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Dimensional Analysis
and Market Microstructure Invariance.
Albert S. Kyle1, Anna A. Obizhaeva2

1University of Maryland, College Park, MD 20742, USA
2New Economic School, Moscow, Skolkovo, 143026, Russia

Market microstructure is the subfield of finance and econophysics1 which studies how prices
result from the process of trading securities. Large trades move prices2 and incur trading
costs. Here we combine dimensional analysis, leverage neutrality, and a principle of market
microstructure invariance to derive scaling laws which express transaction costs functions,
bid-ask spreads, bet sizes, number of bets, and other financial variables in terms of trading
volume and volatility. For example, market liquidity is proportional to the cube root of the
ratio of dollar volume to return variance. We illustrate the scaling by showing that bid-ask
spreads in Russian stocks indeed scale with the cube root. In addition to being of interest
to risk managers and traders, these scaling laws provide scientific benchmarks for evalu-
ating controversial issues related to high frequency trading, market crashes, and liquidity
measurement as well as guidelines for designing policies in the aftermath of financial crisis.

Physics researchers obtain powerful results by using dimensional analysis3 to reduce the
dimensionality of problems. For example, Kolmogorov proposed a simple dimensional analysis
argument to derive his “5/3-law” for the energy distribution in a turbulent fluid.4 His law describes
the relationship between the energy spectrum, energy flow, and wave lengths. Similar analysis can
be used to infer the size and number of molecules in a mole of gas or the size of the explosive energy
in an atomic blast from measurable large-scale physical quantities. While finance and economics
are fields which respect consistency of units—e.g., by maintaining a distinction between stocks
and flows—dimensional analysis is not generally used to derive non-obvious but powerful results.

In financial markets, institutional investors trade by implementing speculative “bets” which
move prices. A bet is a decision to buy or sell a quantity of institutional size. Traders execute
bets by dividing them into separate orders, shredding the orders into small pieces, and executing
numerous smaller quantities over time. For securities, the time frame of execution may be minutes,
hours, days, or weeks. Here we use dimensional analysis to derive scaling laws for transaction costs
functions, the width of bid-ask spreads, the size distribution of bets, the speed of bet execution,
the natural minimum price fluctuations (tick size), and the natural smallest quantity which can be
traded (minimum lot size).

In physics, dimensional analysis begins with fundamental units of mass, distance, and time.
In finance, dimensional analysis begins with fundamental units of time, currency, and shares (or
contracts). In physics, dimensional analysis is often augmented by a conservation law based on
principles of physics. In finance, proceeding further requires introducing conservation laws based
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on principles of finance. These conservation laws naturally take a form of no-arbitrage restrictions.
The Black-Scholes option-pricing model5 is based on the no-arbitrage principle that that all riskless
trading strategies must earn the same riskfree return. Here we use a no-arbitrage principle closely
related to the Modigliani-Miller theorem,6 which states that changes in a firm’s mix of equity and
debt securities do not affect the economic outcomes associated with bets which transfer the risks
embedded in the firm’s securities. In other words, if a risky asset is combined with positive or
negative amounts of an infinitely liquid riskless cash-equivalent asset and the bundle traded as a
single package, then the economics behind these “package” trades would not depend on how much
riskless asset is included in the package.

In the area of market microstructure, dimensional analysis leads to new insights which are
neither obvious nor well-known. As discussed next, dimensional analysis makes it possible to
describe various microscopic properties of financial markets in simple macroscopic terms.

1 Dimensional Analysis and Leverage Neutrality.

Trading is costly; bets tend to move market prices relative to pre-trade benchmarks. Buy bets push
prices up and sell bets push prices down relative to pre-trade price levels. These adverse price
movements, called “market impact,” occur as a result of adverse selection; traders on the opposite
side of the bet believe correctly that bets contain private information, and they compensate for this
by requiring a price concession. Transaction cost models quantify trading costs. Good transaction
cost models are of great interest to traders.

Suppose that the market impact cost of executing a bet of Q shares is a function of the number
of shares Q, the stock price P , share volume V , returns variance σ2, and dollar bet cost C. While
P , V , and σ2 are potentially observable, bet cost C may be difficult to observe empirically. For
now, think of bet cost C as the unconditional expected dollar price impact cost of executing a bet
of random size Q̃, with Q̃ > 0 for buy bets and Q̃ < 0 for sell bets. Thus, C measures how much
a trader must pay for executing a random bet relative to a pre-trade benchmark.

Let G := g(Q,P, V, σ2, C) denote the price impact cost as a fraction of the value traded
P · |Q|; the quantity G is dimensionless, with G ≥ 0. The quantities Q, P , V , σ2, and C are
measured using units of currency, shares, and time. If units of currency are reduced by a factor
U , shares by a factor S, and time by a factor T , then |Q| increases by a factor S, P increases by
a factor US−1, V increases by a factor ST−1, σ2 increases by a factor T−1, and C increases by a
factor U . Since there are three sets of distinct units and five dimensional quantities—Q, P , V , σ2,
C—it is possible to form two independent dimensionless quantities. Without loss of generality, let
L and Z denote these dimensional quantities, defined by

L :=

(
θ · P · V
σ2 · C

)1/3

, Z :=
P ·Q
L · C

. (1)
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Here θ is a dimensionless scaling constant, and the exponent of one-third in the definition of L is
chosen strategically for important reasons related to leverage neutrality discussed below.

The variables L and Z have an intuitive interpretation. Without loss of generality, choose the
scaling constant θ such that E{|Z̃|} = 1. Then Z̃ can be interpreted as “scaled bet size” because
it expresses the size of a bet Q as a multiple of mean unsigned bet size E{|Q̃|}. The definition
of Z̃ also implies 1/L = C/(E{P · |Q̃|}). Since the numerator C is the expected dollar cost of
a bet and the denominator E{P · |Q̃|} is the expected dollar value of the bet, the variable 1/L
measures the value-weighted expected market impact cost of a bet, expressed as a fraction of the
dollar value traded. Illiquidity is a synonym for transactions costs; it is therefore reasonable to
interpret 1/L as “illiquidity” and L as “liquidity;” Greater liquidity is associated with larger bets
since E{P · |Q̃|} = C · L.

Without loss of generality, re-define the arguments of the function g so that it is written as
g(P,Q, σ2, L, Z). The arguments P , Q, σ2 are dimensional quantities which trivially span the three
units of currency, shares, and time. The two arguments L and Z are independent dimensionless
quantities from which V and C can be recovered. Since the value of g(P,Q, σ2, L, Z) is itself
dimensionless, it cannot depend on the dimensional quantities P , Q, and σ2. Thus, dimensional
analysis implies that the function g can be further simplified by writing it as g(L,Z). Dimensional
analysis alone leads to the result that the market impact cost of a bet of Q shares, expressed as a
fraction of the bet value P · |Q|, must be a function of the two variables L and Z, assuming the five
arguments Q, P , V , σ2, C define a correct specification for the function.

To refine the transaction cost model further, introduce a conservation law in the form of
leverage neutrality. This is closely related to Modigliani-Miller equivalence, the idea that a change
in leverage—the ratio of firm’s assets to firm’s equity—does not affect the underlying economics
of the risk transfer represented by a bet of Q shares. Suppose that the stock is levered up by a
factor A as a result of paying a cash dividend of (1−A−1) · P financed with cash or riskless debt.
Since a bet of Q shares transfers the same economic risk, the number of shares in a bet Q does
not change, and trading volume V does not change. Since the economic risk of a bet does not
change, the dollar cost of the bet C does not change either. The ex-dividend price of a share is
A−1 · P because the value of the share-plus-dividend is conserved. Each share continues to have
the same dollar risk P · σ; therefore, the returns standard deviation σ increases to A · σ, and the
returns variance σ2 increases to A2 · σ2. It is straightforward to verify that L changes to A−1 · L
and Z remains unchanged. Strategically incorporating the exponent 1/3 into the definition of L
has the effect of making L scale inversely proportionally with A, just like P . The percentage cost
G of executing a bet of Q shares changes by a factor A because the dollar cost of executing this bet
remains unchanged while the dollar value of the bet itself declines from P · |Q| to A−1 · P · |Q|.

Leverage neutrality thus implies that for any A, the function g satisfies the homogeneity
condition g(A−1 · L,Z) = A · g(L,Z). Letting A = L, the function g can be written g(L,Z) =
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L−1 · g(1, Z). Define the univariate function f by f(Z) := g(1, Z). Now G can be written in the
form G = L−1 · f(Z).

The dimensionless and leverage neutral combination G · L must be a function of the dimen-
sionless and leverage neutral argument Z. In a more explicit form, we have

G =
1

L
· f
(
P ·Q
C · L

)
. (2)

or, in terms of the original five parameters,

g(Q,P, V, σ2, C) =

(
σ2 · C
P · V

)1/3

· f

((
σ2 · C
P · V

)1/3

· P ·Q
C

)
. (3)

Equation (3) describes a general specification for transaction costs functions consistent with the
scaling implied by dimensional analysis and leverage neutrality. This general specification is con-
sistent with different assumptions about the shape of the function f .

To summarize, the combination of dimensional analysis and leverage neutrality reduces the
problem from determining the structure of a function of five parameters g(Q,P, V, σ2, C) to deter-
mining the structure of a function of only one parameter f(Z). The percentage transaction costs (2)
can be presented as the product of a dimensionless security-specific measure of illiquidity 1/L and
a dimensionless function f(Z) of scaled bet size Z, which is dimensionless and leverage neutral.

2 Market Microstructure Invariance.

Dimensional analysis does not generate operational market microstructure predictions per se. To
obtain useful empirical predictions based on transaction costs model (3), it is necessary to think
about how to measure relevant quantities. The derivation above refers to at least five quantities:
asset price P , trading volume V , returns volatility σ, bet size Q, bet cost C, and possibly other
measures of transactions costs such as bid-ask spreads. Three of the quantities—asset price P ,
trading volume V , and returns volatility σ—can be observed directly or readily estimated from
public data feeds on securities transactions; these are observable characteristics of an asset. The
size Q is a characteristic of a bet privately known to a trader. While bid-ask spreads can be observed
from public data feeds, other estimates of transactions costs generally requires having confidential
data on transactions which allows transactions of one trader to be distinguished from transactions
of another. More ambiguous is the issue of how the cost of a bet C varies across assets.

Market microstructure invariance7 is the empirical hypothesis that the dollar value C is the
same for all time periods and for all assets such as stocks, bonds, commodities, foreign exchange,
and derivatives. The a priori justification for this invariance hypothesis is Ockham’s razor: it is is
simplest possible hypothesis. This invariance hypothesis is neither an implication of dimensional
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analysis nor an implication of leverage neutrality. Instead, it is an economic hypothesis motivated
by the intuition that asset managers allocate scarce intellectual resources across assets and across
time in such a manner that the cost of bets is equated.8 To apply invariance across markets with
different currencies and real exchange rates, it is necessary to further generalize this hypothesis
and, for example, scale the expected dollar cost C by the productivity-adjusted wages of finance
professionals in the local currency to make this variable dimensionless.

In both physics and market microstructure, application of invariance principles requires that
certain assumptions be met. For example, the laws of physics hold in simplest form for objects trav-
eling in a vacuum but have to be modified when resistance from air generates friction. Similarly,
in market microstructure, the invariance assumption may hold only under idealized conditions.
For example, the predictions of invariance may hold most closely when tick size is small, market
makers are competitive, and transactions fees and taxes are minimal. Invariance principles provide
a benchmark from which the importance of frictions such as a large tick size, non-competitive
market access, or high fees and taxes can be measured.

Under the invariance assumption, instead of having different models for different securities
and different time periods, it is necessary to calibrate only one parameter C for all assets, not a
different value of C for each asset. Together with calibration of the scaling constant θ and the
shape of the invariant cost function f(Z) in equation (2), the knowledge of the parameter C makes
it possible to write an operational transaction costs model for any market. The constant C helps to
relate the microscopic details of trading in a security to its macroscopic properties. For example,
it helps to relate the microscopic transaction cost of a bet to observable volume V , price P , and
volatility σ. Preliminary calibration based on portfolio transitions data suggests that cost C of a bet
is approximately equal to 2,000 dollars.7 This estimate is obtained from analysis based on a large
sample of portfolio transitions orders; a portfolio transition occurs when a large investor, such as a
pension plan sponsor, hires a professional third party to make the trades necessary to move assets
from from one asset manager to another.

If invariance holds, the dimensionless liquidity index L ∼ (P · V · σ−2)
1/3 is a natural,

simple measure of liquidity which is easy to calculate using data on volume and volatility. This
security-specific metric does not change when a stock splits or the frequency with which data is
sampled changes.

The general specification for a transaction cost function (3) is consistent with different func-
tional forms. Suppose that f is a power function of the form f(Z) = λ̄ · |Z|ω. A proportional
bid-ask spread cost (ω = 0) implies

G = const · 1
L
. (4)

A linear market impact cost (ω = 1), which is often assumed in theoretical models,9 implies

G = const · P · |Q|
L2

. (5)
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A square-root market impact cost (ω = 1/2) implies

G = const · σ ·
(
|Q|
V

)1/2

. (6)

Empirical estimates often support the square root specification with a proportionality factor close
to one.10. Equation (3) is a general structural transaction costs model. Equations (4), (5), and (6)
are special cases consistent with invariance.

3 Empirical Evidence based on Bid-Ask Spread in the Russian equities market.

Dimensional analysis and leverage neutrality imply a scaling law for the quoted bid-ask spread,
which measures the difference between the highest price at which a trader is willing to buy (“bid”)
and the lowest price at which a trader is willing to sell (“offer”). Let S denote the bid-ask spread
measured in the same units as price P . From equation (4), market microstructure invariance implies

log

(
S

P

)
= const + 1 · log(1/L). (7)

For empirical estimation, the unknown invariant constants C and θ can be factored out of the
definition of L and incorporated into the constant term in equation (7). The coefficient of one on
log(1/L) implies a scaling exponent of −1/3 on P · V · σ−2.

To test this relationship, we use data from the Moscow Exchange for January–December
2015 provided by Interfax Ltd. The data cover 50 Russian stocks in the RTS index as of June
15, 2015. The five largest companies are Gazprom, Rosneft, Lukoil, Novatek, and Sberbank. The
Russian stock market is centralized with all trading implemented in a consolidated limit-order
book. Since the tick size was small during this period, this market friction was less likely to affect
the bid-ask spreads of Russian stocks than in other markets with larger tick size, like the U.S. The
lot size was small in the Russian stock market as well. For each of the 50 stocks and each of
the 250 trading days, the average percentage spread is calculated as the mean of the percentage
spread at the end of each minute during trading hours from 10:00 to 18:50. The realized volatility
is calculated based on summing squared one-minute changes in the mid-point between the best bid
and best offer prices at the end of each minute during trading hours. Table 1 presents summary
statistics for this sample.

Figure 1 plots the log bid-ask spread log(S/P ) against log(1/L). Each of 12,426 points
represents the average bid-ask spread for one stock for one day. Different colors represent different
stocks. For comparison, we add a solid line log(S/P ) = 2.112 + 1 · log(1/L), where the slope
is fixed at level predicted by market microstructure invariance and the intercept is estimated. All
observations cluster around this benchmark line.

On aggregate sample, the fitted line is log(S/P ) = 2.093 + 0.998 · log(1/L), with standard
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errors of estimates 0.040 and 0.005, respectively; the R-square is 0.876. The invariance prediction
that the slope coefficient is one is not statistically rejected. The fitted line for a similar regres-
sion over monthly averages instead of daily averages is log(S/P ) = 2.817 + 1.078 · log(1/L)
with standard errors of estimates 0.164 and 0.019, respectively; its R-square is 0.923. The invari-
ance prediction that the slope coefficient is one is statistically rejected in this case, but remains
economically close to the data.
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Figure 1: Bid-ask spread and liquidity.

The 50 dashed lines in figure 1 are fitted based on data for the 50 individual securities.
The slopes, which vary from 0.249 to 1.011, are substantially lower than the invariance-implied
slope of one, which is indistinguishable from the fitted line for the aggregate data. A possible
explanation is that a substantial part of the variation in stock-specific measures of trading activity
is due to variations in trading activity of the overall market and may therefore be only loosely
related to variations in bid-ask spreads. The downward bias is more pronounced for less liquid
stocks, suggesting that it may also be related to correlation between explanatory variables and
error terms due to natural endogeneity in contemporaneous variables.

4 Additional Applications and Extensions.

The empirical implications of dimensional analysis, leverage invariance, and market microstructure
invariance can be generalized. The analysis above assumes that function g is correctly specified
in terms of only five parameters Q, P , V , σ2, C. The approach can be easily extended to include
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additional function arguments. It can also be extended to derive scaling laws for other variables.
Here are several illustrations.

The magnitude of transaction costs is likely to depend on other variables. Traders believe
that order execution costs are lower if the execution horizon is longer. Transaction costs may also
depend on market frictions such as tick size and minimum round lot size. The tick size for U.S.
stocks is generally one cent, and the minimum round lot size is generally 100 shares; for Russian
stocks there is more variation in these parameters.

First, add to the original five parameters the horizon of execution H measured in units of
time, the tick size KMIN measured in dollars per share, and the minimum round lot size QMIN

measured in shares. Second, re-scale H , KMIN , and QMIN to make them dimensionless and
leverage neutral. There is a unique way to do this using the four variables P , V , σ2, and C
(including the liquidity variable L). The unique, re-scaled values are H · V/|Q|, KMIN ·L/P , and
QMIN · σ2 · L2/V , respectively (up to constants of proportionality). Equation (2) then becomes

G =
1

L
· f
(
P ·Q
C · L

,
H · V
|Q|

,
KMIN · L

P
,
QMIN · σ2 · L2

V

)
. (8)

This more general specification remains consistent with scaling laws but allows for non-linear
relationships among the different arguments of f . Other variables can be added to the transaction
costs model analogously.

Optimal execution horizon is of obvious interest to traders. Suppose that the optimal (cost-
minimizing) execution horizon H∗ for an order of Q shares depends on P , V , σ2, C, KMIN , and
QMIN . Since the ratio H∗ · V/|Q| is dimensionless and leverage neutral, the same logic as above
implies the following formula

H∗ =
|Q|
V

· h∗
(
P ·Q
C · L

,
KMIN · L

P
,
QMIN · σ2 · L2

V

)
. (9)

When tick size is large, larger quantities available at the best bid and offer may make the execution
horizon shorter. If tick size and minimum lot size do not affect execution horizon, this horizon H∗

depends only on scaled bet size Z := P · Q/(C · L). If the function h∗ is a constant, then it is
optimal to choose the execution horizon so that traders execute all trades as the same fraction of
volume, say one percent of volume until execution of the bet is completed.

Setting optimal tick size and minimum lot size is of interest for exchange officials and reg-
ulators. Since the scaled quantities K∗

MIN · L/P and Q∗
MIN · L2 · σ2/V are dimensionless and

leverage neutral, the scaling laws for these market frictions can be written as

K∗
MIN = const · P

L
, Q∗

MIN = const · V

L2 · σ2
. (10)
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Since the proportionality constant does not vary across securities, these measures provide good
benchmarks for comparing the restrictiveness of actual tick size and minimum lot size across se-
curities.

If exchanges set tick size and minimum lot size at their optimal levels of K∗
MIN and Q∗

MIN

and traders choose optimal execution horizons H∗, then f in equation (8) becomes a function of
only one argument Z again.

Our approach can be also used to derive more general scaling laws for the bid-ask spread.
The bid-ask spread is an integer number of ticks which fluctuates as trading occurs. Let S denote
the average bid-ask spread, measured in dollars per share. Assume the average spread depends
on P , V , σ2, C, KMIN , and QMIN . Dimensional analysis and leverage neutrality imply that the
re-scaled spread S · L/P , which is dimensionless and leverage neutral, is a function s of only the
re-scaled dimensionless and leverage-neutral variables KMIN and QMIN :

S

P
=

1

L
· s
(
KMIN · L

P
,
QMIN · σ2 · L2

V

)
. (11)

If tick size and minimum lot size have no influence on quoted bid-ask spreads, then the the rela-
tionship simplifies to S/P ∼ 1/L, as tested above for the Russian equities market.

Our approach can be also used to derive more general scaling laws for trading data. A bet
of size Q may be executed as a large number of smaller trades. Let QT denote a trade, a fraction
of a bet. Trades and bets have the same units but different economics. While it is reasonable to
conjecture that the size of bets does not depend on tick size or minimum lot size, the size of trades
into which bets are “shredded” will obviously depend on both of them. With large tick size, there
will typically be large quantities available at the bid and offer; therefore, large bets may be executed
as trades of large size which clean out available bids and offers. Empirical evidence suggests that
trades have become so small in recent years that minimum lot size is often a binding constraint.11

Since Z̃ := P · Q̃T/(C ·L) is dimensionless and leverage-neutral, the same analysis as above leads
to the following scaling laws for the probability distribution of Q̃T :

Prob

{
P · Q̃T

C · L
< Z

}
= FQ

(
Z,

KMIN · L
P

,
QMIN · σ2 · L2

V

)
. (12)

Similar scaling laws can be derived for the quantities at the best bid and offer—Q̃B and Q̃A—as
well as for the entire limit order book.

Let γT denote the number of transactions per day. After re-scaling, γT/(σ2 · L2) becomes
dimensionless and leverage-neutral, further suggesting a scaling law of the form

γT = σ2 · L2 · f
(
KMIN · L

P
,
QMIN · σ2 · L2

V

)
. (13)
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If tick size and minimum lot size do not affect the trading process, then the number of transactions
satisfies γT ∼ σ2 · L2, and their average size satisfies P · E{|Q̃T |} = C · L.

Figure 2 presents results of testing the prediction γT ∼ σ2·L2 using the data from the Moscow
Exchange. The figure has 12,426 points plotting the log number of transactions log(γT ) against
log(σL) for each of 50 stocks and each of 250 days. A benchmark line log(γT ) = −1.937 + 2 ·
log(σL), where the slope is fixed at a predicted level of two and intercept is estimated, is added for
comparison. The results for the aggregate sample are broadly consistent with the predicted slope
of two. The fitted line is log(γT ) = −3.085 + 2.239 · log(σL) with standard errors of estimates
equal to 0.038 and 0.008, respectively; its R-square is 0.882. As before, the slopes of fitted lines for
individual stocks are systematically lower, ranging from 1.156 to 1.795 and depicted with dashed
lines.
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Figure 2: Number of trades per day and liquidity.

There is a growing empirical evidence that the scaling laws discussed above match patterns
in financial data, at least approximately. These scaling laws are found in data on transaction costs
and order size distributions for institutional orders,7 in data on trades executed in the U.S. and
South Korean equities markets,11, 12 in data on news articles published by Thomson Reuters,13 and
in intraday trading patterns of the S&P E-mini futures market.14

Checking the validity of invariance predictions in other samples, improving the accuracy of
estimates, and the triangulation of proportionality constants are important tasks for future research.
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Our research here is relevant for risk managers and traders, who seek to minimize and mea-
sure market impact costs. It also establishes politically neutral, scientific benchmarks for numer-
ous policy issues connected with market microstructure such as setting tick sizes and minimum lot
sizes as well as position limits, margin requirements, and repo haircuts. Such research is highly
relevant for the economic analysis of market crashes,15 such as the U.S. stock market “flash crash”
of May 201016 or the U.S. bond market “flash rally” of October 2014.17 Lastly, it directly relates to
designing liquidity management tools, one of the central issues addressed by the Dodd-Frank Act
and Basel III regulatory initiatives.
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avg p5 p50 p95 p100
Cap (rub) 476 24 189 1,904 3,420
Cap (usd) 8.77 0.44 3.50 35.02 63.02
V · P (rub) 542 3 73 2,607 6,440

σ 0.019 0.014 0.018 0.029 0.032
S/P 19 3 12 61 129
γT 7,328 65 2,792 22,169 71,960

Table 1: The table presents summary statistics (average values and percentiles) for the
sample of 50 Russian stocks: ruble and dollar capitalization Cap (in billions), average daily
volume V ·P in millions of rubles, daily returns volatility σ, average percentage spread S/P
in basis points (hundredths of a percent), and average number of trades per day γT as of
June 2015.
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