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Abstract

We propose a model of “choice overload” which refers to a stronger tendency to select the de-

fault option in larger choice problems. Our main finding is a behavioral characterization of an

asymmetric regret representation that depicts a decision maker who does not consider the possi-

bility of experiencing regret for choosing the default option. By contrast, the value of ordinary

alternatives is subject to regret. The calculus of regret for ordinary alternatives is identical to

that in Sarver’s (2008) anticipated regret model, despite the fact that the primitives of the two

theories are different. Our model can also be applied to choice problems with the option to defer

the decision.
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1 Introduction

Choice overload, also known as “overchoice,” refers to a stronger tendency to stick to the

default option in choice problems that contain many alternatives, where the default option

is the alternative that obtains if the decision maker (DM) does not actively select any other

alternative. Once we depart from the “rational agent” paradigm, one can think of several

reasons for choice overload. In particular, some researchers suggest that, absent a well-

defined ranking of alternatives, the DM may regret choosing any given alternative upon

learning more about her tastes (or alternatives), and that the likelihood of experiencing

regret may increase with the size of the choice set (Iyengar and Lepper, 2000; Anderson,

2003; Inbar, Botti and Hanko, 2011).

In practice, regret, or anticipation of it, seems to affect people’s behavior asymmetrically,

with a bias towards the default option, leading to choice overload. For example, in a

field study, Iyengar and Lepper (2000) find that a small tasting booth in a grocery store

can generate much more sales than a larger one. In the same study, customers report

greater subsequent satisfaction with their selections when the set of options is limited. In

a laboratory experiment with economic incentives, Dean (2008) confirms that larger choice

sets may reinforce subjects’ tendency to select the default option.1

In this paper, we propose a model of choice overload driven by anticipated regret. Our

main finding is a behavioral characterization of an asymmetric regret representation. The

DM (behaves as if she) is uncertain of her tastes at the time of choice. She anticipates

experiencing regret if her choice turns out to be inferior ex post, upon resolution of the

uncertainty. Thus, an ordinary alternative is evaluated with its expected utility minus a

regret term. On the other hand, when evaluating the default option, the DM does not

consider the possibility of experiencing regret, leading to a bias towards the default option.

Moreover, this bias is stronger in larger choice sets because the regret term for ordinary

alternatives increases when additional alternatives become available.

In the remainder of this section, we take a closer look at our representation, followed by

a literature review. We introduce the formal setup in Section 2, while Section 3 is devoted

to our axioms and representation theorem. In Section 4, we formalize the notion of choice

overload and present some comparative statics exercises. Section 5 relates our model to

Sarver’s (2008) theory of anticipated regret. Finally, in Section 6, we discuss a dynamic

setup where the default option acts as a means of deferring choice. The appendix contains

the proofs and some further supplementary material.

1Also, a field study by Redelmeier and Shafir (1995) shows that the presence of similar medications
(instead of a single one) might lead physicians to avoid prescribing any medication if their effectiveness is
doubtful.
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1.1 Overview of the Representation and Axioms

We model the DM’s subjective uncertainty with a probability measure µ over a set U of

ex post utility functions. Each element of U , referred to as a state, is an expected utility

function over a space of lotteries, ∆. We think of these lotteries as ordinary alternatives.

The utility of ordinary alternatives is context dependent and includes a negative regret

term. Specifically, Eµ(u(p)−K(max
q∈x

u(q)−u(p))) gives the net expected utility of selecting

an alternative p from a set x ⊆ ∆, where Eµ stands for the expectation operator over u ∈ U
with respect to the probability measure µ. We view the term K(max

q∈x
u(q) − u(p)) as the

ex post regret in state u that the DM anticipates experiencing upon selecting p from x.

Thus, the ex post regret is proportional to the maximum utility that the DM could have

attained if she were not to select p, while the parameter K measures the strength of regret.

So, the net expected utility of selecting p from x is the expectation of utility minus regret,

u(p)−K(max
q∈x

u(q)− u(p)).

The ex post regret upon selection of a given ordinary alternative p increases with the

size of the choice set that the DM faces. That is, x ⊆ y implies K(max
q∈x

u(q) − u(p)) ≤
K(max

q∈y
u(q) − u(p)) at any state u. Consequently, the net expected utility of a given

ordinary alternative decreases with the size of the choice set. By contrast, the utility of the

default option is a context independent number, a. Our interpretation of this pattern is

that, when selecting the default option, the DM does not take into account the possibility

of experiencing regret.2

To summarize, our representation describes a choice correspondence such that, given a

set x of ordinary alternatives:

(i) the DM selects an element p′ of x if and only if

Eµ

(
u(p′)−K(max

q∈x
u(q)− u(p′))

)
= max

p∈x
Eµ

(
u(p)−K(max

q∈x
u(q)− u(p))

)
≥ a;

(ii) she selects the default option if and only if max
p∈x

Eµ

(
u(p)−K(max

q∈x
u(q)− u(p))

)
≤ a.

Let us now illustrate how this representation can generate choice overload.

Example 1. A grocery store will introduce one or more exotic, herbal jams to its product

line. Their supplier provides two options: A rose jam (r) and a hibiscus jam (h). The store

2The default option is an object that does not belong to ∆. A particular implication of this assumption
is that the default option does not enter the calculus of regret for ordinary alternatives. This seems
reasonable because if the DM were to take into account the possibility of experiencing regret for choosing
an ordinary alternative over the default option, presumably, she would also be able to take into account
the opposite scenario, i.e., the possibility of experiencing regret for choosing the default option.
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manager will base his decision on the projected behavior of a generic shopper, who is our

DM. The DM is not familiar with either type of jam, and she is uncertain of her tastes.

She has two equally likely ex post utility functions, u1 and u2, defined as follows:

u1 u2

r 5 1

h 1 5

The DM’s regret parameter is K = 2, and her default option is to not buy a herbal

jam, which yields the utility level 0.

When there is only one ordinary alternative, the DM does not experience regret ac-

cording to our representation. Thus, if the store offers only one type of a jam, the DM’s

expected utility from that jam will be 5/2 + 1/2 = 3. As 3 > 0, the DM will purchase the

offered product in this case.

On the other hand, if the store offers both jams, then purchasing either will induce an

ex post regret of 2(5 − 1) = 8 with probability 1/2. Thus, in this case, the net expected

utility of a jam will be 3− 8/2 = −1 < 0. Consequently, the simultaneous presence of two

jams will cause the DM to refrain from purchasing any. □
Behavioral characterization of our representation demands two substantive axioms. The

first one is a general version of the weak axiom of revealed preferences (WARP) that is

confined to instances in which the DM does not select the default option. This axiom en-

ables our model to accommodate a context dependent attitude towards the default option,

while disciplining the choices among ordinary alternatives. We call this property “exclusive

WARP.”

The second axiom, called “asymmetric alpha,” ensures that the context dependence

embodied in the model works in the same direction as the findings on choice overload. This

axiom asserts that if an ordinary alternative p is selected from a given set, then it should

also be selected from any subset that contains p. Since the default option is present in any

choice problem, it follows that the DM has a stronger tendency to select the default option

when she faces a larger choice set.

Apart from these two axioms, we also impose a non-triviality condition and some inde-

pendence and continuity properties.

1.2 Related Literature

Our definition of regret follows Sarver’s (2008) anticipated regret model, which takes as

primitive a preference relation over menus, i.e., choice sets. Aside from different primitives,

the main novelty of the present approach is the asymmetry embodied in our representation.
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Specifically, in our theory, only ordinary alternatives are subject to anticipated regret, and

this is precisely how we accommodate the findings on choice overload. By contrast, in

Sarver’s theory, anticipated regret influences the value of all alternatives uniformly, holding

fixed the menu that the DM faces. Consequently, the corresponding choice behavior is

compatible with WARP. Despite these differences, Sarver’s representation theorem plays

a key role in the proof of our main result. A more detailed discussion of the connections

between the two theories can be found in Section 5.

The classical regret theory, due to Bell (1982), Loomes and Sugden (1982, 1987) and

Sugden (1993), envisions a DM endowed with a general regret/rejoice functional that can

lead to cyclical choices among any set of alternatives. The predictions of our theory is

more disciplined thanks to exclusive WARP, which rules out cycles among ordinary alter-

natives. Indeed, in our theory, the net expected utility of selecting p from a given choice

set exceeds that of selecting q if and only if Eµ(u(p)) ≥ Eµ(u(q)), which means that the

DM’s choices among ordinary alternatives can also be represented with the (gross) expected

utility function p → Eµ(u(p)).

Minimax regret models (e.g., Hayashi, 2008; Stoye, 2011) portray a DM who selects an

alternative that minimizes the maximum expected regret, where the maximum is taken over

a set of priors on exogenously given states. In these models, the value of any alternative, be

it a default option or not, includes a regret term, in contrast to the asymmetry embodied

in our model. Moreover, violations of WARP are solely driven by ambiguity, as opposed

to risk, and disappear completely unless the DM holds multiple priors. On a related note,

in our representation, “preference uncertainty” is subjective, as opposed to the Savagean

approach with exogenous states adopted in minimax regret models.

Apart from his experimental findings, Dean (2008) proposes a theoretical model of choice

overload that focuses on incomplete preferences. His most closely related representation

depicts, roughly, a DM who selects an ordinary alternative if and only if that alternative

is ranked above any other option according to an incomplete preference relation.

Gerasimou (2016) provides axiomatic foundations for a choice rule that resembles the

one proposed by Dean (2008). While neither of these models admits an anticipated regret

interpretation, Gerasimou’s axioms are closely related to ours.3 In fact, except our inde-

pendence axioms, which have no place in Gerasimou’s ordinal setup, all of our substantive

axioms do hold in the latter model. In particular, the contraction consistency axiom of

Gerasimou is a direct analogue of our asymmetric alpha, the only difference being that the

empty set, which represents deferral in Gerasimou’s model, takes the role of the default

option in our model.4 Gerasimou also assumes a variant of WARP that is stronger than

3Needless to say, we formulated our axioms independently.
4One of the main differences between Gerasimou (2016) and Dean (2008) is the same: In the former
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our exclusive WARP. Thus, our findings imply that in a cardinal setup with suitable in-

dependence properties, the incomplete preference relation envisioned by Gerasimou (and

Dean) can actually be replaced by an expected utility function p → Eµ(u(p)), as far as the

ranking of ordinary alternatives is concerned. However, this does not mean that our model

is more general because an independence axiom does, indeed, play a role in our derivation

of a complete ranking of ordinary alternatives. (We elaborate on this in Section 3.)

Dean, Kıbrıs and Masatlioglu (in press) relate choice overload to limited attention. A

key feature of their model is that if an ordinary alternative p attracts the DM’s attention

in a large set, then it also does so in any subset that contains p. However, the converse

does not hold in general, leading to potential violations of exclusive WARP. Specifically,

an ordinary alternative p may be selected over another ordinary alternative q in a given

set, and yet, the DM may switch to q in a larger set if p happens to slip her attention.

By holding the default option fixed, in this paper we abstract from the traditional

status-quo bias, which refers to an enhanced preference towards an alternative when that

alternative is designated as the status-quo. To accommodate this phenomenon, a variety of

reference dependent choice models were proposed, pioneered by Kahneman and Tversky’s

(1979) theory of loss aversion. Typically, the models in this strand of literature satisfy

WARP for a fixed status-quo option.5 To the best of our knowledge, the only exceptions

that also accommodate choice overload are the aforementioned papers by Dean (2008) and

Dean et al. (in press).

2 The Model

B stands for a finite set of riskless prizes, while ∆ denotes the set of all lotteries on B.

We equip ∆with the Euclidean norm ∥·∥ and the usual algebraic operations. An ordinary

alternative, denoted as p, p′, q, r etc., refers to a generic element of ∆. By a choice set we

mean a nonempty closed subset of ∆, and denote the choice sets as x, y, z etc. X stands

for the collection of all choice sets equipped with the Hausdorff metric dH .
6

We assume that, in addition to ordinary alternatives, there exists a fixed default op-

tion (or, a status-quo alternative) that is available in every choice problem. ⊖ denotes

this default option, which is an object that does not belong to ∆. Accordingly, a choice

correspondence c is defined as a nonempty valued correspondence from X into ∆ ∪ {⊖}

model, the option to defer the decision replaces the default option. In addition, Gerasimou drops a
secondary decision criterion considered by Dean, and thereby, formulates more compactly the idea of
“incomplete preference maximization.”

5Recent contributions of this sort include Masatlioglu and Ok (2005, 2014), Sagi (2006), Apesteguia
and Ballester (2009), Ortoleva (2010), Riella and Teper (2014), and Ok, Ortoleva and Riella (2015).

6dH(x, y) := max{max
p∈x

min
q∈y

∥p− q∥ ,max
q∈y

min
p∈x

∥p− q∥} for every x, y ∈ X .
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such that, for every x ∈ X ,

c (x) ⊆ x ∪ {⊖}.

Following the standard interpretation in choice theory, if an object belongs to c (x) we

understand that the DM in question may select that object in the choice problem x∪{⊖}.
Our representation suggests that the DM is uncertain of her tastes at the time of

choice. We model the DM’s tastes with expected utility functions on ∆. We utilize the

same notation for an expected utility function and the associated utility vector (or index).

That is, u(p) =
∑

b∈B ubpb = u · p.
Set

RB
0 :=

{
u ∈ RB :

∑
b∈B

ub = 0

}
and U :=

{
u ∈ RB

0 : ∥u∥ = 1
}
.

We view U as a canonical state space because any non-constant von Neumann-Morgenstern

preference on ∆ can be represented with a function in U .7 Finally, we write Eµ(f(u)) in

place of
∫
U f(u)µ(du), for a continuous function f : U → R and a (countably additive,

Borel) probability measure µ on U .
The next definition formalizes our representation notion.

Definition 1. An asymmetric regret representation (henceforth, AR representation) for a

choice correspondence c consists of a probability measure µ on U , and a pair of numbers

K and a, with K ≥ 0, such that the following two statements hold for every x ∈ X and

p′ ∈ x:

(i) p′ ∈ c (x) if and only if

Eµ

(
u(p′)−K(max

q∈x
u(q)− u(p′))

)
= max

p∈x
Eµ

(
u(p)−K(max

q∈x
u(q)− u(p))

)
≥ a;

(ii) ⊖ ∈ c (x) if and only if max
p∈x

Eµ

(
u(p)−K(max

q∈x
u(q)− u(p))

)
≤ a.

In what follows, (µ,K, a) stands for a generic AR representation.

As we discussed in Section 1.1, the parameter a represents the utility of ⊖, which is a

context independent number, while Eµ(u(p)−K(max
q∈x

u(q)− u(p))) is the expected utility

of selecting p from x, net of the regret term K(max
q∈x

u(q) − u(p)). It should also be noted

that

argmax
p∈x

Eµ(u(p)) = argmax
p∈x

Eµ

(
u(p)−K(max

q∈x
u(q)− u(p))

)
∀x ∈ X .

7In that respect, we follow Dekel at al. (2001) and Sarver (2008), among many others.
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Thus, if it is nonempty, the set of ordinary alternatives that the DM may select from a

given choice set x coincides with the maximizers of the gross expected utility function

p → Eµ(u(p)) over x.

3 Representation Theorem

We now turn to behavioral characterization of AR representations. Our first axiom is a

general version of WARP.

A1: Exclusive WARP. If x ⊆ y and c (x), c (y) ⊆ ∆, then c (y)∩x ̸= ∅ implies c (y)∩x =

c (x).

Observe that the scope of this axiom is limited to choice sets x and y such that ⊖ does

not belong to c (x) or c (y). Thus, exclusive WARP does not impose any restriction on

DM’s decisions to select ⊖, leading to a (possibly) context dependent attitude towards the

default option. By contrast, Arrow’s (1959) classical formulation of WARP applies to any

pair of choice sets x, y with x ⊆ y. This is the only difference between exclusive WARP

and Arrow’s formulation.

We complement exclusive WARP with an asymmetric version of Sen’s (1971) property

alpha.8

A2: Asymmetric Alpha. If x ⊆ y, then p ∈ c (y) ∩ x implies p ∈ c (x).

Unlike in exclusive WARP, the sets c (y) and c (x) in the statement of asymmetric alpha

may also contain ⊖. In particular, it follows that if an ordinary alternative p ∈ x is selected

over the default option from a set y that contains x, then p should also be selected from

the small set x. However, asymmetrically, we do not demand the same from the default

option. Thus, it remains possible to have c (y) = {⊖} and ⊖ /∈ c (x) for some x, y ∈ X with

x ⊆ y. Indeed, this is precisely the pattern observed in the findings on choice overload. By

contrast, the classical version of property alpha does not make such a distinction between

the available alternatives.

Our independence axiom consists of three parts, each focusing on a different scenario

about the contents of c (x) and c (y), given a pair of sets x and y that will be mixed with each

other. By a mixture of x and y, we mean the set αx+(1−α)y := {αp+(1−α)q : p ∈ x, q ∈ y}
for some α ∈ [0, 1].

A3: Independence. (i) If c (x) ∩∆ ̸= ∅ and c (y) ∩∆ ̸= ∅, then for every p ∈ x, q ∈ y

8“Property alpha” is the term introduced by Sen (1971) to refer to Chernoff’s (1954) Postulate 4. As
shown by Sen, this property and a dual property beta are jointly equivalent to WARP.
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and α ∈ (0, 1),

p ∈ c (x) and q ∈ c (y) ⇔ αp+ (1− α)q ∈ c (αx+ (1− α)y).

(ii) If c (x) = {⊖} and ⊖ ∈ c (y), then c (αx+ (1− α)y) = {⊖} for every α ∈ (0, 1).

(iii) For every p, q, r ∈ ∆ and α ∈ [0, 1],

p ∈ c ({p, q}) and c ({αq + (1− α)r}) ∩∆ ̸= ∅ ⇒ c ({αp+ (1− α)r}) ∩∆ ̸= ∅.

Part (i) of this axiom is a fairly standard independence property that is satisfied in

the classical model of choice under risk. One notable implication of this part of the axiom

is that if c (x) and c (y) both contain ordinary alternatives, then c (αx + (1 − α)y) must

also contain some ordinary alternatives. Part (ii) is a dual property which says that if

the DM does not select an ordinary alternative from x, and if she also selects ⊖ given y,

then she must select ⊖ uniquely when she faces αx + (1 − α)y for any α ∈ (0, 1). As for

part (iii), suppose c ({p}) = {p} while c ({r}) = {⊖}. Then, given any α ∈ (0, 1), we

may well have c ({αp + (1 − α)r}) = {⊖}. However, following the logic of the classical

independence axiom, this possibility can be ruled out if p is revealed preferred to some q

such that αq + (1− α)r is revealed preferred to ⊖. This is the content of part (iii).

Our next axiom is a standard topological continuity property.

A4: Continuity. Let (xn) be a sequence in X that converges to x.

(i) If pn ∈ c (xn) ∩∆ for every n and pn → p, then p ∈ c (x).

(ii) If ⊖ ∈ c (xn) for every n, then ⊖ ∈ c (x).

We also require a Lipschitz continuity property, which takes the role of the corresponding

axiom of Sarver (2008). This property can be interpreted along the lines of Dekel, Lipman,

Rustichini and Sarver (2007).

A5: L-Continuity. There exist y∗, y∗ ∈ X and a number m > 0 such that for every

x, y ∈ X and α ∈ (0, 1) with dH(x, y) ≤ α/m,

⊖ ∈ c (αy∗ + (1− α)y) ⇒ ⊖ ∈ c (αy∗ + (1− α)x).

Our final axiom is a non-triviality condition.

A6: Non-Triviality. There exist p∗, p∗ ∈ ∆ such that c ({p∗}) = {p∗} and c ({p∗}) = {⊖}.

This axiom rules out the cases in which the default option is the best or worst alternative.
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In terms of an AR representation (µ,K, a), (A6) means that

Eµ(u(p
∗)) > a > Eµ(u(p∗)) for some p∗, p∗ ∈ ∆. (1)

Throughout the paper, we say that an AR representation is non-trivial if it satisfies (1).

Our main representation theorem reads as follows.

Theorem 1. A choice correspondence c on X satisfies the axioms (A1)-(A6) if and only

if it admits a non-trivial AR representation.

Towards the proof of Theorem 1, in Appendix B we first establish an auxiliary repre-

sentation (Theorem 0) that dispenses with asymmetric alpha as well as part (iii) of the

independence axiom. Essentially, this auxiliary representation delivers a von Neumann-

Morgenstern preference ≿ on ∆ and a continuous, affine9 function Ψ : X → R such that,

for every x ∈ X ,

c (x) ∩∆ ̸= ∅ ⇒ c (x) ∩∆ = {p ∈ x : p ≿ q ∀q ∈ x},
c (x) ∩∆ ̸= ∅ ⇔ Ψ(x) ≥ 0, and ⊖ ∈ c (x) ⇔ Ψ(x) ≤ 0.

(2)

The first part of this expression means that as far as the ordinary alternatives are

concerned, the DM is a standard preference maximizer. In particular, the relation ≿
represents the DM’s ranking of ordinary alternatives. On the other hand, the ranking of

the default option is context dependent, as depicted in the second part of (2). Specifically,

if Ψ(x) ≥ 0, the best ordinary alternatives in x are selected over ⊖, whereas the opposite

behavior obtains when Ψ(x) ≤ 0.

We elicit the DM’s ranking of ordinary alternatives from local choice data, focusing

on a small neighborhood of an ordinary alternative p∗ with c ({p∗}) = {p∗}. The role

of exclusive WARP is to ensure that c can be “rationalized” by a preference relation ≿
in this neighborhood. From part (i) of the independence axiom, it follows that ≿ is a

von Neumann-Morgenstern preference. The very same axiom also implies that ≿ can be

extended to the entire space ∆ (uniquely), in such a way that the first implication in

(2) holds true. In turn, part (ii) of the independence axiom has a significant role in the

derivation of an affine function Ψ that satisfies the second line in expression (2).

The remainder of the proof of Theorem 1 builds upon asymmetric alpha and part (iii) of

the independence axiom. Claim 6 in Appendix C shows that part (iii) of the independence

9A function Ψ : X → R is affine if Ψ(λx + (1 − λ)y) = λΨ(x) + (1 − λ)Ψ(y) for every x, y ∈ X and
λ ∈ (0, 1). An affine function on ∆ is defined analogously.
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axiom implies, for any p, q ∈ ∆,

p ≿ q ⇔ Ψ({p}) ≥ Ψ({q}). (3)

So, the function p → Ψ({p}) represents the DM’s ranking of ordinary alternatives. Finally,

asymmetric alpha helps us show that Ψ can be written as a positive affine transformation

of the maximum values that a net expected utility function attains over choice sets.10 That

is, there exist a probability measure µ on U and three numbers K,α, γ with K ≥ 0 and

α > 0, such that for every x ∈ X ,

Ψ(x) = αmax
p∈x

Eµ

(
u(p)−K(max

q∈x
u(q)− u(p))

)
+ γ. (4)

From (2), (3) and (4), it easily follows that the parameters µ,K and a := −γ/α constitute

an AR representation for the choice correspondence c.

4 Comparative Statics

As we mentioned earlier, choice overload refers to a stronger tendency to select the default

option in larger choice problems. The following definition formalizes this phenomenon.

Definition 2. A choice correspondence c exhibits choice overload at x ∈ X if c (x) = {⊖}
and there exists a p ∈ x such that p ∈ c ({p}). We say that c exhibits choice overload if

there exists such an x.

In our model, p ∈ c ({p}) means that p is revealed preferred to ⊖. According to the

standard choice theory, if ⊖ ∈ c (x) for a choice set x, and if x contains an alternative p

that is revealed preferred to ⊖, then p should also belong to c (x). Thus, the pattern in

Definition 2 can be viewed as a boundedly rational mode of behavior. It is also clear that

this pattern corresponds to a particular form of choice overload in which the presence of

many ordinary alternatives, as opposed to a single one, triggers the choice of the default

option.

In fact, our theory attributes such instances to anticipated regret. To see this point, let

c be a choice correspondence that admits an AR representation (µ,K, a), and set

ϕ(p) := Eµ(u(p)) ∀p ∈ ∆. (5)

Observe that if there is only one ordinary alternative, selecting that alternative does not

10More specifically, this step of the proof follows from Sarver’s (2008) representation theorem, while
asymmetric alpha establishes the main link between the two theories. (More on this in Section 5 below.)
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inflict regret. That is, with y = {p}, we have max
q∈y

u(q)− u(p) = 0 for every u ∈ U . Hence,
the net expected utility of selecting p from {p} is equal to ϕ(p), which implies

p ∈ c ({p}) ⇔ ϕ(p) ≥ a. (6)

So, given a choice set x that contains an alternative p with p ∈ c ({p}), putting aside

the expected regret terms, the alternative that maximizes ϕ over x would surely yield an

expected utility that exceeds a. It follows that we can have c (x) = {⊖} only because of

the negative impact of anticipated regret.

Henceforth, the term “choice overload” refers to Definition 2.

Proposition 1. Let c be a choice correspondence that admits a non-trivial AR represen-

tation (µ,K, a). Then, c exhibits choice overload if and only if K > 0 and the support of

µ contains at least two distinct points.

Intuitively, Proposition 1 means that the DM exhibits choice overload if and only if

she faces a subjective uncertainty and K > 0 so that this uncertainty leads to instances

of regret. For further insight, suppose µ = δû for some û ∈ U .11 Then, the expected

regret term KEµ(max
q∈x

u(q) − u(p)) is equal to ex post regret at the state û, given by

K(max
q∈x

û(q) − û(p)). Moreover, by definition of ϕ, µ = δû implies ϕ(p) = û(p) for every

p ∈ ∆. Finally, recall that if it is nonempty, the set c (x)∩∆ equals argmax
p∈x

ϕ(p). It follows

that if the support of µ contains only one point, then the expected regret term equals 0 for

every x ∈ X and any ordinary alternative that the DM may choose from x. In this case, c

admits a standard utility representation, which does not allow choice overload. Specifically,

we have c (x) = arg max
t∈x∪{⊖}

g(t) for every x ∈ X , where

g(t) :=

{
ϕ(t) for t ∈ ∆,

a for t = ⊖.
(7)

Similarly, an AR representation with K = 0 reduces to the standard model above.

Conversely, if K > 0 and the support of µ contains two distinct points, then for any

p ∈ ∆ with ϕ(p) = a, there exists a choice set x containing p such that c exhibits choice

overload at x. In fact, any neighborhood of p contains such an x. We refer to Lemma 1 in

Appendix D for the details of this construction, which completes the proof of Proposition 1.

Motivated by Proposition 1, we shall say that a non-trivial AR representation (µ,K, a)

is strictly non-trivial if K > 0 and the support of µ contains at least two distinct points.

The following definition proposes a comparative measure of choice overload.

11Throughout the paper, δu denotes the degenerate probability measure supported at u.
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Definition 3. Let c and c′ be a pair of choice correspondences. c′ is more choice overload

prone than c if for any x ∈ X , whenever c exhibits choice overload at x, so does c′.

Clearly, if c does not exhibit choice overload, then any other choice correspondence is

more choice overload prone than c. Hence, our focus will be on choice correspondences that

exhibit choice overload, i.e., on strictly non-trivial AR representations.

Proposition 2. Let (µ,K, a) and (µ′, K ′, a′) be strictly non-trivial AR representations for

c and c′, respectively. Assume further that µ = µ′. Then, c′ is more choice overload prone

than c if and only if K ′ ≥ K and a′ = a.

This result shows that holding fixed the belief µ, the DM’s tendency to exhibit choice

overload can be strengthened by increasing the regret parameter K. Moreover, the utility

of the default option, a, should be kept constant to make sure that the DM’s behavior does

not change in choice problems that contain only one ordinary alternative.

Roughly, Definitions 2 and 3 suggest that if c′ is more choice overload prone than c, we

must have

p ∈ c ({p}) ⇒ p ∈ c′ ({p}). (8)

Indeed, c can exhibit choice overload at x only if p ∈ c ({p}) for some p ∈ x, and similarly

for c′. Expression (8) is equivalent to saying that ϕ(p) ≥ a implies ϕ′(p) ≥ a′, because

expression (6) also applies to c′, ϕ′ and a′. Moreover, ϕ = ϕ′ assuming µ = µ′. So, it

follows that if c′ is more choice overload prone than c, we must have a ≥ a′.

On the other hand, the first part of the definition of choice overload, i.e., the condition

c (x) = {⊖}, pushes both a and K in the opposite direction. Following the logic of expres-

sion (8), c′ is more choice overload prone than c only if c (x) = {⊖} implies c′ (x) = {⊖}.
That is, c′ must exhibit a stronger preference for ⊖ (relative to ordinary alternatives) than

c does. In turn, this effect can be decomposed into two parts. First, the representation

of c′ must attach a larger utility to ⊖, so that a′ ≥ a. Second, the net expected utility

of ordinary alternatives should be smaller according to c′ due to a larger expected regret

functional, which means K ′ ≥ K.

At first sight, one might think that, in the statement of Proposition 2, the assumption

µ = µ′ can be replaced with the weaker condition ϕ = ϕ′. However, this contention is not

correct, because the behavior of the expected regret term KEµ(max
q∈x

u(q) − u(p)) tightly

depends on the probability measure µ. Put differently, even if K ′ ≥ K, at least for some

choice sets, the representation (µ′, K ′, a) may induce smaller expected regret terms than

(µ,K, a) does unless µ and µ′ satisfy certain conditions beyond the assumption ϕ = ϕ′. We

provide an overview of these conditions in Appendix A.

Our last result highlights the role of the parameter a, in line with the related remarks on

Proposition 2. Holding fixed the net expected utility of ordinary alternatives, an increase
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in a corresponds to a stronger tendency to select the default option, irrespective of the

choice set that the DM faces:

Proposition 3. Let (µ,K, a) and (µ′, K ′, a′) be non-trivial AR representations for c and

c′, respectively. Assume further that µ = µ′ and K = K ′. Then, a ≤ a′ if and only if for

every x ∈ X ,

c (x) = {⊖} ⇒ c′ (x) = {⊖}.

5 Relation to Sarver’s Menu-Choice Model

The primitive of Sarver’s (2008) theory is a preference relation ≿∗ on the collection of choice

sets, X . His main result delivers a probability measure µ on U and a number K ≥ 0 such

that the maximum net expected utility function, x → max
p∈x

Eµ(u(p)−K(max
q∈x

u(q)−u(p))),

represents ≿∗. In the present context, x ≿∗ y should be interpreted as saying that the

best ordinary alternative in x leads to a higher net expected utility than the best ordinary

alternative in y.

In the proof of Theorem 1, we define a binary relation ≿∗ on X as x ≿∗ y if and only

if Ψ(x) ≥ Ψ(y), where Ψ is the function in expression (2). The main behavioral property

demanded by Sarver’s representation theorem is the dominance axiom which asserts that

{p} ≿∗ {q} and p ∈ x ⇒ x ≿∗ x ∪ {q}.

Intuitively, this axiom means that the presence of an ordinary alternative q can only make

the DM worse off unless q is strictly better than any other ordinary alternative that is

available. Our asymmetric alpha has a similar flavor. Letting y := x ∪ {q}, this axiom

can be interpreted as saying that if, given the choice set y, the DM prefers to select an

ordinary alternative p over ⊖ despite the negative effect of q, then she should also select p

upon removal of q.

Building upon asymmetric alpha, Claim 7 in Appendix C shows that the relation ≿∗

induced by the function Ψ satisfies the dominance axiom, in addition to all other axioms

of Sarver. Then, we apply Sarver’s representation theorem to deduce Theorem 1 from our

auxiliary representation.

To relate the comparative statics of the two models, let ≿∗ and ≿′∗ stand for a pair of

preference relations on X . As a comparative measure of “regret aversion,” Sarver proposes

the following definition: For every p ∈ ∆ and x ∈ X ,

{p} ≻∗ x ⇒ {p} ≻′∗ x. (9)
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This means that, compared to ≿′∗, the relation ≿∗ is less averse towards choice sets with

multiple elements, which pose the danger of regret. In a sense, property (9) is stronger

than our comparative measure of choice overload because the former applies to any (p, x) ∈
∆ × X , whereas our definition focuses on instances with c (x) = {⊖} and p ∈ c ({p}) for

some p ∈ x. It is this difference that allows us to conclude that any choice correspondence

is more choice overload prone than another one that does not exhibit choice overload.

By contrast, any pair of preference relations on X must have a non-trivial relationship

whenever they are ranked according to Sarver’s regret aversion.12 Remarkably, however,

for choice correspondences that exhibit choice overload, the parametric characterization

of our comparative measure is equivalent to that of Sarver, putting aside the additional

parameter a in our model.

Similarly, for choice correspondences that exhibit choice overload, the uniqueness prop-

erties of our representation are identical to those of Sarver’s, aside from straightforward

adjustments necessitated by the presence of the parameter a. It should be noted, how-

ever, that in both models the parameters µ and K can be identified only jointly, but not

separately. In other words, without altering the associated choice correspondence, one can

change K by manipulating µ, and vice versa. While Appendix A contains some related

remarks on the comparative statics of our model, a detailed discussion of the uniqueness

issue can be found in an earlier version of the present paper, Buturak and Evren (2015).

6 Choice Deferral: A “Rational” Form of Choice

Overload

In many choice problems, the default option acts as a flexible alternative that allows the

DM to defer the decision temporarily. For example, a person who has a certain budget

to buy a new TV set may decide to stick to her old TV for a while in order to reflect

on her tastes or the available alternatives. Experimental studies on such choice problems

document the same pattern as in the notion of choice overload: Larger choice sets reinforce

subjects’ tendency to select the default option (Tversky and Shafir, 1992; Dhar, 1997;

White and Hoffrage, 2009).

Under suitable assumptions, our theory can also be applied to such dynamic problems.

The dynamic setting, however, requires a “preference for flexibility” interpretation along

the lines of the menu-choice literature pioneered by Kreps (1979) and Dekel et al. (2001).

Specifically, suppose that the DM faces a choice set x ⊆ ∆ at a given point of time, stage

12Indeed, if (9) holds, then {p} ≻∗ {q} implies {p} ≻′∗ {q}. So, ≿∗ and ≿′∗ must agree on the ranking
of singletons.
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1. She has to select an alternative from x, but she can also postpone this decision to a

later point, stage 2, by selecting the default option ⊖ at stage 1. On the other hand, if

she selects an ordinary alternative at stage 1, she has to consume it perpetually. Moreover,

at stage 1, she faces subjective uncertainty about her tastes which will be resolved by the

beginning of stage 2.

If we model the DM’s subjective uncertainty with a probability measure µ on U , the
expected lifetime utility of selecting ⊖ at stage 1 given a choice set x can be formulated as

a+KEµ(max
q∈x

u(q)). Here, a represents the utility of consuming ⊖ at stage 1, whereasK ≥ 0

measures the importance of future consumption relative to instantaneous consumption,

which may depend on the DM’s time preferences/discount factor as well as the relative

duration of the two stages. The term max
q∈x

u(q) is the ex post utility level that the DM

will attain at state u upon deferring choice at stage 1. By the same logic, if we rule out

potential effects of anticipated regret, the expected lifetime utility of selecting an ordinary

alternative p can be expressed as (1 +K)Eµ(u(p)).

These specifications lead to the following choice rule: For every x ∈ X and p′ ∈ x,

(i) p′ ∈ c (x) if and only if

(1 +K)Eµ (u(p
′)) = (1 +K)max

p∈x
Eµ (u(p)) ≥ a+KEµ

(
max
q∈x

u(q)

)
;

(ii) ⊖ ∈ c (x) if and only if (1 +K)max
p∈x

Eµ (u(p)) ≤ a+KEµ

(
max
q∈x

u(q)

)
.

It can easily be verified that the statements (i) and (ii) are equivalent to the correspond-

ing statements in the definition of an AR representation. Thus, axioms (A1)-(A6) provide

a behavioral foundation also for the dynamic representation above. However, this does not

mean that the static and dynamic versions of our theory are conceptually equivalent. In

particular, if the default option acts as a means of deferring choice, there seems to be no

reason to interpret the choice overload pattern in Definition 2 as a violation of WARP.

After all, the DM selects the default option not to consume it perpetually, but to keep her

options open temporarily, just as in the aforementioned menu-choice models on preference

for flexibility. In this sense, the pattern in Definition 2 can be viewed as a rational form of

choice overload in dynamic problems with the option to defer choice.

Appendix

Throughout the appendix, we often write max
x

u and argmax
x

u in place of max
p∈x

u(p) and

argmax
p∈x

u(p), respectively.
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A. On the Role of Beliefs in Comparative Statics

How can we obtain a more choice overload prone AR representation by modifying the

DM’s belief? An earlier version of this paper, Buturak and Evren (2015), provides formal

results that answer this question.13 In this appendix, we summarize the content of these

results, which are quite involved. At the outset, it should be noted that any change in

the DM’s belief also necessitates changes in other parameters in order to obtain a new

representation that is more choice overload prone.

Consider a choice correspondence c that admits a non-trivial AR representation (µ,K, a).

The gross expected utility function ϕ, defined in equation (5), can equivalently be thought

of as a vector in RB
0 . In fact, as a vector, ϕ is equal to the expectation of the identity

function u → u with respect to µ. That is,ϕ = (Eµ(ub))b∈B. Hence, we shall refer to ϕ as

the mean of µ.

Set uϕ := ϕ/ ∥ϕ∥. Given the non-triviality assumption, ϕ is non-zero, and uϕ is a well-

defined element of U . Moreover, since uϕ and ϕ are collinear, K(max
q∈x

uϕ(q)−uϕ(p)) = 0 for

any x ∈ X and p ∈ c (x). In this sense, uϕ is a regret-free state.

To clarify the main idea, suppose, for the moment, that we expand our state space so

that every point in RB
0 qualifies as a state. As is well-known, for any x ∈ X , the support

function u → max
x

u is convex in u ∈ RB
0 (see, e.g., Schneider, 1993, Section 1.7). Thus,

replacing a probability measure on RB
0 with a mean-preserving spread of that measure in-

duces larger expected regret terms. Intuitively, this corresponds to an increase in subjective

uncertainty, which decreases the net expected utility of ordinary alternatives, just as in the

case of a risk-averse individual who does not like mean-preserving spreads of monetary

lotteries.

Let us now consider an example where the original belief µ is supported over U . Pick any

ū in the support of µ that is distinct from the regret-free state uϕ and suppose µ({ū}) > 0.

Let {v1, ..., vn} ⊆ RB
0 be a finite set that contains ū in its convex hull. That is, let

ū =
∑n

i=1 α
ivi for some {α1, ..., αn} ⊆ [0, 1] with

∑n
i=1 α

i = 1. Then, we can construct a

new probability measure µ′ on RB
0 by transferring the mass µ({ū}) to the points v1, ..., vn

so that µ′({vi}) = αiµ({ū}) for every i. By construction, ϕ′ and ϕ, i.e., the means of µ′

and µ, are equal to each other. In fact, µ′ is a mean-preserving spread of µ because the

former probability measure is obtained from the latter by replacing ū with multiple points,

v1, ..., vn. Since the support functions are convex, from Jensen’s inequality it then follows

that Eµ′(max
x

u) ≥ Eµ(max
x

u) for every x ∈ X .14 Moreover, with ϕ′ = ϕ, for any x ∈ X and

13In Buturak and Evren (2015), the comparative measure of choice overload is defined in a slightly
different way, but that definition is equivalent to the present one. We thank a referee for suggesting the
present version of Definition 3.

14Indeed, Eµ′(max
x

u) − Eµ(max
x

u) = µ({ū})(Eη(max
x

u) − max
x

ū), where η is the probability measure
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p ∈ x this implies

Eµ′

(
u(p)−K(max

x
u− u(p))

)
= ϕ′(p)−K

(
Eµ′(max

x
u)− ϕ′(p)

)
≤ ϕ(p)−K

(
Eµ(max

x
u)− ϕ(p)

)
= Eµ

(
u(p)−K(max

x
u− u(p))

)
.

So, replacing µ with the mean-preserving spread µ′ decreases the net expected utility of

ordinary alternatives. Consequently, the choice correspondence represented by (µ′, K, a) is

more choice overload prone than that represented by (µ,K, a).

Adapting this method to the state space U requires further work that also includes a

shift in the regret parameter K. Since the unit ball in RB
0 is a strictly convex set, the

given point ū cannot be expressed as a convex combination of other states in U . Yet, we

can find some states v1, ..., vn ∈ U and weights α1, ..., αn ∈ [0, 1] such that the convex

combination v :=
∑n

i=1 α
ivi is collinear with ū. Then, the difference between v and ū can

be compensated with a larger regret parameter K ′. Specifically, we can select a K ′ such

that K ′ ∥v∥ ≥ K ∥ū∥. As a further difficulty, if we only replace ū as described above, then

ϕ′, i.e., the mean of the new probability measure, will not be collinear with ϕ. However,

depending on the structure of the support of µ, we can restore the equality of ϕ′ and ϕ by

repeating the replacement process for other points in the support of µ, in addition to the

given point ū. Following these steps, we can obtain a new representation (µ′, K ′, a) that is

more choice overload prone than the original representation.

Finally, if µ({uϕ}) > 0, it is possible to obtain a more choice overload prone represen-

tation also by transferring some mass from the regret-free state uϕ to other states in U .
This process is less demanding because, unlike all other states, we do not have to worry

about the possibility of decreasing the ex post regret at the state uϕ. Hence, this method

does not necessitate to increase the parameter K in order to obtain a more choice overload

prone representation. Moreover, unlike the previous method, a mass transfer from uϕ to

suitably selected states in U would induce a ϕ′ that is collinear with the original mean ϕ,

even if we do not reduce the mass of any other point in the support of µ. On the other

hand, with this method we cannot retain the condition ϕ′ = ϕ. Thus, the parameter a

should be replaced with a′ := αa, where α ∈ (0, 1) is the number with ϕ′ = αϕ, so that

the new representation displays the same behavior as the original representation whenever

there is only one ordinary alternative.15

For further details and examples on the role of beliefs in comparative statics, we refer

the reader to Buturak and Evren (2015).

on RB
0 that attaches the mass αi to the point vi for i = 1, ..., n. Furthermore, the mean of η equals ū by

construction, and hence, Jensen’s inequality implies Eη(max
x

u) ≥ max
x

ū.
15If one wishes, it is possible to restore the condition ϕ′ = ϕ by suitably adjusting K.
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B. An Auxiliary Representation

In this appendix, we prove the following auxiliary representation that will act as our

main tool in the proof of Theorem 1.

Theorem 0. A choice correspondence c on X satisfies the axioms (A1), (A3i), (A3ii),

(A4) and (A6) if and only if there exist continuous and affine functions φ : ∆ → R and

W : X → R such that:

(i) For every x ∈ X and p′ ∈ x,

p′ ∈ c (x) ⇔ φ(p′) = max
p∈x

φ(p) ≥ W (x),

⊖ ∈ c (x) ⇔ max
p∈x

φ(p) ≤ W (x).
(10)

(ii) φ(p∗) > W ({p∗}) and φ(p∗) < W ({p∗}) for some p∗, p∗ ∈ ∆.

In this representation, the function φ is a standard expected utility function that rep-

resents the DM’s ranking of ordinary alternatives. The term W (x) is a threshold level

that varies with the choice set x, and allows the representation to accommodate a context

dependent attitude towards the default option. The key feature of this representation is

that, given a choice set x, the DM opts for an ordinary alternative as opposed to the default

option if and only if max
p∈x

φ(p) exceeds W (x).

To relate Theorem 0 to Theorem 1, set Ψ(x) := max
x

φ − W (x) for every x ∈ X , and

denote by ≿ the preference relation on ∆ represented by φ. Then, expression (10) implies

(2), while the latter expression plays a key role in the proof of Theorem 1, as we noted in

Section 3.

On the other hand, Theorem 0 might also prove useful in alternative models that depict

different forms of context dependence because it dispenses with asymmetric alpha and part

(iii) of the independence axiom.

Proof of Theorem 0. We omit the “if” part of the proof, which is a routine exercise. For

the “only if” part, let c be a choice correspondence on X that satisfies the axioms (A1),

(A3i), (A3ii), (A4) and (A6).

Fix a pair of ordinary alternatives p∗, p∗ such that c ({p∗}) = {p∗} and c ({p∗}) = {⊖},
as in the non-triviality axiom. Put X ∗ := {x ∈ X : c (x) ⊆ ∆} and X∗ := {x ∈ X : c (x) =

{⊖}}.

Claim 1. X ∗ and X∗ are relatively open subsets of X .

Proof. Part (ii) of the continuity axiom implies that {x ∈ X : ⊖ ∈ c (x)} is a closed subset

of X . Hence, {x ∈ X : c (x) ⊆ ∆} is open. Using compactness of ∆ and part (i) of the
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continuity axiom, it can easily be verified that {x ∈ X : c (x)∩∆ ̸= ∅} is also closed, which

implies that {x ∈ X : c (x) = {⊖}} is open. □

Since X ∗ is an open subset of X , clearly, there exists a number α∗ ∈ (0, 1) such that

α∗x + (1 − α∗){p∗} ∈ X ∗ for every x ∈ X . Define a binary relation ≿ on ∆ as, for every

p, q ∈ ∆,

p ≿ q ⇔ α∗p+ (1− α∗)p∗ ∈ c (α∗{p, q}+ (1− α∗){p∗}) .

Note that the relation ≿ is complete by definitions. We shall now show that ≿ is

transitive. Take any p, q, r ∈ ∆ with p ≿ q and q ≿ r. Then,

α∗p+ (1− α∗)p∗ ∈ c (α∗{p, q}+ (1− α∗){p∗}) , (11)

α∗q + (1− α∗)p∗ ∈ c (α∗{q, r}+ (1− α∗){p∗}) . (12)

Put x̃ := α∗{p, q, r}+(1−α∗){p∗} and z̃ := {η ∈ {p, q, r} : α∗η+(1−α∗)p∗ ∈ c (x̃)}. Observe

that if p ∈ z̃, which means α∗p+(1−α∗)p∗ ∈ c (x̃), then c (x̃)∩(α∗{p, r}+ (1− α∗){p∗}) ̸= ∅,
and exclusive WARP implies α∗p + (1 − α∗)p∗ ∈ c (α∗{p, r}+ (1− α∗){p∗}). Similarly, if

q ∈ z̃, then c (x̃) ∩ (α∗{p, q}+ (1− α∗){p∗}) ̸= ∅. Hence, in this case, from (11) and

exclusive WARP it follows that p ∈ z̃. Analogously, r ∈ z̃ implies q ∈ z̃, as a result of (12).

Moreover, z̃ is nonempty by construction. It follows that p ∈ z̃ in all contingencies, and

hence, p ≿ r.

Let us now show that ≿ satisfies the classical independence axiom. Pick any p, q, r ∈ ∆

and γ ∈ (0, 1). Suppose p ≿ q, meaning that p′ := α∗p+ (1− α∗)p∗ belongs to c (x′) where

x′ := α∗{p, q}+ (1− α∗){p∗}. Set r′ := α∗r + (1− α∗)p∗. Observe that

γx′ + (1− γ){r′} = α∗ {γp+ (1− γ)r, γq + (1− γ)r}+ (1− α∗){p∗}. (13)

Similarly,

γp′ + (1− γ)r′ = α∗ (γp+ (1− γ)r) + (1− α∗)p∗. (14)

Moreover, independence(i) implies γp′+(1−γ)r′ ∈ c (γx′ + (1− γ){r′}). By (13) and (14),

this simply means γp+ (1− γ)r ≿ γq + (1− γ)r, as we sought.

To verify continuity of ≿, let (pn), (qn) be convergent sequences in ∆ such that α∗pn +

(1 − α∗)p∗ ∈ c (α∗{pn, qn}+ (1− α∗){p∗}) for every n. Then, from the continuity axiom,

it readily follows that α∗ lim pn+(1−α∗)p∗ ∈ c (α∗{lim pn, lim qn}+ (1− α∗){p∗}). Hence,
lim pn ≿ lim qn if pn ≿ qn for every n. This proves that ≿ is also continuous.

By the properties of ≿ that we have established, there exists an expected utility function

φ : ∆ → R that represents ≿. Next, we prove that φ also represents the restriction of c to

∆.
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Claim 2. If c (x) ∩∆ ̸= ∅, then c (x) ∩∆ = argmax
x

φ.

Proof. Let x ∈ X and p′ ∈ c (x) ∩ ∆. Then, independence(i) yields α∗p′ + (1 − α∗)p∗ ∈
c (α∗x+ (1− α∗){p∗}). From the definition of α∗ and exclusive WARP, it follows that

α∗p′ + (1 − α∗)p∗ ∈ c (α∗{p′, q}+ (1− α∗){p∗}) for every q ∈ x. That is, p′ ∈ argmax
x

φ.

Thus, c (x) ∩∆ ⊆ argmax
x

φ for every x ∈ X .

To establish the converse inclusion, pick any x ∈ X and p ∈ argmax
x

φ. Recall that

c (α∗x+ (1− α∗){p∗}) ⊆ ∆. Pick any q ∈ x with α∗q+(1−α∗)p∗ ∈ c (α∗x+ (1− α∗){p∗}).
Then, c (α∗x+ (1− α∗){p∗})∩ (α∗{p, q}+(1−α∗){p∗}) ̸= ∅. Moreover, α∗p+(1−α∗)p∗ ∈
c (α∗{p, q}+ (1− α∗){p∗}) by definitions of p and φ. Hence, exclusive WARP implies

α∗p + (1 − α∗)p∗ ∈ c (α∗x+ (1− α∗){p∗}). Finally, from independence(i) it follows that

p ∈ c (x) provided that c (x) ∩∆ ̸= ∅. □

The next claim will be useful in the derivation of the function W .

Claim 3. (i) If c (x) ∩∆ ̸= ∅ and c ({p}) = {p}, then c (αx+ (1− α){p}) ⊆ ∆ for every

α ∈ (0, 1).

(ii) ⊖ ∈ c (x) ∩ c (y) implies ⊖ ∈ c (αx+ (1− α)y) for every α ∈ (0, 1).

Proof. We start with the proof of (i). Pick any x ∈ X and p ∈ ∆ such that c (x) ∩∆ ̸= ∅
and c ({p}) = {p}. Suppose by contradiction that there exists an α ∈ (0, 1) such that

⊖ ∈ c (αx + (1 − α){p}). Set z := αx + (1 − α){p}. Observe that γz + (1 − γ){p∗} =

γαx+ (1− γα){pγ} for any γ ∈ (0, 1), where

pγ :=
γ(1− α)

1− γα
p+

1− γ

1− γα
p∗.

It is also clear that limγ→1 pγ = p. Thus, by Claim 1, c (pγ) = {pγ} for all sufficiently large

γ ∈ (0, 1). From independence(i), it follows that c (γαx + (1 − γα){pγ}) ∩∆ ̸= ∅ for any

such γ. On the other hand, independence(ii) implies c (γz + (1 − γ){p∗}) = {⊖} for any

γ ∈ (0, 1), which is a contradiction.

To prove (ii), let x, y ∈ X be such that ⊖ ∈ c (x) ∩ c (y). Fix any α, γ ∈ (0, 1) and

put xγ := γx + (1 − γ){p∗}. Then, independence(ii) implies c (xγ) = {⊖}. Thus, by

applying independence(ii) to the sets xγ and y, we also see that c (αxγ + (1− α)y) = {⊖}.
Since γ is an arbitrary number in (0, 1), from the continuity axiom it follows that ⊖ ∈
c (limγ→1 αxγ + (1− α)y) = c (αx+ (1− α)y), as we sought. □

Claim 4. There exists a continuous and affine function W : X → R such that for every

x ∈ X ,

c (x) ∩∆ ̸= ∅ ⇔ max
x

φ ≥ W (x),

⊖ ∈ c (x) ⇔ max
x

φ ≤ W (x).
(15)
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Proof. Fix an x ∈ X∗. By Claim 1, the sets {λ ∈ [0, 1] : c (λx+ (1− λ){p∗}) = {⊖}} and

{λ ∈ [0, 1] : c (λx+(1−λ){p∗}) ⊆ ∆} are relatively open in [0, 1]. Since both of the former

sets are also disjoint and nonempty, their union cannot be equal to the connected set [0, 1].

That is, there exists a λ ∈ (0, 1) such that ⊖ ∈ c (λx + (1 − λ){p∗}) ̸= {⊖}. In fact, this

number, which we denote by λ∗(x), is the unique number in [0, 1] that satisfies the latter

two properties. Indeed, for any λ > λ∗(x) the set λ∗(x)x+(1−λ∗(x)){p∗} can be expressed

as a convex combination of λx+(1−λ){p∗} and {p∗}. Thus, if c (λx+(1−λ){p∗})∩∆ were

nonempty for some λ ∈ (λ∗(x), 1], Claim 3(i) would imply c (λ∗(x)x+(1−λ∗(x)){p∗}) ⊆ ∆,

which contradicts the definition of λ∗(x). Hence, c (λx+(1−λ){p∗}) = {⊖} for λ > λ∗(x).

Similarly, λ < λ∗(x) implies c (λx+ (1− λ){p∗}) ⊆ ∆ by Claim 3(i).

Let us now show that λ∗(·) is continuous on X∗. Pick a sequence (xn) in X∗ that

converges to some x ∈ X∗. It suffices to find a subsequence (xnk
) such that limk λ

∗(xnk
) =

λ∗(x). For each n, put λ∗
n := λ∗(xn) and zn := λ∗

nxn+(1−λ∗
n){p∗}. Then, ⊖ ∈ c (zn) ̸= {⊖}

for every n. In particular, we can pick a sequence of ordinary alternatives (qn) such that

qn ∈ c (zn) for every n. Since [0, 1]×∆ is compact, there exists a subsequence (λ∗
nk
, qnk

) that

converges to some (λ, q) ∈ [0, 1]×∆, which also implies limk znk
= λx+ (1− λ){p∗}. From

the continuity axiom, it then follows that q and⊖ both belong to c (λx+(1−λ){p∗}). Hence,
λ satisfies the defining properties of the unique number λ∗(x), implying that λ = λ∗(x).

Since λ∗(x) ∈ (0, 1) for every x ∈ X∗, we can define a function h : X∗ → R as

h(x) := 1/λ∗(x). The next step is to show that h is affine on X∗. Let x, y ∈ X∗

and γ ∈ (0, 1). Note that γx + (1 − γ)y also belongs to X∗ by independence(ii). Put

τ := (1 + λ∗(x)(1− γ)/λ∗(y)γ)−1 so that

γ =
τλ∗(x)

τλ∗(x) + (1− τ)λ∗(y)
and 1− γ =

(1− τ)λ∗(y)

τλ∗(x) + (1− τ)λ∗(y)
.

Then,

τ (λ∗(x)x+ (1− λ∗(x)){p∗}) + (1− τ) (λ∗(y)y + (1− λ∗(y)){p∗})

= (τλ∗(x) + (1− τ)λ∗(y))

(
τλ∗(x)

τλ∗(x) + (1− τ)λ∗(y)
x+

(1− τ)λ∗(y)

τλ∗(x) + (1− τ)λ∗(y)
y

)
+(1− (τλ∗(x) + (1− τ)λ∗(y))) {p∗}

= (τλ∗(x) + (1− τ)λ∗(y)) (γx+ (1− γ)y) + (1− (τλ∗(x) + (1− τ)λ∗(y))) {p∗}.

Moreover, Claim 3(ii) and independence(i) jointly imply

⊖ ∈ c (τ (λ∗(x)x+ (1− λ∗(x)){p∗}) + (1− τ) (λ∗(y)y + (1− λ∗(y)){p∗})) ̸= {⊖}.
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It follows that λ∗(γx + (1 − γ)y) = τλ∗(x) + (1 − τ)λ∗(y), i.e., h(γx + (1 − γ)y) =

(τλ∗(x) + (1− τ)λ∗(y))−1. Since the latter number equals both θ := γ/ (τλ∗(x)) and

θ′ := (1 − γ)/ ((1− τ)λ∗(y)) , we see that h(γx + (1 − γ)y) = τθ + (1 − τ)θ′ = γ/λ∗(x) +

(1− γ)/λ∗(y) = γh(x) + (1− γ)h(y), as we sought.

In order to extend the function h to X , pick a number γ∗ ∈ (0, 1) such that γ∗x +

(1− γ∗) {p∗} ∈ X∗ for every x ∈ X . (The existence of such a γ∗ is guaranteed by Claim 1.)

For every x ∈ X , set

h1(x) :=
h(γ∗x+ (1− γ∗){p∗})− (1− γ∗)h({p∗})

γ∗
.

Observe that by affinity of h, we have h1(x) = h(x) for every x ∈ X∗. Moreover, the

function h1 is continuous and affine on X by the corresponding properties of the maps h

and x → γ∗x+ (1− γ∗){p∗} on X∗ and X , respectively.

Now, fix a number β > 0 and set, for each x ∈ X ,

W (x) := max
x

φ+ β(h1(x)− 1).

Then, W (x) is a continuous and affine function of x ∈ X by the corresponding properties

of max
x

φ and h1(x).

Pick any x ∈ X . To verify (15), it suffices to establish the following three properties:

(i) h1(x) > 1 if x ∈ X∗; (ii) h1(x) = 1 if ⊖ ∈ c (x) ̸= {⊖}; and (iii) h1(x) < 1 if x ∈ X ∗.

Since h1 = h on X∗, property (i) immediately follows from the definitions. To prove

(ii), suppose ⊖ ∈ c (x) ̸= {⊖}. Let (γn) be a sequence in (0, 1) that converges to 1 and put

xn := γnx + (1− γn){p∗} for each n. Observe that by independence(ii), xn ∈ X∗ for every

n. We claim

lim
n

λ∗(xn) = 1. (16)

Otherwise, there exist an ε ∈ (0, 1) and a subsequence (nk) such that λ∗
nk

:= λ∗(xnk
) ≤ 1−ε

for each k. By passing to a further subsequence if necessary, we can assume that (λ∗
nk
)

converges to some λ ∈ [0, 1 − ε]. Then, the continuity axiom and the definition of λ∗(·)
imply ⊖ ∈ c (limk λ

∗
nk
xnk

+(1−λ∗
nk
){p∗}) = c (λx+(1−λ){p∗}). This contradicts Claim 3(i)

and proves (16).

By definitions and affinity of h1, we then see that h1(x) = limn γnh1(x)+(1−γn)h1({p∗}) =
limn h1(xn) = limn h(xn) = limn 1/λ

∗(xn) = 1. This proves (ii).

Finally, to prove (iii), suppose that c (x) ⊆ ∆. Following an argument that we used when

defining the function λ∗(·), there exists a γ ∈ (0, 1) such that⊖ ∈ c (γ{p∗}+(1−γ)x) ̸= {⊖}.
Observe that h1({p∗}) > 1 while h1(γ{p∗} + (1 − γ)x) = 1 by properties (i) and (ii),

respectively. Since h1 is an affine function, it follows that 1 = γh1({p∗}) + (1− γ)h1(x) >
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γ + (1− γ)h1(x), implying that 1 > h1(x). □

It is easy to check that Claims 2 and 4 complete the proof of Theorem 0.

C. Proof of Theorem 1

For the “if” part of Theorem 1, it suffices to show that a choice correspondence that

admits an AR representation must satisfy L-continuity—the necessity of all other axioms

is fairly obvious. Given an AR representation (µ,K, a), we denote by Φ the corresponding

net expected utility function. That is, for every x ∈ X and p ∈ x,

Φ(p, x) :=

∫
U

(
u(p)−K(max

q∈x
u(q)− u(p))

)
µ(du). (17)

Furthermore, whenever ϕ is non-zero as an element of RB
0 , we set uϕ := ϕ/ ∥ϕ∥ as in

Appendix A.

Claim 5. Let c be a choice correspondence on X that admits an AR representation

(µ,K, a). Then, c satisfies the L-continuity axiom.

Proof. Recall that an affine function on X is Lipschitz continuous iff it is a positive affine

transformation of a function of the form x →
∫
U max

x
u η(du) for a (finite) signed measure

η on U (Dekel et al., 2007, Supplementary Material).

Set Ψ(x) := max
p∈x

Φ(p, x) − a for x ∈ X , so that ⊖ ∈ c (x) iff Ψ(x) ≤ 0. Note that

max
p∈x

Φ(p, x) =
∫
U max

x
u η(du), where η := (1 +K) ∥ϕ∥ δuϕ

−Kµ if ϕ ̸= 0, and η := −Kµ if

ϕ = 0. Thus, Ψ is Lipschitz continuous on X . That is, there exists a number m̄ > 0 such

that Ψ(x)−Ψ(y) ≤ m̄dH(x, y) for every x, y ∈ X .

If Ψ is constant over X , then either ⊖ ∈ c (x) for every x ∈ X or ⊖ /∈ c (x) for every

x ∈ X . Hence, in this case, the conclusion of L-continuity holds trivially, for any y∗, y∗ ∈ X .

Suppose now that Ψ is not constant, so that Ψ(y∗) > Ψ(y∗) for some y∗, y∗ ∈ X .

Set m := m̄/(Ψ(y∗) − Ψ(y∗)). Then, Ψ(x) − Ψ(y) ≤ m(Ψ(y∗) − Ψ(y∗))dH(x, y) for every

x, y ∈ X . In particular, dH(x, y) ≤ α/m implies Ψ(x)−Ψ(y) ≤ (Ψ(y∗)−Ψ(y∗))α/(1− α)

for any α ∈ (0, 1) and x, y ∈ X . Since Ψ is an affine function, the latter inequality simply

means Ψ(αy∗ + (1 − α)x) ≤ Ψ(αy∗ + (1 − α)y). It follows that ⊖ ∈ c (αy∗ + (1 − α)y)

implies ⊖ ∈ c (αy∗ + (1 − α)x) for any α ∈ (0, 1) and x, y ∈ X with dH(x, y) ≤ α/m, as

demanded by L-continuity. □

To prove the “only if” part of Theorem 1, let c be a choice correspondence on X that

satisfies the axioms (A1)-(A6). Define the points p∗, p∗ and the functions φ,W as in the

proof of Theorem 0.
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For every x ∈ X , set

Ψ(x) := max
x

φ−W (x).

By Claim 4, for any x ∈ X , we have ⊖ ∈ c (x) iff Ψ(x) ≤ 0, while c (x)∩∆ ̸= ∅ iff Ψ(x) ≥ 0.

In particular, Ψ({p∗}) > 0 > Ψ({p∗}), and the function p → Ψ({p}) is not constant over
∆.

We shall next show that the functions φ(p) and Ψ({p}) induce the same preference

relation over ∆.

Claim 6. For any p, q ∈ ∆, we have φ(p) ≥ φ(q) if and only if Ψ({p}) ≥ Ψ({q}).

Proof. Let us write Ψ(p) and c (p) in place of Ψ({p}) and c ({p}), respectively. As noted
earlier, the function Ψ(p) is not constant over ∆. Thus, clearly, it suffices to show that

φ(p) ≥ φ(q) implies Ψ(p) ≥ Ψ(q).

Pick any p, q ∈ ∆ with φ(p) ≥ φ(q). Set p′ := α∗p+(1−α∗)p∗ and q′ := α∗q+(1−α∗)p∗.

Note that φ(p) ≥ φ(q) simply means p′ ∈ c ({p′, q′}). Moreover, we have Ψ(q′) > 0 by

definition of α∗. Let γ ∈ (0, 1) be the number such that Ψ(γq′ + (1 − γ)p∗) = 0, so that

c (γq′ + (1 − γ)p∗) ∩ ∆ ̸= ∅. Then, independence(iii) implies c (γp′ + (1 − γ)p∗) ∩ ∆ ̸= ∅,
i.e., Ψ(γp′ + (1− γ)p∗) ≥ 0. It follows that Ψ(γp′ + (1− γ)p∗) ≥ Ψ(γq′ + (1− γ)p∗). Since

Ψ is affine and α∗, γ > 0, we conclude that Ψ(p) ≥ Ψ(q), as we sought. □

Now, let us define a binary relation ≿∗ on X as, for every x, y ∈ X ,

x ≿∗ y ⇔ Ψ(x) ≥ Ψ(y).

The next claim shows that ≿∗ satisfies all axioms demanded by Sarver’s (2008) repre-

sentation theorem.

Claim 7. ≿∗ is a complete and transitive binary relation that also satisfies the following

properties:

(i) If x ≻∗ y ≻∗ z, then there exist α, α′ ∈ (0, 1) such that αx + (1 − α)z ≻∗ y ≻∗

α′x+ (1− α′)z.

(ii) If x ≻∗ y, then αx+ (1− α)z ≻∗ αy + (1− α)z for every z ∈ X and α ∈ (0, 1].

(iii) If {p} ≿∗ {q} and p ∈ x, then x ≿∗ x ∪ {q}.
(iv) There exist y∗, y∗ ∈ X and a number m > 0 such that αy∗+(1−α)y ≿∗ αy∗+(1−α)x

for every α ∈ (0, 1) and x, y ∈ X with dH(x, y) ≤ α/m.

Proof. We shall only prove (iii) and (iv), for the remaining claims are well-known impli-

cations of the fact that Ψ is a real valued, affine function over X .

To prove (iii), pick any p, q ∈ ∆ and x ∈ X such that {p} ≿∗ {q} and p ∈ x. Then,

Claim 6 and the definition of ≿∗ imply φ(p) ≥ φ(q). Pick r ∈ {p∗, p∗} and α ∈ (0, 1]
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such that Ψ(α(x ∪ {q}) + (1 − α){r}) = 0. Put y := αx + (1 − α){r} and observe that

y ∪ {αq + (1− α)r} = α(x ∪ {q}) + (1− α){r}. Hence, Ψ(y ∪ {αq + (1− α)r}) = 0, which

implies c (y∪{αq+(1−α)r})∩∆ ̸= ∅. Moreover, since φ(p) ≥ φ(q) and αp+(1−α)r ∈ y,

there exists a p′ ∈ y such that φ(p′) ≥ φ(q′) for every q′ ∈ y ∪ {αq + (1− α)r}. Then, p′ ∈
c (y∪{αq+(1−α)r}) by Claim 2, while asymmetric alpha implies p′ ∈ c (y). In particular,

c (y)∩∆ ̸= ∅, and hence, Ψ(y) := Ψ(αx+(1−α){r}) ≥ 0 = Ψ(α(x∪{q})+(1−α){r}). As
in the last argument of Claim 6, this simply means Ψ(x) ≥ Ψ(x ∪ {q}), i.e., x ≿∗ x ∪ {q}.
This proves (iii).

For the proof of (iv), let y∗, y∗ ∈ X and m > 0 be as posited by the L-continuity axiom.

Pick any x, y ∈ X and α ∈ (0, 1) such that dH(x, y) ≤ α/m. It remains to show that

Ψ(αy∗ + (1− α)y) ≥ Ψ(αy∗ + (1− α)x).

Put z∗ := αy∗ + (1 − α)y and z∗ := αy∗ + (1 − α)x. Let r ∈ {p∗, p∗} and γ ∈ (0, 1] be

such that Ψ(γz∗ + (1− γ){r}) = 0. Set

α′ := γα, y′ :=
γ(1− α)

1− γα
y +

1− γ

1− γα
{r}, and x′ :=

γ(1− α)

1− γα
x+

1− γ

1− γα
{r}.

Observe that γz∗+(1−γ){r} = α′y∗+(1−α′)y′, while γz∗+(1−γ){r} = α′y∗+(1−α′)x′. It

is also easy to check that dH(x
′, y′) = γ(1−α)(1−γα)−1dH(x, y) ≤ γ(1−α)(1−γα)−1α/m ≤

α′/m. Moreover, by construction, ⊖ belongs to c (α′y∗+(1−α′)y′). Thus, the L-continuity

axiom implies that ⊖ also belongs to c (α′y∗ + (1 − α′)x′). In turn, this is equivalent to

saying that 0 ≥ Ψ(γz∗ + (1− γ){r}). Thus, Ψ(z∗) ≥ Ψ(z∗) by a usual argument. □

From Claim 7 it follows that Sarver’s (2008) representation theorem applies to the

binary relation ≿∗. That is, there exists a probability measure µ on U and a number

K ≥ 0 such that for every x, y ∈ X ,

x ≿∗ y ⇔ max
p∈x

Φ(p, x) ≥ max
p∈y

Φ(p, y),

where Φ(p, x) is defined as in equation (17).

Since the function x → max
p∈x

Φ(p, x) is continuous on X , the binary relation ≿∗ is

continuous in a standard, topological sense. Proposition 2 of Dekel et al. (2001) shows

that an affine functional that represents a continuous binary relation on X is unique up

to positive affine transformations. Thus, there exist α > 0 and γ ∈ R such that Ψ(x) =

αmax
p∈x

Φ(p, x)+γ for every x ∈ X . In particular, Ψ(x) ≥ (≤) 0 iff max
p∈x

Φ(p, x) ≥ (≤)−γ/α.
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Hence, if we let a := −γ/α, it follows that for every x ∈ X ,

c (x) ∩∆ ̸= ∅ ⇔ max
p∈x

Φ(p, x) ≥ a,

⊖ ∈ c (x) ⇔ max
p∈x

Φ(p, x) ≤ a.
(18)

We shall next show that

c (x) ∩∆ ̸= ∅ ⇒ c (x) ∩∆ = argmax
p∈x

Φ(p, x). (19)

First observe that by Claim 6 and the definitions, the function p → Φ(p, {p}) represents

the same preference relation over ∆ as the function φ. Moreover, it is easily verified that

Φ(p, x) = (1 +K)Φ(p, {p})−K
∫
U max

x
uµ(du) for every p ∈ ∆ and x ∈ X . By combining

these two observations, we see that argmax
p∈x

Φ(p, x) = argmax
x

φ for every x ∈ X . Thus,

(19) follows from Claim 2.

Finally, note that (18) and (19) are jointly equivalent to the statements (i) and (ii)

in Definition 1. Thus, we have shown that (µ,K, a) is an AR representation for c, which

completes the proof of Theorem 1.

D. Proofs of Propositions 1-3

Note that for any AR representation (µ,K, a) and any x ∈ X , we have

max
p∈x

Φ(p, x) = max
p∈x

∫
U

(
u(p)−K(max

x
u− u(p))

)
µ(du)

= max
p∈x

∫
U
u(p)µ(du)−K

(∫
U
max

x
uµ(du)−max

p∈x

∫
U
u(p)µ(du)

)
= max

x
ϕ−K

(∫
U
max

x
uµ(du)−max

x
ϕ

)
.

Here, the second equality is a consequence of the additivity of the expectation operator,

whereas the first and third equalities follow from the definitions of Φ and ϕ, respectively. To

simplify our notation, let us set R(x) := K
(∫

U max
x

uµ(du)−max
x

ϕ
)
, which also equals

K
∫
U(max

x
u− u(p̄))µ(du) for any p̄ ∈ argmax

x
ϕ and x ∈ X . It then follows that

max
p∈x

Φ(p, x) = max
x

ϕ− R(x) ∀x ∈ X .

It is also worth noting that R({p}) = 0 for every p ∈ ∆. Thus, the choice correspondence
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c represented by (µ,K, a) exhibits choice overload at some x ∈ X iff

max
p∈x

Φ(p, x) < a ≤ max
x

ϕ. (20)

In what follows, ∆◦ stands for the interior of ∆. That is, ∆◦ := {p ∈ ∆ : pb > 0

∀b ∈ B}.

Lemma 1. Let (µ,K, a) be a non-trivial AR representation for c. Assume further that

K > 0 and the support of µ contains at least two distinct points. Then, there exists a

p̄ ∈ ∆◦ with ϕ(p̄) = a. Moreover, any neighborhood of {p̄} contains a set x ∈ X such that

c exhibits choice overload at x.

Proof. Let p∗ and p∗ be as in the non-triviality axiom so that ϕ(p∗) < a < ϕ(p∗). Since ∆◦

is a dense subset of ∆, without loss of generality we can assume p∗ ∈ ∆◦ by the first part

of the continuity axiom. Clearly, there exists an α ∈ (0, 1) with ϕ(αp∗ + (1 − α)p∗) = a.

Since α > 0, it is also clear that p̄ := αp∗ + (1− α)p∗ belongs to ∆◦ as well.

By assumption, the support of µ contains a point ū that is distinct from uϕ. Since ū

and uϕ represent distinct preferences on ∆, there exist q, q′ ∈ ∆ such that

ū (q − q′) > 0 ≥ uϕ (q − q′) .

As p̄ belongs to ∆◦, there exists an ε > 0 such that xβ := {p̄, p̄+β(q−q′)} ⊆ ∆ for every β ∈
(0, ε]. Observe that ϕ(p̄) ≥ ϕ (p̄+ β(q − q′)) because ϕ and uϕ represent the same preference

over ∆. Thus, max
r∈xβ

Φ
(
r, xβ

)
= ϕ (p̄)− R

(
xβ

)
, while R

(
xβ

)
= K

∫
U(max

xβ
u− u(p̄))µ(du).

Furthermore, ū (p̄+ β(q − q′)) > ū (p̄), implying that the function u → max
xβ

u−u(p̄) attains

a strictly positive value at ū. Since ū belongs to the support of µ, and u → max
xβ

u−u(p̄) is

continuous and nonnegative, it follows that
∫
U(max

xβ
u−u(p̄))µ(du) > 0. Then, R

(
xβ

)
> 0

because K > 0. Moreover, R
(
xβ

)
> 0 implies ϕ(p̄) > max

r∈xβ
Φ
(
r, xβ

)
by definitions. As

ϕ(p̄) = a, we can then conclude that c exhibits choice overload at xβ. This completes the

proof because β is an arbitrary number in (0, ε], and lim
β→0

xβ = {p̄}. □

Proof of Proposition 1. The “if” part of the proposition follows from Lemma 1 imme-

diately. For the “only if” part, note that if K = 0 or the support of µ consists of a single

point, then R(x) = 0 for every x ∈ X . This, in turn, implies max
p∈x

Φ(p, x) = max
x

ϕ, which

rules out instances of the form (20). □

Proof of Proposition 2. Let (µ,K, a) and (µ′, K ′, a′) be strictly non-trivial AR repre-

sentations for c and c′, respectively, and assume µ = µ′.

Suppose c′ is more choice overload prone than c. Let p̄, ε and xβ be as in the proof of
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Lemma 1, so that c exhibits choice overload at xβ for every β ∈ (0, ε]. Then, c′ must also

do so, which means that for every β ∈ (0, ε],

max
r∈xβ

Φ′ (r, xβ
)
< a′ ≤ max

xβ
ϕ′. (21)

Observe that max
r∈xβ

Φ′ (r, xβ
)
converges to Φ′ (p̄, {p̄}) = ϕ′(p̄) as β → 0 because xβ converges

to {p̄}. Similarly, max
xβ

ϕ′ also converges to ϕ′(p̄). Hence, in (21) passing to limit as β → 0

yields ϕ′(p̄) = a′. Moreover, µ = µ′ implies ϕ(p̄) = ϕ′(p̄), while ϕ(p̄) = a by definition of p̄.

So, a = a′, as we sought.

It remains to show that K ≤ K ′. Fix any β ∈ (0, ε], and recall that R
(
xβ

)
> 0. To

simplify our notation, let us write x in place of xβ. By contradiction, suppose K > K ′.

With µ = µ′, this implies

R (x) = K

∫
U

(
max

x
u− u(p̄)

)
µ(du) > K ′

∫
U

(
max

x
u− u(p̄)

)
µ(du) = R ′ (x) .

Following usual arguments, let ⊖ ∈ c′ (γx + (1 − γ){p̃}) ̸= {⊖} for some γ ∈ (0, 1] and

p̃ ∈ ∆. Set xγ := γx + (1 − γ){p̃}. Observe that R (xγ) = γR (x) because R is an affine

function and R({p̃}) = 0. Similarly, R ′ (xγ) = γR ′ (x). Thus, R (x) > R ′ (x) implies

R (xγ) > R ′ (xγ). Also, max
xγ

ϕ′ = R ′(xγ) + a′ by definition of xγ. Hence, with a = a′ and

ϕ = ϕ′, we see that

R (xγ) + a > R ′ (xγ) + a′ = max
xγ

ϕ. (22)

Moreover, since R ′ (xγ) ≥ 0, the equality in (22) also entails max
xγ

ϕ ≥ a′ = a. It follows that

max
xγ

ϕ ≥ a > max
xγ

ϕ − R (xγ) = max
r∈xγ

Φ(r, x), which means that c exhibits choice overload

at xγ. On the other hand, c′ does not exhibit choice overload at xγ because c′ (xγ) ̸= {⊖}
by definitions. This proves the “only if” part of the proposition.

For the “if” part, note that K ′ ≥ K and µ′ = µ imply max
p∈x

Φ′(p, x) ≤ max
p∈x

Φ(p, x) for

every x ∈ X . If, in addition, a′ is equal to a, from the characterization (20) it easily follows

that c′ is more choice overload prone than c because ϕ′ is equal to ϕ as well. □

Proof of Proposition 3. Let (µ,K, a) and (µ′, K ′, a′) be non-trivial AR representations

for c and c′, respectively. Assume further that µ = µ′ and K = K ′. Then, max
p∈x

Φ(p, x) =

max
p∈x

Φ′(p, x) for every x ∈ X . Recall that c (x) = {⊖} iff max
p∈x

Φ(p, x) < a, and similarly,

c′ (x) = {⊖} iff max
p∈x

Φ′(p, x) < a′. Hence, clearly, if a ≤ a′, then c (x) = {⊖} implies

c′ (x) = {⊖} for every x ∈ X .

Conversely, suppose c (x) = {⊖} implies c′ (x) = {⊖}. Since c satisfies the non-triviality
axiom, we can find a convergent sequence (pn) in ∆ such that c ({pn}) = {⊖} for every n,
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and ⊖ ∈ c ({lim pn}) ̸= {⊖}. By the latter condition, we have ϕ(p) = a, where p := lim pn.

Moreover, c ({pn}) = {⊖} implies c′ ({pn}) = {⊖}, which means ϕ′(pn) < a′. Thus,

limϕ′(pn) ≤ a′, whereas limϕ′(pn) = limϕ(pn) = ϕ(p) = a. So, a ≤ a′. □
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