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It is well known that time series of asset prices exhibit momentum and rever-
sals, but it is usually difficult to construct a satisfactory theoretical explanation
for these phenomena. This paper suggests that momentum and, more generally,
return predictability may be consequences of the way in which prices aggregate
information when traders have heterogeneous beliefs about the accuracy of their
private signals. In a setting of perfect competition, the model predicts greater
momentum in more liquid markets with larger dispersion in beliefs.
We present a structural model with predictable returns in the equilibrium. Traders

in the model mimic the behavior of real-world traders who collect public and pri-
vate raw information into databases, engage in research to process this information
into signals, calculate expected returns or alphas from these signals, and calculate
optimal inventories by inputting alphas into risk models. The traders are relatively
overconfident. Each trader symmetrically assigns a higher value to the accuracy of
his private signal relative to the accuracy of other traders’ signals. Since the values
traders assign to all economically relevant parameters are common knowledge, as
in Aumann (1976), traders agree to disagree about the informativeness of their
respective signals. An economist with empirically correct beliefs will typically find
returns to be predictable, even when the beliefs of traders in the model are “cor-
rect on average.” This result contradicts the rational expectations intuition that
prices will aggregate fundamental information correctly when traders are correct
on average, even when individual traders make mistakes.
Intuitively, the predictability arises for two reasons. First, beliefs aggregation

dampens price fluctuations in markets with heterogeneous beliefs. The market
price aggregates beliefs of traders by averaging their estimates using weights pro-
portional to the square roots of precision parameters and not proportional to the
precision parameters themselves. Jensen’s inequality then implies that prices un-
derreact to the total amount of private information available in the market. We
discuss how this mechanism arises specifically when traders have correct beliefs
about the error variances of their signals, an important conceptual issue in model-
ing information.
Second, an additional factor plays an important role in dynamic settings. In

addition to placing long-term bets based on disagreement about the fundamental
value of the asset, traders also engage in short-term trading based on how they be-
lieve other traders will revise their expectations in the future. Since this short-term
speculation is based on beliefs about the dynamics of other traders’ expectations
and can result in traders taking positions opposite in sign to those implied by their
own long-term valuations, it incorporates the logic of a Keynesian beauty contest.
Both effects tend to generate momentum in equilibrium returns. While the the

beliefs aggregation effect can arise in a one-period model, a Keynesian beauty
contest intrinsically requires a dynamic model.
Rational Expectations Equilibrium. Our model highlights subtleties in-

volved in defining important concepts such as a rational expectations equilibrium.
There are two ways of thinking about the concept of rational expectations, which
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we shall call weak rational expectations and strong rational expectations.
Weak rational expectations—equivalent to the efficient markets hypothesis—does

not hypothesize that all traders are actually rational; instead, it hypothesizes that
market prices aggregate information “as if” traders were rational. Hayek (1945)
conjectured that markets aggregate information into the price “which might have
been arrived at by one single mind possessing all the information which is in fact
dispersed among all the people.” Muth (1961) defined rational expectations as
market prices reflecting the “predictions of the relevant economic theory”; the
subjective expectations of traders do not deviate systematically from the predic-
tion of the relevant theory on average, but traders themselves may be irrational or
make mistakes. Fama (1970) says that the efficient markets hypothesis is satisfied
if market prices fully reflect information, “as if” traders are rational; the hypothesis
does not require traders actually to be rational. LeRoy (1973) further recognizes
that the concept of efficient markets requires a model of expected returns which
rewards risk-taking appropriately. Lucas (1978) explicitly points out that the ra-
tional expectations hypothesis is not behavioral; it leaves aside how agents actually
trade and think.
Strong rational expectations, by contrast, conjectures that all traders share a

common prior and make rational decisions. Strong rational expectations can be
interpreted as a behavioral model which conjectures that traders think and trade
rationally. For example, Radner (1982) requires traders to share a common prior
and apply Bayes law to learn from prices correctly; he says that in rational ex-
pectations equilibrium “the individual models are identical with the true model.”
If rational behavior presumes sharing a common prior, it is well-known from the
work of Grossman (1976) and Tirole (1982) that rational behavior results in an
equilibrium with no speculative trade. If all traders think alike, there is no reason
for any trader to acquire costly information and engage in speculative trading with
intent to beat other traders. Therefore, strong rational expectations models have
difficulty generating useful empirical hypotheses about trading in speculative mar-
kets which are often characterized by significant trading volume. When additional
ad hoc ingredients are added to generate trade—such as noise trading, liquidity
shocks, endowment shocks, shocks to private values, or behavioral biases—the re-
sult is a “noisy rational expectations” model.
Our model relies on differences in beliefs to generate both trade and return pre-

dictability. Models with agreement to disagree about hard-to-estimate parameters—
such as the drift of a random dividend growth—are a realistic compromise between
the strong rational expectations paradigm and approaches based on irrationality;
such models are consistent with the weak rational expectation paradigm. Our
model thus provides micro-foundations showing how almost-rational trading be-
havior may lead to predictable returns in equilibrium.
To motivate trade, we relax the common prior assumption in a minimal way.

Traders are willing to trade because they symmetrically believe their private signals
are more precise than their competitors believe them to be. Except for agreeing to
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disagree about the precisions of their information, traders are otherwise completely
rational. They apply Bayes Law consistently and optimize correctly. No additional
behavioral assumptions or modeling ingredients, like noise trading, are needed to
generate trade.
Our paper is consistent with Morris (1995), who eloquently argues for “dropping

the common prior assumption from otherwise rational behavior” models as an
important and largely overlooked modeling approach, since even rational agents
may have heterogeneous beliefs. Empirical research, such as Barber and Odean
(2001), also uses overconfidence.
Representative Agent and Economist. To think about predictability of

returns in a structural model with different beliefs, we introduce two modeling
devices, which we call a representative agent and an economist ; both are charac-
terized by their own sets of beliefs. Rubinstein (1975) explores what it means that
“security prices fully reflect information” in markets with heterogenous beliefs and
information along similar lines.
The first device is the representative agent. The representative agent, an artificial

construct, is assumed to have possibly incorrect beliefs about model parameters
which aggregate the information and beliefs of traders in such a way that the
market clears at equilibrium prices. The representative agent has “the market’s
beliefs.” Hirshleifer (1977) uses the term “representative agent” in the same way;
Rubinstein (1975) refers to the representative agent’s beliefs as “consensus” beliefs.
It is not a priori obvious that the representative agent can be characterized by a
set of dogmatic beliefs about specific parameter values. Though they are not naive
averages of beliefs of individual traders, one of our results is that the beliefs of
the representative agent are closed-form functions of the parameters that describe
the beliefs of traders in the model. We show that even when all of the traders in
the model agree about the value of the innovation variance and mean reversion
of an unobserved growth rate (and this agreement is common knowledge), the
representative agent attaches different values to these parameters. The beliefs
of the representative agent are hypothetical statistical constructs, not behavioral
descriptions of the way traders actually think. It may therefore be dangerous,
explicitly or implicitly, to attribute a behavioral bias to a representative agent, as
in Daniel, Hirshleifer and Subrahmanyam (1998) or Barberis, Shleifer and Vishny
(1998).
The representative agent is essentially a device which separates the testable pric-

ing implications of a traditional asset pricing model from the testable quantity
implications of a micro-founded model of trading behavior. The representative
agent is concerned with making predictions about asset prices rather than about
quantities traded, trading volume, and order flow.
The second device is the economist. The economist is an outsider to the model

who is assumed to understand the structure of the model fully and to have empiri-
cally correct beliefs about model parameters. Muth (1961) takes a similar approach
when defining a rational expectations equilibrium with an economist articulating
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the relevant theory.
The economist and the representative agent do not necessarily have the same

beliefs. The economist would believe that returns are unpredictable if and only
if his beliefs happened to coincide with the representative agent’s beliefs; this
case would correspond to the efficient markets hypothesis. Except for some knife-
edge cases, the economist and the representative agent in our model have different
beliefs, and returns are predictable.
Vector Auto-Regressions. The model provides a formal economic underpin-

ning for the extensive empirical literature that studies the predictability of returns
at different horizons using past prices and dividends. In models with heterogeneous
beliefs, equilibrium returns depend on both beliefs of the traders (aggregated in
beliefs of the representative agent) and beliefs of the economist. We find that the
expected return is a linear function of the following three state variables: (1) the
difference between the market price and a valuation based only on the current
dividend, i.e., the CARA-normal version of a valuation multiple based on earnings
(or dividends); (2) an exponentially weighted historical average of this difference;
and (3) an exponentially weighted historical average of dividend innovations. All
three coefficients are usually non-zero.
Our model implies that the expected return is a linear function of state vari-

ables which follow a vector auto-regression (VAR). The state variables include
the current levels of prices and dividends as well as exponentially weighted aver-
ages of past prices and dividends. The decay rates of past prices and dividends
are proportional to the informativeness of prices, measured by the total precision
in the market. Our model therefore places specific testable non-linear economic
restrictions on VAR models of expected returns, discussed by Goyal and Welch
(2003), Ang and Bekaert (2007), Cochrane (2008), Van Binsbergen and Koijen
(2010), and Rytchkov (2012), among others. These restrictions are sufficiently
flexible to be consistent with the patterns of short-term momentum and long-term
mean-reversion. To reflect state variables appropriately, our approach suggests in-
creasing the dimensionality of VAR systems by adding more lags, as in Campbell
and Shiller (1988).
The derived complicated dynamics for stationary equilibrium returns suggests

that a theoretical exploration of return predictability requires a fully dynamic
infinite horizon model rather than a model with only two or three periods, such as
Daniel, Hirshleifer and Subrahmanyam (1998) and Banerjee, Kaniel and Kremer
(2009).
Our explanation for returns momentum differs from other explanations suggested

in the previous literature. Return predictability in our paper is not related to
changes in the aggregate amount of money chasing the return on the risky asset,
as suggested by the research on flow-based predicability such as Gruber (1996),
Lou (2012), and Vayanos and Woolley (2013). Market clearing implies that the
aggregate flow of money into the market for risky assets is zero, even though
individual traders indeed find profitable investment opportunities and chase returns
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while the economist finds anomalies.
Return predictability in our paper is also not related to noisy aggregation of

heterogenous information. Since the model is symmetric and there is no noise
trading, the price reveals a sufficient statistic for what each trader cares to know
about other traders’ private information. The equilibrium price averages traders’
expectations, calculated under different beliefs but with the same information set.
This is different from Allen, Morris and Shin (2006), who show that aggregation of
noisy heterogeneous information, even in settings with a common prior, can lead
to ex post price drift. It is also different from Banerjee, Kaniel and Kremer (2009),
who argue that asymmetric information alone cannot generate momentum; they
claim instead that agreement to disagree about the average valuation is necessary
for heterogeneous beliefs to generate momentum. In contrast to both of these
papers, we obtain return predictably in a model in which traders who are correct
on average infer from prices a noiseless sufficient statistic for the private information
of others and agree about the average valuation, even though they disagree about
one another’s current and future valuations.
It is fashionable to attribute predictability in asset returns to irrational behavior

motivated by psychology. This presumes that rational behavior—not motivated
by psychology—would lead to no return predictability. Simon (1957) proposes
the concept of bounded rationality for studying the irrationality of human choices
resulting from various institutional constraints such as the psychological costs of
acquiring information, cognitive limitations of human minds, or the finite amount
of time humans have to make a decision. For example, Daniel, Hirshleifer and
Subrahmanyam (1998) have to assume that the representative agent exhibits a
biased self-attribution leading to time-varying overconfidence. Hong and Stein
(1999), Barberis and Shleifer (2003), and Greenwood and Shleifer (2014) assume
that traders follow simple trading rules and do not extract information from prices.
When return anomalies are motivated by behavioral biases, Fama (1998) suggests
that a Pandora’s box is opened, undermining modeling parsimony by enabling one
plethora of behavioral biases to explain another plethora of anomalies.
Our approach not only allows us to generate momentum in returns, but its pre-

dictions are also consistent with empirical findings on momentum patterns. Indeed,
Lee and Swaminathan (2000) and Cremers and Pareek (2014) find that momen-
tum is stronger for stocks with higher trading volume and short-term trading,
respectively. Moskowitz, Ooi and Pedersen (2012) find that more liquid contracts
in equity index, currency, commodity, and bond futures markets tend to exhibit
greater momentum profits. Zhang (2006) and Verardo (2009) show that momentum
returns are larger for stocks with higher analysts’ disagreement. Similar properties
characterize momentum patterns in our model.
The information structure in our model is similar to Kyle and Lin (2002), Scheinkman

and Xiong (2003), and Kyle, Obizhaeva and Wang (2016). Our paper differs from
the last one in that it has competitive trading rather than strategic trading. The
assumption of perfect competition allows us to prove most of our results analyt-
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ically. The assumptions of zero-net-supply and a constant absolute risk aversion
approximate markets for individual stocks, where risks are idiosyncratic and wealth
effects are not significant. This differs from papers which focus on the interaction
between beliefs aggregation and wealth effects but leave aside private informa-
tion, such as Detemple and Murthy (1994), Basak (2005), Jouini and Napp (2007),
Xiong and Yan (2010), Cujean and Hasler (2014), and Atmaz and Basak (2015). In
our model, the beliefs of the representative agent do not vary with the distribution
of wealth among traders, and these beliefs are consistent with the Bayes Law.
Conceptually, our approach is most similar to the approach of Campbell and

Kyle (1993), who use noise trading to generate excess volatility and mean reversion
instead of relative overconfidence to generate momentum.
Plan. This paper is structured as follows. Section 1 discusses stylized examples

illustrating how the market’s incorrect beliefs can explain anomalies. Section 2
presents the model. Section 3 explains the two dampening effects. Section 4
discusses how momentum can arise in a model with heterogenous beliefs about
private information and shows that the beliefs of the representative agent are not
simply “averages” of traders’ beliefs. Section 5 analyzes holding-period returns as
functions of the empirically correct beliefs of the economist and possibly incorrect
beliefs of traders. Section 6 concludes. All proofs are in the Appendix.

1. Motivating Examples

We motivate our discussion with three examples in which the beliefs of the rep-
resentative agent reflect the beliefs of the market and the beliefs of the economist
reflect empirically correct beliefs. All examples illustrate how return predictability
results when market beliefs deviate from empirically correct beliefs. None of the ex-
amples provides intuition of why market beliefs may differ from empirically correct
beliefs. In the following section, we will show how aggregation of dynamic trad-
ing decisions of individual market participants with different beliefs about private
information can naturally lead to distortions in market’s beliefs.
These examples illustrate several important principles:

• The actual return process depends on two sets of parameters: the empirically
correct parameters and possibly incorrect parameters used by the market.

• The possibly incorrect parameters used by the market affect the expected
return, return volatility, and the holding-period return over different horizons.

• It is usually more appropriate to model financial markets using dynamic
steady-state models because the insights of static non-stationary models often
cannot be easily mapped into data.

While none of these examples corresponds precisely to the model examined in
the paper, they are helpful for understanding its main point: Realistic micro-
founded modeling of return dynamics requires a dynamic setting in which returns
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are influenced both by correct parameter values and traders’ possibly incorrect
beliefs about them.

1.1. The Gordon Growth Model With Geometric
Brownian Motion Dividends.

The simplest illustration assumes that the market (representative agent) uses a
possibly incorrect dividend growth rate when applying the Gordon growth model
to an asset whose dividend follows a geometric Brownian motion process

(1) dD(t) = γ̆ D(t) dt+ σ D(t) dB(t).

Here, D(t) is the dividend rate at time t, γ̆ is the constant growth rate the repre-
sentative agent expects, σ is the volatility of dividends, and B(t) is a standardized
Brownian motion.
Throughout this paper, a “breve” (“ ˘ ”) indicates a possibly empirically incor-

rect parameter value assigned by the representative agent, and a “hat” (“ ˆ ”)
indicates an empirically correct parameter value assigned by the economist. The
representative agent and the economist agree about parameters without “breves”
or “hats”. Let Êt{. . .} and V̂art{. . .} denote expectation and variance operators
calculated using information available at time t based on empirically correct beliefs
of the economist.
Suppose that the market requires expected return r. Then a simple application

of the Gordon growth formula yields the market price

(2) P (t) =
D(t)

r − γ̆
.

The market believes the actual percentage return process is

(3)
dP (t) +D(t) dt

P (t)
= r dt+ σ dB(t).

The market’s expected return r can be decomposed into a return of r − γ̆ from
the dividend yield D(t)/P (t) and an expected return of γ̆ from capital gains
dP (t)/P (t).
Suppose the market beliefs are possibly incorrect, and the empirically correct

growth rate in equation (1) is γ̂, not γ̆. Then the actual expected return is given
by

(4) Êt

{
dP (t) +D(t) dt

P (t) dt

}
= r − γ̆ + γ̂.

When γ̆ = γ̂, the actual expected return is equal to r. Otherwise, the market
obtains an expected return of r− γ̆+ γ̂; the observed dividend yield r− γ̆ remains
unchanged, but the unobserved expected return from capital gains changes from γ̆
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to γ̂. This example illustrates that the actual expected return r− γ̆+ γ̂ depends on
two parameters: the market’s expected growth rate γ̆ and the empirically correct
expected growth rate γ̂. When the market has a more pessimistic expected growth
rate γ̆, this increases the dividend yield by making the asset cheap and therefore
raises the expected return.
In this example, both the expected return and volatility σ are constant over time.

The volatility is not affected by the market’s expectations of the growth rate. In
the next example, the expected return varies over time, and the constant standard
deviation of the dollar return is a function of the market’s beliefs about parameters
governing the dividend process.

1.2. Excess Volatility and Mean Reversion With
Arithmetic AR-1 Dividends.

Suppose the representative agent believes that de-meaned dividends follow an
Ornstein-Ühlenbeck process given by

(5) dD(t) = −ᾰ
(
D(t)− D̄

)
dt+ σ dB(t),

where D(t) is the dividend rate, ᾰ is the market’s belief about the constant rate
of mean reversion, σ is the volatility of dividends, D̄ is the constant steady-state
mean dividend level, and B(t) is a standardized Brownian motion. Assume that
the required rate of return is the risk-free rate r, consistent with a zero-net-supply
asset. Then the asset’s price P (t) is given by

(6) P (t) =
D̄

r
+
D(t)− D̄

r + ᾰ
.

This formula is obtained by applying the Gordon growth formula separately to the
two components D̄ and D(t)− D̄, with growth rates of zero and −ᾰ, respectively.
Suppose that the representative agent’s beliefs about the mean-reversion param-

eter in equation (5) are possibly incorrect, and the correct value of the mean-
reversion parameter is α̂, not ᾰ. The correct return process (in dollars per share)
is given by

(7) dP (t) +D(t) dt = r P (t) dt+
ᾰ− α̂

r + ᾰ

(
D(t)− D̄

)
dt+

σ

r + ᾰ
dB(t).

The empirically correct expected dollar return per share is given by

(8) Êt

{
dP (t) +D(t) dt

dt

}
= r P (t) +

ᾰ− α̂

r + ᾰ

(
D(t)− D̄

)
.

The market obtains an expected dollar return r P (t) when ᾰ = α̂; otherwise,
the market also obtains a time-varying unexpected excess dollar return per share
(ᾰ− α̂) (r + ᾰ)−1

(
D(t)− D̄

)
.
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The representative agent’s beliefs also affect the volatility of returns. The stan-
dard deviation of the dollar return per share is

(9) V̂ar
1/2

t

{
dP (t) +D(t) dt

dt1/2

}
=

σ

r + ᾰ
.

The volatility of the return depends on the market’s possibly incorrect mean-
reversion parameter ᾰ, not on the empirically correct mean-reversion parameter
α̂.
If the representative agent believes that the dividend process is more persistent

than it actually is—i.e., ᾰ < α̂—then there is excess volatility and mean reversion.
There is excess volatility because the actual volatility σ (r + ᾰ)−1 is greater than
the volatility σ (r + α̂)−1 that would be obtained if the market used the correct
mean-reversion rate α̂. There is mean reversion because the expected excess return
(ᾰ− α̂) (r + ᾰ)−1

(
D(t)− D̄

)
is negative (positive) when dividends and therefore

prices are above (below) their long-term mean. It can be shown that the entire
term structure of the expected holding-period return varies over time as well.

1.3. A Two-Period Model With Information Processing.

Prices reflect the way in which markets process information, perhaps correctly
or perhaps incorrectly. Our third example shows that when market prices reflect
information which is processed incorrectly, this may lead to return predictability.
Consider the following two-period model. Suppose a risky asset has an unob-

served liquidation value v. The market observes a signal denoted ∆I and believes
that the signal has the form ∆I = τ̆ 1/2v + z, where τ̆ is the market’s possibly
incorrect belief about the precision of the signal. The random variables v and z
are identically and independently distributed as N(0, 1). The variable ∆I has a
simple signal-plus-noise form. The initial price P0 is normalized to zero at time
t = 0. Upon observation of the signal at time t = 1, the market’s expectation
of the asset’s liquidation value changes to P1. At time 2, the liquidation value v
is realized. The empirically correct value τ̂ of the precision parameter is possibly
different from the market’s belief τ̆ .
The two periods in this simple model are quite different. Assuming no discount-

ing, the expected return and price volatility over the period from t = 0 to t = 1
are given by

(10) Ê{P1 − P0 |∆I} =
τ̆ 1/2

1 + τ̆
∆I, V̂ar

1/2
{P1 − P0 |∆I} =

τ̆ 1/2(1 + τ̂)1/2

1 + τ̆
.

In contrast, over the period from t = 1 to t = 2, the expected return and price
volatility are given by
(11)

Ê{v−P1|∆I} =

(
τ̂ 1/2

1 + τ̂
− τ̆ 1/2

1 + τ̆

)
∆I, V̂ar

1/2
{v−P1|∆I} =

(
(1 + τ̆ − τ̂ 1/2τ̆ 1/2)2 + τ̆

)1/2
1 + τ̆

.
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If the market’s beliefs are correct (τ̆ = τ̂), then the expected return for the second
period is zero, and return variances during the two periods are τ̂ (1 + τ̂)−1 and
(1 + τ̂)−1, respectively. Otherwise, various patterns in the expected return and
volatility are possible depending on particular sets of parameters τ̆ and τ̂ .
The predictions are quite different for the two periods. For example, for different

parameter values, the first-period volatility may be lower or higher than the second-
period volatility. It is difficult to infer what these discrete-time results imply for
intrinsically dynamic pricing anomalies related to volatility in stationary dynamic
models. Any one-period, two-period, or three-period model, including Daniel,
Hirshleifer and Subrahmanyam (1998), faces the same difficulty.

1.4. Summary of Motivating Examples.

The three motivating examples are all based on modeling market prices as the
result of a single representative agent processing information. The first example
shows that overly pessimistic beliefs about the growth rate of dividends lead to
a higher expected return, thus providing an explanation for the equity premium
puzzle of Mehra and Prescott (1985). The second example shows that a belief
that a mean-reverting dividend process is more persistent than implied by the
actual rate of mean reversion leads to excess volatility and mean reversion in asset
prices, consistent with Shiller (1981). The third example shows that overconfidence
about the precisions of signals can lead to excess volatility and mean reversion.
Overconfidence increases the sensitivity of price changes to information; this makes
the risk premium counter-cyclical, consistent with Campbell and Shiller (1988) and
Fama and French (1989). The intrinsic limitations of a two-period model remind
us that dynamic steady-state models are more appropriate for studying return
dynamics.
All three of these motivating examples generate returns predictability by assum-

ing that the market’s beliefs are different from the beliefs of an economist who
knows the correct parameter values. In what follows, we address the challeng-
ing problem of generating return predictability in a model in which the traders
have different beliefs but their beliefs agree, on average, with the beliefs of the
economist. Next, we present a dynamic, continuous-time model in which we show
that market beliefs deviate from empirically correct beliefs due to the way in which
beliefs about private information are aggregated.

2. A Competitive Model With Disagreement
and Information Processing

To examine return predictability when markets aggregate traders’ heterogeneous
beliefs about privately observed information, we present an intuitively realistic
model of how traders think and trade.
Given their individual beliefs, traders behave in a rational manner. They collect

public and private information, construct signals from the information, and use
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the signals to predict asset returns. In doing so, traders apply Bayes Law correctly
and calculate target positions based on what their signals tell them. Although each
individual trader behaves rationally, the model exhibits collective irrationality in
that each trader is relatively overconfident, believing that the precision of his own
private information flow is greater than other traders believe it to be. Without
this element of collective irrationality, it would be difficult to construct a model in
which trade occurs without adding noise traders, liquidity traders, or other traders
who trade expecting to lose money.

2.1. Model Assumptions

There are N risk-averse competitive traders who trade at price P (t) a risky asset
in zero net supply against a risk-free asset which earns constant risk-free rate r > 0.
The risky asset pays out dividends at continuous rate D(t). Dividends follow

a stochastic process with mean-reverting stochastic growth rate G∗(t), constant
instantaneous volatility σD > 0, and constant rate of mean reversion αD > 0:

(12) dD(t) := −αD D(t) dt+G∗(t) dt+ σD dBD(t).

The dividend D(t) is publicly observable, but the growth rate G∗(t) is not observed
by any trader. The growth rate G∗(t) follows an AR-1 process with the mean-
reversion αG and volatility σG:

(13) dG∗(t) := −αG G
∗(t) dt+ σG dBG(t).

If both the dividend D(t) and G∗(t) were observable, then the price of the asset
would equal its fundamental value given by the generalization of the Gordon growth
formula

(14) F (t) =
D(t)

r + αD

+
G∗(t)

(r + αD)(r + αG)
.

Each trader observes public and private signals about the growth rate G∗(t), then
constructs an estimate of the fundamental value F (t) by replacingG∗(t) in equation
(14) with its expectation.
For all dates t > −∞, each trader n chooses consumption cn(t) and inventories

of the risky asset Sn(t) to maximize an expected constant-absolute-risk-aversion
(CARA) utility function U(cn(s)) := −e−A cn(s) with risk aversion parameter A.
Letting ρ > 0 denote a time preference parameter, trader n solves the maximiza-
tion problem

(15) max
{cn,Sn}

En
t

{∫ ∞

s=t

e−ρ(s−t) U(cn(s)) ds

}
,

where the wealth Wn(t) follows the process

(16) dWn(t) = r Wn(t) dt+ Sn(t)
(
dP (t) +D(t) dt− r P (t) dt

)
− cn(t) dt.
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Each trader takes prices in equation (16) as given.
We use En

t {. . .} to denote the expectation of trader n calculated with respect
to his information at time t, which consists of both private information as well as
public information extracted from the history of dividends and prices, as discussed
below. The information structure is the same as the smooth-trading model of Kyle,
Obizhaeva and Wang (2016).
Let Gn(t) := En

t {G∗(t)} denote trader n’s estimate of the growth rate. Let Ω
denote the steady state error variance of the estimate of G∗(t), scaled in units of
the standard deviation of its innovation σG:

(17) Ω := Var

{
G∗(t)−Gn(t)

σG

}
.

If time is measured in years, for example, Ω = 4 has the interpretation that the
estimate of G∗(t) is “behind” the true value of G∗(t) by an amount equivalent to
four years of volatility unfolding at rate σG per year.
Each trader n observes a continuous stream of private information In(t) about

the scaled unobservable growth rate G∗(t):

(18) dIn(t) := τ 1/2n

G∗(t)

σG Ω1/2
dt+ dBn(t).

Each trader is certain that his own private information In(t) has high precision
τn = τH and the other traders’ private information has low precision τm = τL for
m ̸= n, with τH > τL ≥ 0.
Since the equilibrium price reveals the average signal in the symmetric model,

each trader infers the average of other traders’ private signals from the market
price.
Each trader also infers information I0(t) about the growth rate from the dividend

stream D(t). To simplify notation for the analysis of the information content of
dividends, define dI0(t) :=

(
αD D(t) dt+ dD(t)

)
/σD with dB0 := dBD and

(19) τ0 := Ω σ2
G/σ

2
D.

Then the process

(20) dI0(t) := τ
1/2
0

G∗(t)

σG Ω1/2
dt+ dB0(t)

is informationally equivalent to the process D(t), where dB0, dBG, dB1,. . . ,dBN

are independent Brownian motions.
Since its drift is proportional to G∗(t), each increment dIn(t) in equation (18) is

a noisy observation of the unobserved growth rate G∗(t). In equations (18) and
(20), the parameter σG Ω1/2 is a scaling coefficient, which scales τn so that τndt is
the R2 of the predictive regression of G∗(t)−Gn(t) on dIn(t). This is a convenient
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way to model information flow because the precision parameter τn measures the
informativeness of the signal dIn(t) as a signal-to-noise ratio describing how fast
the information flow generates a signal of a given level of statistical significance.
Agreement to disagree—a realistic compromise between rational models and be-

havioral finance models—is the mechanism that generates trade in our model.
Traders believe that they can make profits at the expense of others, even though
it is common knowledge that aggregate profits are equal to zero. Traders agree
on the precision τ0 of public information and agree to disagree about the precision
of private information. It is a common knowledge that each trader believes his
own signal has high precision τH while signals of the others have low precision τL.
Symmetry implies that traders agree on the total precision

(21) τ := τ0 + τH + (N − 1) τL.

Note also that by construction all traders agree about the variance of informa-
tion flow in (18) and (20). It would be inappropriate to have traders disagree
about variances of diffusion processes, since they can be estimated as precisely as
necessary by observing them continuously.
The model is not consistent with the Bayesian Nash equilibrium concept of

Harsanyi because traders’ beliefs about precision parameters are inconsistent with
a common prior distribution. According to Harsanyi’s approach, each trader’s own
type—characterizing his preferences and beliefs—is drawn randomly from a set of
possible types at the beginning of the extended game, and each trader updates his
beliefs using Bayes law; traders know their own type and share a common prior,
i.e., they all “agree” about the structure of the game. In models with agreement to
disagree, traders do not share a common prior, but each trader does apply Bayes
law consistently.
GivenN , the parameters αG, σG, τH , and τL describe the traders’ belief structures

concerning information about the unobserved growth rate. Due to symmetry, these
belief structures imply the same values of Ω, τ0, and τ for all traders. The entire
structure of the model is common knowledge. Traders agree about all parameter
values, except that traders symmetrically agree to disagree about the precisions
τH and τL of their own and other traders’ signals.

2.2. Model Solution

Stratonovich-Kalman-Bucy filtering implies that the steady-state error variance
is given by

(22) Ω := Var

{
G∗(t)−Gn(t)

σG

}
=

1

2 αG + τ
.

Trader n’s estimate Gn(t) can be conveniently written as the weighted sum of
three sufficient statistics H0(t), Hn(t), and H−n(t), which summarize the infor-
mation content of dividends, the trader’s private information, and other traders’
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private information, respectively. Define

(23) Hn(t) :=

∫ t

u=−∞
e−(αG+τ) (t−u) dIn(u), n = 0, 1, . . . , N,

and

(24) H−n(t) :=
1

N − 1

∑
m=1,..,N,m ̸=n

Hm(t).

These formulas have an intuitive interpretation. The importance of each bit of
information dIn about the growth rate decays exponentially at a rate αG + τ , i.e.,
the sum of the natural decay rate of fundamentals αG and the speed at which the
others learn about fundamentals τ .
The filtering formulas further imply that trader n’s expected growth rate is

(25) Gn(t) := σG Ω1/2
(
τ
1/2
0 H0(t) + τ

1/2
H Hn(t) + (N − 1) τ

1/2
L H−n(t)

)
.

When forming his estimate, each trader assigns a larger weight τ
1/2
H to his own

signal and a smaller weight τ
1/2
L to each of the other traders’ signals. Trade occurs

as a result of the different weights used by traders.
Each trader calculates a target inventory proportional to his risk tolerance and

the difference between his own valuation and the average valuation of other traders.
The following theorem characterizes equilibrium for the continuous-time model
with perfect competition.

THEOREM 1: There exists a steady-state Bayesian-perfect equilibrium with sym-
metric linear strategies and with positive trading volume if and only if the three
polynomial equations (A-19)–(A-21) have a solution, and traders’ demand curves
are downward sloping. Such an equilibrium has the following properties:

1) There is an endogenously determined constant CL > 0, defined in equa-
tion (A-12), such that trader n’s optimal inventories Sn(t) are

(26) Sn(t) = CL (Hn(t)−H−n(t)).

2) There is an endogenously determined constant CG > 0, defined in equa-
tion (A-10), such that the equilibrium price is

(27) P (t) =
D(t)

r + αD

+ CG
Ḡ(t)

(r + αD)(r + αG)
,

where Ḡ(t) := 1
N

∑N
n=1Gn(t) denotes the average of traders’ expected growth

rates.
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Formula (27) is similar to the Gordon growth formula in equation (2) in the
first motivating example and equation (6) in the second motivating example, with
two important exceptions. First, the growth rate Ḡ(t) is the average of traders’
expected growth rates, not a particular trader’s growth rate. Second, the Gordon
growth formula would imply that CG = 1, but we will show CG < 1 below.
The competitive equilibrium here is very different from the imperfectly compet-

itive smooth-trading equilibrium of Kyle, Obizhaeva and Wang (2016). The most
important difference is that competitive traders do not smooth their trading out
over time but instead immediately adjust inventories to levels equal to the target
inventory CL

(
Hn(t)−H−n(t)

)
.

In the symmetric equilibrium, the price instantly and fully reveals all information∑N
n=1Hn(t). From equation (25), it is straightforward to show that the equilibrium

price (27) can be written as

(28) P (t) =
D(t)

r + αD

+ CG
σG Ω1/2

(r + αD)(r + αG)
H(t),

where the weighted-average signal H(t) is defined as

(29) H(t) = τ
1/2
0 H0(t) + τ

1/2
I

N∑
n=1

Hn(t)

and parameter τI is defined as

(30) τ
1/2
I :=

τ
1/2
H + (N − 1)τ

1/2
L

N
.

The parameter τI essentially plays a role of “implied” symmetric beliefs, except
that the implied error variance is not consistent with the definition of Ω in this
equation. Even though the price instantly reveals all information, we will show
next that there is time-series momentum.

3. Price Dampening

The way in which prices average dynamic information with disagreement tends
to dampen price fluctuations and lead to time-series momentum in returns. In this
section, we explain why this occurs.

3.1. Intuition Behind Two Dampening Effects

To better explain the intuition behind momentum patterns, we plug the estimates
of the growth rates (25) into the equilibrium price (27) and write it in a slightly
different form as
(31)

P (t) =
D(t)

r + αD

+
CG σG Ω1/2

(r + αD)(r + αG)

(
τ
1/2
0 H0(t) + CJ

(
1
N
τH + N−1

N
τL
)1/2 N∑

n=1

Hn(t)

)
.
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Here, the constant CJ denotes the ratio of the average of the square roots to the
square root of the average of precisions:

(32) CJ :=
(

1
N
τ
1/2
H + N−1

N
τ
1/2
L

) (
1
N
τH + N−1

N
τL
)−1/2

.

If CG = CJ = 1, then equation (31) implies that prices are equal to the expected
fundamental value of the asset as if all information in the market—both public
and private—were included into the information set. The prices are described by
the Gordon growth formula with the estimate of the growth rate equal to the
weighted sum of a signal H0(t) and a signal

∑N
n=1Hn(t) with precisions of τ0 and

1
N
(τH +(N − 1)τL), respectively. This is a full-information benchmark. It assumes

that the precision of each signal is the average of traders’ different beliefs about its
precision. When the two constants CG and CJ are both equal to one, there is no
returns momentum when the correct empirical precisions of the signals are equal
to the average 1

N
τH + N−1

N
τL.

When CG ̸= 1 or CJ ̸= 1, returns are generally predictable. The following
proposition states the important result that the constants CG and CJ in equation
(31) are usually less than one, thus dampening equilibrium prices and leading to
momentum.

PROPOSITION 1: Assume that traders are correct on average in the sense that
the empirically correct precision of private signals is 1

N
τH + N−1

N
τL. If τH = τL,

then CJ = 1 and CG = 1; the expected return is equal to the risk-free rate, and there
is no dampening effect. If τH > τL, implying traders are relatively overconfident,
then

(33) 0 < CJ < 1 and 0 < CG ≤

1 +
N − 1

N

(
τ
1/2
H − τ

1/2
L

)2
r + αG


−1

< 1,

implying prices are “dampened” relative to a full-information benchmark, and this
is associated with returns momentum.

As disagreement decreases, both constants CG and CJ converge to one, and mo-
mentum goes away. The proof is presented in Appendix A.2. Next we discuss the
intuition for this result.
First, the constant CJ ≤ 1 governs the weights placed on signals when traders’

expectations are averaged into the market price. Since the price is fully revealing,
traders’ expectations are different because the traders have different beliefs, not
because they have different information; therefore, CJ measures beliefs aggregation.
When traders are overconfident (τH > τL), Jensen’s inequality implies CJ < 1.
The equilibrium price (27) or (31) averages valuations of traders with estimates

of the growth rate (25) that reflect traders’ information using weights proportional
to the square roots of precisions. Averaging beliefs across traders leads to price
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dampening since the average of square roots is less than the square root of the av-
erage. Disagreement about the precision of private information makes the average
valuation less sensitive to aggregate information in comparison to a full-information
benchmark.
Second, the endogenous constant CG ≤ 1 reflects a Keyensian beauty contest. In

the competitive model with overconfident traders, we formally prove in Proposition
1 that CG satisfies 0 < CG < 1 when τH > τL and CG = 1 when τH = τL. This
endogenously determined coefficient CG makes equations (27) and (31) differ from
the average valuation of traders so that the market price is less sensitive to changes
in the average growth rate estimate of traders than if it were defined by applying
the Gordon growth formula. This effect is a result of short-term speculative trading
based on a specific endogenous dynamics of disagreement about a common value
of a growth rate. Each trader disagrees with others about how to interpret private
information. He also expects others to learn about their mistakes and revise their
valuations in the short-term future, yet ultimately converging in the direction of
his own valuation in the long run. Since each trader may expect other traders
to revise their expectations in the “wrong” direction in the short run, the trader
will attempt to profit from these adjustments by trading ahead of them, even if
this means trading against his own long-term valuation. We provide a formal
analysis of expectations dynamics in Appendix A.3. This short-term trading due
to the endogenous Keynesian beauty contest dampens prices relative to the average
fundamental valuation in the market.
The mechanism in our model is entirely different from the mechanism in Allen,

Morris and Shin (2006), where prices are also not equal to the expectation of
fundamentals under a full-information benchmark because public information tends
be over-weighted relative to private information. In their model, traders share
a common prior, they learn about the average private signal in the presence of
noise trading, and the price reacts sluggishly to changes in private information,
thus creating an impression of momentum in the realized price paths ex post.
Their mechanism based on noisy prices is unrelated to the beliefs aggregation and
Keynesian beauty contest in our model. In our symmetric model, all information
is fully revealed at any moment of time; prices have a non-zero drift even though
there is no noise in prices.

Conceptual Point Related to Modeling Private Information.

Our results relate to an important conceptual point about how to model infor-
mation in a market microstructure setting. Whether in a static or dynamic setting,
beliefs aggregation depends crucially on how information is scaled. We illustrate
this point in Appendix A.4 using a simple one-period model which is similar to
our dynamic model.
Competitive traders trade a risky asset with a liquidation value v ∼ N(0, 1/τv).

All traders obtain public and private information. Traders agree to disagree about
the precision of private signals. Information is scaled in two ways.



18

In the first case, information is modeled—as in most microstructure papers—as
v + ϵ with v ∼ N(0, τ−1

v ) and ϵ ∼ N(0, τ−1
ϵ ); traders disagree about the value of

the parameter τϵ, i.e., more precise information is modeled as a lower variance of
the noise component. The variance of the signal v + ϵ is τ−1

v + τ−1
ϵ , and traders

disagree about this variance.

In the second case, information is modeled as τ
1/2
n v + ϵ with v ∼ N(0, τ−1

v ) and
ϵ ∼ N(0, 1); traders disagree about parameter τn; more precise information is
modeled as a larger weight assigned to signals. Each trader believes his private
signal has precision τH and other private signals have precisions τL with τH > τL.

The variance of the signal τ
1/2
n v + ϵ is τn τ

−1
v + 1, and traders disagree about this

variance as well.
The only difference between the two models concerns the manner in which infor-

mation is scaled. When traders share a common prior, the scaling of information
does not matter because the information can be re-scaled by multiplying it by an
appropriate constant. When traders do not share a common prior, they disagree
about the appropriate scaling constant.
The equilibrium prices in these two cases have strikingly different properties.
In the first case, the equilibrium price is equal to the expectation of a fundamental

value as if all public and private information were included into information set;
intuitively, information i0 is assigned precision τ0, each private information in is
assigned the average precision 1

N
(τH + (N − 1)τL). In this model, there is no CJ

effect. This one-period model always generates CJ = 1.
In the second case, the equilibrium price can be thought of as the expectation

of a fundamental value in a full-information case as well; whereas information i0
is still assigned precision τ0, private information in is not assigned the average

precision, but instead obtains the precision
(

1
N
(τ

1/2
H + (N − 1)τ

1/2
L )

)2
. Due to

Jensen’s inequality, this imputed precision is lower than the average precision.
This is the same mechanism generating beliefs aggregation in our continuous-time
model; it effectively implies CJ < 1.
Which of these two ways of modeling private information is preferable? We

believe the second way of modeling information is preferable because it is consistent
with a dynamic setting. The noise term of a discrete signal naturally maps into a
diffusion term in information flow, whereas the signal term maps into its drift. The

first approach results in a dynamic signal like v∆t+τ
−1/2
n ∆Z with Var{∆Z} = ∆t.

The second approach results in a dynamic signal like τ
1/2
n v∆t + ∆Z. In the first

approach, the diffusion variance of the signal per unit of time is τ−1
v ∆t+τ−1

n → τ−1
n

as ∆t → 0; traders disagree about this variance because they disagree about τn.
In the second approach, the diffusion variance of the signal per unit of time is
τnτ

−1
v ∆t + 1 → 1 as ∆t → 0; traders agree that the diffusion variance of the

signal is one, the variance of a standardized Brownian motion. Our continuous-
time model is consistent with this second approach because it maps directly into
equations (18) and (20). In a continuous-time model, a trader can infer the diffusion
variance with high accuracy by observing the information process over short periods
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of time. Therefore, it does not make sense for one trader to assume that another
trader observes the diffusion variance of his signal incorrectly.
We conclude that, taken to a continuous-time setting, the first approach is not

consistent with minimal rationality; therefore, the second approach, consistent with
the continuous-time model in this paper, is the correct one.
If we think of a one-period model as a story about a dynamic model, then

it is appropriate to assume that traders should not be modeled as disagreeing
about the variance of the noise term in a one-period model either. To illustrate
this, assume that the ratio τH/τL is a somewhat large number, say τH/τL = 100.
Suppose a trader believes himself to have precision τH with probability 0.9999
and τL with probability 0.0001. Suppose the trader observes a signal which is
plus-or-minus one standard deviation from its mean under the assumption the
trader has precision τL. Under the assumption that the trader has a precision τH ,
the same signal is approximately plus-or-minus ten standard deviations from its
mean. Since the probability of a ten standard deviation event is virtually zero,
the trader would revise his estimate of having a high-precision from 0.9999 down
to approximately zero. More realistically, traders are likely to standardize signals
so that their variances are equal to one. This effectively implies that the second
modeling approach is the correct one.

3.2. Properties of Momentum

The equilibrium prices are dampened relative to the estimate of fundamental
value due to CG < 1 and CJ < 1, and therefore returns exhibit momentum. We
will show that, consistent with empirical evidence, these momentum effects are
more pronounced when the degree of disagreement is larger, markets are more
liquid, and trading volume is more substantial.
We start by discussing several properties of the equilibrium.
First, the market tends to be more liquid when there is more disagreement.

Define λ as

(34) λ :=
CGσGΩ

1/2τ
1/2
I

(r + αD)(r + αG)CL

.

Then, using equations (26) and (27), the equilibrium price can be written as

(35) P (t) =
D(t)

r + αD

+ λ
CL

τ
1/2
I

(
τ
1/2
0 H0(t) + τ

1/2
I N H−n(t)

)
+ λ Sn(t).

In our competitive model, the parameter λ can be interpreted as permanent price
impact, since it quantifies how accumulated inventories Sn(t) affect the price level.
A smaller price impact parameter λ implies a deeper or more liquid market. The
market tends to be more liquid when there is more disagreement, since traders are
more willing to provide liquidity to others. Figure 1 shows that λ decreases in the
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degree of disagreement τH/τL.
1
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Figure 1. λ against τH/τL while fixing τ .

Second, using equation (26), we can calculate expected positions as

E{|Sn(t)|} = CL E{|Hn(t)−H−n(t)|}

= CL

(
2
π
Var {Hn(t)−H−n(t)}

)1/2
,

(36)

as well as expected position changes related to trading volume N E{|dSn(t)|}.
Figure 2 illustrates how position sizes and trading volume depend on the degree

of disagreement.2 The size of positions E{|Sn(t)|} increases in the degree of dis-
agreement τH/τL, as traders tend to hold larger positions in more liquid markets.
Trading volume tends to increase with disagreement as well until a reasonably large
level of τH/τL ≈ 10 for the selected parameter values.
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Figure 2. E{|Sn(t)|} and N E{|dSn(t)|} against τH/τL while fixing τ .

Figure 3 illustrates that both constants CJ and CG decrease when the degree of
disagreement τH/τL increases while fixing total precision. Disagreement amplifies
the dampening effect of beliefs aggregation CJ , since it magnifies the effect of
Jensen’s inequality. Disagreement also leads to more pronounced price dampening

1Parameter values are τ = 7.4, r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1,
τ0 = Ωσ2

G/σ
2
D = 0.0054, and N = 100.

2Parameter values in figures 2 and 3 are the same as those in figure 1.
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due to the Keynesian beauty contest CG, since traders have greater incentives to
engage in short-term trading in more liquid markets.
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Figure 3. CJ and CG against τH/τL while fixing τ .

The following proposition describes a limiting case.

PROPOSITION 2: Assuming τL = 0, τ0 → 0, and N → ∞, the three equations
characterizing equilibrium (A-19)–(A-21) have a closed-form solution presented in
equations (A-51)–(A-53), implying limN→∞CG = (r + αG)/(r + αG + τ) < 1, and
limN→∞CJ = 0.

The proof is in Appendix A.5. Proposition 2 implies that as the number of traders
increases, CJ converges to zero and CG converges to a constant limit which is
less than one. Each trader believes that the other traders observe signals with no
information and trade aggressively against one another’s perceived mistakes. Even
though the market is very liquid, substantial momentum is generated by price
dampening.
The following proposition describes how momentum depends on risk aversion.

PROPOSITION 3: The constants CJ and CG do not depend on risk aversion A.

It can be shown that parameters CJ and CG remain the same when the risk aversion
parameter A changes. The proof is in Appendix A.6. The level of risk aversion
does not affect the magnitude of momentum. This contrasts our model from other
models, such as Vayanos and Woolley (2013), where momentum exists largely due
to the limited risk bearing capacity of traders; in their model, larger risk aversion
leads to less liquidity and more pronounced momentum. In our paper, momentum
is the result of endogenous beliefs dynamics.

4. Beliefs Aggregation and the Representative
Agent

In this section, we explain how to think about beliefs aggregation using the
construct of the representative agent. We show how to construct beliefs for the
representative agent in our model with heterogenous beliefs, and we show that
these beliefs are not intuitively simple.
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4.1. Beliefs Aggregation

Aggregation is one of the fundamental issues in economics, and economists have
extensively studied it from multiple perspectives. We can think of the market
as a mechanism which aggregates the public and private information of market
participants, their preferences, their wealth, and their beliefs.
There is a long literature about aggregation of information. Hayek (1945) writes

that designing a rational economic order requires overcoming the key problem
that constantly changing information, necessary for making decisions, is dispersed
among separate individuals rather than readily available to a central planner. He
further suggests that if market participants act in their own interests, the price
system is a mechanism that will share information and help to bring about the
outcome which “might have been arrived at by one single mind possessing all the
information which is in fact dispersed among all the people involved in the process.”
The aggregation is often not straightforward. As discussed in Arrow (1951), for

example, it is often difficult to aggregate diverse preferences. One representative
agent can aggregate preferences of market participants only under restrictive as-
sumptions, as in our case where traders have exponential utilities. More generally,
it is possible to deal with this issue by replacing a single representative agent with
a weighted set of agents with different preferences.
Lucas (1978) and Mehra and Prescott (1985) derive insights about economic sys-

tems using representative agent models. In these models, all agents act in a manner
such that their cumulative actions might as well be the actions of one agent max-
imizing his expected utility function. The representative-agent assumption allows
modelers to focus on economically important properties of the economy—especially
when researchers are interested in aggregates such as asset prices—instead of car-
rying along numerous parameters describing each agent in the models. This idea is
closely related to the paradigm of rational expectations equilibrium; an economist
with rational expectations is effectively assumed to articulate Muth’s “relevant
theory.”
Instead of focusing on aggregation of preferences, we model the market as a

mechanism which aggregates the beliefs of market participants with different in-
formation. Complicated issues related to aggregation of preferences are not relevant
for our paper since the risky asset is in zero net supply. Aggregation of information
is somewhat simplified, because all relevant information is fully revealed in market
prices in our symmetric model, but there are yet non-obvious effects due to differ-
ent pieces of information being dispersed among traders. Xiong and Yan (2010)
and Jouini and Napp (2007) analyze the aggregation of beliefs in settings with no
private information but with emphasis on the aggregation of traders’ wealth. In
Xiong and Yan (2010), the representative agent’s belief turns out to be the wealth-
weighted average belief of traders. In Jouini and Napp (2007), the consensus belief
is a weighted-average belief with weights related to risk tolerance of individual
traders.
To quantify how the market aggregates beliefs, it is natural to ask whether there



23

exists a set of parameter values defining a prior distribution which can be attributed
to “the market.” If so, then it is also natural to compare this set of parameter
values with the empirically correct parameter values used by the economist. If the
market’s parameter values are the same as the economist’s parameter values, then
the return exhibits no “anomalies;” otherwise there will be predictability.
To implement this idea precisely, we formally introduce the construct of a repre-

sentative agent. We define the representative agent as a hypothetical trader with
the specific beliefs such that he would choose to buy and hold the aggregate en-
dowment (of zero). The assumption of zero net supply implies that the expected
return on the risky asset is always equal to the risk-free rate under the beliefs of
the representative agent. The beliefs of the representative agent in our model are
therefore essentially beliefs about model parameters which are consistent with the
risk-neutral probabilities introduced in option pricing theory by Merton (1973).
We next show that the representative agent in our model typically disagrees with

traders about some parameters that the traders themselves do not disagree about.
Researchers thus may need to assign beliefs to the representative agent that are
quite different from “consensus” beliefs. Since the link between representative-
agent models and their corresponding “first principles” micro-foundations is often
not intuitive, reliance on the construct of the representative agent in the literature
must not be overly simplified. For example, it may make sense to talk about
how traders think and trade, but it may not make sense to talk about how the
representative agent thinks and trades.

4.2. The Beliefs of the Representative Agent in the Model

By definition, the beliefs of the representative agent are such that levels and
dynamics of his estimates of fundamental value must coincide with market prices.
We assume that the representative agent has beliefs which are consistent with the
overall information structure described in section 2.1, with the exception that he
may assign different values to the parameters αG, σG, and τn. As in the motivating
examples, we indicate with “breves” (“ ˘ ”) the possibly different parameter values
ᾰG, σ̆G, and τ̆n assigned by the representative agent. The representative agent
may interpret signals differently from the traders in the model and assign different
values Ω̆, τ̆0, τ̆ , and τ̆I to corresponding parameters (defined below). Since the
representative agent agrees with the traders about the values of N , αD, σD, r, ρ,
and A, we write these parameter values without breves.
Common-sense intuition suggests that since all traders in the market agree about

the value of parameters such as αG and σG (and these values are common knowl-
edge), then the representative agent will have the same beliefs about these pa-
rameters as well. Similar intuition also suggests that if traders disagree about the
value of other parameters such as τn, then the representative agent’s belief about
those parameters will be equal to some appropriately weighted average of beliefs
of traders. For example, this intuition suggests that the representative agent will
assign to each private signal the same precision, equal to some weighted average
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of precisions τH and τL. In contrast to this common-sense intuition, we show that
the beliefs of the representative agent may differ from the beliefs suggested by this
common-sense intuition. This result is similar to results on beliefs aggregation,
where additional degrees of freedom must be be introduced to construct a repre-
sentative agent. Examples include the discount factor in Jouini and Napp (2007)
and an adjustment to aggregate wealth in Calvet, Grandmont and Lemaire (2001).
We will first briefly outline information available to the representative agent.

The representative agent believes that the unobserved growth rate G∗(t) follows
the process

(37) dG∗(t) := −ᾰG G
∗(t) dt+ σ̆G dBG(t).

The market price aggregates the information content of the divided D(t) and N
signals I1(t), . . . , IN(t). To keep matters simple, we assume a symmetric informa-
tion structure in which the representative agent assigns the same precision τ̆I to all
private signals. Otherwise, the representative agent processes information exactly
like traders in the model. Each signal In(t) then produces a continuous stream of
information given by

(38) dIn(t) := τ̆
1/2
I

G∗(t)

σ̆G Ω̆1/2
dt+ dB̆n(t), n = 1, . . . , N,

where dB̆n(t) = dBn(t) +
(
τn/(σGΩ

1/2) − τ̆I/(σ̆GΩ̆
1/2)
)
G∗(t)dt, and the represen-

tative agent believes dBG, dB̆1, . . . ,dB̆N to be independent Brownian motions. To
model dividend-information, define dI0(t) :=

(
αDD(t)dt+dD(t)

)
/σD, dB0 := dBD,

and

(39) τ̆0 :=
Ω̆ σ̆2

G

σ2
D

.

Then dividend-information can be written

(40) dI0(t) := τ̆
1/2
0

G∗(t)

σ̆G Ω̆1/2
dt+ dB0(t).

The representative agent believes that the total precision of information is given
by

(41) τ̆ := τ̆0 +N τ̆I .

The inference problem of the representative agent is also analogous to the infer-
ence problem of traders discussed in section 2. Let Ĕt{. . .} and V̆art{. . .} denote
the representative agent’s expectations and variances calculated with respect to
his information at time t. The history of each information flow In(t) can be sum-
marized by a sufficient statistic H̆n(t) defined as

(42) H̆n(t) :=

∫ t

u=−∞
e−(ᾰG+τ̆) (t−u) dIn(u), n = 0, 1, . . . , N.
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Combining private signals and the public signal, define the aggregate sufficient
statistic H̆(t) as the linear combination of H̆0(t) and H̆n(t), n = 1, . . . , N , given
by

(43) H̆(t) = τ̆
1/2
0 H̆0(t) +

N∑
n=1

τ̆
1/2
I H̆n(t).

Since the representative agent has symmetric beliefs, the statistic H̆(t) defined in
(43) can be extracted from market prices. Then the representative agent’s estimate
of the growth rate Ğ(t) can be written

(44) Ğ(t) := σ̆G Ω̆1/2 H̆(t)

with steady-state error variance

(45) Ω̆ := V̆ar

{
G∗(t)− Ğ(t)

σ̆G

}
=

1

2 ᾰG + τ̆
.

The generalization of the Gordon growth formula under the representative agent’s
yields the restriction

(46) P (t) = Ĕt{F (t)} =
D(t)

r + αD

+
Ğ(t)

(r + αD)(r + ᾰG)
,

where the price P (t) on the left-hand side is defined in (28). In terms of H̆(t), the
same restriction can also be written

(47) P (t) =
D(t)

r + αD

+
σ̆G Ω̆1/2

(r + αD)(r + ᾰG)
H̆(t).

Since the risky asset is in zero-net supply, the representative agent must have beliefs
such that the equilibrium price coincides with his estimate of the fundamental value
P (t) = Ĕt{F (t)} without any adjustment for a risk premium.
To ensure that the restriction (47) holds, the beliefs for the representative agent

must satisfy several conditions. First, signals Hn(t) determining P (t) on the right
side of equation (28) must must coincide with signals H̆n(t) determining Ĕt{F (t)}
on the right-hand side of (47). This implies that the decay factor ᾰG + τ̆ in the
definition of H̆n(t) in equation (42) must coincide with the decay factor αG + τ
in the definition of Hn(t) in equation (23) and results in the first restriction ᾰG +
τ̆ = αG + τ . Second, the coefficients of the random variables Hn(t) and H̆n(t)
must match in equation (47) equating the equilibrium price and the representative
agent’s estimate of the fundamental value. This leads to two additional restrictions
on the model parameters.
The three restrictions imply solutions for the three parameters ᾰG, σ̆G, and τ̆I

describing beliefs of the representative agent that are stated in Theorem 2:
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THEOREM 2: Assume the representative agent believes there are N traders whose
private signals have the same precisions τ̆I . Then the representative agent’s beliefs
about the parameters ᾰG, σ̆G, and τ̆I are the following functions of the model pa-
rameters:

(48) τ̆I = τI
CG (r + αG + τ)

r + αG + CG (τ0 +N τI)
< τI ,

(49) ᾰG = αG +
r + αG

r + αG + CG (τ0 +N τI)

(
τ − CG (τ0 +N τI)

)
> αG,

(50) σ̆G = σG

( CG (r + αG + τ)

r + αG + CG (τ0 +N τI)

(
1 +

ᾰG − αG

2 αG + τ

))1/2
.

Without loss of generality, the representative agent agrees with traders about the
values of the parameters αD, σD, r, ρ, and A.

Recall that τ and τI are functions of model parameters defined by τ := τ0+ τH +

(N − 1)τL from (21) and τ
1/2
I =

(
τ
1/2
H + (N − 1)τ

1/2
L

)
/N from (30). Also, recall

that CG is a function of model parameters satisfying 0 < CG ≤ 1. Theorem 2 thus
implies that the representative agent’s beliefs are non-intuitive functions of model
parameters N , r, ρ, A, αD, σD, αG, σG, τH , and τL. Contrary to common-sense
intuition, the representative agent assigns values ᾰG and σ̆G which differ from the
market’s consensus values αG and σG.
Aggregation makes the representative agent’s beliefs differ from traders’ beliefs

because beliefs about precisions play two mutually inconsistent roles. On the
one hand, these beliefs determine the weights with which the representative agent
aggregates incoming information into his current estimate of the growth rate in

equation (44); τ̆
1/2
I must be defined as a weighted average of square roots of preci-

sions τ
1/2
H and τ

1/2
L to give traders’ signals appropriate weights to match the current

price levels. On the other hand, these beliefs determine the speed with which the
representative agent’s signals decay; τ̆I would have to be defined as a weighted
average of τH and τL (not square roots) in order for signals to have the appropriate
decay rate αG+ τ in the definitions of H0(t) and Hn(t). In other words, the square
roots of precisions determine price volatility while the precisions themselves deter-
mine price resilience; both would have to match to construct the representative
agent’s beliefs in an intuitive manner. Since τ̆I cannot be defined in both ways at
the same time, it is instead necessary for the representative agent’s beliefs ᾰG and
σ̆G to differ from traders’ beliefs about the value of the corresponding parameters.
If we were to assume ᾰG = αG and σ̆G = σG, there would be no symmetric beliefs
τ̆I that could simultaneously match both the current price level and its dynamics.
As shown in equations (48), (49), and (50), aggregation leads to several effects.

First, the imputed beliefs of the representative agent about the precision of private
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signals may be different from the average beliefs of traders in the market; the price
dampening effects from beliefs aggregation and the Keynesian beauty contest lower
the weight on private signals. Second, the mean-reversion parameter ᾰG of the
representative agent must be larger than the mean-reversion parameter αG of the
traders; this persistency dampening is necessary to make the decay rate of signals
consistent with a lower private signal precision. Third, the volatility parameter σ̆G
of the representative agent can be either higher or lower than the traders’ dividend
growth volatility σG, depending on particular parameters.
While, as emphasized by Samuelson (1965), one trader’s valuation process has

a martingale property, it is well-known that the average of martingales is not
necessarily a martingale when the martingales are not independent. In our model,
the market price, which averages the martingale expectations of traders, does not
have a martingale property. For the price to have a martingale property, beliefs
about the parameters governing the filtration must be changed in a non-intuitive
way.
Our discussion shows that it is misleading—or even incorrect—to infer that pa-

rameters describing the beliefs of the representative agent are simple arithmetic
averages of parameters describing beliefs of traders in a market. The interactions
among individual traders with heterogeneous information in a dynamic model can
make their average beliefs quite different from the beliefs of the representative
agent. Guessing these beliefs without solving the micro-founded model would be
impossible. A detailed modeling of the interactions among individual traders thus
might still be necessary to generate further economic insights in addition to the
representative agent models. The effects discussed above from beliefs aggregation
can significantly affect the dynamics of equilibrium prices.

5. Return Dynamics and Return Predictability

Designing empirical tests is difficult for markets where traders have different
beliefs. Next, we present the endogenously derived structural model for returns and
discuss their time-series properties in the context of our model. This exercise may
provide some guidance for empirical research on return predictability in markets
with heterogenous beliefs, related to Greenwood and Shleifer (2014) and Buraschi,
Piatti and Whelan (2016) among others.
In markets with heterogenous beliefs, it is important to make a distinction be-

tween parameter values defined by traders’ beliefs and empirically correct param-
eter values. Since each trader believes his own private signal is more precise than
other traders believe it to be, these calculations cannot all be empirically correct.
In a symmetric model, in which the empirically correct precision of all traders’
signals are the same, none of the individual traders’ beliefs are correct. Empir-
ically correct model outcomes—such as a trader’s expected profits and expected
paper-trading returns on the risky asset—depend on both the possibly incorrect
parameters used by the traders and the empirically correct parameters used by
the economist.
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For simplicity of discussion, we assume that an economist has perfectly accurate
point estimates of model parameters. This is intuitively consistent with the idea
that the economist has access to an infinite amount of data to estimate model
parameters consistently, assuming the values of the parameters are statistically
identified. More generally, we could think of the economist as a statistician who
estimates model parameters with some degree of statistical error, but this would
take us beyond the scope of this paper. We also assume that the empirically correct
precision of each trader’s signal is the same.
In the specific case when the beliefs of the economist correspond to the beliefs

of the representative agent, the expected return is equal to the risk-free rate. Oth-
erwise, the expected return is different from the risk-free rate, and the expected
return is a complicated function of the entire history of dividends and prices.

5.1. The Economist’s Inference Problem

We start by introducing empirically correct beliefs about model parameters.
As in the motivating examples, we use “hats” to distinguish the beliefs of the
economist from the beliefs of the traders.
The economist with empirically correct beliefs assigns precision τ̂0 to public infor-

mation and τ̂I to each private signal process. From the economist’s perspective, the
total precision is τ̂ = τ̂0 +N τ̂I . From the perspective of each trader (but not the
representative agent), the total precision is τ = τ0 + τH + (N − 1) τL. In general,
these precisions are different (τ̂ ̸= τ).
Except for beliefs about the parameters α̂G, σ̂G, and τ̂I , we assume that the

economist has the same beliefs about parameter values as the traders. In particular,
we assume that the economist and traders agree about the parameters αD and σD.
Note that the value of σD can be inferred with perfect accuracy from observing
the dividend process D(t) continuously.
By placing “hats” over the variables in equations (37), (38), (39), (41), (45),

(42), (43), and (44) above, we obtain definitions of Ω̂, τ̂0, τ̂ , and Ĥn(t) for n =
0, 1, . . . , N , which are consistent with the economist’s expectation operator Êt{. . .}.
The calculations are analogous to those derived under the beliefs of the traders and
the representative agent. We briefly summarize these definitions here:

(51) dG∗(t) = −α̂G G
∗(t) dt+ σ̂G dBG(t),

(52) τ̂0 :=
Ω̂ σ̂2

G

σ2
D

,

(53) τ̂ = τ̂0 +N τ̂I ,

(54) Ω̂ := V̂ar

{
G∗(t)− Ĝ(t)

σ̂G

}
=

1

2 α̂G + τ̂
,
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(55) dI0(t) := τ̂
1/2
0

G∗(t)

σ̂G Ω̂1/2
dt+ dB0(t),

(56) dIn(t) := τ̂
1/2
I

G∗(t)

σ̂G Ω̂1/2
dt+ dB̂n(t), n = 1, . . . , N,

(57) dB̂n(t) = dBn(t) +

(
τn

σGΩ1/2
− τ̂n

σ̂GΩ̂1/2

)
G∗(t)dt,

(58) Ĥn(t) :=

∫ t

u=−∞
e−(α̂G+τ̂) (t−u) dIn(u), n = 0, 1, . . . , N,

(59) Ĥ(t) = τ̂
1/2
0 Ĥ0(t) +

N∑
n=1

τ̂
1/2
I Ĥn(t),

(60) Ĝ(t) := Ê{G∗(t)} = σ̂G Ω̂1/2 Ĥ(t).

As can be seen from equations (23) and (58), both the traders and the economist
construct their sufficient statistics Ĥn(t) and Hn(t) as linear combinations of incre-
ments in information flow, with weights decaying exponentially over time. While
the decay rate used by the representative agent is by definition the same as the
decay rate used by the traders, the correct decay rate used by the economist may
be different. Therefore, in general we have

(61) α̂G + τ̂ ̸= αG + τ = ᾰG + τ̆ .

It can be shown that the sufficient statistics Ĥn(t) and Hn(t), n = 0, 1, . . . , N ,
relate to each other as follows,

(62) Ĥn(t) = Hn(t) + (αG + τ − α̂G − τ̂)

∫ t

u=−∞
e−(α̂G+τ̂) (t−u) Hn(u) du.

If the economist agrees with the traders about both the mean-reversion rate (αG =
α̂G) and the total precision of the signals (τ = τ̂), then the market’s and economist’s
statistics coincide, yielding Ĥn(t) = Hn(t). If the economist disagrees with traders
about how quickly information decays, then the sufficient statistics Ĥn(t) andHn(t)
are different, and the relationship between the two sufficient statistics depends on
the entire history of information flow. For example, the economist may assign
higher weights to the information from the distant past if he believes that dividends
are more persistent or signals are less precise than traders believe. In this case,
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we have αG + τ > α̂G + τ̂ , and equation (62) shows how to obtain the economist’s
sufficient statistic Ĥn(t) for trader n’s signal as a function of the infinite history of
a trader n’s sufficient statistic Hn(t).
We will be mostly interested in the aggregate of the economist’s statistics Ĥ(t)

defined in (59). Since the histories of H0(t) and H(t) can be recovered from the
histories of dividends and prices, equation (62) implies that the economist can
recover his statistics Ĥ(t) from dividends and prices as well. We will show next
that the expected return from the perspective of the economist is not the risk-free
rate, even when traders are correct on average, but rather has a specific closed
form which depends on current and past prices and dividends.

5.2. Predictability of the Instantaneous Return

From the perspective of the economist, the equilibrium return process has a
linear structure that depends on the economist’s sufficient statistics Ĥ(t) and the
market’s sufficient statistics H(t). Using equation (28), which expresses the market
price P (t) as a function of the dividend D(t) and the market’s sufficient statistic
H(t), we can write an equation for dP (t), plug in dHn(t) using equation (23), and
plug in the economist’s beliefs about the dynamics of dIn(t) from equation (56)
and the economist’s estimate Ĝ(t) from equation (60). This yields an equation for
the instantaneous return given by

(63) dP (t) +D(t) dt = r P (t) dt+
(
b Ĥ(t)− a H(t)

)
dt+ dB̂r(t),

where the coefficients a and b are defined as

(64) a :=
σG CG Ω1/2

(r + αD)(r + αG)
(αG + r + τ),

(65) b :=
σ̂G Ω̂1/2

r + αD

+
σG CG Ω1/2

(r + αD)(r + αG)

(
τ
1/2
0 τ̂

1/2
0 + τ

1/2
I N τ̂

1/2
I

)
,

and the instantaneous variance of the return is given by

(66) V̂ar

{
dB̂r(t)

dt1/2

}
=
( σD
r + αD

+
σG Ω1/2 CG τ

1/2
0

(r + αD)(r + αG)

)2
+

(σG Ω1/2 CG)
2 N τI

(r + αD)2(r + αG)2
.

Recall that Êt{. . .} and V̂art{. . .} denote expectation and variance operators based
on the empirically correct beliefs of the economist calculated using information
available at time t. Since dB̂r(t) is a martingale with respect to H(t) and Ĥ(t),
the expected return, conditional on all public and private information, is given by

(67) Êt

{
dP (t) +D(t) dt

dt

}
= r P (t) + b Ĥ(t)− a H(t).
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The expected return is a linear combination of the average sufficient statistic H(t)
of traders and the sufficient statistic Ĥ(t) of the economist. This formula implies a
complicated path-dependent and auto-correlated return process. It generalizes to
a dynamic environment equation (4) in the first motivating example and equation
(8) in the second motivating example.
The expected return is equal to the risk-free rate r P (t) if and only if the be-

liefs of the representative agent happen to coincide with the empirically correct
beliefs of the economist. The model is consistent with the weak rational expecta-
tions hypothesis only for the very particular sets of parameters and beliefs given in
Theorem 2. Theorem 2 suggests that this is unlikely, because the beliefs of the rep-
resentative agent are usually different from the average beliefs of traders. Equation
(67) shows that the expected return is time varying, depending in a complicated
manner on the entire history of past signals. Unless market participants’ beliefs
about parameters are incorrect in a very specific manner, the economist will see
profit opportunities and believe expected-return dynamics to depend on several
state variables.
The analysis reveals that the endogenous time-series momentum due to beliefs

aggregation and the Keynesian beauty contest continues to influence return dy-
namics. Return dynamics are functions of the dynamically changing statistics
used both by traders in the market and by the economist. To develop some in-
tuition, consider a special case in which both traders and the economist agree on
the total precision of the information flow (τ̂ = τ) and the parameters describing
the univariate dynamics of of the growth rate (α̂G = αG and σ̂G = σG); this is one
way to formalize the intuition that traders’ beliefs are “correct on average.” Then,
both Ĥn(t) and Hn(t) mean-revert at the same rate, implying Ĥn(t) = Hn(t), but

Ĥ(t) ̸= H(t) because the weights τ̂
1/2
I and τ

1/2
I in their definitions are different. In

terms of H0(t) and Hn(t), the risk premium can be written

b Ĥ(t)− a H(t) =
σGΩ

1/2

r + αD

(
(1− CG)τ

1/2
0 − CGNτ̂

1/2
I τ

1/2
0

r + αG

(
τ̂
1/2
I − τ

1/2
I

))
H0(t)

+
σGΩ

1/2

r + αD

(
(1− CG)τ

1/2
I +

r + αG + CGτ0
r + αG

(
τ̂
1/2
I − τ

1/2
I

)) N∑
n=1

Hn(t).

(68)

It can be shown that the coefficient on
∑N

n=1Hn(t) in this expression is always
positive. Indeed, its first term with 1− CG > 0 results from the price dampening

effect of the Keynesian beauty contest, and its second term with τ̂
1/2
I − τ

1/2
I > 0

results from the price dampening effect of beliefs aggregation. Thus, there will be
the momentum in price dynamics even when traders and the economist agree on
the total precision of the information flow and other parameters of the model.
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5.3. Implications for VAR Frameworks

We can now write the return dynamics (63) in a more intuitive and familiar
form. Since the price P (t) is a linear combination of D(t) and H(t) from equation
(28) and since Ĥ(t) can be recovered from the history of H(t) using equation (62),
both H(t) and Ĥ(t) can be recovered from the history of prices P (t) and dividends
D(t). This allows us to show that the return process, conditional on all public
and private information, depends in a specific manner on the history of publicly
observable dividends D(t) and prices P (t):

THEOREM 3: The equilibrium return dynamics can be expressed as a linear com-
bination of past publicly observable dividends D(t) and prices P (t),

dP (t) +D(t) dt = r P (t) dt+ α1

(
P (t)− D(t)

r + αD

)
dt

+ α2

(∫ t

u=−∞

(
P (u)− D(u)

r + αD

)
e−(α̂G+τ̂)(t−u) du

)
dt

− α3

(∫ t

u=−∞
e−(α̂G+τ̂) (t−u) dI0(u)

)
dt+ dB̂r(t),

(69)

where the constants α1, α2, and α3 are defined in equations (A-68), (A-69), and
(A-70) in Appendix A.8 and dB̂r(t), defined in equation (A-63), is a martingale
increment with respect to all information at time t.

Equation (69) has a simple intuition. First, investors obtain the unconditional
expected return of r P (t). Second, investors obtain a conditional excess return
proportional to the deviation of the current price P (t) from the unconditional
valuation D(t)/(r + αD). Third, investors obtain a conditional excess return pro-
portional to the past deviations of prices from the unconditional valuation and
the past dividends surprises dI0; the importance of each past component decays
exponentially at rate α̂G + τ̂ .
In general, our structural model implies that whether the coefficients α1, α2, and

α3 are positive or negative depends on how the beliefs of traders about parameter
values deviate from the empirically correct values of these parameters.
For some particular cases, the expected return depends only on the current

dividend-price relationship P (t)−D(t)/(r + αD) and not its past values. By defi-
nition, the expected return equals the risk-free rate when the economist’s correct
parameter values are the same as those of the representative agent.

COROLLARY 1: Assume αG + τ = α̂G + τ̂ . Then we have α2 = 0.

This result states that if the information decay rate αG + τ used by traders
is correct, then the expected return depends only on the current value P (t) −
D(t)/(r + αD) but not its past values; the expected return also depends on past
dividend innovations through the α3-term. Since the representative agent also uses
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the same decay rate as the market, ᾰG + τ̆ = α̂G + τ̂ , the representative agent’s
decay rate is in this case also empirically correct.

COROLLARY 2: Assume α̂G = αG, σ̂G = σG, and τ̂ = τ . Then we have α1 > 0,
α2 = 0, and α3 > 0.

The inequalities in this corollary can be proved by noticing that Ω̂ = Ω and
τ̂0 = τ0 imply τ̂I > τI using Jensen’s inequality.
This result describes a more restrictive case in which the market is assumed to

use the empirically correct values of α̂G and σ̂G. Since τ̂ = τ implies N τ̂I =
τH + (N − 1)τL, the market’s beliefs about the precisions of signals are “correct
on average.” In this sense, traders are relatively overconfident but not absolutely
overconfident or under-confident. The result α2 = 0 says that the expected return
does not depend on past values of P (t)−D(t)/(r+αD). The result α1 > 0 has the
interpretation that prices under-react to private information. This implies that a
price above (below) its unconditional level predicts a high (low) return in the short
run.
The relationship between prices and dividends has been extensively tested in the

literature. Our CARA-normal approach makes it convenient to measure the return
in dollars per share per unit of time, not as a percentage of the asset’s value. It
also makes it convenient to measure the relationship between prices and dividends
as an arithmetic difference, not a ratio. In our model, exponential utility and
normal random variables are simplifications. A model more amenable to empirical
estimation should have constant relative risk aversion rather than constant absolute
risk aversion and log-normal random variables rather than normally distributed
random variables. To apply results from our CARA-normal setting to the empirical
literature, it is useful to think of the difference between the price and unconditional
valuation based on dividends alone, P (t)−D(t)/(r+αD), as expressing a “dividend-
price relationship” analogous to a dividend-price ratio in the empirical literature.
Similar to the auto-regressive equation (69) for the return, the auto-regressive

equations for price-dividend differences P (t)−D(t)/(r + αD) and dividends D(t)
can be derived as well. As reviewed in Cochrane (2008), the VAR system comprised
of these three equations then will be analogous to the VAR framework which is
widely used in the empirical studies of return predictability. Our structural model
provides both theoretical underpinning for these studies and guidance for new
research directions.
For example, our model suggests that when αG+τ ̸= α̂G+τ̂ , it is the entire history

of the dividend-to-price ratios and dividends—not only their current values—that
should be included as explanatory variables in return-forecasting regressions in
order to capture all information relevant for predicting the return. Thus, it may be
warranted to consider more carefully VAR models with multiple lags, like Campbell
and Shiller (1988), rather than a VAR model with one lag as is typical in more
recent literature.



34

Our structural economic model also implies specific non-linear restrictions on the
coefficients governing the relationship between the histories of dividends, prices,
and expected returns, linking them to the deep parameters of the model. The coef-
ficients on the past price-dividend relationship are predicted to decay exponentially
over time. Data on quantities traded can also be added to the VAR system. This
allows the model to connect returns predictability with the holding horizons and
trading volumes of traders. Testing these restrictions is an interesting issue for
future research.

5.4. Predictability of the Holding-Period Return

We can also calculate the holding-period return under the empirically correct
beliefs of an economist who assigns precision τ̂0 to the public signal and precision
τ̂I to each private signal.
Let R(t, t + T ) denote the cumulative un-discounted holding-period mark-to-

market cash flow per share on a fully levered investment in the risky asset from
time t to time t+ T :

(70) R(t, t+ T ) =

∫ t+T

u=t

(
dP (u) +D(u) du− r P (u) du

)
.

From equation (67), we obtain

(71) R(t, t+ T ) =

∫ t+T

u=t

(
b Ĥ(u)− a H(u)

)
du+

∫ t+T

u=t

dB̂r(u).

The following theorem formally describes a structural model for holding-period
returns.

THEOREM 4: The holding-period return R(t, t+ T ) can be represented as

(72) R(t, t+ T ) = β2(T ) Ĥ(t)− β1(T )H(t) + B̄(t, t+ T ),

where time-varying coefficients β1(T ) > 0 and β2(T ) > 0 are defined by

(73) β1(T ) :=
a

αG + τ

(
1− e−(αG+τ)T

)
,

(74)

β2(T ) := b
1− e−α̂GT

α̂G

−a τ
1/2
0 τ̂

1/2
0 +Nτ̂

1/2
I τ

1/2
I

α̂G (αG + τ)

(
1+

α̂Ge
−(αG+τ)T − (αG + τ)e−α̂GT

τ + αG − α̂G

)
,

and B̄(t, t+ T ) is a martingale increment defined in equation (A-76) in Appendix
A.9. The constants a and b are as defined in equations (64) and (65).

The expected holding-period returns depend both on the traders’ interpretations
of information aggregated into statistic H(t) and the economist’s interpretation of



35

information aggregated into statistic Ĥ(t). The average beliefs of traders H(t)
anchor current prices, whereas the empirically correct beliefs of the economist
Ĥ(t) anchor fundamentals and therefore long-run price levels. For example, the
theorem implies that the expected holding-period return is positive if and only if
the economist’s signal Ĥ(t) is greater than β1(T )/β2(T )H(t). We later illustrate
some properties of this relationship.
In a special case when the economist and the traders agree on the total precision

of information flow and other parameters of the model—τ̂ = τ , α̂G = αG, and
σ̂G = σG—we obtain the following proposition:

PROPOSITION 4: If the economist and the traders agree on the total precision
of information flow and other parameters of the model—τ̂ = τ , α̂G = αG, and
σ̂G = σG,—then the expected return can be written
(75)

Et{R(t, t+ T )} =
(
β2(T )− β1(T )

)
τ
1/2
0 H0(t) +

(
β2(T )τ̂

1/2
I − β1(T )τ

1/2
I

) N∑
n=1

Hn(t).

The coefficient on H0(t) monotonically increases in the horizon T for T ≥ T1,
where T1 is defined in (A-100) in Appendix A.12. The coefficient on

∑N
n=1Hn(t)

is positive and monotonically increases in the horizon T .

The expected holding-period returns tend to exhibit momentum due to the price
dampening effects from both beliefs aggregation and the Keynesian beauty con-

test. This makes the coefficient β2(T )τ̂
1/2
I − β1(T )τ

1/2
I on

∑N
n=1Hn(t) positive. In

Appendix A.12, we show that the coefficient can be decomposed to two terms,
where the first term with 1−CG > 0 results from the price dampening effect of the

Keynesian beauty contest and the second term with τ̂
1/2
I − τ

1/2
I > 0 results from

the price dampening effect of beliefs aggregation.
In a general case, a wide range of return patterns may arise in the equilibrium,

when the economist and traders disagree about parameter values such as α̂G, σ̂G,
and τ̂ . Some of these patterns are consistent with the empirical evidence of mo-
mentum in the short run and mean-reversion in the long run. We illustrate these
patterns analytically and provide several numerical examples in the next section.

5.5. Autocorrelation of the Holding-Period Return

To develop the intuition that the holding-period return depends on parameter
values and the current values of the sufficient statistics H(t) and Ĥ(t), we analyze
and provide examples for three specific combinations of different parameter values
(cases A, B, and C ) and several combinations of H(t) and Ĥ(t). The values of
H(t) and Ĥ(t) are jointly normally distributed; their covariance matrix is derived
in Appendix A.10. Since the patterns of the expected holding-period return for
negative H(t) are symmetric to those for positive H(t), we only present cases with
positive H(t).
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Case A. Figure 4 plots the expected holding-period return for different hori-
zons T and for different levels of disagreement (τH/τL) when both the economist
and traders agree on the total precision of information flow (τ̂ = τ) and other
parameters of the model (α̂G = αG and σ̂G = σG).

3 In this case, the dynamics of
Ĥn(t) coincides with the dynamics of Hn(t). Proposition 4 implies that we tend
to have momentum in returns since the coefficient of

∑N
n=1Hn(t) is positive and

monotonically increases in horizon T . The left panel of figure 4 plots the expected
holding-period return when H(t) > 0 is +1 standard deviation from its uncondi-
tional mean. The right panel of figure 4 plots the expected holding-period return
when H(t) > 0 is +2 standard deviations from its unconditional mean.
Figure 4 exhibits monotonically increasing curves. Since we consider positive

H(t), which loosely speaking corresponds to positive past returns, the upward
sloping curves imply momentum in return dynamics. Momentum occurs due to
the price dampening effect from both beliefs aggregation and the Keynesian beauty
contest as explained before. The magnitude of momentum increases with the
level of disagreement (τH/τL).

4 Since market tends to be more liquid with more
disagreement, our model implies that momentum tends to be more pronounced in
more liquid markets.
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ΤH � ΤL = 5

Figure 4. The expected holding-period return R(t, t + T ) for different horizons

T for the case when τ = τ̂ , α̂G = αG, and σ̂G = σG. The values H0(t) = 0 and

Ĥ(t) = τ̂
1/2
I /τ

1/2
I H(t) > 0 are fixed. The value of H(t) is +1 standard deviation on

the left subplot and +2 standard deviations H(t) on the right subplot.

We also compute the auto-covariances Cov{R(t − Tl, t), R(t, t + Tf )} and auto-
correlations Corr{R(t−Tl, t), R(t, t+Tf )} of the cumulative return for different lags
Tl and leads Tf . The positive auto-covariance implies that the conditional expected
return E{R(t, t + Tf ) | R(t − Tl, t)} is increasing in R(t − Tl, t), thus indicating

3The parameters are r = 0.01, A = 1, αD = 0.1, αG = 0.2, σD = 0.5, σG = 0.1, τ̂0 = τ0 =
0.016, τL = 0.019, τH = 0.1, and N = 100.

4We use τL = 0.018, τH = 0.2 and τL = 0.017, τH = 0.3 for the other two disagreement levels
in figure 4.
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Figure 5. The covariance Cov{R(t − Tl, t), R(t, t + Tf )} and correlation Corr{R(t −
Tl, t), R(t, t+ Tf )} for different leads Tf and lags fixed at Tl = 1, 6, with τ = τ̂ , α̂G =

αG, and σ̂G = σG.

momentum in the sense that higher returns in the past tend to be followed by
higher returns in the future. The details are presented in equations (A-82), (A-98),
and (A-99) in Appendix A.11. Figure 5 plots these covariances and correlations
for different leads Tf = 1, .., 20, and lags fixed at Tl = 1, 6. All correlations and
covariances are positive, indicating time-series momentum. As expected, when the
lead horizon Tf increases, the holding-period return converges asymptotically to
a constant, covariances converge to some long-run positive level, and correlations
converge to zero due to the quickly increasing variance of holding-period returns.

-2 sd

-1 sd

0 sd

+1 sd

-2 sd

-1 sd

0 sd

+1 sd

5 10 15 20
T0

1

2

3

4

Et@RHt,t+TLD

5 10 15 20
T0

1

2

3

4

Et@RHt,t+TLD

+2 sd

+2 sd

Figure 6. The expected holding-period return R(t, t+ T ) for different horizons T

for the case when τ > τ̂ , α̂G = αG, and σ̂G = σG. The value of H(t) > 0 is +1 standard

deviation on the left subplot and +2 standard deviations on the right subplot.

The values of Ĥ(t) conditional on H(t) are +2,+1, 0,−1,−2 standard deviations.

Case B. Figure 6 illustrates the case when traders and the economist agree on
the parameters of the model (α̂G = αG and σ̂G = σG) but disagree about the total
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Figure 7. The covariance Cov{R(t − Tl, t), R(t, t + Tf )} and correlation Corr{R(t −
Tl, t), R(t, t + Tf )} for different leads Tf and lags fixed at Tl = 1, 6, with τ > τ̂ ,

α̂G = αG, and σ̂G = σG.

precision of the information flow. Traders are absolutely overconfident (τ > τ̂).5

The left subplot depicts the expected holding-period return when H(t) > 0 is +1
standard deviation from its unconditional mean. The right subplot depicts the
expected holding-period return when H(t) > 0 is +2 standard deviations from
its unconditional mean. For both cases, −2,−1, 0,+1,+2 standard deviations for
Ĥ(t) conditional on H(t) are plotted. Proposition 5 in Appendix A.12 analytically
proves that there are only two patterns of the expected holding period return
in this case: (1) only momentum, or (2) short-run reversal followed by long-run
momentum. Proposition 5 gives specific conditions for each pattern to occur.
As illustrated in figure 6, the momentum effect continues to dominate return

dynamics for most situations. Most of the curves are upward sloping, except
for several situations when the current signal of the economist Ĥ(t) is very low
relative to the signal of traders H(t) and the return dynamics exhibit a slight
mean-reversion in the short run before the momentum effect starts dominating in
the long run. Figure 7 also depicts the covariance and correlation of the cumulative
return. Strong momentum still makes most of the correlations and covariances
positive. For a few sets of parameters, some correlations and covariances have
negative values at very short horizons, consistent with figure 6.
Case C. Figure 8 illustrates a more general case when the economist and traders

disagree about both the total precision of the information flow and the parame-
ters of the model.6 The left subplot depicts the expected holding-period return
when H(t) > 0 is +1 standard deviation from its unconditional mean. The right
subplot depicts the expected holding-period return when H(t) > 0 is +2 stan-
dard deviations from its unconditional mean. In each subplot, Ĥ(t) takes val-
ues −2,−1, 0,+1,+2 standard deviations away from its conditional mean. From

5The parameters are the same as before, except τ̂ = 1.6 and τ = 2.02.
6We assume τ = 2.02 > τ̂ = 1.6, α̂G = 1 > αG = 0.2, and σ̂G = 0.5 > σG = 0.1.
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proposition 5 in Appendix A.12, the implied return patterns are empirically real-
istic in the sense that the return exhibits momentum in the short run and mean-
reversion in the long run if H(t)/ν1 ≤ Ĥ(t) < H(t)/ν2 and traders believe that the
growth rate is highly volatile (high values of σG) or highly persistent (low values of
αG), where ν1 and ν2 are defined in (A-102) and (A-103). This is consistent with
our second motivating example, where there is mean reversion in returns if traders
believe that the growth rate is more persistent than it actually is. Figure 9 depicts
correlations and covariances, the signs of which are consistent with these patterns.
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Figure 8. The expected holding-period return R(t, t+ T ) for different horizons T

for the case τ > τ̂ , α̂G ̸= αG, and σ̂G ̸= σG. The value of H(t) > 0 is +1 standard

deviation on the left subplot and +2 standard deviations on the right subplot.

The values of Ĥ(t) conditional on H(t) are +2,+1, 0,−1,−2 standard deviations.
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Figure 9. The covariance Cov{R(t − Tl, t), R(t, t + Tf )} and correlation Corr{R(t −
Tl, t), R(t, t + Tf )} for different leads Tf and lags fixed at Tl = 1, 6, with τ > τ̂ ,

α̂G ̸= αG, and σ̂G ̸= σG.

As our examples show, the term structure of the return exhibits different patterns
depending on the parameter values. Clearly, from theorem 4, the expected holding-
period return Et{R(t, t + T )} always starts from zero when T = 0 and converges
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to a constant level as the horizon T increases. We also analytically proved and
provided the details in Proposition 5 in Appendix A.12 that the derivative of
Et{R(t, t+ T )} with respect to T does not change its sign more than once. There
are therefore four possible patterns: (1) only momentum, (2) only mean-reversion,
(3) first mean-reversion and then momentum, (4) first momentum and then mean-
reversion. The last pattern is by-and-large consistent with empirical findings of
short-run momentum and long-run mean-reversion. It would be interesting for
future research to see whether our structural model can generate quantitatively
realistic patterns of returns.

6. Conclusion

Defining the concept of market efficiency is not straightforward. In a realistic
setting with heterogeneous beliefs and private information, it is not obvious how to
define “the market” so that it makes sense to say that the market uses information
correctly.
In our dynamic model with traders who solve complicated inference problems,

even though the prices fully reflect the average signal at each point in time, traders
regularly spot profit opportunities and think they can make money at the expense
of others. Except for a very special set of beliefs, the economist also finds profit
opportunities. In our paper, the market is efficient if efficiency is defined as fully
revealing prices and it is inefficient if efficiency is defined as absence of profit
opportunities.
A minimal structural model of anomalies should be a dynamic steady state model

with parameters governing the risk-free rate, volatility, mean reversion of both cash
flows and dividend growth, asset supply, and the risk aversion of investors. In order
to model private information, parameters are needed for the number of informed
traders and the precision of their signals. Our model thus has this minimal set of
necessary parameters.
The model makes it possible to test the non-behavioral predictions of the weak

rational expectations hypothesis about expected returns. Different choices of model
parameters generate patterns of momentum and mean reversion over different hori-
zons. Calibrating the model to study whether it can generate quantitatively real-
istic return dynamics and quantitatively realistic trading behavior presents inter-
esting issues for future research.
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A. Proofs

A.1. Proof of Theorem 1

To solve the equilibrium, we conjecture that price is a linear function of D(t)
and Ḡ(t), specifically,

(A-1) P (t) =
D(t)

r + αD

+ CG
Ḡ(t)

(r + αD)(r + αG)
.

Define
(A-2)

Hc
n(t) := Hn(t)+ÂH0(t), Hc

−n(t) := H−n(t)+ÂH0(t), Â :=
τ
1/2
0

τ
1/2
H + (N − 1)τ

1/2
L

.

It can be shown that

dP (t) =− 1

r + αD

(
αDD(t)− σGΩ

1/2
(
τ
1/2
H Hc

n(t) + (N − 1)τ
1/2
L Hc

−n(t)
))

dt

+
CGσGΩ

1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αG)
((a1 + (N − 1)a4)H

c
n(t) + (a3 + (N − 1)a2)H

c
−n(t))dt

+
1

r + αD

((G∗(t)−Gn(t))dt+ σDdBD)

+
CGσGΩ

1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αG)

(
NÂdBn

0 (t) + dBn
n(t) +

∑
m=1;m̸=n

dBn
m(t)

)
.

(A-3)

We conjecture and verify that the value function V (Wn, H
c
n, H

c
−n) has the specific

quadratic exponential form
(A-4)

V (Wn, H
c
n, H

c
−n) = − exp

(
ψ0 + ψWWn +

1
2
ψnn(H

c
n)

2 + 1
2
ψxx(H

c
−n)

2 + ψnxH
c
nH

c
−n

)
.

The five constants ψ0, ψW , ψnn, ψxx, and ψnx have values consistent with a steady-
state equilibrium. The terms ψnn, ψxx, and ψnx capture the value of future trading
opportunities based on current public and private information. The value of trading
on innovations to future information is built into the constant term ψ0.
Define constants a1, a2, a3, and a4 by

a1 := −αG − τ + τ
1/2
H (τ

1/2
H + Âτ

1/2
0 ),

a2 := −αG − τ + (N − 1)τ
1/2
L (τ

1/2
L + Âτ

1/2
0 ),

a3 := (τ
1/2
H + Âτ

1/2
0 )(N − 1)τ

1/2
L ,

a4 := (τ
1/2
L + Âτ

1/2
0 )τ

1/2
H .

(A-5)
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The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the conjectured
value function V (Wn, H

c
n, H

c
−n) in equation (A-4) is

0 =min
cn,sn

− e−Acn

V
− ρ+ ψW

(
rWn + SnD(t)− cn − rP (t)Sn(t)−

αD

r + αD

D(t)Sn

+
σGΩ

1/2

r + αD

(
τ
1/2
H Hc

n(t) + (N − 1)τ
1/2
L Hc

−n(t)
)
Sn

+
CGσGΩ

1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αG)

(
(a1 + (N − 1)a4)H

c
n(t) + (a3 + (N − 1)a2)H

c
−n(t)

)
Sn

)
+
(
ψnnH

c
n(t) + ψnxH

c
−n(t)

) (
−(αG + τ)Hc

n + (τ
1/2
H + Âτ

1/2
0 )(τ

1/2
H Hc

n + (N − 1)τ
1/2
L Hc

−n)
)

+
(
ψxxH

c
−n(t) + ψnxH

c
n(t)

) (
−(αG + τ)Hc

−n + (τ
1/2
L + Âτ

1/2
0 )(τ

1/2
H Hc

n + (N − 1)τ
1/2
L Hc

−n)
)

+ 1
2
ψ2
WS

2
n

(
C2

Gσ
2
GΩ(NÂ

2 + 1)(τ
1/2
H + (N − 1)τ

1/2
L )2

N(r + αD)2(r + αG)2
+

σ2
D

(r + αD)2
+

2CGσGσDΩ
1/2τ

1/2
0

(r + αD)2(r + αG)

)
+ 1

2

(
(ψnnH

c
n(t) + ψnxH

c
−n(t))

2 + ψnn

) (
1 + Â2

)
+ 1

2

(
(ψxxH

c
−n(t) + ψnxH

c
n(t))

2 + ψxx

)( 1

N − 1
+ Â2

)
+ ψWSn

(
(ψnn + ψnx)H

c
n(t) + (ψxx + ψnx)H

c
−n(t)

)
·

(
CGσGΩ

1/2

N(r + αD)(r + αG)
(τ

1/2
H + (N − 1)τ

1/2
L )(NÂ2 + 1) +

σDÂ

r + αD

)
+
(
(ψnnH

c
n(t) + ψnxH

c
−n(t)) (ψxxH

c
−n(t) + ψnxH

c
n(t)) + ψnx

)
Â2.

(A-6)

The solution for optimal consumption is

(A-7) c∗n(t) = − 1

A
log
(ψW V (t)

A

)
.

Plugging optimal consumption and P (t) from equation (A-1) into the HJB equation
yields a quadratic function of Sn. It can be shown that the optimal trading strategy
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is a linear function of the state variables Hc
n(t) and H

c
−n(t),

S∗
n(t) =C

(
CGσGΩ

1/2
(
τ
1/2
H + (N − 1)τ

1/2
L

)
·
((
r − a1 − (N − 1)a4

)
Hc

n(t) +
(
(N − 1)(r − a2)− a3

)
Hc

−n(t)
)

− σGΩ
1/2(r + αG)N

(
τ
1/2
H Hc

n(t) + (N − 1)τ
1/2
L Hc

−n(t)
)

−
(
(ψnn + ψnx)H

c
n(t) + (ψxx + ψnx)H

c
−n(t)

)
·
(
CGσGΩ

1/2
(
τ
1/2
H + (N − 1)τ

1/2
L

)
(NÂ2 + 1) + σDÂN(r + αG)

))
,

(A-8)

where
(A-9)

C =
(r + αD)(r + αG)/ψW

C2
Gσ

2
GΩ
(
τ
1/2
H + (N − 1)τ

1/2
L

)2
(NÂ2 + 1) +Nσ2

D(r + αG)2 + 2N(r + αG)σDCGσGΩ1/2τ
1/2
0

.

Since the market clears,
∑N

n=1 S
∗
n(t) = 0, this implies

(A-10)

CG =
N(r + αG)

(
σGΩ

1/2 + σDÂ(ψnn + ψxx + 2ψnx)/
(
τ
1/2
H + (N − 1)τ

1/2
L

))
σGΩ1/2

(
N(r + αG) + (N − 1)

(
τ
1/2
H − τ

1/2
L

)2 − (1 +NÂ2)(ψnn + ψxx + 2ψnx)
) .

Combining equations (A-8) and (A-10), we get

(A-11) S∗
n(t) = CL

(
Hc

n(t)−Hc
−n(t)

)
,

where the constant CL is defined as

CL =C

(
σGΩ

1/2
(
CG

(
τ
1/2
H + (N − 1)τ

1/2
L

)(
r − a1 − (N − 1)a4

)
−Nτ

1/2
H (r + αG)

)
− (ψnn + ψnx)

(
CGσGΩ

1/2
(
τ
1/2
H + (N − 1)τ

1/2
L

)
(1 +NÂ2) + σDÂN(r + αG)

))
.

(A-12)

Plugging (A-7) and (A-11) back into the Bellman equation and setting the constant
term and the coefficients of Wn, (H

c
n)

2, (Hc
−n)

2, and Hc
nH

c
−n to be zero, we obtain

five equations, from which we can find five unknown parameters ψ0, ψW , ψnn, ψnx

and ψxx.
By setting the constant term and coefficient of Wn to be zero, we obtain

(A-13) ψW = −rA,

(A-14)

ψ0 = 1− log(r) +
1

r

(
−ρ+ 1

2
(1 + Â2)ψnn +

1
2

(
1

N − 1
+ Â2

)
ψxx + Â2ψnx

)
.
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By setting the coefficients of (Hc
n)

2, (Hc
−n)

2 and Hc
nH

c
−n to be zero, we obtain three

polynomial equations in the three unknowns ψnn, ψxx, and ψnx. Defining c1, c2, c3,
and c4 by
(A-15)

c1 =
C2

Gσ
2
GΩ(NÂ

2 + 1)(τ
1/2
H + (N − 1)τ

1/2
L )2

N(r + αD)2(r + αG)2
+

σ2
D

(r + αD)2
+

2CGσGσDΩ
1/2τ

1/2
0

(r + αD)2(r + αG)
,

(A-16) c2 =
CGσGΩ

1/2

N(r + αD)(r + αG)
(τ

1/2
H + (N − 1)τ

1/2
L )(NÂ2 + 1) +

σDÂ

r + αD

,

(A-17)

c3 =
rAσGΩ

1/2CL

r + αD

(
CG(τ

1/2
H + (N − 1)τ

1/2
L )(r − a1 − (N − 1)a4)

N(r + αG)
− τ

1/2
H

)
,

(A-18) c4 =
rAσGΩ

1/2CL

r + αD

(
CG(τ

1/2
H + (N − 1)τ

1/2
L )(r − a2 − a3

N−1
)

N(r + αG)
− τ

1/2
L

)
,

these three equations in three unknowns can be written as follows:

(Hc
n)

2 :

0 = − r
2
ψnn + a1ψnn + a4ψnx − rACLc2(ψnn + ψnx) +

1
2
(1 + Â2)ψ2

nn

+ 1
2

(
1

N−1
+ Â2

)
ψ2
nx + Â2ψnnψnx + c3 +

1
2
r2A2c1C

2
L,

(A-19)

(Hc
−n)

2 :

0 = − r
2
ψxx + a2ψxx + a3ψnx + rACLc2(ψxx + ψnx) +

1
2
(1 + Â2)ψ2

nx

+ 1
2

(
1

N−1
+ Â2

)
ψ2
xx + Â2ψxxψnx − (N − 1)c4 +

1
2
r2A2c1C

2
L,

(A-20)

Hc
nH

c
−n :

0 = −rψnx + (a1 + a2)ψnx + a3ψnn + a4ψxx + rACLc2(ψnn − ψxx)

+ (1 + Â2)ψnnψnx +
(

1
N−1

+ Â2
)
ψxxψnx + Â2

(
ψnnψxx + ψ2

nx

)
+ (N − 1)c4 − c3 − r2A2c1C

2
L.

(A-21)

To summarize, the optimal consumption is defined in (A-7), the optimal strategy
is defined in (A-11) and the endogenous coefficient CL is defined in (A-12). The
equilibrium price is defined in (A-1) and the endogenous coefficient CG is defined
in (A-10). Parameters ψW and ψ0 are presented in (A-13) and (A-14). Parameters
ψnn, ψnx, ψxx are solved numerically from the system of the three equations (A-19)-
(A-21). These results are presented in Theorem 1.
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A.2. Proof of Proposition 1

Assume τH > τL. Since information cannot have negative value in the value
function (A-4) (since traders can ignore it), the 2 × 2 matrix

(A-22)

(
ψnn ψnx

ψnx ψxx

)
must be negative semi-definite. This implies ψnn ≤ 0, ψxx ≤ 0, and ψ2

nx ≤ ψnnψxx.
It follows that ψnn + ψxx + 2ψnx ≤ 0. Then from equation (A-10), we have that

(A-23) CG ≤
(
1 + (1− 1/N)(τ

1/2
H − τ

1/2
L )2/(r + αG)

)−1
< 1.

Jensen’s inequality implies that 0 < CJ < 1.
Suppose τH = τL, then clearly ψnn = ψnx = ψxx = 0 solves the three equa-

tions (A-19)–(A-21), and additionally we get CG = 1 and CL = 0 from equations
(A-10) and (A-12). There is no trading.

A.3. Dampening Effect: The Present Value of Expected
Cumulative Dividends and Cash Flow

In this section, we discuss expectations of each trader about how his own valua-
tion, the average valuation of other traders, and how the market price will evolve
over time. The discussion here follows Kyle, Obizhaeva and Wang (2016), with
some changes to accommodate differences between a setting with imperfect com-
petition and the competitive setting of this paper. In line with Samuelson (1965),
the trader’s own valuation is a martingale with respect to the trader’s own filtra-
tion. Each trader believes the average valuation of other traders and market prices
follow a more complicated dynamics.
Define the N + 1 processes dBn

0 , dB
n
n , and dB

n
m, m = 1, . . . , N , m ̸= n, by

(A-24) dBn
0 (t) = τ

1/2
0

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBD(t),

(A-25) dBn
n(t) = τ

1/2
H

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBn(t),

and

(A-26) dBn
m(t) = τ

1/2
L

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBm(t).

The superscript n indicates conditioning on beliefs of trader n. Since trader n’s
forecast of the error G∗(t) − Gn(t) is zero given his information set, these N + 1
processes are independently-distributed Brownian motions from the perspective of
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trader n. In terms of these Brownian motions, trader n believes that signals change
as follows:

(A-27) dH0(t) = −(αG + τ)H0(t) dt+ τ
1/2
0

Gn(t)

σG Ω1/2
dt+ dBn

0 (t),

(A-28) dHn(t) = −(αG + τ)Hn(t) dt+ τ
1/2
H

Gn(t)

σG Ω1/2
dt+ dBn

n(t),

(A-29) dH−n(t) = −(αG + τ)H−n(t) dt+ τ
1/2
L

Gn(t)

σG Ω1/2
dt+

1

N − 1

N∑
m=1
m̸=n

dBn
m(t).

Note that the coefficient τ
1/2
H in the second term on the right hand side of equa-

tion (A-28) is different from the coefficient τ
1/2
L in the second term on the right

hand side of equation (A-29). This difference is the key driving force behind
the price-dampening effect resulting from the Keynesian beauty contest. It cap-
tures the fact that—in addition to disagreeing about the value of the asset in the
present—traders also disagree about the dynamics of their future valuations.
We can derive the stochastic process forGn(t) andG−n(t) :=

1
N−1

∑
m=1,...,N ; m̸=nGm(t)

as follows:
(A-30)

dGn(t) = −αG Gn(t)dt+ σG Ω1/2

τ 1/20 dBn
0 (t) + τ

1/2
H dBn

n(t) + τ
1/2
L

N∑
m=1
m̸=n

dBn
m(t)

 ,

dG−n(t) =− (αG + τ)G−n(t)dt+
(
τ0 + τ

1/2
L

(
2τ

1/2
H + (N − 2)τ

1/2
L

))
Gn(t)dt

+ σG Ω1/2

τ 1/20 dBn
0 (t) + τ

1/2
L dBn

n(t) +
τ
1/2
H + (N − 2)τ

1/2
L

N − 1

N∑
m=1
m̸=n

dBn
m(t)

 .

(A-31)

From (A-31), when Gm(t) = Gn(t), trader n believes that other traders’ estimates

of expected growth rates Gm(t) will mean-revert to zero at a rate αG + (τ
1/2
H −

τ
1/2
L )2 > αG. From (A-30), trader n believes that his own estimate of expected
growth rate Gn(t) will mean-revert to zero at a rate αG.
From (A-30), (A-31), and (12), the expected dynamics of Gn(t), G−n(t), and

D(t) are given by

(A-32) En
0{Gn(t)} = e−αGtGn(0),
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(A-33)

En
0{G−n(t)} =

1

τ

(
τ0 + τ

1/2
L

(
2τ

1/2
H + (N − 2)τ

1/2
L

)) (
e−αGt − e−(αG+τ)t

)
Gn(0)+e−(αG+τ)tG−n(0),

(A-34) En
0{D(t)} =

1

αD − αG

(
e−αGt − e−αDt

)
Gn(0) + e−αDtD(0).

The present value of expected cumulative dividends and cash flow from liquidat-
ing one share of the stock at date t using trader n’s estimate of fundamental value
is

(A-35) PVn(0, t) := En
0

{∫ t

0

e−ruD(u)du+ e−rt
( D(t)

r + αD

+
Gn(t)

(r + αD)(r + αG)

)}
.

Substituting (A-32) and (A-34) into (A-35), it can be shown that (A-35) is equal
to

(A-36) PVn(0, t) = Fn(0) =
D(0)

r + αD

+
Gn(0)

(r + αD)(r + αG)
.

The present value of expected cumulative dividends and cash flow from liquidat-
ing one share of the stock at date t using others’ valuations

∑
m̸=n Fm(t)/(N − 1)

is

(A-37) PV−n(0, t) := En
0

{∫ t

0

e−ruD(u)du+e−rt
( D(t)

r + αD

+
G−n(t)

(r + αD)(r + αG)

)}
.

Assuming Gm(0) = Gn(0) = Ḡ(0) and substituting (A-32)–(A-34) into (A-37), it
can be shown that equation (A-37) is equal to

(A-38) PV−n(0, t) = Fn(0) +
(τ

1/2
H − τ

1/2
L )2

τ(r + αG)(r + αD)

(
e−(r+αG+τ)t− e−(r+αG)t

)
Gn(0).

Similarly, the present value of expected cumulative dividends and cash flow from
liquidating one share of the stock at date t at the equilibrium price P (t) is

(A-39) PVp(0, t) := En
0

(∫ t

0

e−ruD(u)du+ e−rt
( D(t)

r + αD

+
CG Ḡ(t)

(r + αD)(r + αG)

))
.

Substituting (A-32)–(A-34) into (A-39), it can be shown that (A-39) is equivalent
to

PVp(0, t) =Fn(0) +
CG

(
N − (τ

1/2
H − τ

1/2
L )2τ−1 (N − 1)

)
−N

N (r + αG) (r + αD)
e−(r+αG)t Gn(0)

+
CG (τ

1/2
H − τ

1/2
L )2τ−1 (N − 1)

N (r + αG) (r + αD)
e−(r+αG+τ)t Gn(0).

(A-40)
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We now use Figure 10 to illustrate the intuition behind the dampening effect.7

Figure 10 depicts a graph of the three functions PVn(0, t), PV−n(0, t), and PVp(0, t)
with time t on the horizontal axis and the results of three different present value
calculations on the vertical axis. For simplicity of exposition, assume that the buy-
and-hold valuations of all N traders coincide at time 0, and these estimates are
positive; specifically, assume that for all n, we have Gn(0) = G−n(0) = Ḡ(0) > 0.
For negative values, the figure will be symmetric. Details for the present value
calculations are given in equations (A-36), (A-38), and (A-40). By assumption,
these three calculations are done using trader n’s beliefs, but they are identical for
all traders.

PVnH0, tL

PV-nH0, tL

PVpH0, tL

0 20 40 60 80 100 120 140
t

10

15

20

25

30

Figure 10. Present Value of Dividends and Liquidation Value from the Perspec-

tive of a Trader.

The horizontal light solid line is based on the assumption that trader n liquidates
the asset at date t at a valuation equal to his own estimate of its fundamental value
Fn(t). Since trader n applies Bayes law correctly given his beliefs, the martingale
property of his valuation (law of iterated expectations) makes the present value
PVn(0, t) a constant function for t ≥ 0; its graph is a horizontal line.
The light dashed curve is based on the assumption that trader n liquidates the

asset at a valuation equal to the average estimate of fundamental value of the
other N − 1 traders. The N traders’ estimates of fundamental value are the same
at date 0. Due to disagreement about signal precision, trader n believes that the
other N − 1 traders’ estimates of the growth rate G∗(t) will mean revert to zero

at rate αG +
(
τ
1/2
H − τ

1/2
L

)2
, which is faster than the mean reversion rate αG he

assumes for his own forecast.
We next provide results which calculate the derivative of the present value of

7Numerical calculations are based on the parameter values r = 0.01, A = 1, αD = 0.1,
αG = 0.02, σD = 0.5, σG = 0.1, N = 10, Gn(0) = 0.08, D(0) = 0.7, τH = 0.8, τL = 0.09, and
τ0 = 0.024.
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cash flows PV−n(0, t) with respect to time. From (A-37), it follows that

(A-41)
dPV−n(0, t)

dt
=

(τ
1/2
H − τ

1/2
L )2 Gn(0) e−(r+αG)t

τ(r + αG)(r + αD)

(
(r+αG)−(r+αG+τ)e

−τt
)
.

(A-41) implies that dPV−n(0, t)/dt < 0 iff t < 1
τ
ln
(
1 + τ

r+αG

)
.

Intuitively, as a result of the higher mean-reversion rate, trader n believes that
PV−n(0, t) will fall in the short run. Since trader n believes that his own initial
present value calculation is correct, trader n believes that PV−n(0, t) will rise back
to his own estimate of the fundamental value in the long run. Thus, the graph
depicted by the dashed line in figure 10 first falls below the horizontal line in the
short run and then rises asymptotically back toward it in the long run.
The dark solid curve is based on the assumption that trader n liquidates the

asset at a valuation equal to his estimate of the equilibrium market price P (t). Let
PVp(0, t) denote the result of this present value calculation. Consistent with the
equilibrium result 0 < CG < 1, the initial price P (0) is lower than the consensus
fundamental value, even though all traders by assumption agree about this current
fundamental value, agree about how it will evolve in the future, and know that they
agree with the valuation dynamics. The dampening effect nevertheless arises due
to interactions among expectations of traders in our model. If prices were equal to
the consensus fundamental valuation, all traders would want to hold short positions
because all of them would expect prices to fall below fundamental value in the short
run as the others temporarily became more bearish. As a result, the price P (0) is
dampened relative to the average fundamental valuation in the market; yet this is
consistent with each trader having a target inventory of zero at date 0.
We now calculate the derivative of the present value of cash flows PVp(0, t) with

respect to time. From (A-40), it follows that

dPVp(0, t)

dt
=

Gn(0) e
−(r+αG)t

N (r + αG) (r + αD)

((
N − CG

(
N − (τ

1/2
H − τ

1/2
L )2τ−1(N − 1)

))
(r + αG)

CG (τ
1/2
H − τ

1/2
L )2τ−1(N − 1)(r + αG + τ) e−τt

)
.

(A-42)

Clearly, (A-42) implies dPVp(0, t)/dt→ 0 when t→ ∞. Define

(A-43) t̂ := −1

τ
ln

((
1 +

(1− CG)Nτ

CG(τ
1/2
H − τ

1/2
L )2(N − 1)

)
r + αG

r + αG + τ

)
.

Equation (A-42) implies dPVp(0, t)/dt > 0 if and only if t > t̂. It can be shown

that t̂ > 0 if and only if CG > ĈG :=
(
1 + (1− 1/N)(τ

1/2
H − τ

1/2
L )2/(r + αG)

)−1

.

This further yields the following results:
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• If CG ≤ ĈG, then dPVp(0, t)/dt > 0 for all t > 0.

• If CG > ĈG, then dPVp(0, t)/dt = 0 for t = t̂, dPVp(0, t)/dt > 0 for t > t̂,
and dPVp(0, t)/dt < 0 for t < t̂.

From Proposition 1, CG ≤ ĈG, therefore, PVp(0, t) increases monotonically over
time. As figure 10 illustrates, trader n expects prices to increase monotonically
from a dampened value toward his estimate of fundamental value.

A.4. One-Period Model

A risky asset with random liquidation value v ∼ N(0, 1/τv) is traded for a safe
numeraire asset. Each of N traders n = 1, . . . , N is endowed with Sn shares of
a zero-net-supply risky asset, implying

∑N
n=1 Sn = 0. Traders observe signals

about the normalized liquidation value τ
1/2
v v. All traders observe a public signal

i0 := ξ0(τ
1/2
0 (τ

1/2
v v)+e0) with e0 ∼ N(0, 1). Each trader n observes a private signal

in := ξn (τ
1/2
n (τ

1/2
v v) + en) with en ∼ N(0, 1). The asset payoff v, the public signal

error e0, and N private signal errors e1, . . . , eN are independently distributed.
Traders agree about the precision of the public signal τ0 and agree to disagree

about the precisions of private signals τn. Each trader is “relatively overconfident,”
believing his own signal has a high precision τn = τH and other traders’ signals
have low precision τm = τL for m ̸= n, with τH > τL ≥ 0.
We consider two different cases of information structure. In the first case, ξ0 =

τ
−1/2
0 , ξn = τ

−1/2
H , ξm = τ

−1/2
L ; this case corresponds to a conventional modelling

approach in the existing microstructure models such as, for example, Kyle (1985)
or Allen, Morris and Shin (2006), where information is usually modelled as v + ϵ
with v ∼ N(0, τ−1

v ) and ϵ ∼ N(0, τ−1
ϵ ); if traders disagree about the precision of

information, then they usually disagree about the parameter τϵ.
In the second case, ξ0 = ξn = ξm = 1; this case more closely corresponds to a

dynamic model in our paper where information is essentially modelled as τ
1/2
n v+ ϵ

with v ∼ N(0, τ−1
v ) and ϵ ∼ N(0, 1); if traders disagree about the precision of

information, then they disagree about the parameter τn.
In the first case, more precise information is modelled by assigning lower weights

to the noise component, whereas in the second case more precise information is
modelled by assigning bigger weights to signals. The later is more consistent with
a dynamic interpretation, since the disagreement about diffusion variance can be
quickly resolved in a dynamic setting.
Each trader submits a demand schedule Xn(p) := Xn(i0, in, Sn, p) to a single-

price auction. An auctioneer calculates the market-clearing price p := p[X1, . . . , XN ].
Trader n’s terminal wealth is

(A-44) Wn := v (Sn +Xn)− p Xn.

Each trader maximizes the same expected exponential utility function of wealth
En{− e−AWn} using his own beliefs about τH and τL to calculate the expectation.



55

Trader n maximizes his expected utility, or equivalently he maximizes En{Wn} −
1
2
A Varn{Wn}. He chooses the quantity to trade xn that solves the maximization

problem
(A-45)

max
xn

(
τ
1/2
v

τ

(
τ
1/2
0

ξ0
i0 +

τ
1/2
H

ξn
in +

(N − 1)τ
1/2
L

ξm
i−n

)
(Sn + xn)− p xn −

A

2τ
(Sn + xn)

2

)
,

where τ = (Varn{v})−1 = τv (1 + τ0 + τH + (N − 1) τL). Then, the first-order
condition with respect to xn yields

(A-46) x∗n =
1

A

(
τ 1/2v

(
τ
1/2
0

ξ0
i0 +

τ
1/2
H

ξn
in +

(N − 1)τ
1/2
L

ξm
i−n

)
− p τ

)
− Sn.

The market-clearing condition
∑N

n=1 xn = 0 yields the equilibrium price

(A-47) p∗ =
1

N

N∑
n=1

En{v} =
τ
1/2
v

τ

(
τ
1/2
0

ξ0
i0 +

τ
1/2
H /ξn + (N − 1)τ

1/2
L /ξm

N

N∑
n=1

in

)
.

Substituting (A-47) into (A-46) yields the equilibrium trading strategy

(A-48) x∗n =
1

A

(
1− 1

N

)
τ 1/2v

(
τ
1/2
H

ξn
− τ

1/2
L

ξm

)
(in − i−n)− Sn.

The two modelling approaches generate equilibrium prices with strikingly dif-

ferent properties. In the first case with ξ0 = τ
−1/2
0 , ξn = τ

−1/2
H , ξm = τ

−1/2
L , we

have

(A-49) p∗ =
1

N

N∑
n=1

En{v} =
τ
1/2
v

τ

(
τ0 i0 +

τH + (N − 1)τL
N

N∑
n=1

in

)
.

The equilibrium price averages the estimates of traders in an intuitive way. It
is equal to the expectation of a fundamental value as if all public and private
information is included into information set. Information i0 is assigned precision τ0
and each private information in is assigned the average precision 1

N
(τH+(N−1)τL).

In the second case of ξ0 = ξn = ξm = 1, we get

(A-50) p∗ =
1

N

N∑
n=1

En{v} =
τ
1/2
v

τ

(
τ
1/2
0 i0 +

τ
1/2
H + (N − 1)τ

1/2
L

N

N∑
n=1

in

)
.

The equilibrium price does not average the estimates of traders in an intuitive
way. It can still be thought of as the expectation of a fundamental value in a
full-information case. Though while information i0 is assigned precision τ0, private
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information in is not assigned the average precision of 1
N
(τH + (N − 1)τL), but

instead gets the precision of
(

1
N
(τ

1/2
H + (N − 1)τ

1/2
L )

)2
. Due to Jensen’s inequality

this imputed precision is lower than the average precision. The same intuition
explains the beliefs aggregation effect generating momentum in our paper.

A.5. Proof of Proposition 2

To find another closed-form solution, we set τL = 0, and then evaluate the
solution in the limit as N → ∞ and Â → 0. We conjecture and verify that
ψnn = ψ̄nn, ψnx = ψ̄nx, and ψxx = ψ̄xx, where ψ̄nn, ψ̄nx, and ψ̄xx are constants that
do not depend on N .
Solving the system of equations (A-19)–(A-21) yields

(A-51)

ψ̄nn = 1
2

(
r + 2(αG + τ − τH)−

(
(r + 2(αG + τ − τH))

2 +
4Ωσ2

GτH
σ2
D

)1/2
)
,

(A-52) ψ̄nx =
Ωσ2

GτH/σ
2
D

r + 2(αG + τ)− τH − ψ̄nn

,

(A-53) ψ̄xx =
1

r + 2αG + 2τ

(
ψ̄2
nx −

Ωσ2
GτH
σ2
D

)
.

Equations (A-10) and (A-12) imply that

(A-54) CG → r + αG

r + αG + τ
< 1, CL =

Ω1/2σGτ
1/2
H (r + αD)

Arσ2
D

.

A.6. Proof of Proposition 3

Let a vector (ψ∗
nn, ψ

∗
nx, ψ

∗
xx) be a solution to the system (A-19)–(A-21) for

exogenous parameters A, σD, σG, r, αG, αD, τ0, τL, and τH . If risk aversion is
rescaled by factor F from A to A/F and other exogenous parameters are kept
unchanged, then it is straightforward to show that the vector (ψ∗

nn, ψ
∗
nx, ψ

∗
xx) is

still the solution to the system (A-19)–(A-21). From equations (34), (A-10), and
(A-12), it then follows that CL changes to CLF , λ changes to λ/F , but CG remains
the same.

A.7. Proof of Theorem 2

The outline of the proof is as follows. At any point of time, the representative
agent must have beliefs such that the equilibrium price

(A-55) P (t) =
D(t)

r + αD

+ CG
σG Ω1/2

(r + αD)(r + αG)

(
τ
1/2
0 H0(t) + τ

1/2
I

∑
n=1,..N

Hn(t)
)
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coincides with his estimate of the fundamental value

(A-56) F̆ (t) =
D(t)

r + αD

+
σ̆G Ω̆1/2

(r + αD)(r + ᾰG)

(
τ̆
1/2
0 H̆0(t) + τ̆

1/2
I

∑
n=1,..N

H̆n(t)
)
.

The fundamental value F̆ (t) is a version of the Gordon growth formula given the
estimate Ğ(t) of the growth rate in equation (44).
First, the history of signals H̆n(t) in equation (42) must coincide with the history

of signals Hn(t) in equation (23). This implies the restriction

(A-57) ᾰG + τ̆ = αG + τ.

Second, the coefficients of the two random variables in the two equations (A-55)
and (A-56) must match. This leads to the two restrictions

(A-58)
CG σG Ω1/2

(r + αD)(r + αG)
τ
1/2
0 =

σ̆G Ω̆1/2

(r + αD)(r + ᾰG)
τ̆
1/2
0 ,

(A-59)
CG σG Ω1/2

(r + αD)(r + αG)
τ
1/2
I =

σ̆G Ω̆1/2

(r + αD)(r + ᾰG)
τ̆
1/2
I .

The definition of τ̆0 and equation (45) yield the last restriction

(A-60) σ̆G = σD τ̆
1/2
0 (2 ᾰG + τ̆)1/2.

The solution of the system is the set of three parameters ᾰG, σ̆G, and τ̆I describing
beliefs of the representative agent stated in the theorem as well as the expression
for τ̆0

(A-61) τ̆0 = τ0
CG (r + αG + τ)

r + αG + CG (τ0 +N τI)
.

Since N τI < τH + (N − 1)τL, we have ᾰG > αG. Since

(A-62) CG <

1 +
N − 1

N

(
τ
1/2
H − τ

1/2
L

)2
r + αG


−1

,

we have τ̆I < τI .

A.8. Proof of Theorem 3

From direct calculation, the uncertainty term dB̂r(t) in equation (63) is defined
as
(A-63)

dB̂r(t) :=
σG CG Ω1/2

(r + αD)(r + αG)

(
τ
1/2
0 dB∗

0(t) + τ
1/2
I N dB̄∗(t)

)
+

σD
(r + αD)

dB∗
0(t).
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The processes dB̄∗(t) and dB∗
0(t), defined as

(A-64) dB̄∗(t) := τ̂
1/2
I (σ̂G Ω̂1/2)−1 (G∗(t)− Ĝ(t)) dt+

1

N

N∑
n=1

dB̂n(t),

(A-65) dB∗
0(t) := τ̂

1/2
0 (σ̂G Ω̂1/2)−1 (G∗(t)− Ĝ(t)) dt+ dB0(t),

are Brownian motions under the empirically correct beliefs. Note that the variance
of dB∗

0(t) is equal to one, but the variance of dB̄∗(t) is equal to 1/N per unit of
time.
From equation (28), we obtain

(A-66) H(t) =

(
P (t)− D(t)

r + αD

)
(r + αD)(r + αG)

CG σG Ω1/2
.

We also have the following relationship between traders’ signals Hn(t) and the
economist’s model of the traders’ signal and Ĥn(t), n = 0, 1, . . . , N :

(A-67) Ĥn(t) = Hn(t) + (αG + τ − α̂G − τ̂)

∫ t

u=−∞
e−(α̂G+τ̂) (t−u) Hn(u) du.

Substituting (A-66) and (A-67) into (63) yields (69), where α1, α2, and α3 are
defined as

(A-68) α1 :=

(
b
τ̂
1/2
I

τ
1/2
I

− a

)
(r + αD) (r + αG)

CG σG Ω1/2
,

(A-69) α2 := b
τ̂
1/2
I

τ
1/2
I

(αG + τ − α̂G − τ̂) (r + αD) (r + αG)

CG σG Ω1/2
,

(A-70) α3 := −b τ
1/2
I τ̂

1/2
0 − τ̂

1/2
I τ

1/2
0

τ
1/2
I

,

with a and b defined in equations (64) and (65).

A.9. Proof of Theorem 4

Using the definitions of H(t) and Ĥ(t) in equations (29) and (59) as well as equa-
tions (56), (58), and (60), we can write a continuous 2-vector stochastic process
y(t) = [H(t), Ĥ(t)]′ as satisfying the following linear stochastic differential equa-
tion:

(A-71) dy(t) = K y(t) dt+ Cz dZ(t),
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where K is a 2× 2 matrix and Cz is a 2× 2 matrix given by

(A-72) K =

(
−αG − τ τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

0 −α̂G

)
,

(A-73) Cz =

(
τ
1/2
0 N τ

1/2
I

τ̂
1/2
0 N τ̂

1/2
I

)
.

From the perspective of the economist, the vector dZ(t) = [dB∗
0(t), dB̄

∗(t)]′ is
a 2 × 1-dimensional Brownian motion, where dB∗

0(t) is a Brownian motion with
variance of one defined in equation (A-65) and dB̄∗(t) is a Brownian motion with
variance 1/N defined in equation (A-64).
Using results about linear continuous-time stochastic processes, we can represent

the process y(t) = [H(t), Ĥ(t)]′ in an integral form as

(A-74) y(s) = eK (s−t) y(t) +

∫ s

u=t

eK (s−u) Cz dZ(u).

It can be also shown that the exponential 2× 2 matrix eK t is given by

(A-75) eK t =

(
e−(αG+τ) t τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

τ+αG−α̂G
(e−α̂G t − e−(αG+τ) t)

0 e−α̂G t

)
.

Plugging eK t back into equation (A-74), we obtain recursive formulas for the
stochastic vector y(s) = [H(s), Ĥ(s)]′ as a function of y(t) = [H(t), Ĥ(t)]′. Us-
ing this result, we can express the cumulative holding-period return R(t, t+ T ) as
a linear function of H(t) and Ĥ(t) as in (72), where

(A-76) B̄(t, t+ T ) :=

∫ t+T

s=t

∫ t+T

u=s

[−a, b]eK(u−s)Cz du dZ(s) +

∫ t+T

s=t

dB̂r(s).

A.10. Variance-Covariance Matrix of H(t) and Ĥ(t)

To plot the term structure of the holding-period return for different H(t) and
Ĥ(t)—normal random variables with unconditional means of zero—we first derive
the steady-state unconditional variance-covariance matrix ofH(t) and Ĥ(t). Define
the steady-state unconditional variance-covariance matrix of H(t) and Ĥ(t) as
Q =

(
(q11, q12), (q12, q22)

)
. In the steady state, we have

(A-77) K Q+QK ′ + Cz C
′
z = 0.

It can be shown that

(A-78) q11 =
τ0 +N τI
2(αG + τ)

+
(2α̂G + τ̂) (τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I )2

2α̂G (αG + α̂G + τ) (αG + τ)
,
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(A-79) q12 =
(2α̂G + τ̂) (τ

1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I )

2α̂G (αG + τ + α̂G)
,

(A-80) q22 =
τ̂

2α̂G

.

The distribution of Ĥ(t) conditional on H(t) is a normal random variable de-
scribed by the first two moments

(A-81) E{Ĥ(t) |H(t)} = q12/q11 H(t), Var{Ĥ(t) |H(t)} = q22 − q212/q11.

To focus on economically relevant ranges, we consider a +1 standard deviation

event for H(t), i.e., H(t) = q
1/2
11 , and k-standard deviation events for Ĥ(t) condi-

tional on H(t), i.e., Ĥ(t) = q12/q11 H(t) + k (q22 − q212/q11)
1/2, where k = −2,−1,

0, 1, 2.

A.11. Covariance and Correlation of R(t− Tl, t) and
R(t, t+ Tf)

We now calculate the covariance of R(t − Tl, t) and R(t, t + Tf ). Since the
unconditional means of R(t − Tl, t) and R(t, t + Tf ) are zero, equations (72) and
(A-74) yield

Cov{R(t− Tl, t), R(t, t+ Tf )} = E{R(t− Tl, t)R(t, t+ Tf )}
=E{(−β1(Tl)H(t− Tl) + β2(Tl) Ĥ(t− Tl) + B̄(t− Tl, t)) (−β1(Tf )H(t) + β2(Tf ) Ĥ(t))},

(A-82)

where β1( ) and β2( ) are as defined in Theorem 4. Define

(A-83) η :=
τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

τ + αG − α̂G

, m1 := −a(τ̂
1/2
0 η − τ

1/2
0 )2

αG + τ
β1(Tf ),

(A-84) m3 := (τ̂
1/2
0 η−τ 1/20 )τ̂

1/2
0

(
−a (β2(Tf )− η β1(Tf ))

αG + τ
+

−β1(Tf )(−a η + b)

α̂G

)
,

(A-85)

m4 := β1(Tf )(τ
1/2
0 −τ̂ 1/20 η)

(
τ̂
1/2
0 (−aη + b)

α̂G

+
σGΩ

1/2CGτ
1/2
0 + σD(r + αG)

(r + αD) (r + αG)
+
a(τ̂

1/2
0 η − τ

1/2
0 )

αG + τ

)
,

(A-86)

m2 := − τ̂0 (−aη + b)

α̂G

(β2(Tf )− η β1(Tf )), m5 := −(β2(Tf )− η β1(Tf )) τ̂
1/2
0

β1(Tf ) (τ
1/2
0 − τ̂

1/2
0 η)

m4,
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(A-87)

n1 := −β1(Tf )N
a(τ̂

1/2
I η − τ

1/2
I )2

αG + τ
, n2 := −(−β1(Tf )η + β2(Tf ))

Nτ̂I(−aη + b)

α̂G

,

(A-88)

n3 := Nτ̂
1/2
I (τ̂

1/2
I η − τ

1/2
I )

(
−a

αG + τ
(−β1(Tf )η + β2(Tf ))− β1(Tf )

−aη + b

α̂G

)
,

(A-89)

n4 := −Nβ1(Tf )(τ 1/2I −τ̂ 1/2I η)

(
−a(τ 1/2I − τ̂

1/2
I η)

αG + τ
+
τ̂
1/2
I (−aη + b)

α̂G

+
σGΩ

1/2CGτ
1/2
I

(r + αD)(r + αG)

)
,

(A-90) n5 := −(β2(Tf )− η β1(Tf )) τ̂
1/2
I

β1(Tf ) (τ
1/2
I − τ̂

1/2
I η)

n4.

Then direct calculations show that Cov{R(t−Tl, t), R(t, t+Tf )} is a function of
Tl and Tf given by

Cov{R(t− Tl, t), R(t, t+ Tf )} =

− β1(Tf ) (−β1(Tl) (q11 − q12 η) + β2(Tl) (q12 − q22 η)) e
−(αG+τ)Tl

+ (β2(Tl) q22 − β1(Tl) q12) (−β1(Tf ) η + β2(Tf )) e
−α̂GTl +

m1 + n1

2(αG + τ)
(1− e−2(αG+τ)Tl)

+
m2 + n2

2α̂G

(1− e−2α̂GTl) +
m3 + n3

αG + τ + α̂G

(1− e−(αG+τ+α̂G)Tl)

+
m4 + n4

αG + τ
(1− e−(αG+τ)Tl) +

m5 + n5

α̂G

(1− e−α̂GTl).

(A-91)

To calculate the correlation coefficients of R(t − Tl, t) and R(t, t + Tf ), we now
calculate variances Var{R(t− Tl, t)} and Var{R(t, t+ Tf )}. Define
(A-92)

k1 :=
a2(τ̂

1/2
0 η − τ

1/2
0 )2 + a2N(τ̂

1/2
I η − τ

1/2
I )2

(αG + τ)2
, k2 :=

(−aη + b)2(τ̂0 +Nτ̂I)

α̂2
G

,

(A-93) k3 :=
2a(−aη + b)(τ̂

1/2
0 (τ̂

1/2
0 η − τ

1/2
0 ) +Nτ̂

1/2
I (τ̂

1/2
I η − τ

1/2
I ))

(αG + τ)α̂G

,

(A-94) ck1 :=
τ̂
1/2
0 (−aη + b)

α̂G

+
σGΩ

1/2CGτ
1/2
0 + σD(r + αG)

(r + αD) (r + αG)
+
a(τ̂

1/2
0 η − τ

1/2
0 )

αG + τ
,
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(A-95) ck2 := N

(
−a(τ 1/2I − τ̂

1/2
I η)

αG + τ
+
τ̂
1/2
I (−aη + b)

α̂G

+
σGΩ

1/2CGτ
1/2
I

(r + αD)(r + αG)

)
,

(A-96) k4 := −2a
ck1 (τ̂

1/2
0 η − τ

1/2
0 ) + ck2 (τ

1/2
I η − τ

1/2
I )

αG + τ
,

(A-97) k5 := −2(−aη + b)(ck1 τ̂
1/2
0 + ck2 τ̂

1/2
I )

α̂G

, k6 := c2k1 +
1

N
c2k2.

Then direct calculations show that the variances Var{R(t−Tl, t)} and Var{R(t, t+
Tf )} are as follows:

Var{R(t− Tl, t)} = q11 β
2
1(Tl) + q22 β

2
2(Tl)− 2q12β1(Tl)β2(Tl)

+
k1

2(αG + τ)
(1− e−2(αG+τ)Tl) +

k2
2α̂G

(1− e−2α̂GTl)

+
k3

αG + τ + α̂G

(1− e−(αG+τ+α̂G)Tl) +
k4

αG + τ
(1− e−(αG+τ)Tl) +

k5
α̂G

(1− e−α̂GTl) + k6Tl,

(A-98)

Var{R(t, t+ Tf )} = q11 β
2
1(Tf ) + q22 β

2
2(Tf )− 2q12β1(Tf )β2(Tf )

+
k1

2(αG + τ)
(1− e−2(αG+τ)Tf ) +

k2
2α̂G

(1− e−2α̂GTf )

+
k3

αG + τ + α̂G

(1− e−(αG+τ+α̂G)Tf ) +
k4

αG + τ
(1− e−(αG+τ)Tf ) +

k5
α̂G

(1− e−α̂GTf ) + k6Tf .

(A-99)

Then using equations (A-91), (A-98), and (A-99), we get the correlation coefficient
of R(t− Tl, t) and R(t, t+ Tf ).

A.12. Proof of Proposition 4 and More Detailed Analysis
on the Expected Returns

We now provide more detailed analysis on the expected returns for both relatively
overconfident and absolutely overconfident cases.
We first look at the case when the economist and the traders agree on the total

precision of information flow and other parameters of the model. Let
(A-100)

T1 :=
1

αG

ln

 (r + αG)
(
τ − CG

(
τ0 +Nτ̂

1/2
I τ

1/2
I

))
(1− CG)αG(αG + τ) + r

(
αG + τ − CG

(
αG + τ0 +Nτ̂

1/2
I τ

1/2
I

))
 .
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Direct computation shows that the coefficient of
∑N

n=1Hn(t) in proposition 4 is
positive and monotonically increases in T . The coefficient of H0(t) monotonically
increases in T for T ≥ T1.
In addition, as in equation (68), it can be shown that the coefficient β2(T )τ̂

1/2
I −

β1(T )τ
1/2
I > 0 of

∑N
n=1Hn(t) can be decomposed to two terms:

σGΩ
1/2

r + αD

(1− CG)τ
1/2
I

1− e−αGT

αG

+
σGΩ

1/2

(r + αD)αG(r + αG)

(
τ̂
1/2
I − τ

1/2
I

)
·
((

1− e−αGT
)(

r + αG − CGrτ0
αG + τ

)
+
CG(αG + r + τ)αGτ0

(αG + τ)τ

(
e−αGT − e−(αG+τ)T

))
.

(A-101)

As before, the first term with 1− CG > 0 results from the price dampening effect

of the Keynesian beauty contest and the second term with τ̂
1/2
I − τ

1/2
I > 0 results

from the price dampening effect of beliefs aggregation.
Next, we look at the general case when investors and the economist may disagree

about the total precision of the signals and parameter values of the model. The
results when the economist and investors agree about the parameter values can be
obtained by setting α̂G = αG and σ̂G = σG. We assume αG + τ > α̂G.

8 Define

(A-102) ν1 :=
τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

αG − α̂G + τ
, ν3 :=

CG(r + α̂G) (2α̂G + τ̂)1/2

(r + αG) (2αG + τ)1/2
ν1,

(A-103) ν2 = ν1 +
(r + αG) Ω̂

1/2 (σ̂G − ν3σG)

CG (r + αG + τ) Ω1/2 σG
,

and

(A-104) T2 :=
1

αG + τ − α̂G

ln

(
CG σG (r + αG + τ) Ω1/2

(
H(t)− ν1Ĥ(t)

)
(r + αG) Ω̂1/2 (σ̂G − ν3σG) Ĥ(t)

)
,

it can be shown that T2 > 0 if and only if H(t) > ν2Ĥ(t). We also have

dEt{R(t, t+ T )}
dT

=
e−(αG+τ)T

(r + αD) (r + αG)

(
− CG σG (r + αG + τ) Ω1/2 (H(t)− ν1Ĥ(t))

+ (r + αG) Ω̂
1/2 (σ̂G − ν3σG) Ĥ(t) e(αG+τ−α̂G)T

)
.

(A-105)

The following proposition shows that there are only four possible patterns of
the expected holding period return: only momentum, only mean-reversion, first
mean-reversion and then momentum, first momentum and then mean-reversion.

8The case with αG + τ < α̂G is similar.
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PROPOSITION 5: When investors and the economist may disagree about both
the total precision of the signals and parameter values of the model, we have

1) if H(t) ≤ ν1Ĥ(t) and Ĥ(σ̂G− ν3σG) ≥ 0, then Et{R(t, t+T )} monotonically
increases in T ;

2) if H(t) ≤ ν1Ĥ(t) and Ĥ(σ̂G − ν3σG) < 0, then Et{R(t, t + T )]} increases in
T for T < T2 and decreases in T for T > T2;

3) if H(t) > ν1Ĥ(t) and Ĥ(σ̂G− ν3σG) ≤ 0, then Et{R(t, t+T )} monotonically
decreases in T ;

4) if H(t) > ν1Ĥ(t) and Ĥ(σ̂G − ν3σG) > 0, then Et{R(t, t + T )} decreases in
T for T < T2 and increases in T for T > T2.

Proposition 5 implies that the expected holding period returns Et{R(t, t + T )}
can be monotonically increasing or decreasing over time T or it might be increasing
first then decreasing over time T or it might be decreasing first then increasing over
time T . Whether Et{R(t, t+ T )} increases or decreases in time T depends on the
relative magnitude of the current signals of H(t) and Ĥ(t). It also depends on
the disagreement on the mean-reverting rate and volatility of the dividend growth,
αG and σG, between the economist and investors. Et{R(t, t + T )} converges to a
constant when T → ∞. As illustrated in Proposition 5 and Figure 8, our model
may generate short-run momentum and long-run reversal in the term structure of
the returns as observed in the data when the economist disagrees with investors
about the precisions, mean-reverting rate and the volatility of the growth rate of
the dividend, i.e., τ̂ < τ, σ̂G ̸= σG, and α̂G ̸= αG.
Assume investors are absolutely overconfident in the sense that τ̂ < τ , and

assume the economist and investors agree that α̂G = αG and σ̂G = σG. For this
case, it can be shown that

ν3 =
CG(2αG + τ̂)1/2

(2αG + τ)1/2
τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

τ
< 1,

since Ω̂ > Ω, CG < 1, and τ
1/2
0 τ̂

1/2
0 + N τ̂

1/2
I τ

1/2
I < τ. This implies that we will

obtain cases (1) and (4) in proposition 5 for positive signals Ĥ(t) ; specifically, we
obtain (1) only momentum or (4) short-run reversal and long-run momentum as
illustrated in figure 6.
From proposition 5, if H(t)/ν1 ≤ Ĥ(t) < H(t)/ν2, and

(A-106) σG >
(r + αG) (2αG + τ)1/2

CG(r + α̂G) (2α̂G + τ̂)1/2
αG − α̂G + τ

τ
1/2
0 τ̂

1/2
0 +N τ̂

1/2
I τ

1/2
I

σ̂G,

where ν1 and ν2 are defined in (A-102) and (A-103). Equation (A-106) implies
that we tend to have short-run momentum and long-run reversal if traders believe
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that the growth rate is highly volatile (high values of σG) or highly persistent (low
values of αG).


