � f for every f 2 H. So, this axiom allows us to focus on purely subjective acts

in place of the lottery-valued acts.

Finally, recursivity requires preferences over compound lotteries to be consistent with

preferences over simple lotteries. Alternatively, when the elements of �(X) are consid-

ered as the prizes associated with compound lotteries, this property can also be seen as a
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monotonicity condition with respect to the �rst order stochastic dominance relation over

compound lotteries. Segal (1990) utilizes a slightly di¤erent form of this axiom, called

�compound independence.�

B. Ambiguity Aversion Does Not Imply Mean Ambiguity Aversion

In this appendix, I construct an example of a recursive RDU preference with the prop-

erties described in Section 3.2.

Given any " 2 (0; 1=6), de�ne a function 	 as

	(�) :=

(
0 for 0 � � � 1

2
� ",

2
1+2"

�
�� (1

2
� ")

�
for 1

2
� " < � � 1.

	 is a piecewise linear, convex and weakly increasing function that maps [0; 1] onto [0; 1].

(We will shortly see that strictly increasing and strictly convex functions that are close to

	 also possess the properties that we seek.)

Pick any v : X ! R that is strictly increasing. Let u denote the RDU functional on
�(X) de�ned by v and 	, and set c(p) := v�1(u(p)) for p 2 �(X).
As in Section 3.2, S := fb; og and � := 1

2
D�1 +

1
2
D�2, where �1 and �2 are the elements

of �(S) with �1(b) := 1
2
+ 3" and �2(b) := 1

2
� ". In turn, % stands for the recursive

preference on �(H) represented by (�; c).
For s 2 S, set Hs := ff 2 HX : f(s) � f(s0)g, where s0 denotes the element of S that

is distinct from s. Given an f 2 Hs, x and x0 stand for the prizes returned by f in states

s and s0, respectively. That is, f(s) = �x and f(s0) = �x0.

In what follows, I focus on acts in the set Hb [Ho. Indeed, for a purely subjective act

f that does not belong to Hb [ Ho, we have f(b) = f(o), which implies �f = �f for every

� 2 �(S).
Observe that

u(�f ) = v(x
0) + (v(x)� v(x0))	(�(s)) 8s 2 S, f 2 Hs and � 2 �(S). (13)

It follows that u(�1f ) > u(�2f ) for every f 2 Hb because 	(�1(b)) = 	(1
2
+ 3") > 0 =

	(1
2
� ") = 	(�2(b)). Hence,

u(�f ) = u(�
2
f ) +

�
u(�1f )� u(�2f )

�
	(1

2
) 8f 2 Hb. (14)

Given the values of u(�if ) from equation (13), after some algebra, equation (14) reduces to

u(�f ) = v(x
0) + (v(x)� v(x0))

�
	(�2(b)) + (	(�1(b))�	(�2(b)))	(1

2
)
�

8f 2 Hb.
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If we compare this equation with (13) and invoke the de�nitions of �i(b), we get the following

characterization for any f 2 Hb and � 2 �(S):

�f % �f , 	(�(b)) � 	(1
2
� ") +

�
	(1

2
+ 3")�	(1

2
� ")

�
	(1

2
). (B)

Similarly, for any f 2 Ho and � 2 �(S):

�f % �f , 	(�(o)) � 	(1
2
� 3") +

�
	(1

2
+ ")�	(1

2
� 3")

�
	(1

2
) (O)

It is easily checked that for the uniform distribution ��, with ��(b) = ��(o) = 1=2, the

inequality on the right hand side of (B) holds strictly. Indeed, 	(1
2
� ") = 0 < 	(1

2
), while

	(1
2
+ 3") < 1. By the same logic, the inequality on the right hand side of (O) also holds

strictly for the distribution ��. Thus, ��f � �f for every f 2 Hb [Ha, which implies that %
is ambiguity averse.

Moreover, 	(��(o)) = 0 < 	(1
2
+")	(1

2
) because ��(o) = 1

2
�1(o)+ 1

2
�2(o) = 1

2
�". Hence,

with � = ��, from (O) it follows that ��f � �f for every f 2 Ho. So, % is not mean ambiguity
averse, as we sought.

An examination of the arguments above reveals that the following three features of 	

are of key importance: (i) 	(1
2
� ") = 0; (ii) 	(1

2
) > 0; (iii) 	(1

2
+ 3") < 1.18 While the

latter two conditions will be satis�ed by any strictly increasing function, an approximate

version of condition (i) would work equally well as this condition. Speci�cally, the argu-

ments above remain valid for any strictly increasing function 	 with 	
�
1
2
� "
�
� 0 and

	
�
1
2

�
=	
�
1
2
� "
�
� 1. In particular, any neighborhood (with respect to the sup-norm) of

the original function that I constructed also contains strictly convex and strictly increasing

functions that possess all the properties that we seek.

C. Proofs

Recall that, given a recursive preference % represented by (�; c), we have f � �f and
p � �c(p) for every f 2 HX and p 2 �(X). Since % is transitive, it also follows that

f � �c(�f ) for every f 2 HX . I frequently utilize these observations throughout the proofs.

Proof of Lemma 1. Let % be a recursive preference on �(H) represented by (�; c).
Assume �rst that % is ambiguity averse. Then, there exists an ambiguity neutral preference
relation %0 on �(H) s.t. % and %0 satisfy properties (i) and (ii) in De�nition 3. Moreover,
by ambiguity neutrality of %0, there exists a �� 2 �(S) such that f �0 ��f for every f 2 HX .

Pick any f 2 HX . Then, by property (i), f � �c(�f ) implies f %0 �c(�f ), which also means
��f %0 �c(�f ). From property (ii), it then follows that ��f % �c(�f ), i.e., ��f % �f .
18Also note that the elasticity of 	 is not non-decreasing because 	( 12 )

2 > 	( 14 ).
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For the converse implication, suppose now that there exists a �� 2 �(S) such that

��f % �f for every f 2 HX . Let %0 denote the recursive preference on �(H) represented
by (�0; c), where �0 := D��. Then, for any p; q 2 �(X), we have p %0 q i¤ c(p) � c(q)

i¤ p % q, which veri�es property (ii) in De�nition 3. Moreover, �0f := �c(��f ), and hence,

f �0 �c(��f ) �0 ��f for every f 2 HX . This shows that %0 is ambiguity neutral. It remains to
verify property (i) in De�nition 3. Fix any f 2 HX , and note that because ��f % �f � f ,
we have ��f % �x for any x 2 X with f % �x. In turn, ��f % �x means ��f %0 �x, while
f �0 ��f as noted earlier. Thus, f %0 �x for any x 2 X with f % �x, as we sought. �

In what follows, given any S 0 � S and x; y 2 X, I denote by xS0y the act f such that
f(s) = �x for s 2 S 0 and f(s) = �y for s 2 SnS 0.

Proof of Theorem 1. By Proposition 1 of Dillenberger (2010), it su¢ ces to show that
(i) is equivalent to (iii). In turn, that (i) implies (iii) has been noted by Artstein-Avidan

and Dillenberger (2011), without proof. For the sake of completeness, I start with a proof

of this fact.

Fix a state space S, and let % be a recursive preference on �(H) represented by (�; c)
for some � 2 �2(S) and a certainty equivalence function c. By de�nitions, for any f 2 HX

we have

��f =
X
s2S

��(s)f(s) =
X
s2S

0@ X
�2�(S)

�(�)�(s)

1A f(s) = X
�2�(S)

�(�)

�P
s2S
�(s)f(s)

�

=
X

�2�(S)

�(�)�f .

(15)

Moreover, if %c satis�es NCI, applying this axiom successively for every � in the support

of � yields X
�2�(S)

�(�)�f %c
X

�2�(S)

�(�)�c(�f )

because �f %c �c(�f ) for every � 2 �(S). Since �f :=
X

�2�(S)

�(�)�c(�f ) and %c=% over

�(X), it follows that ��f % �f . Thus, if %c satis�es NCI, it exhibits a special form of the

global ambiguity aversion property: For any S and � 2 �2(S), the recursive preference

represented by (�; c) is mean ambiguity averse.

To prove that (iii) implies (i), let %c be a preference relation on �(X) represented by
a certainty equivalence function c, and suppose that %c has the global ambiguity aversion
property. Then, by Lemma 1, for any state space S and any � 2 �2(S) the recursive

preference % on �(H) represented by (�; c) admits a �� 2 �(S) such that ��f % �f for every
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f 2 HX .

Consider a state space S that consists of n �m points, where n and m are arbitrarily

selected natural numbers. Partition S into n sets, S1; :::; Sn, each having m points. For

i = 1; :::; n; let �i 2 �(S) denote the uniform distribution over Si, so that �i(s) = 1=m for

s 2 Si and �i(s) = 0 for s 2 SnSi. Pick any f�1; :::; �ng � [0; 1] with
Pn

i=1 �
i = 1 and set

� :=
Pn

i=1 �
iD�i. I claim that ��, delivered by Lemma 1, is equal to �� :=

Pn
i=1 �

i�i. That

is, ��(s) = �i=m for s 2 Si and i = 1; :::; n.
The �rst step is to show that

��(Si) = �i for i = 1; :::; n. (16)

Since
Pn

i=1 �
i = 1 = ��(S) =

Pn
i=1 ��(S

i), equation (16) holds i¤ ��(Si) � �i for every

i 2 f1; :::; ng. Pick any i 2 f1; :::; ng and x; y 2 X with x > y. Set f := xSiy and observe

that ��f = ��(Si)�x+ (1� ��(Si))�y. Moreover, �if = �x while �
j
f = �y for every j 2 f1; :::; ng

with j 6= i. Thus, �f =
Pn

j=1 �(�
j)�c(�jf )

=
Pn

j=1 �
j�c(�jf )

= �i�x + (1 � �i)�y. Hence,
��f % �f means ��(Si)�x + (1 � ��(Si))�y % �i�x + (1 � �i)�y. It follows that ��(Si) � �i

because % is monotonic w.r.t. �fosd. This proves equation (16).
For every i 2 f1; :::; ng, pick an arbitrary point si 2 Si, and set S 0 := fs1; :::; sng. Let

us now show that

��(S 0) = 1=m. (17)

Put f := xS0y for some x; y 2 X with x > y. By construction, S 0\Si = fsig for i = 1; :::; n.
Hence, by de�nition of �i, we have �i(S 0) = �i(si) = 1

m
, implying that

�if = �
i(S 0)�x + (1� �i(S 0)) �y = 1

m
�x +

�
1� 1

m

�
�y for i = 1; :::; n:

Thus,

�f =
nX
i=1

�(�i)�c(�if)
=

nX
i=1

�(�i)�c( 1m �x+(1�
1
m)�y)

= �c( 1m �x+(1�
1
m)�y)

:

In particular, �f � 1
m
�x +

�
1� 1

m

�
�y. On the other hand, ��f = ��(S 0)�x + (1 � ��(S 0))�y.

Hence, as in the proof of the previous step, ��f % �f implies ��(S 0) � 1
m
. Similarly, we get

��(S 0) � 1
m
upon letting f 0 := yS0x and invoking the condition ��f 0 % �f 0. This completes

the proof of (17).

Note that S 0 in equation (17) is an arbitrary set that contains exactly one element of

every Si. Fix an i 2 f1; :::; ng and a point �sj 2 Sj for every j 2 f1; :::; ngnfig. Put
�S�i :=

[
j 6=i

f�sjg and S 0
i(s) := fsg [ �S�i for any s 2 Si. Then, equation (17) and additivity
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of the probability measure �� imply

��(s) + ��
�
�S�i
�
= ��

�
S
0
i(s)
�
= 1

m
= ��

�
S
0
i(ŝ)
�
= �� (ŝ) + ��

�
�S�i
�

8s; ŝ 2 Si.

It follows that ��(s) = �� (ŝ) for every s; ŝ 2 Si. In view of equation (16), we must then

have ��(s) = �i=m for every s 2 Si because �� is additive and Si contains m points. That

is, �� = ��, as we sought.

Let �0(X) := fp 2 �(X) : p(x) is a rational number 8x 2 Xg. Pick any p 2 �0(X);

q 2 �(X) and � 2 [0; 1]. Suppose that the support of p consists of K distinct points,

x1; :::; xK ; whereas the support of q consists of I distinct points, y1; :::; yI . As p belongs to

�0(X), for every k 2 f1; :::; Kg, there exist natural numbers ak; bk such that p(xk) = ak

bk
.

Set m :=
KQ
k=1

bk and mk := mak

bk
for k = 1; :::; K. Let n := I + 1 and consider a state space

S that consists of n�m points. Finally, de�ne S1; :::; Sn; �1; :::; �n just as before, and let

� :=
Pn

i=1 �
iD�i, where �i := (1� �)q(yi) for i = 1; :::; I and �n := �.

Observe that mk is a natural number for every k and that
PK

k=1m
k = m

PK
k=1 p(x

k) =

m. Moreover, by construction, Sn contains m points. Thus, this set can be partitioned into

K subsets, Sn1; :::; SnK ; such that the cardinality of Snk equals mk for every k = 1; :::; K.

De�ne a purely subjective act f as

f(s) :=

(
�yi if s 2 Si for some i = 1; :::; I;
�xk if s 2 Snk for some k = 1; :::; K:

As we have seen earlier, ��f % �f because %c has the global ambiguity aversion property.
Observe that

��f =
IX
i=1

��(Si)�yi +
KX
k=1

��(Snk)�xk

=

IX
i=1

�i�yi +

KX
k=1

�n
mk

m
�xk

=
IX
i=1

(1� �)q(yi)�yi +
KX
k=1

�p(xk)�xk = (1� �)q + �p:

Moreover, �if = �yi for i = 1; :::; I; while

�nf =

KX
k=1

�n(Snk)�xk =
KX
k=1

mk

m
�xk =

KX
k=1

p(xk)�xk = p:

30



Thus,

�f =
IX
i=1

�(�i)�c(�if ) + �(�
n)�c(�nf ) =

IX
i=1

�i�yi + �
n�c(p) = (1� �)q + ��c(p).

Hence, ��f % �f means (1� �)q + �p % (1� �)q + ��c(p). Clearly, in the latter expression
we can replace p with an arbitrary element of �(X) because c is a continuous function on

�(X), and �0(X) is a dense subset of �(X). Thus, (1� �)q + �p % (1� �)q + ��c(p) for
every p; q 2 �(X) and � 2 [0; 1]. This is equivalent to saying that %c satis�es NCI because
%=%c over �(X) and %c is monotonic w.r.t. to �fosd. �

Proof of Lemma 2. By De�nition 3, every ambiguity neutral preference is trivially

ambiguity averse and loving. To establish the converse, let % be a recursive preference

on �(H) represented by (�; c), and suppose that % is both ambiguity averse and loving.

Then, Lemma 1 and an obvious, dual property imply that there exist a pair of distributions

��; �0 2 �(S) such that
��f % �f % �0f 8f 2 HX : (18)

I claim that �� = �0. Indeed, if �� and �0 were distinct, there would exist a set S 0 � S
such that �0(S 0) > ��(S 0). Let f := xS0y for some x; y 2 X with x > y, so that �0f =

�0(S 0)�x + (1 � �0(S 0))�y, while ��f = ��(S 0)�x + (1 � ��(S 0))�y. As % is monotonic w.r.t.

�fosd, �0(S 0) > ��(S 0) implies �0f � ��f , which contradicts (18). So, �� = �0, and hence,

property (18) yields ��f � �f for every f 2 HX . Since f � �f , this means that % is

ambiguity neutral. �

I omit the proofs of Corollary 1 and 2. (The main arguments regarding the proof of

Corollary 2 can be found in Section 4.)

Proof of Theorem 2. As noted in Section 4.1, if %c satis�es the independence axiom, a
recursive subject of type c cannot exhibit either paradox. To establish the converse, suppose

that a recursive subject of type c does not exhibit either paradox for any � 2 �2(S) and

any speci�cation of m and mk for k = b; o; w. By varying the latter parameters, in urn 1

we can obtain any distribution of the fractions b; o; w, subject to the requirement that

k is a rational number for every k. Let % stand for the preference relation of a generic

subject of type c.

Given the de�ning properties of a certainty equivalence function, it is a routine exercise

to show that for every p 2 �(X), there exists a unique number u(p) 2 [0; 1] such that
u(p)�x� + (1 � u(p))�x� �c p. In fact, since %c is monotonic w.r.t. �fosd, the function u
represents %c. That is, u(p) � u(q) i¤ p %c q for any p; q 2 �(X). It is also easy to see
that u is continuous on �(X). In the remainder of the proof, I shall show that u is an
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expected utility functional.

Claim 1. For any � 2 �2(S), we have u(�fb2) + u(�fo2) + u(�fw2) = 1:

Proof. If u(�fb2) + u(�fo2) + u(�fw2) < 1 for some � 2 �2(S), we can select the fractions

k such that k > u(�fk2) for k = b; o; w. Observe that k = u(k�x� + (1� k)�x�). Thus,
k > u(�fk2)means k�x�+(1�k)�x� � �fk2, or equivalently, fk1 � fk2 for k = b; o; w. The
latter statement is simply the Ellsberg paradox. Similarly, if u(�fb2)+u(�fo2)+u(�fw2) > 1

for some � 2 �2(S), we can select k such that k < u(�fk2) for k = b; o; w. This, in turn,

implies the anti-Ellsberg paradox. �

Claim 2. For any n 2 N and i = 1; :::; n; let �i; �i; �i; �i1; �i2 be numbers in [0; 1] such
that

Pn
i=1 �

i = 1 and �i +maxf�i1; �i2g � 1 for every i. Set

pb :=
Pn

i=1 �
i�c(�i�x�+(1��i)�x� )

po :=
Pn

i=1 �
i
�
�i�c(�i1�x�+(1��i1)�x� ) + (1� �

i)�c(�i2�x�+(1��i2)�x� )
�

pw :=
Pn

i=1 �
i
�
�i�c((1��i��i1)�x�+(�i+�i1)�x� ) + (1� �

i)�c((1��i��i2)�x�+(�i+�i2)�x� )
�
:

Then, u(pb) + u(po) + u(pw) = 1.

Proof. For every i = 1; :::; n and j = 1; 2, let �ij denote the element of �(S) de�ned as
�ij(b) = �i; �ij(o) = �ij and �ij(w) = 1��i��ij. Set � :=

Pn
i=1 �

i (�iD�i1 + (1� �i)D�i2)

so that

�fk2 =
nX
i=1

�i
�
�i�c(�i1

fk2
) + (1� �i)�c(�i2

fk2
)

�
for k = b; o; w:

Using the fact that �ij
fk2
= �ij(k)�x� + (1 � �ij(k))�x� for every i; j and k, it can easily be

checked that �fk2 = pk for k = b; o; w. Thus, the proof follows from Claim 1. �

In what follows, set v(x) := u(�x) for x 2 X. Observe that

c (v(x)�x� + (1� v(x))�x�) = x 8x 2 X

because u (v(x)�x� + (1� v(x))�x�) = v(x) = u(�x). I proceed with two implications of

Claim 2.

Pick any � 2 [0; 1] and some x; y 2 X with v(x)+v(y) � 1. In the statement of Claim 2,
let n = 1; �1 = 1, �1 = �, �1 = 1� v(x)� v(y), �11 = v(x) and �12 = v(y). Then,

pb = �c((1�v(x)�v(y))�x�+(v(x)+v(y))�x� )

po = ��c(v(x)�x�+(1�v(x))�x� ) + (1� �)�c(v(y)�x�+(1�v(y))�x� ) = ��x + (1� �)�y
pw = ��c(v(y)�x�+(1�v(y))�x� ) + (1� �)�c(v(x)�x�+(1�v(x))�x� ) = ��y + (1� �)�x.

(19)

By de�nitions, the �rst equality in (19) implies u(pb) = 1� v(x)� v(y). Hence, the latter
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two equalities in (19) combined with Claim 2 yield, for every � 2 [0; 1] and x; y 2 X with

v(x) + v(y) � 1,

u (��x + (1� �)�y) + u (��y + (1� �)�x) = v(x) + v(y). (20)

To uncover the second implication of Claim 2, pick any � 2 [0; 1] and x; y 2 X. In the
statement of the claim, let n = 1, �1 = 1, �1 = �, �1 = 0, �11 = v(x) and �12 = v(y).

Then, pb = �x�, and hence, u(p
b) = 0. Moreover, po = ��x + (1� �)�y as in equation (19),

while pw = ��c((1�v(x))�x�+v(x)�x� ) + (1� �)�c((1�v(y))�x�+v(y)�x� ). Thus, by Claim 2, for every

� 2 [0; 1] and x; y 2 X we have

u (��x + (1� �)�y) + u (��x0 + (1� �)�y0) = 1, (21)

where x0 := c((1� v(x))�x� + v(x)�x�) and y0 := c((1� v(y))�x� + v(y)�x�).

Claim 3. u (��x + (1� �)�y) = �v(x) + (1� �)v(y) for any � 2 [0; 1] and x; y 2 X.

Proof. By continuity of u, it su¢ ces to establish the claim for all dyadic �. For every

L = 0; 1; 2; :::; set QL := f `
2L
: ` = 0; 1; :::; 2Lg. Observe that the claim trivially holds

for � 2 Q0 = f0; 1g. Inductively, given an L � 0, suppose that the claim holds for every

� 2 QL. Pick any � 2 QL+1. By changing the roles of � and 1 � � if necessary, we can
assume � � 1=2. Then, there exists an integer ` such that 0 � ` � 2L and � = `

2L+1
. Pick

any x; y 2 X, and set q := ��x + (1� �)�y.
First, assume v(x) + v(y) � 1 and v(y) � v(x), so that v(y) � 1=2. In the statement of

Claim 2, let n = 2, and0BBBBBB@
�1

�1

�1

�11

�12

1CCCCCCA =

0BBBBBB@
2�
1
2

1� v(x)� v(y)
v(x)

v(y)

1CCCCCCA ;
0BBBBBB@
�2

�2

�2

�21

�22

1CCCCCCA =

0BBBBBB@
1� 2�
1

1� 2v(y)
v(y)

v(y)

1CCCCCCA :

Then, it is easily checked that

pb = 2��c((1�v(x)�v(y))�x�+(v(x)+v(y))�x� ) + (1� 2�)�c((1�2v(y))�x�+2v(y)�x� )
po = 2�

�
1
2
�x +

1
2
�y
�
+ (1� 2�)�y = q

pw = 2�
�
1
2
�y +

1
2
�x
�
+ (1� 2�)�y = q.

(22)

Observe that 2� = `
2L
belongs to QL. Thus, the �rst equation in (22) and the induction
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hypothesis imply u(pb) = 2�v1 + (1� 2�)v2, where

v1 := v (c((1� v(x)� v(y))�x� + (v(x) + v(y))�x�))
v2 := v (c((1� 2v(y))�x� + 2v(y)�x�)) .

Moreover, by de�nitions, v (c(��x� + (1� �)�x�)) = � for every � 2 [0; 1]. In particular,
v1 = 1� v(x)� v(y) while v2 = 1� 2v(y). Hence,

u(pb) = 2� (1� v(x)� v(y)) + (1� 2�) (1� 2v(y)) = 1� 2 (�v(x) + (1� �)v(y)) .

In turn, if we substitute into the conclusion of Claim 2 the equation above together with

the last two equations in (22), we obtain

u(q) =
1

2

�
1� u(pb)

�
= �v(x) + (1� �)v(y).

This establishes the claim for the case v(x) + v(y) � 1 and v(y) � v(x).
Suppose now that v(x)+v(y) � 1 and v(y) > v(x). Then, by the �rst part of the proof,

u(��y + (1 � �)�x) = �v(y) + (1 � �)v(x), and hence, the desired conclusion easily follows
from equation (20).

Finally, assume v(x) + v(y) > 1, and let x0 := c((1 � v(x))�x� + v(x)�x�) and y0 :=
c((1 � v(y))�x� + v(y)�x�). Then, v(x0) + v(y0) = 1 � v(x) + 1 � v(y) < 1, and hence,

u(��x0 + (1 � �)�y0) = �v(x0) + (1 � �)v(y0) as we have just seen. Thus, in this case, the
desired conclusion follows from equation (21). �

Claim 4. u (
Pn

i=1 �
i�xi) =

Pn
i=1 �

iv(xi) for any n 2 N, fx1; :::; xng � X and f�1; :::; �ng �
[0; 1] with

Pn
i=1 �

i = 1.

Proof. For n = 2, the desired conclusion follows from Claim 3. Inductively, �x an integer

n � 2, and assume that the desired conclusion holds for n. Pick any fx1; :::; xn+1g � X

and f�1; :::; �n+1g � (0; 1) with
Pn+1

i=1 �
i = 1. Without loss of generality assume x1 � x2 �

� � � � xn+1.
Given the number n, in the statement of Claim 2, let �1 = v(xn+1)� v(x1); �i = 0 for

i = 2; :::; n; and0BBB@
�i

�i

�i1

�i2

1CCCA =

0BBB@
�i

1

v(xi)

v(xi)

1CCCA for i = 1; :::; n� 1;

0BBB@
�n

�n

�n1

�n2

1CCCA =

0BBB@
�n + �n+1

�n

�n+�n+1

v(xn)

v(xn+1)

1CCCA .

Observe that, by construction, �1 � 0 and �1 + �1j = v(xn+1) � 1 for j = 1; 2. Clearly,
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the analogous inequalities also hold for i � 2, while
Pn

i=1 �
i =

Pn+1
i=1 �

i = 1. So, Claim 2 is

applicable with the selected parameters.

By de�nitions of �1 and �1; :::; �n, we have

pb = �1�c((v(xn+1)�v(x1))�x�+(1�v(xn+1)+v(x1))�x� ) + (1� �
1)�x�.

Thus, Claim 3 implies

u(pb) = �1
�
v(xn+1)� v(x1)

�
+
�
1� �1

�
v(x�) = �

1
�
v(xn+1)� v(x1)

�
. (23)

Moreover,

pw = �1�c((1�v(xn+1))�x�+v(xn+1)�x� ) +
Pn�1

i=2 �
i�c((1�v(xi))�x�+v(xi)�x� )

+(�n + �n+1)
�

�n

�n+�n+1
�c((1�v(xn))�x�+v(xn)�x� ) +

�n+1

�n+�n+1
�c((1�v(xn+1))�x�+v(xn+1)�x� )

�
= �1�c((1�v(xn+1))�x�+v(xn+1)�x� ) +

Pn
i=2 �

i�c((1�v(xi))�x�+v(xi)�x� )

+�n+1�c((1�v(xn+1))�x�+v(xn+1)�x� ):

Observe that the same degenerate lottery appears in the �rst and the last terms on the

right hand side of the latter equality. So, this equality can be rewritten as

pw =
�
�1 + �n+1

�
�c((1�v(xn+1))�x�+v(xn+1)�x� ) +

nX
i=2

�i�c((1�v(xi))�x�+v(xi)�x� ):

Hence, by the induction hypothesis,

u(pw) =
�
�1 + �n+1

� �
1� v(xn+1)

�
+

nX
i=2

�i
�
1� v(xi)

�
: (24)

From equations (23) and (24), it easily follows that 1 � u(pb) � u(pw) =
Pn+1

i=1 �
iv(xi).

Finally, note that

po =

n�1X
i=1

�i�xi +
�
�n + �n+1

�� �n

�n + �n+1
�xn +

�n+1

�n + �n+1
�xn+1

�
=

n+1X
i=1

�i�xi.

Thus, Claim 2 implies u
�Pn+1

i=1 �
i�xi
�
= 1 � u(pb) � u(pw) =

Pn+1
i=1 �

iv(xi). This proves

Claim 4, which also completes the proof of Theorem 2. �

The following lemma will be useful in the proof of Theorem 3.

Lemma 3. Given a state space S, let % and %0 denote a pair of recursive preferences on
�(H) represented by (�; c) and (�0; c0), respectively. % is more ambiguity averse than %0
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if and only if c = c0 and �0f % �f for every f 2 HX .

Proof. Suppose % is more ambiguity averse than %0. Given any p 2 �(X), p �0 �c0(p)
implies p � �c0(p) by part (ii) of De�nition 3. As p � �c(p), it then follows that �c(p) � �c0(p).
This means c(p) = c0(p) because % is monotonic w.r.t. �fosd over �(X). Since p is an
arbitrary element of �(X), we conclude that c = c0.

Now, �x any f 2 HX . As f � �c(�f ), part (i) of De�nition 3 implies f %0 �c(�f ). Since
f �0 �c0(�0f ) = �c(�0f ), we then see that �c(�0f ) %

0 �c(�f ). That is, �
0
f %0 �f , or equivalently,

�0f % �f .
Conversely, suppose c = c0 and �0f % �f for every f 2 HX . Part (ii) of De�nition 3

immediately follows from the fact that c = c0 represents both % and %0 over �(X). As for
part (i), �x any f 2 HX . Then, �0f % �f � f , and hence, �0f % �x for any x 2 X with

f % �x. In turn, �0f % �x means �0f %0 �x. Since f �0 �0f , it follows that f %0 �x for any
x 2 X with f % �x. �

Proof of Theorem 3. Fix a pair �; �0 2 �2(S). Given a generic certainty equivalence

function c, let % and %0 denote the preference relations on �(H) represented by (�; c) and
(�0; c), respectively.

By Lemma 3, % is more ambiguity averse than %0 if and only if �0f % �f for every

f 2 HX . In Theorem 3, that the statement (i) implies (ii) follows from this observation

and the related arguments in Section 5.

For the converse implication, suppose % is more ambiguity averse than %0 for every
speci�cation of c that is risk averse and that satis�es NCI. Observe that this is a weak form

of statement (ii) that is restricted to risk averse certainty equivalence functions.

Applying Lemma 3 once again yields �0f % �f for every f 2 HX and every risk averse

c that satis�es NCI. Equivalently, c(�0f ) � c(�f ) for every such f and c.

Claim 5. ��0 = ��.

Proof. Let c(p) :=
P

x2X p(x)x for p 2 �(X), so that c is the risk neutral expectation
functional. Fix any ŝ 2 S, and set f := xfŝgy for some x; y 2 X with x > y. Then,

�f = �(ŝ)�x + (1� �(ŝ))�y for every � 2 �(S). Hence,

c(�f ) = c

 P
�2�(S)

�(�)�c(�f )

!
=

P
�2�(S)

�(�)c(�f )

=
P

�2�(S)
�(�) (�(ŝ)x+ (1� �(ŝ))y)

= ��(ŝ)x+ (1� ��(ŝ))y;

where the last equality follows from the de�nition of ��(ŝ). Similarly, c(�0f ) = ��0(ŝ)x +

(1� ��0(ŝ)) y. So, c(�0f ) � c(�f ) means ��0(ŝ) � ��(ŝ). This implies ��0 = �� because ŝ is an
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arbitrary point in S. �

I proceed with a bit of notation. Cw stands for the set of all (strictly) increasing,

continuous and concave functions on X. In turn, Cst is the set of all strictly concave

functions that belong to Cw. Given a v 2 Cw and a nonempty, open interval J contained
in (x�; x�), let vJ denote the continuous function on X that is linear on J and equal to v

on XnJ . Speci�cally,

vJ(x) :=

(
v(x) if x 2 XnJ;

v(inf J) + (x� inf J)v(sup J)�v(inf J)
sup J�inf J if x 2 J .

Note that vJ is concave and increasing because of the corresponding properties of v. More-

over, if v is strictly concave on the interval J , then v(x) > vJ(x) for every x 2 J .
� denotes the set of all relevant �rst-order distributions. That is,

� := f��g [ f� 2 �(S) : �(�) > 0g [ f� 2 �(S) : �0(�) > 0g [ f�s : s 2 Sg:

Since S is �nite, there exists a one-to-one function y that maps S into (x�; x�). Let f

stand for the purely subjective act de�ned as f(s) := �y(s) for s 2 S. Then,

�f =
X
s2S

�(s)�y(s) and E�f (v) =
X
s2S

�(s)v(y(s)) 8(�; v) 2 �(S)� Cw.

Claim 6. There exists a v 2 Cst such that E�f (v) 6= E�̂f (v) for every �; �̂ 2 � with � 6= �̂.

Proof. Since � is a �nite set, by an obvious, inductive argument, it su¢ ces to show that
given any v1 2 Cst, if E�1f (v

1) = E�2f (v
1) for some �1; �2 2 � with �1 6= �2, then there

exists a v2 2 Cst that satis�es the following two properties:
(a) E�1f (v

2) 6= E�2f (v
2).

(b) E�f (v
1) 6= E�̂f (v1) implies E�f (v2) 6= E�̂f (v2) for every �; �̂ 2 �.

Note that any v2 2 Cst that is su¢ ciently close to v1 (in sup-norm) satis�es the condition
(b) because � is a �nite set, and the expectation operator Ep(v) is continuous in v for every

p 2 �(X).
Fix a v1 2 Cst and suppose E�1f (v

1) = E�2f (v
1) for some �1; �2 2 � with �1 6= �2. It

remains to show that any neighborhood of v1 contains a v2 2 Cst that satis�es the condition
(a).

Since �1 6= �2, there exists an �s 2 S such that �1(�s) > �2(�s). Recall that y is a one-to-
one function with values in (x�; x�). Hence, there exists an open interval J � (x�; x�) such
that y(�s) 2 J and y(s) =2 J for every s 2 Snf�sg. By de�nition of v1J , the latter statement
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implies v1J(y(s)) = v
1(y(s)) for every s 2 Snf�sg. Thus,

E�if (v
1)� E�if (v

1
J) = �

i(�s)
�
v1(y(�s))� v1J(y(�s))

�
for i = 1; 2.

Moreover, v1(y(�s)) > v1J(y(�s)) because v
1 is strictly concave and y(�s) 2 J . Since �1(�s) >

�2(�s), it follows that E�1f (v
1)�E�1f (v

1
J) > E�2f (v

1)�E�2f (v
1
J). We must then have E�1f (v

1
J) <

E�2f (v
1
J) because E�1f (v

1) = E�2f (v
1) by assumption.

Set v2 := �v1 + (1 � �)v1J for an arbitrarily selected � 2 (0; 1). Since v1 2 Cst and
v1J 2 Cw, it is clear that v2 2 Cst. Moreover,

E�1f (v
2)� E�2f (v

2) = �
�
E�1f (v

1)� E�2f (v
1)
�
+ (1� �)

�
E�1f (v

1
J)� E�2f (v

1
J)
�

= (1� �)
�
E�1f (v

1
J)� E�2f (v

1
J)
�
.

It follows that E�1f (v
2) 6= E�2f (v

2), as we sought. This completes the proof because v2

converges to v1 as �! 1. �

Fix a function v 2 Cst as in Claim 6. Let m and n +m denote the cardinality of the

sets S and �, respectively. Label the elements of � as �1; :::; �n+m in such a way that

f�n+1; :::; �n+mg = f�s : s 2 Sg. Observe that ��0 = �s would imply �0 = D�s , which

contradicts the regularity assumption. Hence, n � 1, and ��0 = �� belongs to f�1; :::; �ng.
Let �{ denote the particular index such that ��{ = ��.

For i = 1; :::; n+m, set xi := v�1(E�if (v)). Since v separates �
1
f ; :::; �

n+m
f (as in Claim 6),

the points x1; :::; xn+m are pairwise distinct. It is also clear that xi 2 (x�; x�) for every i
because �if is supported in (x�; x

�). Hence, there exists a collection of pairwise disjoint

open intervals J1; :::; Jn+m contained in (x�; x�) such that xi 2 Ji for every i = 1; :::; n+m.
Fix a k 2 f1; :::; ng that is distinct from �{. Given any pair of numbers �k; ��{ � 0 with

�k + ��{ � 1 de�ne
v̂ := �kvJk + �

�{vJ�{ + (1� �k � ��{)v.

Since vJk , vJ�{ and v belong to Cw, so does v̂. Set

c(p) := min
�
v�1(Ep(v)); v̂

�1(Ep(v̂))
	

8p 2 �(X).

This is a risk averse certainty equivalence function that satis�es NCI because v and v̂ both

belong to Cw (see Cerreia-Vioglio et al., 2015, Theorem 3).

As we shall see momentarily, for suitably selected values of �k and ��{, we will have

�(�k)(v(xk)� v̂(xk)) � (1� �(��{))(v(x�{)� v̂(x�{)). (25)
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The next claim uncovers a key implication of this inequality.

Claim 7. (25) implies

(�(�k)� �0(�k))(v(xk)� v̂(xk)) + (�(��{)� �0(��{))(v(x�{)� v̂(x�{)) � 0. (26)

Proof. By construction, v̂(xi) = v(xi) for any i = 1; :::; n+m with i =2 fk;�{g. In particular,
v̂(xi) = v(xi) for every i � n + 1. Moreover, it is easily checked that fxn+1; :::; xn+mg =
fy(s) : s 2 Sg because f�n+1f ; :::; �n+mf g = f�y(s) : s 2 Sg. It follows that v̂(y(s)) = v(y(s))
for every s 2 S, and hence,

E�f (v̂) = E�f (v) 8� 2 �(S). (27)

Also note that the range of v, v(X), is the same as that of v̂ because v̂(x�) = v(x�) and

v̂(x�) = v(x�). Furthermore, v(x) � v̂(x) for every x 2 X by construction. It easily follows

that v̂�1(a) � v�1(a) for every a 2 v(X).
Combining the latter inequality with (27) yields v̂�1(E�f (v̂)) � v�1(E�f (v)) for every

� 2 �(S), which means c(�f ) = v�1(E�f (v)). In particular, c(�if ) = xi for i = 1; :::; n+m,
and hence, �f =

Pn+m
i=1 �(�

i)�c(�if ) =
Pn+m

i=1 �(�
i)�xi. Similarly, �0f =

Pn+m
i=1 �

0(�i)�xi.

Since v(xi) = v̂(xi) for any i =2 fk;�{g, it follows that

E�f (v)� E�f (v̂) = �(�k)(v(xk)� v̂(xk)) + �(��{)(v(x�{)� v̂(x�{)),
E�0f (v)� E�0f (v̂) = �0(�k)(v(xk)� v̂(xk)) + �0(��{)(v(x�{)� v̂(x�{)).

(28)

Thus, (26) is equivalent to the following inequality

(E�f (v)� E�f (v̂))� (E�0f (v)� E�0f (v̂)) � 0. (29)

Let p :=
Pn+m

i=1 �(�
i)�if . Note that E�f (v) =

Pn+m
i=1 �(�

i)v(xi) =
Pn+m

i=1 �(�
i)E�if (v) =

Ep(v). Here, the second equation follows from the de�nition of xi, and the last one from the

linearity of the expectation operator q ! Eq(v). Moreover, equation (15) implies ��f = p.

Hence, E�f (v) = E��f (v), and similarly, E�0f (v) = E��0f (v). As �� = ��
0 = ��{, we conclude that

E�f (v) = E�0f (v) = E��{f (v) = v(x
�{). (30)

Since the �rst and last terms of (30) are equal to each other, we also have

(v̂(x�{)� v(x�{)) + (E�f (v)� E�f (v̂)) = v̂(x�{)� E�f (v̂). (31)

By the �rst equation in (28), it is easily veri�ed that the left hand side of (31) equals
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�(�k)(v(xk)� v̂(xk))� (1��(��{))(v(x�{)� v̂(x�{)). In turn, (25) amounts to saying that this
number is nonnegative. Then, the right hand side of (31) must also be nonnegative. That

is, v̂(x�{) � E�f (v̂), or equivalently, x
�{ � v̂�1(E�f (v̂)). Also note that x

�{ = v�1(E�f (v))

by (30). Thus, v�1(E�f (v)) � v̂�1(E�f (v̂)), which means c(�f ) = v̂�1(E�f (v̂)). Moreover,
v̂�1(E�0f (v̂)) � c(�0f ) by de�nition of c. Hence, c(�0f ) � c(�f ) implies v̂�1(E�0f (v̂)) �
v̂�1(E�f (v̂)), which is equivalent to saying E�0f (v̂) � E�f (v̂). Finally, (29) follows from this
inequality and the �rst equation in (30). �

Observe that vJk(x
�{) = v(x�{) because x�{ =2 Jk. Similarly, vJ�{ (xk) = v(xk). Substituting

these equations into the de�nition of v̂ yields

v(xi)� v̂(xi) = �i(v(xi)� vJi(xi)) for i = �{; k. (32)

Also recall that v(xi)� vJi(xi) is strictly positive for every i because v is strictly concave.
Hence, by (32), v(xi)� v̂(xi) > (=)0 i¤ �i > (=)0 for i = �{; k.
Let ��{ = 0 and �k > 0. As I just noted, ��{ = 0 implies v(x�{) � v̂(x�{) = 0. Then, the

right hand side of (25) also equals 0, while the left hand side is always nonnegative. So,

(25) holds. In turn, (26) reduces to

(�(�k)� �0(�k))(v(xk)� v̂(xk)) � 0: (33)

Moreover, v(xk)� v̂(xk) > 0 because �k > 0. Hence, (33) implies �(�k) � �0(�k). Since k
is an arbitrary element of f1; :::; ngnf�{g, it also follows that

1� �(��{) �
nX
i6=�{

�(�i) �
nX
i6=�{

�0(�i) = 1� �0(��{); (34)

where the last equation holds due to regularity of �0.

Note that if �0(��{) = 1, then �0 = D��. In this case, it is trivially true that � is a

mean-preserving spread of �0. Assume therefore that �0(��{) < 1. Then, by (34), 1� �(��{)
and 1� �0(��{) are both strictly positive.
The next step is to show that

�(�i)

1� �(��{) �
�0(�i)

1� �0(��{) 8i 2 f1; :::; ngnf�{g. (35)

This inequality holds trivially for any i with �0(�i) = 0. Fix a k 2 f1; :::; ngnf�{g with
�0(�k) > 0. Then, �(�k) > 0 because �(�k) � �0(�k) as we have seen earlier. Pick strictly
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positive values for �k and ��{ such that

��{

�k
=
v(xk)� vJk(xk)
v(x�{)� vJ�{(x�{)

�(�k)

1� �(��{) . (36)

Indeed, we can select such �k and ��{ because the right hand side of (36) is strictly positive,

while the ratio ��{=�k can be manipulated arbitrarily, at least for small values of �k and ��{.

It is easy to verify that the equations (32) and (36) jointly imply (25), with equality.

That is,
v(xk)� v̂(xk)
v(x�{)� v̂(x�{) =

1� �(��{)
�(�k)

. (37)

Multiply (26) by �(�k)
v(x�{)�v̂(x�{) , and then utilize (37) to substitute for

v(xk)�v̂(xk)
v(x�{)�v̂(x�{) . This gives

(�(�k)� �0(�k))(1� �(��{)) + (�(��{)� �0(��{))�(�k) � 0,

or equivalently, �(�k)(1 � �0(��{)) � �0(�k)(1 � �(��{)) � 0. So, �(�k)
1��(��{) �

�0(�k)
1��0(��{) , which

proves (35).

(35), the �rst inequality in (34) and the regularity of �0 jointly imply

1 �
nX
i6=�{

�(�i)

1� �(��{) �
nX
i6=�{

�0(�i)

1� �0(��{) = 1.

Clearly, both inequality signs above can be replaced with equality. That is,

1 =
nX
i6=�{

�(�i)

1� �(��{) =
nX
i6=�{

�0(�i)

1� �0(��{) . (38)

By the latter equality in (38), we can strengthen (35) to read as

�(�i)

1� �(��{) =
�0(�i)

1� �0(��{) 8i 2 f1; :::; ngnf�{g.

Set � := 1��0(��{)
1��(��{) , so that ��(�

i) = �0(�i) for every i 2 f1; :::; ngnf�{g. Note that

0 < � � 1, where the latter inequality follows from (34). Moreover, by the �rst equality in

(38), for any i > n we have �(�i) = 0. So, � =
Pn

i=1 �(�
i)D�i, and

(1� �)D��{ + �� = (1� �+ ��(��{))D��{ +
nX
i6=�{

��(�i)D�i

= (1� �+ ��(��{))D��{ +

nX
i6=�{

�0(�i)D�i.
(39)
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Given that the last expression in (39) is a probability measure on �(S), we must have

1� �+ ��(��{) = 1�
Pn

i6=�{ �
0(�i), which also equals �0(��{). Hence, by (39),

(1� �)D��{ + �� = �
0(��{)D��{ +

nX
i6=�{

�0(�i)D�i : (40)

Finally, note that the right hand side of (40) equals �0, while ��{ := ��. Thus, (40) delivers

the desired conclusion: (1� �)D�� + �� = �
0.

As for risk loving preferences, observe that if v is a continuous, convex and increasing

function on X, so is vJ for any open interval J � (x�; x�). Moreover, vJ � v, with strict
inequality for x 2 J whenever v is strictly convex; which is a key di¤erence compared to
the case of concave functions.

The proof of Claim 6 can be modi�ed in a straightforward way to obtain a strictly

convex function v such that E�f (v) 6= E�̂f (v) for any distinct �; �̂ 2 �. After de�ning v̂
and c just as before, set zi := v̂�1(E�if (v̂)) for i = 1; :::; n+m. Note that lim

�k+��{!0
v̂ = v, and

hence, lim
�k+��{!0

zi = xi for i = 1; :::; n+m. In particular, we can assume zi 2 Ji for every i.
In the remainder of the proof, the points z1; :::; zn+m take the role of x1; :::; xn+m in the

earlier proof because v̂ � v implies c(�if ) = zi for every i. Consequently, in (25) and (26)
the points xk and x�{ should be replaced with zk and z�{, respectively. Following the logic of

Claim 7, it can be shown that the direction of these inequalities also change. That is,

�(�k)(v(zk)� v̂(zk)) � (1� �(��{))(v(z�{)� v̂(z�{)) )
(�(�k)� �0(�k))(v(zk)� v̂(zk)) + (�(��{)� �0(��{))(v(z�{)� v̂(z�{)) � 0.

(41)

Also recall that v(zi) � v̂(zi) � 0 for every i. Thus, in the remaining arguments, (41)

acts as a perfect analogue of Claim 7. Regarding this part of the proof, the only notable

issue is how �k and ��{ should be selected so that the �rst inequality in (41) holds with

equality. (This is not so obvious because zk and z�{ depend on �k and ��{.) As in the case

of concave functions, without loss of generality assume �(�k) and 1 � �(��{) are strictly
positive. Given a small number " > 0, focus on �k � " and set ��{ := "� �k. Then, �k = "
implies �(�k)(v(zk)� v̂(zk)) < 0 = (1� �(��{))(v(z�{)� v̂(z�{)), while the converse inequality
holds for �k = 0. Hence, by a standard argument for continuous functions, there exists a

�k 2 (0; ") such that �(�k)(v(zk)� v̂(zk)) = (1� �(��{))(v(z�{)� v̂(z�{)). �
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