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When large traders in financial markets seek to profit from perishable private
information while keeping transaction costs low, they face a fundamental trade-
off. On the one hand, they want to trade slowly, to reduce their own temporary
price impact costs resulting from adverse selection. On the other hand, they want
to trade quickly, before the permanent price impact of competitors trading on
similar information makes temporary profit opportunities go away. To illustrate
this trade-off, we use a stationary model of continuous information-based trading
among oligopolistic traders who agree to disagree about the precisions of private
signals. The derived equilibrium with smooth trading reveals important insights
about dynamic properties of inventories, prices, and liquidity in financial markets.
The model combines the following assumptions: (1) There is one type of trader,

a strategic informed trader; there are no noise traders or market makers. (2) Each
trader has a flow of private information about the same underlying fundamental
value; the “noise” in their signals is uncorrelated. (3) Traders are “relatively over-
confident,” in that each trader believes his private information is more precise than
other traders believe it to be. (4) Given his beliefs about the precision of his own
signals and the signals of others, each trader applies Bayes law correctly; in doing
so, he infers from prices the economically relevant aggregation of other traders’
information. (5) Traders trade strategically, correctly taking into account how the
permanent and temporary price impact of their trades affects prices. (6) Random
variables are jointly normally distributed, and traders have additive exponential
utility functions. (7) Traders are “symmetric” in that they have the same util-
ity functions and symmetrically different beliefs about the information structure.
(8) All model state variables are stationary.
While Vayanos (1999) and Du and Zhu (2015) also describe dynamic symmet-

ric models of strategic informed trading with gradual adjustment of inventories,
our approach is different. In our model, prices, inventories, and expected returns
have stationary distributions; in their models, these variables are non-stationary.
Vayanos (1999) motivates trade from shocks to inventories while Du and Zhu (2015)
motivate trade from shocks to private values, both in a common prior setting. In
our model, trade is motivated by disagreement about the precision of stationary
private signals which decay as other traders acquire substitute information. We also
consider an alternate model with a common prior and trading based on stationary
privately-observed shocks to both cash-flow information and private values.
The one-period version of our model is an equilibrium in demand curves, like

Kyle (1989) and Rostek and Weretka (2012). An equilibrium with linear trading
strategies and positive trading volume exists if and only if each trader believes
that his signal is slightly more than twice as accurate as other traders’ signals.
The equilibrium has a simple closed-form solution. As disagreement falls, liquidity
dries up and trade vanishes.
The continuous-time model implements a continuous auction in which traders

continuously submit demand schedules. An “almost-closed-form” steady-state
equilibrium is characterized by six endogenous parameters which solve a set of
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six polynomial equations. Numerical calculations indicate that the same existence
condition holds in the continuous-time model as in the one-period model.
Although none of our individual assumptions is new to the financial economics

literature, combining all of the assumptions together into one model leads to new
results which can explain realistic features of inventories, liquidity, and prices in
speculative markets.
1. Inventories. Our stationary model provides a realistic description of trading

by large asset managers who seek out risks to exploit private information about
individual stocks. Each trader calculates a “target inventory” based on how his
own estimate of the long-term dividend growth rate differs from the estimates of
other traders. Since the market offers no instantaneous liquidity for block trades,
each trader only partially adjusts his inventory linearly in the direction of a target
inventory. Traders “shred orders” so that actual inventories are differentiable or
“smooth” functions of time.1 We prove analytically that the half-life of traders’
target inventories matches the half-life of private information; both decay at a
rate equal to the sum of the mean reversion rate of dividend growth and the total
precision of all information in the market.
We obtain additional robust results numerically. The endogenous speed with

which actual inventories move toward target inventories is faster when signals de-
cay faster and when there is more disagreement which makes markets more liquid.
When traders have very precise signals and there is a great deal of disagreement,
then markets are very liquid, traders trade aggressively, inventories mean-revert
rapidly, and the price is very informative about long-term fundamental value. This
contradicts the common intuition that high trading volume and short holding pe-
riods indicate a myopic focus on quarterly earnings announcements rather than
long-term value.
These results depend on imperfect competition and on an absence of noise trad-

ing. With perfect competition, traders adjust holdings to target inventories in-
finitely fast; imperfect competition induces traders to slow down inventory adjust-
ment, like in Vayanos (1999). In models with noise trading such as Wang (1993),
holding periods depend on both the arrival rate of information and the decay rate
of noise traders’ inventories.
Inventories follow a partial adjustment process with coefficients implied by the

model’s deep parameters. Specifically, we show analytically that when traders’
beliefs are “correct on average,” a more liquid market tends to be associated with
lower autocorrelation of actual inventories but a higher contemporaneous corre-
lation of actual inventories with target inventories. In an extensive literature on
institutional trading, Atkyn and Dyl (1997) study turnover rates; Chakrabarty,
Moulton and Trzcinka (2015) study holding periods; Chan and Lakonishok (1995)

1The market clears in time-derivatives of inventories, not inventories themselves. Our infor-
mal use of the term “smooth trading” is different from the mathematical usage, which implies
derivatives of all orders exist. Since the first derivatives of traders’ inventories follow diffusions,
higher order derivatives do not exist.
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study the length of trading packages; Cremers and Pareek (2014) study stock du-
ration; Bae et al. (2014) study the number of buy-sell switching points; Cremers
and Petajisto (2009) study the size of active shares; and Puckett and Yan (2011)
study the amount of short-term trading. Our model generates specific stylized
facts—with testable implications—for this empirical literature.
Although our model has no separate intermediaries, we expect our predictions

to apply to the empirical market-making literature, including Hasbrouck and Sofi-
anos (1993), Madhavan and Smidt (1993), and Menkveld and Hendershott (2014).
These papers find that intermediaries’ inventories adjust rapidly toward time-
varying targets and tend to have higher autocorrelations and lower mean-reversion
rates in smaller and less-frequently-traded stocks.
2. Liquidity. Our model endogenously generates a clean distinction between

permanent and temporary price impact. From a trader’s perspective, the level
of prices is a linear function of his level of inventories and the derivative of his
inventories. Changes in prices therefore depend on two liquidity parameters: (1)
a permanent price impact parameter, denoted λ as in Kyle (1985), measuring the
price impact of a change in the level of inventories, and (2) a temporary price im-
pact parameter, denoted κ, measuring the price impact of a change in the derivative
of inventories. The temporary component of price impact makes trading a given
quantity over a shorter horizon more expensive than trading the same quantity
over a longer horizon; the market offers no instantaneous liquidity for block trades.
The speed with which actual inventories move toward target inventories results
from a trade-off between temporary price impact costs and the speed with which
information decays. Modeling this important trade-off requires a stationary model.
Our continuous-time approach makes the distinction between permanent and

temporary price impact intuitively and mathematically clear. In the discrete-
time set-up of Vayanos (1999), an analogous distinction between permanent and
temporary price impact could be derived by carefully taking the limit as the interval
between rounds of trading goes to zero.
In our model, trading scales down with the traders’ risk aversion parameter.

Since both permanent and temporary price impact are proportional to risk aver-
sion, inventories and trading volume are inversely proportional to it. In Vayanos
(1999), by contrast, greater risk aversion is associated with less liquidity and more
trading. In addition, we show numerically that increasing disagreement makes mar-
kets more liquid and increases the speed of trading. The smooth trading model
therefore realistically predicts that high volume markets will be highly liquid.
Black (1971) describes liquidity using the concepts of tightness, depth, and re-

siliency. In our continuous-time model, the market has no instantaneous depth,
tightness is related to temporary price impact, and resiliency depends on the ag-
gregate rate of information production. These concepts of liquidity play out differ-
ently from Kyle (1985), in which the equilibrium would break if noise traders—like
the informed trader—were also allowed to smooth their trading; when all traders
smooth their trading, the nature of liquidity changes.
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In models with “impatient” noise traders—such as Chau and Vayanos (2008),
Foster and Viswanathan (1994), Caldentey and Stacchetti (2010), and Holden and
Subrahmanyam (1992)—a discrete-time setting is needed to prevent traders from
trading infinitely fast. Back, Cao and Willard (2000) are able to implement the
discrete-time model of Foster and Viswanathan (1996) in continuous time, because
declining permanent price impact over time deters infinitely aggressive trading
immediately after trading begins.
Our use of the terms “temporary” and “permanent” price impact differs from

that of empirical researchers who think of temporary impact as short-term mean re-
version in prices arising from dealer spreads (“bid-ask bounce”) and permanent im-
pact as persistent price changes arising from private information being impounded
into market prices. Consistent with Black (1982), it is impossible to infer price
impact from price fluctuations which result from optimal trading. As a result of
traders’ optimizing behavior, higher trading costs show up indirectly as smoother
inventories, not as more short-term mean reversion in prices. In principle, price
impact can be inferred from abnormally fast “out-of-equilibrium” execution of a
bet, which leads to a price spike resembling a “flash crash.”
Our endogenously derived price impact model is similar to transaction costs mod-

els used by practitioners such as Grinold and Kahn (1995), Almgren and Chriss
(2000), and Obizhaeva and Wang (2013). The model also provides a theoretical
explanation for robust empirical findings that the speed of trading affects transac-
tion costs and often relates to the size of temporary price changes, as documented
by Holthausen, Leftwich and Mayers (1990), Chan and Lakonishok (1995), Keim
and Madhavan (1997), and Dufour and Engle (2000). Numerous papers examine
the economic implications of fast trading given exogenously specified price impact
functions depending on the speed of trading; examples include Brunnermeier and
Pedersen (2005), Carlin, Lobo and Viswanathan (2007), and Longstaff (2001).
3. Prices, Keynesian Beauty Contest, and Private Values. Although

traders adjust inventories slowly, prices immediately reflect all of the information
in the market, both public and private. In the absence of noise trading, each trader
can infer the average valuation of other traders from the price.
Prices reflect the “beauty contest” described by Keynes (1936), in the sense that

traders forecast how the expectations of other traders will evolve in the future and
trade to take advantage of these forecasts. We obtain numerically the interesting
result that prices are dampened due to this beauty contest. The growth-rate
component of prices is a weighted average of the growth-rate expectations of each
trader; “dampening” means that the weights sum to a constant less than one. Here
is the intuition: When prices are high and a trader believes that the high prices
reflect fundamental value, the trader forecasts that the other overconfident traders
will revise their forecasts down so quickly that it is temporarily profitable to sell
ahead of such revisions in the short run. This dampens price fluctuations and leads
to momentum in returns. We find that this dampening is more pronounced when
disagreement is larger and markets are more liquid. These predictions explain
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the otherwise puzzling empirical finding that momentum is more pronounced in
high volume and liquid securities, as documented by Lee and Swaminathan (2000),
Moskowitz, Ooi and Pedersen (2012), and Cremers and Pareek (2014).
We characterize equilibrium in an otherwise similar model of perfect competition

in which traders immediately adjust inventories to target levels, as in Kyle and Lin
(2001). Consistent with the intuition that low trading costs amplify the economic
importance of the dampening effect, we find that perfect competition leads to more
pronounced dampening than imperfect competition.
We also examine an otherwise similar model with privately observed shocks to

private values and a common prior. For analytical tractability, we assume that
shocks to private values mean revert at the same rate as private information. This
model has properties analogous to our preferred model of overconfidence in all
respects except that price dampening goes away: prices are an average of traders’
private valuations, adjusted for private values. Similarly, the model of Du and Zhu
(2015), with non-stationary private values, has no price dampening either.
In noisy rational expectations models such as Wang (1993), Wang (1994), and

He and Wang (1995), noise affects the weights placed on signals but the sum of
weights on all valuations is equal to one; there is no price dampening. There is also
no price dampening in Vayanos (1999). Banerjee and Kremer (2010) is a myopic
model in which price dampening goes away because of myopia.
We infer from these results that price dampening in the Keynesian beauty contest

results from a combination of overconfidence and substantial market liquidity, not
from models of noise trading or private values with a common prior. Harsanyi
(1976) conjectures that a model without a common prior can be mapped into an
isomorphic model with a common prior. Our price dampening result shows that
such a mapping is not straightforward; it would likely require complicated ad hoc
assumptions involving “externalities” related to the cross-correlation structure of
private values. By contrast, our parsimonious model of disagreement provides a
natural micro-founded explanation for trading while satisfying Ockham’s razor.
Grinold and Kahn (1995), an influential book for quantitative asset managers,

describes a simplistic partial-equilibrium model of trading with decaying private in-
formation, risk aversion, and temporary transaction costs. They pose as an impor-
tant open research question (p. 580) how to set up a proper trading model with a
finite half-life for information, risk aversion, and a model of transaction costs which
captures the components of tightness, depth, and resiliency. Our model not only
solves an appropriate optimization problem for all asset managers simultaneously
but also derives endogenously a realistic transaction cost model with stationary
dynamics for inventories, prices, and expected returns.
This paper is structured as follows. Section 1 presents a one-period model.

Section 2 presents the continuous-time model. Section 3 examines properties of
the smooth-trading equilibrium. Section 4 concludes. Proofs are in Appendix A.
Appendix B presents a similar model of competitive trading. Appendix C presents
a similar model in which private values and a common prior replace overconfidence.
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1. One-period Model

The following one-period model has a simple closed-form solution illustrating the
interaction between overconfidence and market power.
A risky asset with random liquidation value v ∼ N(0, 1/τv) is traded for a safe

numeraire asset. It is common knowledge that the asset is in zero net supply.
Trader n is endowed with a privately observed inventory Sn, with

∑N
n=1 Sn = 0.

While non-zero initial inventories play no significant role in this one-period model,
they are useful for mapping results into the continuous-time model below. Traders

observe signals about the normalized liquidation value τ
1/2
v v ∼ N(0, 1). All traders

observe a public signal i0 := τ
1/2
0 (τ

1/2
v v) + e0 with e0 ∼ N(0, 1). Each trader n

observes a private signal in := τ
1/2
n (τ

1/2
v v) + en with en ∼ N(0, 1). The asset

payoff v, the public signal error e0, and N private signal errors e1, . . . , eN are
independently distributed.
Traders agree about the precision of the public signal τ0 and agree to disagree

about the precisions of private signals τn. Each trader is “relatively overconfident,”
believing his own signal has a high precision τn = τH and other traders’ signals
have low precision τm = τL for m 6= n, with τH > τL ≥ 0.
Each trader believes other traders are like noise traders who over-trade on their

information. Unlike Grossman and Stiglitz (1980) or Kyle (1985), there are no
explicit noise traders or market makers. The model is like Treynor (1995), who
discusses “transactors acting on information which they believe has not yet been
fully discounted in the market price but which in fact has.” Similarly, Black (1986)
defines noise trading as “trading on noise as if it were information.”
As in Kyle (1989) and Rostek and Weretka (2012), each trader submits a demand

schedule Xn(p) := Xn(i0, in, Sn, p) to a single-price auction. An auctioneer clears
the market at price p := p[X1, . . . , XN ]. Trader n’s terminal wealth is

(1) Wn := v (Sn +Xn(p))− p Xn(p).

Each trader n maximizes the same expected exponential utility function of wealth
En{− e−AWn} using his own beliefs about τH and τL to calculate the expectation.
An equilibrium is a set of trading strategies X1, . . . , XN such that each trader’s

strategy maximizes his expected utility, taking as given the trading strategies of
other traders. Except for the assumption that traders do not share a common
prior, this is equivalent to a Bayesian Nash equilibrium. As imperfect competitors,
traders take into account how the price p depends on the quantities they trade.

1.1. Linear Strategies and Bayesian Updating

Let i−n := 1
N−1

∑

m6=n im denote the average of other traders’ signals. When
trader n conjectures that other traders submit symmetric linear demand schedules

(2) Xm(i0, im, Sm, p) = α i0 + β im − γ p− δ Sm, m = 1, . . . , N, m 6= n,
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he infers from the market-clearing condition

(3) xn +
∑

m6=n

(α i0 + β im − γ p− δ Sm) = 0

that his residual supply schedule P (xn) is a function of his quantity xn given by

(4) P (xn) =
α

γ
i0 +

β

γ
i−n +

δ

(N − 1)γ
Sn +

1

(N − 1)γ
xn.

Since trader n observes the public signal i0, his own inventory Sn, and the quantity
he trades himself xn, he can infer the average of other traders’ signals i−n from
observing the intercept of his residual supply schedule.
Let En{. . .} and Varn{. . .} denote trader n’s expectation and variance operators

conditional on all signals i0, i1, . . . , iN . Define “total precision” τ by

(5) τ := (Varn{v})−1 = τv (1 + τ0 + τH + (N − 1) τL) .

The projection theorem for jointly normally distributed random variables implies

(6) En{v} =
τ
1/2
v

τ

(

τ
1/2
0 i0 + τ

1/2
H in + (N − 1) τ

1/2
L i−n

)

.

1.2. Utility Maximization with Market Power

Conditional on all information, trader n’s terminal wealth Wn is a normally
distributed random variable with mean and variance given by

(7) En{Wn} = En{v} (Sn+xn)−P (xn)xn, Varn{Wn} = (Sn+xn)
2 Varn{v}.

Normal distributions imply that expected utility is given by

(8) En{− e−AWn} = − exp
(

−A En{Wn}+
1
2
A2 Varn{Wn}

)

.

Maximizing this function is equivalent to maximizing the simpler function En{Wn}−
1
2
A Varn{Wn}. Plugging equations (5), (6), and (7) into equation (8), trader n

solves the maximization problem
(9)

max
xn

(

τ
1/2
v

τ

(

τ
1/2
0 i0 + τ

1/2
H in + (N − 1)τ

1/2
L i−n

)

(Sn + xn)− P (xn) xn −
A

2τ
(Sn + xn)

2

)

.

Oligopolistic trader n exercises market power by taking into account how his chosen
quantity xn affects the price P (xn) on his residual supply schedule (4).

1.3. Equilibrium with Linear Demand Schedules

There always exists a no-trade equilibrium in which each trader submits a no-
trade schedule Xn(.) ≡ 0 and the auctioneer cannot establish a meaningful price.
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An equilibrium with trade may also exist. Appendix section A.1 proves the fol-
lowing theorem using the “no-regret” approach: Each trader observes his residual
linear supply schedule, infers the average of other traders’ signals from its intercept,
picks the optimal quantity xn, and implements this choice with a demand schedule
xn = Xn(i0, in, Sn, p), without observing the residual supply schedule itself.2

Let τH/τL measure “disagreement.” Define the exogenous quantity ∆H by

(10) ∆H :=
τ
1/2
H

τ
1/2
L

− 2−
2

(N − 2)
.

THEOREM 1: Characterization of Equilibrium in the One-Period Model

with Overconfidence and Imperfect Competition. There exists a unique
symmetric equilibrium with linear trading strategies and non-zero trade if and only
if the second order condition ∆H > 0 holds. This equilibrium has the following
properties:

1. Trader n chooses the quantity x∗n given by

(11) x∗n =
(N − 2) τ

1/2
L ∆H

AN
τ 1/2v (in − i−n)− δ Sn.

2. The price p∗ is the average of traders’ valuations based on all information:

(12) p∗ =
1

N

N
∑

n=1

En{v} =
τ
1/2
v

τ

(

τ
1/2
0 i0 +

τ
1/2
H + (N − 1)τ

1/2
L

N

N
∑

n=1

in

)

.

3. The parameters α > 0, β > 0, γ > 0, and δ > 0 defining the linear trading
strategies in equation (2) have unique closed-form solutions, defined in (A-6).

For an equilibrium with positive trading volume to exist, there must be “enough”

disagreement so that ∆H > 0. This requires N ≥ 3 and requires τ
1/2
H to be suffi-

ciently more than twice as large as τ
1/2
L . Each trader trades in the direction of his

private signal in, trades against the average of other traders’ signals i−n, and hedges
a fraction δ of his initial inventory. Trading volume increases in disagreement and
decreases in risk aversion.

2Substituting equation (4) into equation (9) to find his optimal demand given in (A-1). Solving
for i−n in the market-clearing condition (3), substituting this solution into equation (A-1), and
then solving for xn, yields a demand schedule Xn(i0, in, Sn, p) for trader n as a function of price
p. In a symmetric linear equilibrium, the strategy chosen by trader n must be the same as the
linear strategy (2) conjectured for the other traders. Equating the corresponding coefficients of
the variables i0, in, p, and Sn yields a system of four equations in terms of the four unknowns α,
β, γ, and δ. The unique solution is given in (A-6). Substituting (A-6) into (A-3) yields trader n’s
optimal demand. Then using the market-clearing condition yields the equilibrium price.
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1.4. Equilibrium Properties

Like Kyle (1989) and Rostek and Weretka (2012), each trader exercises market
power by “shading” the quantity traded relative to the quantity a perfect competi-
tor would trade. Define a trader’s “target inventory” STIn as the inventory such
that he would not want to trade (x∗n = 0), given from equation (11) by

(13) STIn =
1

A

(

1−
1

N

)

τ 1/2v (τ
1/2
H − τ

1/2
L ) (in − i−n).

Then trader n’s optimal quantity traded can be written

(14) x∗n = δ(STIn −Sn), where 0 < δ =
(N − 2) τ

1/2
H − 2 (N − 1) τ

1/2
L

(N − 1)(τ
1/2
H − τ

1/2
L )

< 1.

The parameter δ, calculated from equations (A-6), is the fraction by which imper-
fectly competitive traders adjust positions toward target levels. As a function of
disagreement τH/τL, δ increases monotonically from a lower bound of zero when

the existence condition τ
1/2
H /τ

1/2
L − 2− 2/(N − 2) > 0 is barely satisfied toward an

upper bound of (N − 2)/(N − 1) as τ
1/2
H /τ

1/2
L → ∞. If there is not enough dis-

agreement to sustain an equilibrium with trade, each trader would want to shade
his bid more than the others, and this breaks the equilibrium.3

In an otherwise equivalent one-period model with perfect competition, traders
trade the quantity which brings their inventories to target levels, equivalent to
δ = 1. Prices in the competitive equilibrium are the same as with imperfect
competition. Appendix section B.1 proves the following:

THEOREM 2: Characterization of Competitive Equilibrium in the One-

Period Model. There exists a unique symmetric equilibrium with linear trading
strategies and non-zero trade if and only if τH > τL. In this equilibrium:

1. Trader n chooses the quantity x∗n = STIn − Sn (equation (14) with δ = 1).

3When there is not enough disagreement to sustain an equilibrium with pure strategies,
one might imagine that it is possible to have an equilibrium with mixed strategies. For mixed
strategies to be an equilibrium, the trader must be indifferent across the various randomized
choices of quantities he trades. For example, if we add normally distributed noise to quantities
traded, symmetrically across all traders, a mixed strategy equilibrium requires the second order
condition to be exactly zero. This means that the quadratic objective function reduces to a linear
function, i.e., the denominator of equation (A-1) is zero. Since the trader has to be indifferent
across various randomizations, this further implies that the linear function must be a constant,
distributed independently from the quantity traded. This assumption cannot hold, because a
trader with a positive value of in would always want to buy unlimited quantities, and a trader
with a negative in would always want to sell unlimited quantities. Thus, an equilibrium with
symmetric normally distributed noise cannot exist. When noise is not normally distributed or
the equilibrium is not symmetric, the objective function is not quadratic any more, but it will
still be difficult to find a mixed strategy equilibrium given that the sensitivity of utility to a
trader’s own private information must be well-defined.
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2. The price p∗ is the same as in the model with imperfect competition (equa-
tion (12)).

3. The parameters α > 0, β > 0, γ > 0, and δ = 1, which define the linear trading
strategies in equation (B-4), have unique closed-form solutions defined in (B-7).

With perfect competition, traders take the equilibrium price as given. With
imperfect competition, traders realize that both their inventories and the quantity
they trade affect prices.
From the perspective of trader n, equation (4) implies that with imperfect com-

petition, price impact can be written as a function of both xn and Sn,

(15) P (xn, Sn) := p0,n + λ Sn + κ xn,

where p0,n is a linear combination of random variables i0 and i−n, and equa-
tions (A-5) and (A-6) imply that constants λ and κ are given by

(16) λ :=
δ

(N − 1)γ
=
A

τ

τ
1/2
H + (N − 1) τ

1/2
L

(N − 1)(τ
1/2
H − τ

1/2
L )

and

(17) κ :=
λ

δ
=

1

(N − 1)γ
=
A

τ

τ
1/2
H + (N − 1) τ

1/2
L

(N − 2) τ
1/2
L ∆H

.

The price impact parameters λ and κ increase in risk aversion A and decrease in
disagreement τH/τL; these results are consistent with the continuous-time model
considered next. In the continuous-time model, the first component λ Sn is analo-
gous to permanent price impact as in Kyle (1985). The second component κ xn is
analogous to temporary price impact determined by the speed of trading, with xn
replaced by the derivative of the trader’s inventory dSn/dt.

2. Continuous-Time Model

The continuous-time model has the following structure. There are N risk-averse
oligopolistic traders who trade at price P (t) a risky asset in zero net supply against
a risk-free asset which earns constant risk-free rate r > 0.
The risky asset pays out dividends at continuous rate D(t). Dividends follow

a stochastic process with mean-reverting stochastic growth rate G∗(t), constant
instantaneous volatility σD > 0, and constant rate of mean reversion αD > 0:

(18) dD(t) := −αD D(t) dt+G∗(t) dt+ σD dBD(t).

The dividend D(t) is publicly observable, but the growth rate G∗(t) is not observed
by any trader. The growth rate G∗(t) follows an AR-1 process with mean reversion
αG and volatility σG:

(19) dG∗(t) := −αG G
∗(t) dt+ σG dBG(t).
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Each trader n observes a continuous stream of private information In(t) defined
by the stochastic process

(20) dIn(t) := τ 1/2n

G∗(t)

σG Ω1/2
dt+ dBn(t), n = 1, . . . , N.

Since its drift is proportional to G∗(t), each increment dIn(t) in the process In(t)
is a noisy observation of the unobserved growth rate G∗(t). The denominator
σG Ω1/2 scales G∗(t) so that its conditional variance is one; this simplifies the
intuitive interpretation of the model. The “precision” parameter τn measures the
informativeness of the signal dIn(t) as a signal-to-noise ratio describing how fast
new information flows into the market. The parameter Ω measures the steady-
state error variance of the trader’s estimate of G∗(t) in units of time; it is defined
algebraically below (see equation (24)).4

Analogous to the one-period model, each trader is absolutely certain that his
own private information In(t) has “high” precision τn = τH and the other traders’
private information has “low” precision τm = τL for m 6= n, with τH > τL ≥
0. Traders do not update their dogmatic beliefs about τH and τL over time; for
plausible parameter values, it would take a long time for a trader to learn that his
beliefs are incorrect. Since “relatively overconfident” traders “agree to disagree”
about the precisions of their private signals, they do not share a common prior even
though their beliefs are common knowledge.5 Agreement-to-disagree is a simple
assumption with realistic implications: it can break no-trade results and naturally
generate trading volume. It is important to distinguish between the common prior
assumption (which we do not make) and the traditional economists’ assumption of
rationality as consistently applying Bayes law when maximizing expected utility
with respect to some probability distribution (which we do make). Morris (1995)
further discusses why “dropping the common prior assumption from otherwise
rational behavior” is an important research agenda.
Each trader’s information set at time t, denoted Fn(t), consists of the histories of

(1) the dividend process D(s), (2) the trader’s own private information In(s), and
(3) the market price P (s), s ∈ (−∞, t]. All traders process information rationally;
they apply Bayes law correctly given their possibly incorrect beliefs.
Let Sn(t) denote the inventory of trader n at time t. Zero net supply implies

∑N
n=1 Sn(t) = 0.
This section considers “smooth trading” equilibria in which inventories Sn(t)

4Since the innovation variance of the signal dIn(t) can be estimated arbitrarily precisely by
observing past signals continuously, it is common knowledge that the innovation variance of the
signal is one. Scaling the innovation variance of In(t) in equation (20) to make it equal to one is
therefore a normalization without loss of generality.

5We call this belief structure “relative overconfidence” to distinguish it from a belief struc-
ture with “absolute overconfidence” in which traders believe the precisions of their signals are
greater than empirically true precisions. Empirically true precisions do not affect the equilibrium
strategies investigated in this paper but do affect empirical predictions about asset returns (see
section 3.6).
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are differentiable functions of time. Therefore, trading strategies and the market-
clearing condition are specified using rates of trading, not shares traded. Each
trader’s trading strategy Xn is a mapping from his information set Fn(t) at time t
into a “flow-demand schedule” which defines the derivative of his inventory xn(t) :=
Xn(t, P (t);Fn(t)) (“trading intensity”) as a function of the market-clearing price
P (t). An auctioneer continuously calculates the market-clearing price P (t) :=
P [X1, . . . , XN ](t) such that the market-clearing condition

∑N
n=1 xn(t) = 0 is satis-

fied. Each trader explicitly takes into account the effect of his trading intensity on
market prices.
Each trader has the same time preference parameter ρ and the same time-

additively-separable exponential utility function U(cn(s)) := − e−A cn(s) with constant-
absolute-risk-aversion parameter A. Trader n’s consumption strategy Cn defines
a consumption rate cn(t) := Cn(t;Fn(t)) for all t > −∞. Let Ent {. . .} denote the
conditional expectations operator E{. . . |Fn(t)} based on trader n’s beliefs.
Define an equilibrium as a set of trading strategies X∗

1 , . . . , X
∗
N and consumption

strategies C∗
1 , . . . , C

∗
N such that, for n = 1, . . . , N , trader n’s optimal consumption

and trading strategies Xn = X∗
n and Cn = C∗

n solve his maximization problem
taking as given the optimal strategies of the other traders. For all dates t > −∞,
the optimal strategies X∗

n and C∗
n solve trader n’s maximization problem

(21) max
{Cn,Xn}

Ent

{
∫ ∞

s=t

e−ρ(s−t) U(cn(s)) ds

}

,

where inventories follow the process dSn(t) = xn(t) dt and money holdings Mn(t)
follow the process

(22) dMn(t) = (r Mn(t) + Sn(t)D(t)− cn(t)− P (t) xn(t)) dt.

When solving the maximization problem, trader n takes as given the trading
strategies Xm, m 6= n, for the other N − 1 traders; in doing so, he exercises
market power by taking into account how his own trading strategy affects equi-
librium prices P (t) and future trading opportunities. Except for the assumption
that traders do not share a common prior (since τH 6= τL), the equilibrium is a
perfect Bayesian equilibrium; traders follow dynamically consistent trading strate-
gies, taking as given the strategies of other traders. This generalizes the Bayesian
Nash equilibrium concept used in the one-period model in a natural way.
The values of all ten exogenous parameters αD, σD, αG, σG, τH , τL, N , r, A, and

ρ are common knowledge. It is also common knowledge that each trader believes
that dBD(t), dBG(t), dB1(t), . . . , dBN(t) are independently-distributed Brownian
motions, given traders’ beliefs. Note that since traders disagree about whether
a signal has precision τH or τL, they also disagree about how to construct the
Brownian motions dBn(t) from the signals dIn(t). Symmetry of parameter values
prevents the number of state variables from exploding, avoiding the forecasting-
the-forecasts-of-others problem described by Townsend (1983).
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We show that if disagreement is large enough—i.e., if τH is sufficiently larger
than τL—there will be trade based on private information. The degree of dis-
agreement τH/τL affects the equilibrium prices and quantities traded. Without
overconfidence—e.g., in a model of rational expectations with a common prior—
there would be no trade except for possible unwinding of initial suboptimal en-
dowments.
Infinitely fast portfolio updating cannot be an equilibrium. Temporary price

impact is intuitively necessary to prevent a breakdown in equilibrium which would
occur with infinitely fast updating toward target inventories. With temporary price
impact, infinitely fast trading toward a target inventory is infinitely expensive
because the price is an unboundedly increasing function of the derivative of a
trader’s inventory. If there were no temporary price impact—and the price were
only an increasing function of the level of a trader’s inventory—then a trader
would reduce price impact costs by moving continuously but very quickly along
his residual demand schedule, trading at increasingly less favorable prices like a
perfectly discriminating monopolist. This could not be a symmetric equilibrium,
however, because the counter-parties would require compensation, in the form of
temporary price impact costs, to compensate for losses from being “picked off” by
the discriminating monopolist. To reduce transaction costs, each trader would try
to slow his trading relative to others, and the equilibrium would break.
The continuous equilibrium of Kyle (1985) is different. While the informed trader

optimally smooths out his trading so that his inventory is a continuous function of
time, the noise traders are assumed to trade sub-optimally. In response to a shock
to desired inventories ∆U , the noise traders immediately trade the quantity ∆U all
at once, incurring price impact cost λ∆U . If the noise traders were instead to trade
smoothly at rate ∆U/∆t over some small time interval ∆t, moving quickly but
continuously along their residual demand schedule like a perfectly discriminating
monopolist, then they would incur approximately only one-half the price impact
cost, 1

2
λ ∆U . Such optimized smooth trading by noise traders would break the

equilibrium of Kyle (1985) because the market makers on the other side of this
smooth trading would suffer losses.

2.1. Bayesian Updating by Traders in the Model

In addition to private information, traders also use the history of the dividend
process D(t) to forecast the unobserved dividend growth rate G∗(t). To sim-
plify Kalman filtering formulas, the information content of the publicly observable
dividend D(t) can be expressed in a form analogous to the notation for private
information In(t) in equation (20). Define dI0(t) := [αD D(t) dt+ dD(t)] /σD and
dB0 := dBD. Then the public information I0(t) in the divided stream (18) can be
written

(23) dI0(t) := τ
1/2
0

G∗(t)

σG Ω1/2
dt+ dB0(t), where τ0 :=

Ω σ2
G

σ2
D

.
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The process I0(t) is informationally equivalent to the dividend process D(t). The
quantity τ0 measures the precision of the dividend process in units analogous to
the units of precision for private information.
Consider next how traders update their estimates of the unobserved growth rate.

In a symmetric equilibrium with no noise trading, each trader infers from prices
a sufficient statistic for other traders’ private information. Thus, all traders up-
date estimates of the unobserved growth rate G∗(t) as if fully informed about all
information I0(s) ≡ D(s), I1(s), . . . , IN(s), s ∈ (−∞, t], including the private in-
formation of other traders. Let Gn(t) := Ent {G

∗(t)} denote trader n’s estimate
of the unobserved growth rate G∗(t) conditional on all information. The super-
script n indicates that conditional distributions of growth rates are calculated by
trader n based on his belief that his own signal has high precision τH and other
traders’ signals have low precision τL. The subscript t denotes conditioning on the
history of all information at date t. Similarly, let Varnt {G

∗(t)} denote trader n’s
conditional variance using all information at date t.
Appendix section A.2 presents Stratonovich-Kalman-Bucy filtering formulas for

calculating estimates of the unobserved growth rate G∗(t) from information of
arbitrary precision τ0, τ1, . . . , τN . For traders’ specific beliefs τH and τL, these
results show how traders correctly use Bayes law to update their estimates Gn(t).
Equations (A-8) and (A-9) imply that, for the beliefs of any trader n, “total

precision” τ and non-time-varying “scaled error variance” Ω are given by

(24) τ := τ0 + τH + (N − 1) τL, Ω−1 :=

(

Varnt {G
∗(t)}

σ2
G

)−1

= 2 αG + τ.

Although traders disagree about which signal has high precision τH , it is common
knowledge that they use the same values of τ and Ω.
From the history of each “raw information” process In(s), s ∈ (−∞, t], define

a “signal” Hn(t), n = 0, . . . , N , by plugging τ and Ω into equation (A-13); the
resulting exponentially weighted average of past innovations, given by

(25) Hn(t) :=

∫ t

u=−∞

e−(αG+τ) (t−u) dIn(u), n = 0, 1, . . . , N,

is a sufficient statistic for the information in the history of the raw information
process In(s). Equation (25) reveals that the information content of an innovation
in the raw information process dIn(t) decays at rate αG+ τ , where τ measures the
rate at which new information is being produced. Let H−n(t) denote the average
of the other traders’ signals:

(26) H−n(t) :=
1

N−1

∑

m=1,...,N ;m6=n

Hm(t).

Equation (A-15) implies that trader n’s estimate of the growth rate Gn(t) is a
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linear combination of H0(t), Hn(t), and H−n(t) given by

(27) Gn(t) := σG Ω1/2
(

τ
1/2
0 H0(t) + τ

1/2
H Hn(t) + τ

1/2
L (N − 1)H−n(t)

)

.

This equation has a simple intuition. All traders place the same weight τ
1/2
0 on

the dividend-information signal H0(t). Because they disagree about the precisions,

each trader assigns a larger weight τ
1/2
H to his own signal and a lower weight τ

1/2
L

to each of the other N − 1 traders’ signals.
As discussed next, trader n’s optimal trading strategy depends on both the

average of other traders’ estimates of the unobserved growth rate G∗(t), defined
as G−n(t) :=

1
N−1

∑

m6=nGm(t), and his own beliefs about the dynamic statistical
relationship between G∗(t) and the sufficient statistics H0(t), Hn(t), and H−n(t).

2.2. Linear Conjectured Strategies

We seek to find a symmetric, steady-state equilibrium in which traders use simple
Markovian linear strategies. To reduce the number of state variables, it is conve-
nient to replace the three state variables H0(t), Hn(t), H−n(t) with two composite
state variables Ĥn and Ĥ−n defined using a constant Â by
(28)

Ĥn(t) := Hn(t)+ÂH0(t), Ĥ−n(t) := H−n(t)+ÂH0(t), Â :=
τ
1/2
0

τ
1/2
H + (N − 1)τ

1/2
L

.

Let xn(t) = dSn(t)/dt = Xn(t, P [X1, . . . , XN ](t);Fn(t)) denote the “flow-quantity”
traded by any trader n. Trader n conjectures that for other traders m, four con-
stant “γ-parameters” γD, γH , γS, γP define symmetric linear flow-schedules

(29) xm(t) = dSn(t)/dt = γD D(t) + γH Ĥm(t)− γS Sm(t)− γP P (t).

The market-clearing condition and this linear conjecture imply that trader n’s own
flow-demand schedule satisfies

(30) xn(t) +
∑

m=1,...,N ;m6=n

(

γD D(t) + γH Ĥm(t)− γS Sm(t)− γP P (t)
)

= 0.

This equation can be solved for P (t) as a function of xn(t). Zero net supply
∑N

m=1 Sm(t) = 0 and stationarity yield trader n’s conjectured price impact function

(31) P (xn(t)) =
γD
γP

D(t) +
γH
γP

Ĥ−n(t) +
γS

(N − 1)γP
Sn(t) +

1

(N − 1)γP
xn(t).

Equation (31) is analogous to equation (4) from the one-period model, with the
interpretation of xn(t) changed from quantity traded to time-derivative of quantity
traded. The intercept of the residual supply schedule depends on dividends D(t)
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and the information of other traders Ĥ−n(t). Call the term linear in Sn(t) “perma-
nent impact” and the term linear in xn(t) “temporary impact.” By analogy with
equations (16) and (17) for the one-period model, equation (31) defines coefficients
of permanent impact λ and temporary impact κ:

(32) λ :=
γS

(N − 1) γp
, κ :=

1

(N − 1) γp
.

Imperfect competition requires trader n to take into account both his permanent
and temporary price impact in choosing how fast to change his inventory. Trader n
exercises monopoly power in choosing how fast to demand liquidity from other
traders to profit from information. He also exercises monopoly power in choosing
how fast to provide liquidity to the other N−1 traders who, according to trader n’s
beliefs, trade with overconfidence and therefore make supplying liquidity to them
profitable. Intuitively, the symmetry of equilibrium trading strategies requires
traders to believe they are being adequately compensated for both supplying and
demanding liquidity in a manner consistent with market clearing.

2.3. Equilibrium with Linear Trading Strategies

Define a steady-state equilibrium with symmetric, linear flow-strategies as a
Bayesian perfect equilibrium in which traders maximize expected utility by choos-
ing flow-strategies of the form (29) with constant γ-parameters (as functions of
time). The Bayesian perfect equilibrium concept requires strategies to be dynam-
ically consistent. A steady-state equilibrium also requires inventories to have a
non-stochastic, finite variance which does not vary over time.
Appendix section A.3 uses the “no-regret” approach in the same way as the proof

of theorem 1 for the one-period model. Trader n solves for his optimal consumption
and trading strategy by plugging the price impact function (31) into his dynamic
optimization problem. Trader n infers the value of H−n(t) by observing his residual
flow-supply schedule, picks the optimal point on this residual flow-supply schedule,
and implements this optimal point with a linear demand schedule. Linear conjec-
tured strategies for other traders m 6= n make the optimization problem quadratic
in trading intensity xn(t); thus, the optimal flow-demand x∗n(t) is the solution to a
linear equation. This linear solution generates higher profits than any non-linear
demand schedule.
The proof in Appendix section A.3 conjectures an exponential value function

whose exponent is a specific quadratic function of the state variables Mn(t), D(t),
Ĥn(t), Ĥ−n(t), and Sn(t), defined in terms of nine “ψ-parameters”; obtains first-
order necessary conditions from the Hamilton-Jacobi-Bellman equation; equates
coefficients in the conjectured linear solution; and then combines the resulting
nine ψ-equations with four γ-equations, imposing symmetry on the solution. The
proof shows that these thirteen equations can be reduced to six polynomial equa-
tions (A-57)–(A-62) in six unknowns, whose solution determines the nine ψ-para-
meters defining the value function in equation (A-37) and the four γ-parameters
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defining trading strategies in equation (29). The thirteen endogenous parameters
are functions of the ten exogenous parameters r, ρ, A, αD, σD, αG, σG, N , τH ,
and τL (in terms of which the quasi-exogenous parameters τ0, τ , Ω, and Â are also
defined).6

There always exists a no-trade equilibrium Xn ≡ 0, with no well-defined price.

THEOREM 3: Characterization of Equilibrium in the Continuous-Time

Model with Overconfidence and Imperfect Competition. There exists a
steady-state, Bayesian-perfect equilibrium with symmetric, linear flow-strategies
and positive trading volume if and only if the six polynomial equations (A-57)–
(A-62) have a solution satisfying the second-order condition γP > 0 and the sta-
tionarity condition γS > 0. Such an equilibrium has the following properties:

1) There is an endogenously determined constant CL > 0, defined in equa-
tion (A-49), such that trader n’s optimal flow-strategy x∗n(t) makes time-
differentiable inventories Sn(t) change at rate

(33) x∗n(t) =
dSn(t)

dt
= γS

(

CL (Ĥn(t)− Ĥ−n(t))− Sn(t)
)

.

2) There is an endogenously determined constant CG > 0, defined in equa-
tion (A-49), such that the equilibrium price is

(34) P ∗(t) =
D(t)

r + αD
+ CG

Ḡ(t)

(r + αD)(r + αG)
,

where Ḡ(t) := 1
N

∑N
n=1Gn(t) denotes the average expected growth rate.

The equilibrium has a surprisingly simple structure. Equations (33) and (34) are
similar to equations (11) and (12) in the one-period model.
The price immediately reveals the average of all signals, responding instanta-

neously to innovations in each trader’s private information. This occurs despite
the fact that, to reduce price impact costs resulting from adverse selection, each
trader intentionally slows down his trading.
If CG were equal to one, equation (34) would imply that the equilibrium price

would be the average of traders’ risk-neutral buy-and-hold valuations, consistent

6The six polynomial equations are implications of first-order conditions under the assumptions
that trading strategies have the conjectured linear form and the equilibrium is symmetric. For
a solution to the six polynomial equations to define a stationary equilibrium, it is sufficient for
the solution to satisfy (1) a second-order condition implying γP > 0, (2) a stationarity condition
implying γS > 0, (3) a transversality condition requiring r > 0, and (4) a budget constraint ruling
out Ponzi schemes (implied by r > 0 and stationarity of inventories). The second-order condition
γP > 0 requires temporary price impact to be positive; if temporary price impact were negative,
traders could achieve infinite utility by first buying and then selling at extremely fast rates over
short periods of time. The stationarity condition γS > 0 requires permanent price impact to
be positive; inventories would blow up over time if permanent price impact were negative, and
this would be inconsistent with stationarity. Mathematical details supporting this intuition are
provided at the end of Appendix section A.3.
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with Gordon’s growth formula and the one-period model. As discussed in sec-
tion 3.3, a “Keynesian beauty contest” makes the multiplier CG less than one.
An important difference between our model and other models concerns the scal-

ing of trading with risk aversion. We have the following analytical result:

THEOREM 4: Comparative Statics for Risk Aversion. If risk aversion A
is scaled by a factor of F to A/F , then CL changes to CL F , λ changes to λ/F , κ
changes to κ/F , but γS and CG remain the same.

Theorem 4 implies that when risk tolerance 1/A increases by a factor of F > 1,
traders increase target inventories and quantities traded proportionally in response
to proportional reductions in temporary and permanent price impact. Risk aver-
sion affects only quantities. The speed of trading and equilibrium prices remain
the same. Section 3 discusses related empirical implications.

2.4. An Existence Condition

Calculation of an analytical solution for the equilibrium in theorem 3 requires
solving the six polynomial equations (A-57)–(A-62). While these equations do not
admit an obvious analytical solution, they can be solved numerically. Extensive
numerical calculations lead us to conjecture that the existence condition for the
continuous-time model is exactly the same as the existence condition for the one-
period model:

CONJECTURE 1: Existence Condition. A steady-state, Bayesian-perfect equi-
librium with symmetric, linear flow-strategies exists if and only if

(35) ∆H :=
τ
1/2
H

τ
1/2
L

− 2−
2

N − 2
> 0.

We have examined numerical solutions to the six equations (A-57)–(A-62) for
a large number of exogenous parameter values. When existence condition (35) is
satisfied, the numerical algorithm always finds precisely one solution satisfying the
second-order condition γP > 0, and this solution also satisfies the stationarity con-
dition γS > 0. When existence condition (35) is reversed, the numerical algorithm
sometimes finds solutions satisfying the second-order condition γP > 0, but these
solutions do not satisfy the stationarity condition γS > 0.
Similar to the one-period model, we expect equilibrium with trade to exist only

if there is enough disagreement. With continuous trading, each trader tries to
exercise his monopoly power by smoothly walking up the residual supply schedule
rather than by trading a block at one market-clearing price. If ∆P denotes the to-
tal price impact of trading some quantity smoothly by walking up a linear residual
supply schedule, then the average transaction price incorporates a realized price
impact cost of approximately ∆P/2. To be willing to take the other side of such
smooth trades of their competitors, traders must believe that their competitors’
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signals are only about “half as precise” as their competitors believe them to be.
This intuition is consistent with the existence condition ∆H > 0, which is equiv-

alent to τ
1/2
H /2 > τ

1/2
L (1 + 1/(N − 2)). In this context, “half-as-precise” means

τ
1/2
H /2 ≈ τ

1/2
L ; the term 1/(N − 2) is due to market power.

A closed-form solution exists for the limiting case when market liquidity vanishes
(i.e., when ∆H → 0 implies κ → ∞ or γP → 0). Consistent with the intuition
above, the existence condition (35) holds exactly in this limit. A closed-form
solution also exists for the special case when traders believe other traders have no
information (τL = 0) and the number of traders N is large. These two closed-form
solutions are discussed in more detail in sections 3.4 and 3.5.

2.5. A Competitive Model as Benchmark

To understand how imperfect competition affects the equilibrium, Appendix sec-
tion B.2 characterizes the equilibrium of the analogous continuous-time model in
which the assumption of perfect competition replaces imperfect competition.
Conceptually, the model with perfect competition differs from the model with

imperfect competition in two ways. First, when traders construct their strategies
(cn(t), Sn(t)), they do not take into account the effect of their trades on prices,
and this simplifies their wealth dynamics (B-12). Second, since it is not necessary
for a trader to consider separately money holdings Mn and a stock holdings Sn
in the case of perfect competition, the value function conjectured in (B-14) is a
quadratic exponential function of only three state variables, wealth Wn and two
information variables Ĥn and Ĥ−n. This reduces the number of parameters in the
value function. The results are summarized in the following theorem:

THEOREM 5: Characterization of Competitive Equilibrium for the Con-

tinuous-Time Model. There exists a steady-state, Bayesian-perfect equilibrium
with symmetric, linear strategies with positive trading volume if and only if the
three polynomial equations (B-23)–(B-25) have a solution satisfying γP > 0. Such
an equilibrium has the following properties:

1) There is an endogenously determined constant CL > 0, defined in equa-
tion (B-20), such that trader n’s optimal inventories S∗

n(t) are

(36) S∗
n(t) = CL (Ĥn(t)− Ĥ−n(t)).

2) There is an endogenously determined constant CG > 0, defined in equa-
tion (B-18), such that the equilibrium price is

(37) P ∗(t) =
D(t)

r + αD
+ CG

Ḡ(t)

(r + αD)(r + αG)
,

where Ḡ(t) := 1
N

∑N
n=1Gn(t) denotes the average expected growth rate.
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Equations (36) and (37) are similar to corresponding equations (33) and (34)
in theorem 3, but the values of CL and CG are different. The equilibrium has
a simple structure, which is very different from the model of smooth trading.
The most important difference is that traders do not smooth their trading. Each
trader immediately adjusts actual inventories to target levels; since inventories
are diffusions, trading volume is infinite. With imperfect competition, traders
strategically smooth their trades out over time to exploit their market power in
the presence of adverse selection; since trading is “smooth,” trading volume is
finite.
In the model with perfect competition, the price dampening factor CG contin-

ues to be less than one. As discussed in section 3.3 below, competition leads to
greater price dampening, making the value of CG even smaller than with imperfect
competition.

2.6. Interpretation As A Model with Private Values

Instead of motivating trade using a model based on agreement-to-disagree (and
no common prior), trade can instead be motivated by an alternative model based
on private values with a common prior. The alternative model is identical to the
model of disagreement except for two important differences: (1) Instead of agreeing
to disagree, all private signals have the same precision τI . (2) In addition to the
common cash dividend D(t), each trader receives an orthogonal private-value or
“convenience yield” πJ H

J
n (t) which follows an AR-1 process. This structure is

common knowledge; traders share a common prior.
Making the two models as similar as possible requires making the assumption

that the exogenous mean-reversion rate of the convenience yield is the same as the
endogenous mean-reversion rate of private information; otherwise, the number of
state variables explodes.
To compare these two approaches, Appendix C examines such a model with

private values. All of the equations in section 2 and Appendix A map nicely into
corresponding equations in Appendix C.
The noise due to private values lowers by some endogenous factor the precision

of other traders’ signals inferred from prices. To make the models as similar as
possible, the parameter τI can be chosen to equal the parameter τH , and the
level of innovation variance in shocks to private values can be chosen so that the
endogenous lower precision inferred from prices is equal to τL.
When the parameters of the private-values processes are chosen to map the model

with private values into the model with disagreement as closely as possible, it
is straightforward to see that all equations are similar except for one specific,
intriguing difference. In the model with private values, traders agree that they
have different valuations in the present, and they furthermore agree that these
different valuations will mean revert toward the same unconditional common mean
consistent with a common prior. In the model with disagreement, traders also
agree that they have different valuations in the present, but—in contrast to the
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model with private values—they furthermore agree to disagree about the stochastic
process their different current valuations will follow in the future. Specifically, each
trader believes that the other traders’ valuations will converge to his own valuation
in the long run but deviate in the short run; because they have different beliefs
about valuation dynamics as a result of not sharing a common prior, they disagree
in the present about how their expectations will differ in the future. Algebraically,
this effect shows up in equations (C-33) and (C-34); the discussion following these
equations clarifies the intuition further.
As discussed in detail below, disagreement about the dynamics of valuations

leads to a Keynesian beauty contest with dampening of prices (0 < CG < 1).
With private values, it can be shown analytically that no such dampening occurs
(CG = 1). The private-values model is simpler than the model with disagreement
because traders disagree about the present only; they do not disagree about the
future.
This inconsistency between the two models leads to a practical insight about the

conjecture of Harsanyi (1976) that any model with different priors is isomorphic
to a model with a common prior, therefore making models with different priors
unnecessary. Harsanyi’s conjecture potentially simplifies economic modeling by
allowing game theorists to employ machinery developed specifically for common
prior models.
To generate an isomorphic model with a Keynesian beauty contest, it would

be necessary to make very specific ad hoc complicated assumptions about the
evolution of private values and correlations between them in the future. These
assumptions would need to be designed specifically to mimic artificially the natural
dynamics of Bayes law in the context of agreement-to-disagree. Thus, as a practical
matter, successfully implementing Harsanyi’s conjecture is unlikely to simplify the
analysis of the resulting common-values model. Ockham’s razor supports modeling
trading based on disagreement, not based on a common prior assumption.
Both Vayanos (1999) and Du and Zhu (2015) obtain no price dampening (CG =

1) in models with private values, inventories, and expected returns following ran-
dom walks. Our smooth trading model with disagreement, by contrast, is designed
to make sharp predictions about individual traders’ asset holdings. As discussed
further below, we believe it is empirically realistic that both higher information
flow (increased τ) and increased liquidity resulting from more disagreement (higher
τH/τL) shorten the holding period of individual traders.

3. Implications of the Continuous-Time Model

This section discusses implications of the continuous-time model for (1) trading
strategies, (2) market liquidity, and (3) prices. In what follows, we suppress for
simplicity the superscript “∗” on equilibrium prices and strategies.
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3.1. Trading Strategies: A Partial Adjustment Process

The equilibrium trading strategies have a simple form similar to the one-period
model. Define trader n’s “target inventory,” denoted STIn (t), as the inventory level
such that trader n chooses not to trade (xn(t) = 0). From equation (33), the target
inventory is given by

(38) STIn (t) = CL

(

Ĥn(t)− Ĥ−n(t)
)

.

Trader n targets a long position if his own signal Ĥn(t) is greater than the average
signal of other traders Ĥ−n(t) and a short position if his own signal is less than the
average signal of others. The endogenously determined proportionality constant
CL measures the sensitivity of target inventories to this difference.
Trader n follows a partial adjustment strategy such that his inventory Sn(t)

gradually converges toward its target level STIn (t) at an endogenously determined
rate γS:

(39) xn(t) =
dSn(t)

dt
= γS

(

STIn (t)− Sn(t)
)

.

While sample paths for the target inventory level STIn (t) and the trading intensity
xn(t) follow diffusions (of order dt1/2) whose innovations respond to the arrival of
new information, the sample path of inventories Sn(t) is a differentiable function
of time (of order dt), not a diffusion. In this sense, trader n trades smoothly.
The smooth trading model captures in an intuitive and realistic manner—consistent

with Grinold and Kahn (1995)—the inventory behavior of equity asset managers
who use public and private information to forecast stock returns. Partial ad-
justment toward mean-reverting target inventories provides a realistic structural
benchmark. When information changes, an asset manager updates his estimate
of the asset’s value, recalculates his target inventory, and adjusts trading to move
inventories in the direction of the new target. Since moving large blocks over short
periods of time is expensive, an asset manager builds positions gradually, taking
into account both price impact and the speed with which information decays.
Trader n believes that the information variables Ĥn(t) and Ĥ−n(t) in equation

(38) follow a bivariate vector auto-regression process. Traders disagree about drift
rates. Trader n believes that Ĥn(t)− Ĥ−n(t) mean-reverts at rate αG + τ but also

drifts in a direction proportional to (τ
1/2
H − τ

1/2
L )Gn(t) (see equation (A-36)).

Intuition suggests that more disagreement will make markets more liquid, and
this additional liquidity will be associated with more rapid adjustment of actual
inventories toward target levels. Although we do not have formal analytical results
proving that this intuition is correct, it is consistent with results we have obtained
numerically.
Figure 1 shows that as disagreement τH/τL increases, the speed of inventory

adjustment γS increases (first panel) while the size of target inventories CL increases
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when disagreement is low and then decreases before leveling off at high levels of
disagreement. Intuitively, when disagreement increases, it becomes less costly for
a trader to trade toward his target inventory more rapidly because other trades
are more willing to provide liquidity. Figure 1 shows that the speed with which
traders’ inventories converge to target levels also increases when the decay rate of
their signals αG + τ increases. Intuitively, when a signal decays faster, a trader
trades faster.7
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Figure 1. Coefficients γS and CL against τH/τL while fixing τ = 7.4 and τ = 8.9.

The left panel of figure 2 shows that as the number of traders N increases,
the speed of inventory adjustment γS increases steadily; the intuition is that more
competition makes trading less costly. The right panel shows that the size of target
inventories CL increases toward a constant level when N is large; the intuition is
that risk aversion limits the maximum size of inventories when more competition
makes trading costs fall.8
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Figure 2. Coefficients γS and CL against N while fixing τ = 1.4 and τL = 0.

7Numerical calculations in figure 1, figure 4, and panel (a) of figure 8 are based on exogenous
parameter values τ = 7.4 (or τ = 8.9), r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5,
σG = 0.1, τ0 = Ωσ2

G
/σ2

D
= 0.0054, and N = 100.

8Numerical calculations in figure 2, figure 5, and panel (b) of figure 8 are based on the
exogenous parameter values τL = 0, τ = 1.4, r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5,
σG = 0.1 and τ0 = Ωσ2

G
/σ2

D
= 0.0279.
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Immediate Price Adjustment, Gradual Inventory Change. In the smooth
trading model, prices adjust instantaneously but quantities adjust slowly. As soon
as trader n changes his trading intensity xn(t) due to arrival of new information,
the price instantaneously moves to a new equilibrium level, even though the trader
has not yet traded a single share. Even if signals Ĥn(t) and Ĥ−n(t) were to remain
constant over some period of time and the price did not change, trader n would
continue to trade based on the level of his “past” disagreement with the market.
The integral representation of the inventory dynamics in equations (38) and (39),

(40) Sn(t+ s) = e−γS s
(

Sn(t) +

∫ t+s

u=t

e−γS (t−u) γS CL (Ĥn(u)− Ĥ−n(u)) du
)

,

shows that traders add to existing inventories based on current differences in signals
Ĥn(t)− Ĥ−n(t) and liquidate their existing inventories accumulated based on past
signal differences at rate γS.
Simulated Inventory Paths. Figure 3 presents three simulated paths of tar-

get inventories (dashed lines) and actual inventories (solid line).9 Panel (a) shows
that when disagreement is larger—and the market is more liquid—actual inven-
tories closely track target inventories. Panel (b) shows that when disagreement
is smaller—and the market is less liquid—actual inventories deviate significantly
from target inventories since traders restrict their speed of trading. To illustrate
that the speed at which traders’ inventories converge to target levels also depends
on the decay rate of their signals, panel (c) plots actual and target inventories
using the same level of disagreement as in panel (a) but a lower decay rate αG + τ
of traders’ signals; actual inventories track target inventories less closely than in
panel (a), in line with figure 1. Note that target and actual inventories coincide in
the competitive model.
Literature. Inventories in the discrete-time model of Vayanos (1999) also fol-

low partial adjustment processes toward randomly changing target levels. While
smooth trading in that model is also a consequence of imperfect competition, the
economic forces governing target and actual inventories are different, and this leads
to different empirical implications.
Like Grossman and Miller (1988), Vayanos (1999) assumes shocks to endow-

ments affect target inventories. Risk aversion motivates demand for immediacy.
Higher risk aversion makes the speed of inventory adjustment faster and price im-
pact higher. As risk aversion varies across markets, the model of Vayanos (1999)
therefore implies that illiquid markets are characterized by short holding periods
and high trading volume. Vayanos (1999) also assumes that both inventories and
expected returns are non-stationary, diverging to infinity over time.

9The paths are generated using equations (38), (39), (40), (A-34), and (A-35), which describe
the dynamics of Hn(t), H−n(t), Sn(t), and STI

n (t). Numerical calculations in figure 3 are based
on the exogenous parameter values αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, and N = 100,
with τ = 8.9 and τ0 = Ωσ2

G
/σ2

D
= 0.0045 in both (a) and (b); τH = 4.46 and τL = 0.045 in (a);

τH = 0.5 and τL = 0.085 in (b); and τ = 3.15, τH = 1.56, τL = 0.016, and τ0 = 0.0126 in (c),.
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Figure 3. Simulated paths of STI
n (t) and Sn(t).

In our model, risk tolerance 1/A as an empirical proxy for assets under man-
agement. Theorem 4 implies that higher risk aversion does not affect the speed of
inventory adjustment; instead, it scales down target inventories and the number
of shares traded and increases price impact coefficients λ and κ (theorem 4). As
risk aversion goes to infinity, our model makes the realistic prediction that trading
volume goes to zero while Vayanos (1999) makes the unrealistic prediction that
trading volume goes to infinity.
Our model explains how asset managers try to outperform benchmarks by trad-

ing securities they perceive to be undervalued or overvalued. Stationary, mean-
reverting target inventories and perceived expected returns are endogenous con-
sequences of the simultaneous solutions to optimization problems based on public
and private information flow, total precision of information in the market, disagree-
ment among traders, and traders’ risk bearing capacity. If actively traded stocks
have faster information flow (larger αG+ τ), then our model predicts more rapidly
mean-reverting target inventories in more active markets. Our model also predicts
that the speed of inventory adjustment γS tends to increase with faster information
decay (increasing αG + τ) or more disagreement (increasing τH/τL); markets with
high trading volume are therefore more liquid and have shorter holding periods.
These predictions are consistent with empirical patterns in inventories of mar-

ket makers documented by Hasbrouck and Sofianos (1993), Madhavan and Smidt
(1993), and Menkveld and Hendershott (2014). The inventories of market makers
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tend to be stationary with lower mean-reversion rates in less liquid securities. The
half-life of inventories of intermediaries is usually shorter in larger stocks.
These predictions are also relevant for the empirical literature which studies

trades and holdings of institutional traders. Atkyn and Dyl (1997) study turnover
rates, Chakrabarty, Moulton and Trzcinka (2015) study institutional holding peri-
ods, Chan and Lakonishok (1995) study the length of trading packages, Cremers
and Pareek (2014) study stock duration, Bae et al. (2014) study the number of
buy-sell switching points, and Cremers and Petajisto (2009) study “active shares.”
Monthly and quarterly data on institutional holdings, such as 13-F filings, sug-
gest complicated patterns of long-term trading. Using more granular proprietary
databases, Puckett and Yan (2011) and Chakrabarty, Moulton and Trzcinka (2015)
find that institutional investors also engage in intensive short-term trading.
Patterns of simultaneous long- and short-term trading are consistent with partial

adjustment toward fluctuating target inventories. One of the main contributions
of our paper is the empirical hypothesis that long-term trading results from slow
information flow and high trading costs in low-volume markets while short-term
trading results from fast information flow and low trading costs in high-volume
markets.

3.2. Temporary and Permanent Price Impact

The concepts of permanent and temporary price impact are crucially important
for the practical management of transaction costs. Our model generates insights
by linking both permanent and temporary impact to deep parameters such as the
precision of information flow and the magnitude of disagreement. The models of
Vayanos (1999) and Du and Zhu (2015) also have permanent and temporary price
impact, influenced by risk aversion and either the size of inventory shocks or the
size of shocks to private values, respectively. In these two papers, permanent and
temporary price impact are more difficult to distinguish because these papers are
set in discrete time.10

We do not use the terms “temporary price impact” and “permanent price impact”
like these terms are usually used in the empirical market microstructure literature.
In this literature, temporary and permanent price impact are time series properties
of market prices. Temporary price impact is associated with negative first-order
autocorrelation in price changes (bid-ask bounce), and permanent price impact

10Describing these effects is more complicated in the discrete-time models of Vayanos (1999)
and Du and Zhu (2015). If time intervals between rounds of trading in these discrete-time
models were to become infinitely short, then price impact would equal a product of an infinitely
large price impact coefficient and an infinitely small quantity traded. Continuous-time gracefully
deals with this “infinity-times-zero” problem, crystalizing how the speed of trading affects the
equilibrium. Since an infinitely small quantity traded can be presented as a finite time-derivative
of inventory multiplied by an infinitely small time interval, price impact naturally decomposes
into two components. One component, which we call permanent price impact, is linear in the
level of inventories (stocks). The other component, which we call temporary price impact, is
linear in the time derivative of inventories (flows).
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is associated with persistent correlations between price changes and order flow.
Instead, like sophisticated traders in the asset management industry, we think of
temporary and permanent price impact as components of transaction costs, which
are explicitly optimized in the construction of trading strategies. Traders correctly
understand that faster execution leads to larger temporary price impact but has
no effect on permanent price impact.
Combining equations (31) and (32), the price can be expressed as a linear com-

bination of (1) a weighted average p0,n(t) of other traders’ signals, (2) the trader’s
own inventory level Sn(t), and (3) the intensity of his trading measured by the
time-derivative of his inventory xn(t):

(41) P (Sn(t), xn(t)) := p0,n(t) + λ Sn(t) + κ xn(t).

The intercept p0,n(t) is the random variable p0,n(t) = γD/γP D(t) + γH/γP Ĥ−n(t).
The “permanent price impact” parameter λ and the “temporary price impact”
parameter κ are defined in equation (32). A trader correctly believes that the
price changes when the level of his inventory changes or when the intensity of his
trading changes. If trader n suddenly stops trading, then the price will immediately
reverse by κ xn(t) as his temporary price impact disappears, but his permanent
price impact λ Sn(t) will remain.
Since our model is symmetric across traders, market clearing implies that tem-

porary and permanent price impact cannot show up as correlations between prices
and quantities. The equilibrium price process resembles a Brownian motion. It is
therefore theoretically difficult to learn about price impact from price and inven-
tory dynamics when traders trade optimally. Black (1982) makes a similar point
when he writes that we can only hope to learn about causal relationships between
variables from studying mistakes that firms make when they act sub-optimally or
from performing experiments.
Notwithstanding the empirical difficulties of detecting price resiliency suggested

by our model, the empirical literature has found evidence of temporary price im-
pact, which can be explained either as sub-optimally fast order execution or as
intermediation costs imposed by dealers. Keim and Madhavan (1997) find that
more aggressive trades of index funds and technical traders have larger costs than
trades of more patient value investors. Dufour and Engle (2000) find that the
price impact of trades increases when duration between transactions decreases.
Chan and Lakonishok (1995) document that high demand for immediacy tends to
be associated with larger price impact. Holthausen, Leftwich and Mayers (1990)
measure temporary and permanent price effects associated with block trades and
find that most of the adjustment occurs during the very first trade; the immediate
price response to changes in target inventories is a property of our model as well.
Asset management practitioners have long recognized the importance of manag-

ing both permanent and temporary price impact costs. The practitioner-oriented
model of Almgren and Chriss (2000) is essentially a non-linear generalization of
our equation (41). One difference is that our intercept p0,n(t) changes over time



28

in a manner which trader n believes he can predict, whereas the intercept in the
Almgren-Chriss model follows a random walk. Obizhaeva and Wang (2013) pro-
pose an alternative model in which—rather than decaying instantaneously when a
trader stops trading—temporary price impact decays gradually at an exponential
rate; the paper derives an optimal way to manage temporary price impact costs in
the context of a slightly different dynamic model of price resilience.
Our information-based price impact model is significantly different from models

with linear permanent price impact but no temporary price impact. Consider the
continuous-time model of Kyle (1985). The informed trader correctly conjectures
that the price is given by P (t) = P (0)+λ (σUBU(t)+Sn(t)), where σU BU(t) is the
inventory of noise traders and Sn(t) is the inventory of the informed trader. This
formula is similar to our equation (41), except there is no temporary price impact
term. The informed trader only optimizes the permanent impact of his trades. If
the informed trader buys Q shares over a fixed period of time T , then he “walks up
the demand schedule” and expects to incur a price impact cost of 1

2
λQ per share,

while the price gradually increases to λ Q. There is no temporary impact as long
as the informed trader’s inventory is a differentiable function of time.
In our model, by contrast, temporary price impact makes trading costs depend

on the execution speed. Suppose a trader buys Q shares at a constant rate over an
interval of time T . For simplicity, assume P (t) = Ĥn(t) = Ĥ−n(t) = 0. The average
execution price is (1

2
λ+ κ/T )Q (obtained by integrating over equation (41)). The

first term 1
2
λ Q is the permanent price impact cost and the second term (κ/T )Q

is the additional temporary price impact cost proportional to the execution speed
1/T . When the trader initiates order execution, the price immediately jumps from
zero to κ Q/T , then gradually rises to (λ + κ/T )Q over the time interval T , and
finally drops back to λ Q when the trader stops buying.
In our model, traders provide liquidity to one another; there are no dealers acting

as intermediaries. Figure 4 shows that as disagreement τH/τL increases, perma-
nent depth 1/λ increases monotonically and temporary depth 1/κ increases almost
linearly. In addition, both permanent price impact and temporary price impact
decrease as the total precision increases. Figure 5 shows that, as N increases,
permanent depth 1/λ and temporary depth 1/κ increase as well. Our numeri-
cal results are consistent with the intuition that more disagreement or a greater
number of traders decreases transaction costs by making traders more willing to
provide liquidity to one another.
Suboptimal γS. To illustrate further how suboptimal order execution can

be detected empirically, consider the following off-equilibrium scenario. Suppose
trader n silently decides to deviate from his equilibrium strategy by trading to-
ward his target inventory at some rate γ̄S, which is arbitrarily faster or slower than
the equilibrium rate γS. To fix ideas, suppose he thinks about implementing the
following strategy x̄n(t):

(42) x̄n(t) = γ̄S (S
TI
n (t)− S̄n(t)),
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Figure 5. Coefficients 1/λ and 1/κ against N while fixing τ = 1.4 and τL = 0.

at each point t after date 0. When γ̄S = γS, this equation coincides with the
equilibrium strategy in equation (39); when γ̄S > γS, the trader moves to his
target inventory STIn (t) more aggressively, and when γ̄S < γS the trader is more
patient. After date t = 0, the off-equilibrium inventory level S̄n(t) is given by

(43) S̄n(t) = e−γ̄S t
(

Sn(0) +

∫ t

u=0

eγ̄S u γ̄S CL (Ĥn(u)− Ĥ−n(u)) du
)

.

For simplicity, suppose trader n holds a positive target inventory at time t = 0,
with other traders’ signals at their long-term mean Ĥ−n(0) = 0, implying

(44) Sn(0) = STIn (0) = CL Ĥn(0) > 0,

(45) P (0) =
γS

(N − 1)γP
Sn(0) > 0.

Next, assume that at time t = 0+, trader n’s sufficient statistic Ĥn(0) suddenly
drops to zero, reducing both his target inventory and the price to zero. Since
Ĥn(0

+) = Ĥ−n(0
+) = 0, the implied equilibrium price En0{P (t)} = 0. Equa-

tions (43) and (41) imply that trader n’s expectation of future inventories and
price—the impulse-response functions from the perspective of trader n—are given
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by

(46) En0{S̄n(t)} = e−γ̄S t Sn(0),

(47) En0{P̄ (t)} = −
γ̄S − γS

(N − 1)γP
e−γ̄St Sn(0).

In figure 6, panel (a) shows expected paths of future prices based on equation (47)
and panel (b) shows paths of future inventories based on equation (46). As shown
by the solid red lines, if trader n liquidates his inventory at an equilibrium rate
γ̄S = γS, then the price immediately drops to zero, but the trader continues to
trade out of his inventories over time. Since his equilibrium trading is “expected,”
it has no additional effect on prices after time 0+; the initial temporary price
impact gradually turns into permanent impact at a pace that keeps price changes
relatively unpredictable.
Figure 6 also illustrates two off-equilibrium cases:11
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Figure 6. The Dynamics of Expected Prices and Inventories.

When trader n sells at a rate five times slower than the equilibrium rate, γ̄S =
γS/5, the immediate price drop is only 1/5 as large as in equilibrium. The slow
rate is not optimal because the higher profits on the early trades at initially better
prices are more than offset by lower profits on later trades, when information is
being incorporated into prices through the trading of others.
When trader n sells at a rate five times faster than the equilibrium rate, γ̄S =

5 γS, the price is expected to drop sharply initially, by five times as much as in
equilibrium. Speeding up execution exacerbates temporary price impact initially
and elevates transaction costs overall. As the price comes back, the price path
exhibits a distinct V-shaped pattern.

11We assume Sn(0) = 1, 000 shares, τ = 9.95 with τ0 = 0.004, τL = 0.05, and τH = 5.00,
implying equilibrium price P (0) = 2.896 and equilibrium γS = 35.8. The other exogenous
parameter assumptions are r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, N = 100,
and D(0+) = 0.
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Flash Crash. The price response from trading too fast is very similar to the
price patterns observed during the “flash crash” of May 6, 2010. On that day, the
E-mini S&P 500 futures price plunged by 5% over a 13-minute period, triggered a
five-second trading halt, and then rose by 6% over the next 23 minutes. The Staffs
of the CFTC and SEC (2010a,b) report that the flash crash was triggered by an
automated execution algorithm that sold S&P 500 E-mini futures worth approx-
imately $4 billion. Kyle and Obizhaeva (2013) note that market microstructure
invariance would imply a price impact of less than one percent and attribute the
difference between predicted and realized price dynamics to unusually fast exe-
cution of the sales. Indeed, the entire $4 billion quantity was executed over a
36-minute period; orders of similar magnitude would normally be executed over
several hours. Our model does not explain why some trader chose to execute an
order so quickly, but it does predict how market prices would respond to a gigan-
tic order, executed much faster than the market expects orders of such size to be
executed.
Our explanation for flash crashes is different from explanations based on other

existing models. For example, sharp price changes may occur in the continuous-
time model of Kyle (1985) in response to large trades by noise traders, but the
size of price declines in models with linear price impact depends only on quantities
sold, not on the speed of selling; furthermore, such price declines are corrected only
slowly by subsequent trading by the informed trader, who pushes the price back
to fundamental value.
Foucault and Dugast (2014) suggest that similar V-shaped price patterns may

occur in response to false signals. While the flash crash patterns in figure 6 repre-
sent the perspective of a trader who contemplates speeding up or slowing down his
trading, the market responds to such selling essentially as if it were a false signal
that is quickly corrected.
Duffie (2010) suggests that flash crashes may occur because capital moves too

slowly. Our model shows why traders endogenously choose to move their capital
slowly due to adverse selection.
Menkveld and Yueshen (2013) conclude that the flash crash could not have been

caused by one large sell order because most of the selling took place after the
market had crashed and while prices were recovering. This observed pattern is,
however, reasonably consistent with our model, which predicts that price crash is
triggered by changes in speed of trading and the selling itself occurs after prices
crash and while the market recovers. It is not necessary for this selling to trigger
additional selling by others.
Of course, flash crashes do not happen in equilibrium in our model. A rare

event, perhaps unintended, the flash crash of May 2010 was like an experiment
from which something about price impact can be learned.
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3.3. Prices: A Keynesian Beauty Contest

Define trader n’s estimate of the “fundamental value” of the risky asset Fn(t)
as the expected present value of all future dividends based on all information,
discounted at the risk-free rate r, calculated using the beliefs of trader n. Gordon’s
growth formula implies that Fn(t) is a function of trader n’s expected growth rate
Gn(t):

(48) Fn(t) =
D(t)

r + αD
+

Gn(t)

(r + αD)(r + αG)
.

Since the risky asset is in zero net supply, intuition might suggest that the equilib-
rium price is the average estimate of fundamental value

∑

n Fn(t)/N obtained by
replacing Gn(t) with Ḡ(t) in equation (48). This intuition is precisely consistent
with the one-period model. Surprisingly, in the model with continuous trading,
this intuition turns out to be wrong!
A comparison of equations (34) and (48) reveals that the equilibrium price equals

the average estimate of fundamental
∑

n Fn(t)/N value if and only if CG = 1. Since,
in our numerical calculations, we always find that CG is less than one, we conjecture
that 0 < CG < 1 in any equilibrium with trade. Even if all N traders unanimously
agree on the same expected growth rate Gn(t) = Ḡ(t), the equilibrium price will
reflect a dampened implied growth rate CG Ḡ(t), not Ḡ(t) itself.
Since CG = 1 in our one-period model and CG → 1 in the limit as liquidity van-

ishes in our continuous-time model, the intuitive explanation for why 0 < CG < 1
must relate to having multiple rounds of trading. The explanation is not based on
imperfect competition because we find a similar dampening result in our compet-
itive model, as in Kyle and Lin (2001).
Price dampening does not occur when disagreement is replaced by the assump-

tion of private values with a common prior, such as in our private-values model
or in Du and Zhu (2015). Price dampening also does not occur in noisy rational
expectations models, such as Wang (1993), Wang (1994), and He and Wang (1995).
Figure 7 illustrates the intuition behind the dampening effect.12 For simplicity

of exposition, assume that the buy-and-hold valuations of all N traders coincide at
time 0, and these estimates are positive, i.e., for all n, assume Gn(0) = G−n(0) =
Ḡ(0) > 0. For negative values, figure 7 will be symmetric.
Each panel of figure 7 depicts a graph of three functions, with time t on the

horizontal axis and the results of three different present value calculations on the
vertical axis. Each of these functions represents the expected discounted payoff to
trader n resulting from collecting dividends on one share of stock between dates 0
and t, depositing the dividends into a money market account between dates 0 and

12Numerical calculations are based on the parameter values r = 0.01, A = 1, αD = 0.1,
αG = 0.02, σD = 0.5, σG = 0.01, N = 10, Gn(0) = 0.08, and D(0) = 0.7. In addition,
τH = 0.524, τL = 0.0009, and τ0 = 0.0007 in Panel (a), and τH = 0.054, τL = 0.0098, and
τ0 = 0.0022 in Panel (b).
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Figure 7. Present Value of Dividends and Liquidation Value from the Perspective

of a Trader.

t, selling the asset based on an assumed valuation at date t, then discounting the
resulting cash flows back to purchase date 0 at the risk-free rate. Each of the three
graphs corresponds to a different valuation assumption. Details for the present
value calculations are given in Appendix section A.7, equations (A-81)–(A-91). By
assumption, these three calculations are done using trader n’s beliefs, but they are
identical for all traders.
The horizontal light solid line is based on the assumption that trader n liquidates

the asset at date t at a valuation equal to his own estimate of its fundamental
value Fn(t). Let PVn(0, t) denote the result of this present value calculation. Since
trader n applies Bayes law correctly given his beliefs, the martingale property of
his valuation (law of iterated expectations) makes the present value PVn(0, t) a
constant function for t ≥ 0; its graph is a horizontal line.
The light dashed curve is based on the assumption that trader n liquidates the

asset at a valuation equal to the average estimate of fundamental value of the
other N −1 traders,

∑

m6=n Fm(t)/(N −1). Let PV−n(0, t) denote the result of this
present value calculation. The N traders’ estimates of fundamental value are the
same at date 0. Due to disagreement about signal precision, trader n believes that
the other N − 1 traders’ estimates of the growth rate G∗(t) will mean revert to

zero at rate αG + [τ
1/2
H − τ

1/2
L ]2, which is faster than the mean reversion rate αG

he assumes for his own forecast, as shown in Appendix section A.7. As a result
of the higher mean-reversion rate, trader n believes that PV−n(0, t) will fall in the
short run. Since trader n believes that his own initial present value calculation
is correct, trader n believes that PV−n(0, t) will rise back to his own estimate of
the fundamental value in the long run. Thus, the graph depicted by the dashed
line in figure 7 first falls below the horizontal line in the short run and then rises
asymptotically back toward it in the long run. This pattern is analytically proved
in Appendix section A.7.
The dark solid curve is based on the assumption that trader n liquidates the

asset at a valuation equal to his estimate of the equilibrium market price P (t). Let
PVp(0, t) denote the result of this present value calculation. Consistent with the



34

equilibrium result 0 < CG < 1, the initial price P (0) is lower than the consensus
fundamental value Fn(0), even though all traders by assumption agree about this
current fundamental value, agree about how it will evolve in the future, and know
that they agree with the valuation dynamics. The dampening effect nevertheless
arises due to interactions among expectations of traders in our model. If prices were
equal to the consensus fundamental valuation Fn(0), all traders would want to hold
short positions because all of them would expect prices to fall below fundamental
value in the short run as the others temporarily became more bearish. As a result,
the price P (0) is dampened relative to the average fundamental valuation in the
market; yet this is consistent with each trader having a target inventory of zero at
date 0.
As figure 7 illustrates, trader n may expect prices to increase monotonically

from a dampened value toward his estimate of fundamental value (panel (a)) or
decline first and then increase later (panel (b)). Appendix section A.7 proves
that only those two patterns are possible. If CG is less than some threshold

ĈG := (1 + (1 − 1/N)(τ
1/2
H − τ

1/2
L )2/(r + αG))

−1, then PVp(0, t) increases mono-

tonically over time, as in panel (a). If CG is greater than the threshold ĈG, then
PVp(0, t) first decreases over a time interval t̂ defined in equation (A-93) and in-
creases monotonically afterwards, as in panel (b).
The complicated dynamics of price-based present-value PVp(0, t) can be at-

tributed to two factors. First, it tracks the average of PVn(0, t) and PV−n(0, t),
where PVn(0, t) remains constant and PV−n(0, t) falls in the short run and then
rises back in the long run, as discussed above. Second, there is also an additional
effect related to the magnitude of CG.
The above discussion implies that our model captures precisely the intuition of

the beauty contest described by Keynes (1936):13

“For most of these persons are, in fact, largely concerned, not with
making superior long-term forecasts of the probable yield on an invest-
ment over its whole life, but with foreseeing changes in the conventional
basis of valuation a short time ahead of the general public. They are
concerned not with what an investment is really worth to a man who
buys it ‘for keeps,’ but with what the market will value it at, under the

13“. . . Professional investment may be likened to those newspaper competitions in which the
competitors have to pick out the six prettiest faces from a hundred photographs, the prize being
awarded to the competitor whose choice most nearly corresponds to the average preferences of
the competitors as a whole; so that each competitor has to pick, not those faces which he himself
finds prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, all
of whom are looking at the problem from the same point of view. It is not a case of choosing those
which, to the best of one’s judgment, are really the prettiest, nor even those which average opinion
genuinely thinks the prettiest. We have reached the third degree where we devote our intelligences
to anticipating what average opinion expects the average opinion to be. And there are some, I
believe, who practise the fourth, fifth and higher degrees.” Our model implicitly assumes that all
traders anticipate the expectations of other traders for arbitrarily higher degrees. Han and Kyle
(2013) examine a one-period model in which, instead of agreeing to disagree, traders disagree
about higher order beliefs.
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influence of mass psychology, three months or a year hence.”

As in Keynes (1936), traders in our model use trading strategies which respond to
short-term price dynamics. As Keynes puts it, “it is not sensible to pay 25 for an
investment of which you believe the prospective yield to justify value of 30, if you
also believe that the market will value it at 20 three months hence.” The behavior
of traders in our model is consistent with this intuition.
As a result of his belief that financial markets are dominated by short-term spec-

ulation rather than long-term enterprize, Keynes thought that financial markets
are not too different from a casino and exhibit excessive volatility. In contrast
to Keynes’ intuition, short-term trading dynamics dampen price volatility in our
model relative to the volatility of fundamentals. Furthermore, prices in our model
are not “noisy;” the levels of current prices and dividends are sufficient statistics
for inferring the average “true” valuations of traders.
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Figure 8. The Comparative Statics of CG.

The Keynesian price effect is related to liquidity. Consider the intuition of two
special cases studied in detail in sections 3.4 and 3.5. When the market is very
illiquid (the degree of disagreement τH/τL is close to the existence boundary ∆H =
0), it is costly for traders to implement short-term trading strategies due to high
temporary price impact costs, the profit opportunities based on the beauty contest
are therefore too costly to exploit, and therefore CG → 1. When the market
is very liquid (the degree of disagreement τH/τL is large), short-term strategies
are cheap, traders trade aggressively against one another’s perceived mistakes, the
dampening effect is substantial, and CG decreases with the degree of disagreement.
Both intuitions are illustrated in figure 8. Thus, one should expect to find more
pronounced price dampening effects and therefore time-series momentum in more
liquid markets. Indeed, the price reduction relative to fundamentals is greater in
the left panel than the right panel of figure 7 because the degree of disagreement
is larger and therefore the market is more liquid.
Price dampening may help to explain several empirical findings. Lee and Swami-

nathan (2000) document that price momentum is more pronounced among high
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volume stocks. Moskowitz, Ooi and Pedersen (2012) find significant time series
momentum in equity index, currency, commodity, and bond futures markets; they
show, in line with our predictions, that more liquid contracts tend to exhibit greater
momentum profits. Similarly, Cremers and Pareek (2014) report that momentum
profits increase with decreasing stock duration, a measure of how quickly insti-
tutions turnover their positions. Also, our results may help to explain a recent
growth in assets of managed futures funds, which essentially implement trend-
following strategies in liquid markets.
To summarize, each trader believes that equilibrium prices deviate from funda-

mental values and do not have a martingale property.

3.4. The Special Case of Vanishing Liquidity

Intuition suggests that market liquidity should depend on the exogenous degree
of disagreement τH/τL. Market liquidity is larger when the endogenous parameter
γP increases, since the quantity traders supply is more sensitive to price changes.
When disagreement increases, intuition suggests that traders offer flatter flow-
supply schedules because they believe adverse selection in the order flow of other
traders decreases; flatter residual flow-supply schedules allow each trader to trade
larger quantities based on his own private information. When disagreement de-
creases, intuition thus suggests that market liquidity γP should decrease as well,
with γP becoming zero at exactly the point where there is not enough disagreement
to support trade. The existence condition (Conjecture 1) suggests that this point
is reached precisely when the exogenous value of ∆H is zero.

COROLLARY 1: Assume γP = 0. Then the six equations characterizing equilib-
rium (A-57)–(A-62) have a solution if and only if ∆H = 0. This solution has a
closed form, presented in equations (A-70)–(A-71), which implies γS = γH = γD =
0 and CG = 1.

The proof is in Appendix section A.5.
Our numerical results suggest that the converse is also true: market liquidity falls

to zero precisely when the existence condition ∆H > 0 fails to be satisfied. Since
the solution to the six equations (A-57)–(A-62) is continuous in the exogenous
parameters, this suggests that when ∆H is a small positive number, there will be
an equilibrium with low liquidity and modest trade. As the values of the exogenous

parameters τH , τL, and N change so that ∆H := τ
1/2
H /τ

1/2
L − 2 − 2/(N − 2) → 0,

this liquidity will vanish, the value of trading on private information will vanish,
and trading volume will fall to zero. Note that liquidity vanishes when τH = τL in
the model with perfect competition, as shown in Appendix section B.2.
When trading volume falls to zero, traders not only cease to trade on private

information, but they also cease to trade based on risk-sharing. Similarly, Vayanos
(1999) presents a closed-form solution for a limiting case when the amount of risk
in the economy to share converges to zero and traders optimally choose not to
trade.
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Figure 1, figure 4, and the left panel of figure 8 show effects of changes in the
degree of overconfidence τH/τL on the endogenous parameters γS, CL, 1/λ, 1/κ,
and CG. The horizontal axis plots the ratio τH/τL, calculated with τH increasing
and τL decreasing so that the total precision τ and other exogenous parameters are
fixed. As disagreement τH/τL decreases (γP → 0), the values of γS, CL, 1/λ, and
1/κ converge to zero and CG converges to one. The graphs only show values when
equilibrium exists (τH/τL greater than about 4). When the existence condition
∆H > 0 fails to hold, the numerical algorithm for solving the system (A-57)–
(A-62), as expected, fails to converge to a meaningful solution.

3.5. The Special Case of “Noise” Traders (τL = 0)

Consider next the case τL = 0, where each trader believes that the other traders
observe a signal with no information. We assume that τ0 is close to zero for
tractability and allow the number of traders N to vary. An equilibrium always ex-
ists because there is unbounded disagreement. Increasing the number of traders N
increases both risk bearing capacity and competition.
In the limit as N → ∞, Appendix section A.6 shows that equations (A-57)–

(A-62) have a closed form solution, presented in equations (A-73)–(A-77), in which
the parameters γP and γS are proportional to N . In the spirit of Black (1986) and
Treynor (1995), the limit τL → 0 implies each trader believes that all other traders
trade on noise as if it were information. In this limit, permanent and temporary
market impact parameters λ and κ converge to zero and inventory adjustment γS
is infinitely fast. The parameter CG converges to a constant limit which is less
than one: limN→∞CG = (r + αG)/(r + αG + τ) < 1.
Therefore, consistent with our extensive numerical results, the closed-form solu-

tions to these two cases (sections 3.4 and 3.5) further help us to draw the conclusion
that when disagreement increases, markets become more liquid and price damp-
ening becomes more pronounced.

3.6. The Case when Traders Are “Correct on Average”

So far, this paper has focussed on understanding trading strategies, price impact,
and price levels from the perspective of individual traders. Since traders have
different beliefs about precision parameters τH and τL, traders calculate expected
returns differently. Describing the properties of prices and quantities from the
perspective of a non-trader, such as an economist or econometrician, requires also
considering the unobserved “true values” of the parameters.
To illustrate, assume that traders’ beliefs about the precisions of signals are the

same and are “correct on average” in the sense that the correct aggregate precision
matches the aggregate precision used by traders, i.e., τn = (τH + (N − 1)τL)/N .
For simplicity, assume that traders’ beliefs about the parameters N , αG, σG, αD,
and σD are correct.
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THEOREM 6: Characterization of Equilibrium when Traders are Cor-

rect on Average. When traders are correct on average, an equilibrium has the
following properties:

1) There is an endogenously determined constant CG > 0, defined in equa-
tion (A-49), such that the equilibrium price is given in (37). Under the
correct beliefs, the fundamental price is

(49) F (t) =
D(t)

r + αD
+

Gtrue(t)

(r + αD)(r + αG)
,

where Gtrue(t) defined in (54) is the estimate of the growth rate under the
correct beliefs.

2) Target inventories STIn (t) and actual inventories Sn(t) follow the simple bi-
variate process
(50)

(

dSTIn (t)
dSn(t)

)

=

(

−(αG + τ) 0
γS −γS

)(

STIn (t)
Sn(t)

)

dt+

(

CL
0

)

(

dBn(t)−
1

N−1

N
∑

m=1,m6=n

dBm(t)

)

.

3) The autocorrelation function for actual inventories and the correlation be-
tween actual inventory and target inventory are

(51) Corr{Sn(t), Sn(t+∆t)} =
(αG + τ) e−γS ∆t−γS e−(αG+τ) ∆t

αG + τ − γS
,

(52) Corr{Sn(t), S
TI
n (t)} =

( γS
αG + τ + γS

)1/2

.

It can be easily shown that prices are dampened relative to fundamentals. From
equation (27), we have

(53) Ḡ(t) =
1

N

N
∑

n=1

Gn(t) = σG Ω1/2

(

τ
1/2
0 H0(t) +

τ
1/2
H +(N−1)τ

1/2
L

N

N
∑

n=1

Hn(t)

)

,

while the empirically correct expected growth rate showing up in equation (49)
assigns weights equal to the square root of the average of the precision parameters
in equation (A-15),

(54) Gtrue(t) = σG Ω1/2

(

τ
1/2
0 H0(t) +

(

1
N
τH + N−1

N
τL
)1/2

N
∑

n=1

Hn(t)

)

.

The market prices in equation (37) are less sensitive to information flow than fun-
damentals in equation (49), and therefore returns are predictable. Indeed, there
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are two effects. First, there is the price dampening effect implied by CG < 1. Sec-
ond, there is another price dampening due to averaging of expectations in equa-

tions (53) and (54), since Jensen’s inequality implies that 1
N
τ
1/2
H + N−1

N
τ
1/2
L ≤

(

1
N
τH + N−1

N
τL
)1/2

. Section 3.3 relates this return predictability to a Keynesian
beauty contest. Kyle, Obizhaeva and Wang (2014) provide a detailed analysis
of return predictability in a competitive setting with a general specification for
empirically correct beliefs.
The bivariate process of inventory dynamics is fully characterized by the three

parameters αG+ τ , γS, and CL. Target inventories S
TI
n (t) follow a univariate AR-1

process. Symmetry implies that both Sn(t) and STIn (t) are distributed indepen-
dently from prices and have correlation −1/(N − 1) with one another. Since the
model is Gaussian, the auto-correlation function completely describes the statisti-
cal properties of inventories. Equation (52) implies that the correlation between
the actual inventory and target inventory increases when markets become more
liquid (i.e., γS increases).
Consistent with the empirical evidence discussed in the introduction, equation

(51) implies that the auto-correlation of actual inventories tends to be smaller in
more liquid markets. It can be easily shown that Corr{Sn(t), Sn(t+∆t)} decreases
in γS if αG + τ < γS or if αG + τ > γS and ∆t > 1/(αG+ τ − γS). In more illiquid
markets, actual inventories are closer to past actual inventories and further away
from target inventories.
The auto-correlation function (51) has the following interesting symmetry: If

the values of αG + τ and γS are interchanged, then the auto-correlation function
is unchanged. The symmetry property of γS and αG + τ implies that the inven-
tory process in a model with rapidly mean-reverting target inventories and slow
convergence of actual inventories to target inventories (large αG+ τ and small γS)
is observationally equivalent to the inventory process in a different model with
slowly mean-reverting target inventories and fast convergence of actual inventories
to target inventories (small αG+ τ and large γS). In both cases, actual inventories
will change slowly and appear to be almost non-stationary.
Throughout this paper, we have emphasized that our model of disagreement

provides a connection between the half-life of information in prices and the half-life
of traders’ target inventories. Empirically, it is more likely that actual inventories
Sn(t) are observed than target inventories STIn (t). If it is known whether αG+ τ is
greater or less than γS, then the values of both αG+ τ and γS can be inferred from
the autocorrelation of actual inventories Sn(t). Interesting, the liquidity parameter
γS = λ/κ is not identified from the contemporaneous correlation of price changes
and inventories (which are not correlated by symmetry, see section 3.2).

4. Conclusion

We have described a steady-state model of continuous trading, in which trading
reflects both overconfidence and market power. This model provides a framework
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for thinking about how the dynamics of trading affects market liquidity, transaction
costs, and market prices. It helps to analyze temporary and permanent price
impact.
Our model of smooth order flow implements ideas about market liquidity de-

scribed informally by Black (1995). Black envisioned a future frictionless market
for exchanges as “an equilibrium in which traders use indexed limit orders at differ-
ent levels of urgency but do not use market orders or conventional limit orders.” In
that equilibrium, there is no conventional liquidity available for market orders and
conventional limit orders. Placement of indexed orders onto the market moves the
price by an amount increasing in level of urgency. Algorithms for executing orders
have been incorporating the idea of urgency for years. For example, in popular
algorithms based on VWAP (“Volume Weighted Average Price”), a trader chooses
a target number of shares to trade, a time frame (say one day), and a participation
rate (say 5% of volume); the higher the participation rate, the greater the trader’s
impatience.
The idea that securities markets offer a flow equilibrium rather than a stock equi-

librium may seem far-fetched at first glance. Yet, recent trends in the way liquidity
is supplied and demanded in electronic markets are in many ways consistent with
the way our model predicts liquidity to be supplied and demanded. For example,
our model predicts vanishingly small market depth to be available at a given point
in time; instead, market depth is made available only over time.
In today’s markets, the actual level of market depth available at the “top of

the book”—i.e., at the best bid and the best offer—is influenced by tick size (the
smallest units in which prices are allowed to fluctuate) and by rules for time and
price priority. Since time priority mandates execution of the older resting limit
orders before newer ones, time priority encourages traders to place bids and offers
into the limit order book. Relative to our model, time priority creates an exter-
nality which results in more depth in the limit order book than would otherwise
be present. This externality may be more important when minimum tick size is
large. Today’s markets probably have more instantaneous market depth available
than our theory would imply, but they may have less instantaneous depth available
than they would have if tick size were larger.
In the future, exchanges might change order matching rules to implement limit

orders conforming to the intuition of our model. For example, exchanges might
approximate our flow model by having frequent batch auctions, say once per sec-
ond, consistent with Budish, Cramton and Shim (2013). Limit orders could easily
be implemented with a time parameter. For example, a trader who might in to-
day’s market place a limit order to buy 10,000 shares at a price of $40 per share
might instead enter an order to purchase one share per second at a price of $40 or
better for the next 10,000 seconds. Such new order types would allow traders to
implement smooth trading strategies without generating the heavy message traffic
associated with submitting and canceling thousands of conventional limit orders.
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A. Proofs

A.1. Proof of Theorem 1

Under the tentative assumption that trader n knows the value of i−n, plug equa-
tion (4) into equation (9) and use the first-order condition to find his optimal
demand:
(A-1)

xn =

τ
1/2
v

τ

(

τ
1/2
0 i0 + τ

1/2
H in + (N − 1)τ

1/2
L i−n

)

−
(

α
γ
i0 +

β
γ
i−n

)

−
(

δ
(N−1)γ

+ A
τ

)

Sn
2

(N−1)γ
+ A

τ

.

In the numerator of this equation, the first term is trader n’s expectation of the
liquidation value, the second term is the market-clearing price when trader n trades
a quantity of zero and has no inventory, and the last term is the adjustment for
existing inventory. In the denominator, the first and second terms reflect how
trader n restricts the quantity traded due to market power and risk aversion,
respectively.
As in Kyle (1989), even though trader n does not observe i−n explicitly, he is still

able to implement this optimal strategy with a demand schedule which implicitly
infers i−n from the market-clearing price.
Define the constant

(A-2) C :=
1

(N − 1) γ
+
A

τ
+
τ
1/2
L τ

1/2
v

τ β
.

Solving for i−n instead of p in the market-clearing condition (3), substituting this
solution into equation (A-1) above, and then solving for xn, yields a demand sched-
ule Xn(i0, in, Sn, p) for trader n as a function of price p:

Xn(i0, in, Sn, p) =
1
C

[

τ
1/2
v

τ

(

τ
1/2
0 − (N − 1)τ

1/2
L

α
β

)

i0 +
τ
1/2
H

τ
τ
1/2
v in(A-3)

+

(

(N−1)τ
1/2
L γ τ

1/2
v

τ β
− 1

)

p−

(

δτ
1/2
L τ

1/2
v

τ β
+ A

τ

)

Sn

]

.

In a symmetric linear equilibrium, the strategy chosen by trader n must be the
same as the linear strategy (2) conjectured for the other traders. Equating the
corresponding coefficients of the variables i0, in, p, and Sn yields a system of four
equations in terms of the four unknowns α, β, γ, and δ:

(A-4) α =
τ
1/2
v

C

(

τ
1/2
0

τ
−

(N − 1)τ
1/2
L

τ

α

β

)

, β =
τ
1/2
v

C

τ
1/2
H

τ
,

(A-5) γ = −
1

C

(

(N − 1)τ
1/2
L

τ

γ

β
τ 1/2v − 1

)

, δ =
1

C

(

τ
1/2
L

τ

δ

β
τ 1/2v +

A

τ

)

.
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The unique solution is

(A-6) β =
(N − 2)τ

1/2
H − 2(N − 1)τ

1/2
L

A (N − 1)
τ 1/2v ,

α =
τ
1/2
0

τ
1/2
H + (N − 1)τ

1/2
L

β, γ =
τ

τ
1/2
H + (N − 1)τ

1/2
L

β

τ
1/2
v

, δ =
A

τ
1/2
H − τ

1/2
L

β

τ
1/2
v

.

Substituting (A-6) into (A-3) yields trader n’s optimal demand (11). Substitut-
ing (11) into the market-clearing condition

∑N
m=1Xm(i0, im, Sm, p) = 0 yields the

equilibrium price (12).
The second order condition has the correct sign if and only if 2

(N−1)γ
+ A

τ
> 0.

Given the definition ∆H := τ
1/2
H /τ

1/2
L − 2− 2/(N − 2), this is equivalent to

(A-7)
A

τ

N

N − 2

τ
1/2
H

τ
1/2
L

1

∆H
> 0.

Therefore, assuming N > 2, the second order condition holds if and only if ∆H > 0.

A.2. Bayesian Updating with Signals of Arbitrary
Precision

This section derives signal processing formulas for arbitrary “generic” beliefs
τ̄0, τ̄1, . . . , τ̄N about signal precisions.
Define G(t) = Et{G

∗(t)}, where the subscript t denotes conditioning on the
history of the signals I0(s), . . . , IN(s) for s ∈ (−∞, t]. Without loss of generality,
let Ω̄ denote the error variance Ω̄ := Var{(G∗(t) − G(t))/σG}. Assume a steady
state in which Ω̄ is a constant which does not depend on time. Like a squared
Sharpe ratio, Ω̄ measures the error variance in units of time. For example, if time
is measured in years, Ω̄ = 4 means that the estimate of G∗(t) is “behind” the true
value of G∗(t) by an amount equivalent to four years of volatility unfolding at rate
σG. There are simple and intuitive formulas for information processing:

LEMMA 1: Given generic beliefs τ̄1, . . . , τ̄N , let τ̄ denote the sum of precisions

(A-8) τ̄ := τ̄0 +
N
∑

n=1

τ̄n.

Then Ω̄ and dG(t) satisfy

(A-9) Ω̄−1 := Var−1

{

G∗(t)−G(t)

σG

}

= 2 αG + τ̄ ,

(A-10) dG(t) = − (αG + τ̄) G(t) dt+ σG Ω̄1/2
N
∑

n=0

τ̄ 1/2n dIn.
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Proof. Apply the Stratonovich-Kalman-Bucy filter to the filtering problem sum-
marized by equation (19) for signals and by equations (20) and (23) for observa-
tions. This yields the filtering estimate defined by the Itô differential equation

(A-11) dG(t) = −αG G(t) dt+
N
∑

n=0

σ2
G Ω̄

τ̄
1/2
n

σG Ω̄1/2

(

dIn(t)−G(t)
τ̄
1/2
n

σG Ω̄1/2
dt
)

.

Rearranging terms yields equation (A-10). The mean-square filtering error of the
estimate G(t), denoted σ2

G Ω̄(t), is defined by the Riccati differential equation

(A-12) σ2
G

dΩ̄(t)

dt
= −2αG σ

2
G Ω̄(t) + σ2

G − σ4
G Ω̄(t)2

N
∑

n=0

( τ̄
1/2
n

σG Ω̄(t)1/2

)2

.

Let Ω̄ denote the steady state of the function of time Ω̄(t). Using the steady-state
assumption dΩ̄(t)/dt = 0, solve the second equation for the steady state value
Ω̄ = Ω̄(t) to obtain equation (A-9). Q.E.D.

The error variance Ω̄ corresponds to a steady state that balances an increase in
error variance due to innovations dBG(t) in the true growth rate with a reduction
in error variance due to (1) mean-reversion of the true growth rate at rate αG and
(2) arrival of new information with total precision τ̄ .
Note that Ω̄ is not a “free parameter,” but is instead determined as an endogenous

function of the other parameters. Equation (A-9) implies that Ω̄ turns out to be
the solution to the quadratic equation Ω̄−1 = 2 αG + Ω̄ σ2

G/σ
2
D +

∑N
n=1 τ̄n. In

equations (20) and (23), we scaled the units with which precision is measured by
the endogenous parameter Ω because this leads to simpler filtering expressions
which more clearly bring out intuition about signal processing.
From equation (A-10), the estimate G(t) can be conveniently written as the

weighted sum of N+1 sufficient statistics Hn(t) corresponding to N+1 information
flows dIn. Define the sufficient statistics Hn(t) by

(A-13) Hn(t) :=

∫ t

u=−∞

e−(αG+τ̄) (t−u) dIn(u), n = 0, 1, . . . , N,

which implies

(A-14) dHn(t) = −(αG + τ̄)Hn(t) dt + dIn(t), n = 0, 1, . . . , N.

Then G(t) becomes a linear combination of sufficient statistics Hn(t) with weights

proportional to the square roots of the precisions τ̄
1/2
n :

(A-15) G(t) = σG Ω̄1/2
N
∑

n=0

τ̄ 1/2n Hn(t).
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The importance of each bit of information dIn about the growth rate G(t) decays
exponentially at a rate αG + τ̄ , which is the same for all of the signals. The half-
life of a signal ln 2/(αG + τ̄) decreases as the “aggregate precision” τ̄ increases.
Even though the true unobserved growth rate may have a long half-life (small αG),
information about this growth rate may decay rapidly if aggregate precision τ̄ is
large.
Note that equations (20), (23), and (A-10) imply that the estimate G(t) mean-

reverts to zero at a rate αG while moving toward the true value G∗ at rate τ̄ :

(A-16) dG(t) = −αG G(t) dt+ τ̄ (G∗ −G) dt + σG Ω̄1/2

N
∑

n=0

τ̄ 1/2n dBn(t).

A.3. Proof of Theorem 3

Let Ent {. . .} denote the conditional expectations operator E{. . . |Fn(t)} based
on trader n’s beliefs. Let Jn(Fn(t);Xn, Cn;Xm, m 6= n) denote the expected util-
ity trader n receives as a function of his own consumption and trading strate-
gies (Cn, Xn) and the N − 1 other traders’ trading strategies (Xm), conditional
on his information set Fn(t). In this particular model, exponential utility func-
tions with fixed interest rates make it unnecessary for Jn(. . .) to depend on other
traders’ consumption strategies. Define an equilibrium as a set of trading strategies
X∗

1 , . . . , X
∗
N and consumption strategies C∗

1 , . . . , C
∗
N such that, for n = 1, . . . , N ,

trader n’s optimal consumption and trading strategies Xn = X∗
n and Cn = C∗

n

solve the maximization problem

(A-17) Jn(Fn(t);X
∗
n, C

∗
n;X

∗
m, m 6= n) = max

{Cn,Xn}
Ent

{
∫ ∞

s=t

e−ρ(s−t) U(cn(s)) ds

}

,

subject to inventories following

(A-18) dSn(t) = xn(t) dt

and money holdings following

(A-19) dMn(t) = (r Mn(t) + Sn(t)D(t)− cn(t)− P (t) xn(t)) dt.

Conditional on any information set Fn(t), trader n’s money and asset holdings
must, with probability one, satisfy the budget constraint

(A-20) lim inf
T→∞

Ent

{

e−r(T−t) Mn(T ) +

∫ ∞

u=T

e−r(u−t) D(u) Sn(T ) du

}

≥ 0.

In equations (A-18) and (A-19), the price P (t), quantity xn(t), and consumption
cn(t) are the abbreviations
(A-21)

P (t) := P [X1, . . . , XN ](t), xn(t) :=
dSn(t)

dt
= Xn(t, P (t);Fn(t)), cn(t) := Cn(t;Fn(t)).
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This implies that trader n takes as given the strategies of the other traders when
he chooses his optimal strategy. It also implies that when he chooses his optimal
strategy, he takes into account how his strategy choice affects the price at which
he trades and his trading opportunities in the future.
The budget constraint (A-20) says that if the trader calculates the fundamental

value of his wealth using information at time t, then he does not engage in Ponzi
finance. Also note that the optimal strategy will satisfy the transversality condition
Ent {e

−ρ(T−t) Jn(Fn(T ), X
∗
n, C

∗
n; . . .)} → 0 as T → ∞.

Instead of calculating the solution Jn(. . .) directly, we use the no regret approach,
which assumes that trader n observes his residual supply schedule at each point in
time, then picks an optimal point on the residual supply schedule. We then show
that the solution to this less constrained problem also implements the optimal
solution to the more constrained problem which defines Jn(. . .).
For the less constrained problem, we conjecture a steady-state value function

V (Mn, Sn, D,H0, Hn, H−n), where Mn denotes trader n’s cash holdings (measured
in dollars) and Sn denotes trader n’s holdings of the traded asset (measured in
shares).
In a competitive model, a trader’s value function depends on his wealth but does

not depend on the decomposition of his wealth into his various security holdings.
With imperfect competition, the decomposition of a trader’s wealth into various
security holdings does affect his value function because the trader cannot costlessly
convert one security holding into cash or another security holding by trading at
market prices. “Wealth” does not appear in the value function because wealth is
not well-defined. Trader n is always influencing the mark-to-market value of his
risky inventory by choosing his rate of trading. It is therefore necessary to keep
track of the two components of wealth—cash Mn and inventories Sn—separately.
Also, we expect the asset price to be a linear combination of two components:

(1) a dividend level component linear in dividend flow D(t) and (2) a dividend-
growth component linear in the variables H0(t), Hn(t), and H−n(t). Given the
symmetric linear conjectured form of the residual supply function, observing the
average of other traders’ signals H−n(t) is informationally equivalent to observing
the intercept of the residual supply schedule (when Sn(t) = S ′

n(t) = 0). Therefore
we include H−n(t) as a state variable in the value function and omit the price P (t).
In the derivations below, mathematical notation is simplified if the three state

variables H0(t), Hn(t), and H−n(t) are replaced with two “composite” signals,
denoted Ĥn(t) and Ĥ−n(t). Repeating equations (28), define the weighting constant
Â by

(A-22) Â :=
τ
1/2
0

τ
1/2
H + (N − 1)τ

1/2
L

,

and define the two composite signals Ĥn(t) and Ĥ−n(t) by

(A-23) Ĥn(t) := Hn(t) + Â H0(t),
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(A-24) Ĥ−n(t) := H−n(t) + Â H0(t).

Trader n’s estimate of the dividend growth rate can now be expressed as a function
of the two composite signals Ĥn(t) and Ĥ−n(t) as

(A-25) Gn(t) = σG Ω1/2
(

τ
1/2
H Ĥn(t) + (N − 1)τ

1/2
L Ĥ−n(t)

)

.

Define the N + 1 processes dBn
0 , dB

n
n , and dB

n
m, m = 1, . . . , N , m 6= n, by

(A-26) dBn
0 (t) = τ

1/2
0

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBD(t),

(A-27) dBn
n(t) = τ

1/2
H

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBn(t),

and

(A-28) dBn
m(t) = τ

1/2
L

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBm(t).

The superscript n indicates conditioning on beliefs of trader n. Since trader n’s
forecast of the error G∗(t) − Gn(t) is zero given his information set, these N + 1
processes are independently-distributed Brownian motions from the perspective of
trader n. In terms of these Brownian motions, trader n believes that signals change
as follows:

(A-29) dH0(t) = −(αG + τ)H0(t) dt+ τ
1/2
0

Gn(t)

σG Ω1/2
dt+ dBn

0 (t),

(A-30) dHn(t) = −(αG + τ)Hn(t) dt+ τ
1/2
H

Gn(t)

σG Ω1/2
dt+ dBn

n(t),

(A-31) dH−n(t) = −(αG + τ)H−n(t) dt+ τ
1/2
L

Gn(t)

σG Ω1/2
dt+

1

N − 1

N
∑

m=1
m6=n

dBn
m(t).

Note that each signal drifts toward zero at rate αG+τ and drifts toward the optimal
forecast Gn(t) at a rate proportional to the square root of the signal’s precision

τ
1/2
0 , τ

1/2
H , or τ

1/2
L , respectively.

In terms of the composite variables Ĥn and Ĥ−n, we conjecture (and verify
below) a steady-state value function of the form V (Mn, Sn, D, Ĥn, Ĥ−n). Letting
(cn(t), xn(t)) denote consumption and investment choices, write

(A-32) V (Mn, Sn, D, Ĥn, Ĥ−n) := max
{cn(t),xn(t)}

Ent

{
∫ ∞

s=t

− e−ρ(s−t)−A cn(s) ds

}

,
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where P (xn(t)) is a linear function of xn(t) given by equation (31), dividends follow
equation (18), inventories follow dSn(t) = xn(t) dt, the change in cash holdings
dMn(t) is a quadratic function of xn(t) following

(A-33) dMn(t) = (r Mn(t) + Sn(t)D(t)− cn(t)− P (xn(t)) xn(t)) dt,

and signals Ĥn and Ĥ−n follow a bivariate vector auto-regression given by

dĤn(t) = − (αG + τ) Ĥn(t) dt(A-34)

+ (τ
1/2
H + Âτ

1/2
0 )

(

τ
1/2
H Ĥn(t) + (N − 1)τ

1/2
L Ĥ−n(t)

)

dt

+ Â dBn
0 (t) + dBn

n(t),

dĤ−n(t) = − (αG + τ) Ĥ−n(t) dt(A-35)

+ (τ
1/2
L + Âτ

1/2
0 )

(

τ
1/2
H Ĥn(t) + (N − 1)τ

1/2
L Ĥ−n(t)

)

dt

+ Â dBn
0 (t) +

1

N − 1

N
∑

m=1
m6=n

dBn
m(t).

The dynamics of Ĥn and Ĥ−n in equations (A-34) and (A-35) can be derived from
equations (A-29), (A-30), and (A-31).

Note that the coefficient τ
1/2
H + Âτ

1/2
0 in the second line of equation (A-34) is

different from the coefficient τ
1/2
L + Âτ

1/2
0 in the second line of equation (A-35).

This difference is the key driving force behind the price-dampening effect resulting
from the Keynesian beauty contest. It captures the fact that—in addition to
disagreeing about the value of the asset in the present—traders also disagree about
the dynamics of their future valuations. As shown in equations (C-33) and (C-34) in
Appendix section C.3, these two different coefficients are the same in an otherwise
similar private-values model. As a result, prices are not dampened in the private-
values model.
Using the definition of Gn(t) in equation (27) and the definition of Â in equation

(28), it can be shown that trader n believes the stochastic process Ĥn−Ĥ−n satisfies

d
(

Ĥn − Ĥ−n

)

= −(αG + τ)
(

Ĥn − Ĥ−n

)

dt+
τ
1/2
H − τ

1/2
L

σG Ω1/2
Gn(t) dt

+dBn
n(t)−

1

N − 1

N
∑

m=1
m6=n

dBn
m(t).(A-36)

In equation (A-36), the term with Gn(t) dt implies that each trader believes that
Ĥn − Ĥ−n does not follow an AR-1 process. Because traders have different expec-
tations Gn(t), they agree in the present about how they will disagree in the future.
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If traders only disagreed about the value of Gn(t) in the present but agreed about
the evolution of Ĥn − Ĥ−n in the future, then the coefficient of the Gn(t) dt term
would be zero, Ĥn − Ĥ−n would follow an AR-1 (Ornstein-Ühlenbeck) process,
and traders would not disagree about the dynamics of process Ĥn − Ĥ−n. In the
otherwise similar model with private values, the term involving Gn(t) dt becomes
zero.
We conjecture and verify that the value function V (Mn, Sn, D, Ĥn, Ĥ−n) has the

specific quadratic exponential form

V (Mn, Sn, D, Ĥn, Ĥ−n) = − exp
(

ψ0 + ψMMn +
1
2
ψSSS

2
n + ψSDSnD(A-37)

+ψSn SnĤn + ψSx SnĤ−n +
1
2
ψnn Ĥ

2
n +

1
2
ψxx Ĥ

2
−n + ψnx ĤnĤ−n

)

.

The nine constants ψ0, ψM , ψSS, ψSD, ψSn, ψSx, ψnn, ψxx, and ψnx have values
consistent with a steady-state equilibrium. The term ψM measures the utility
value of cash. The terms ψSS, ψSD, ψSn, and ψSx measure the utility value of
risky asset holdings. The terms ψnn, ψxx, and ψnx capture the value of future
trading opportunities based on current public and private information. The value
of trading on innovations to future information is built into the constant term ψ0.
The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the conjectured

value function V (Mn, Sn, D, Ĥn, Ĥ−n) in equation (A-32) is

(A-38)

0 = max
cn,xn

{

U(cn)− ρV +
∂V

∂Mn
(rMn + SnD − cn − P (xn) xn) +

∂V

∂Sn
xn

}

+
∂V

∂D

(

−αDD + σGΩ
1/2τ

1/2
H Ĥn + σGΩ

1/2(N − 1)τ
1/2
L Ĥ−n

)

+
∂V

∂Ĥn

(

−(αG + τ)Ĥn(t) + (τ
1/2
H + Âτ

1/2
0 )(τ

1/2
H Ĥn + (N − 1)τ

1/2
L Ĥ−n)

)

+
∂V

∂Ĥ−n

(

−(αG + τ)Ĥ−n(t) + (τ
1/2
L + Âτ

1/2
0 )(τ

1/2
H Ĥn + (N − 1)τ

1/2
L Ĥ−n)

)

+ 1
2

∂2V

∂D2
σ2
D

+1
2

∂2V

∂Ĥ2
n

(

1 + Â2
)

+ 1
2

∂2V

∂Ĥ2
−n

(

1

N − 1
+ Â2

)

+

(

∂2V

∂D∂Ĥn

+
∂2V

∂D∂Ĥ−n

)

ÂσD +
∂2V

∂Ĥn∂Ĥ−n

Â2.

For the specific quadratic specification of the value function in equation (A-37),
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the HJB equation becomes

(A-39)

0 = min
cn,xn

{

−
e−Acn

V
− ρ+ ψM (rMn + Sn D − cn − P (xn) xn)

+ (ψSSSn + ψSDD + ψSnĤn + ψSxĤ−n)xn

}

+ψSDSn(−αDD + σGΩ
1/2τ

1/2
H Ĥn + σGΩ

1/2(N − 1)τ
1/2
L Ĥ−n)

+
(

ψSnSn + ψnnĤn + ψnxĤ−n

)

(

−(αG + τ)Ĥn(t) + (τ
1/2
H + Âτ

1/2
0 )(τ

1/2
H Ĥn + (N − 1)τ

1/2
L Ĥ−n)

)

+
(

ψSxSn + ψxxĤ−n + ψnxĤn

)

(

−(αG + τ)Ĥ−n(t) + (τ
1/2
L + Âτ

1/2
0 )(τ

1/2
H Ĥn + (N − 1)τ

1/2
L Ĥ−n)

)

+1
2
ψ2
SDS

2
nσ

2
D + 1

2

(

(ψSnSn + ψnnĤn + ψnxĤ−n)
2 + ψnn

) (

1 + Â2
)

+1
2

(

(ψSxSn + ψxxĤ−n + ψnxĤn)
2 + ψxx

)

(

1

N − 1
+ Â2

)

+
(

(ψSn + ψSx)Sn + (ψnn + ψnx)Ĥn + (ψxx + ψnx)Ĥ−n

)

ψSDSnÂσD

+
(

(ψSnSn + ψnnĤn + ψnxĤ−n) (ψSxSn + ψxxĤ−n + ψnxĤn) + ψnx

)

Â2.

The solution for optimal consumption is

(A-40) c∗n(t) = −
1

A
log
(ψM V (t)

A

)

.

In the HJB equation (A-39), the price P (xn) is linear in xn based on equa-
tion (31). Plugging P (xn) from equation (31) into the HJB equation (A-39) yields
a quadratic function of xn which captures the effect of trader n’s trading rate xn
on prices. The optimal trading strategy is a linear function of the state variables
given by

x∗n(t) =
(N−1)γP

2ψM

[(

ψSD − ψMγD
γP

)

D(t) +
(

ψSS −
ψMγS

(N−1)γP

)

Sn(t)(A-41)

+ ψSn Ĥn(t) +
(

ψSx −
ψMγH
γP

)

Ĥ−n(t)
]

.

Because the exponent of the conjectured value function is a quadratic function of
the state variables, the best linear strategy will dominate any non-linear strategy
or a mixed strategy.
The derivation of this optimal trading strategy assumes that trader n observes

the values of D(t), Sn(t), Ĥn(t), and Ĥ−n(t). Although trader n does not actu-
ally observe Ĥ−n(t), he can implement the optimal quantity x∗n by submitting an
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appropriate linear demand schedule. We can think of this demand schedule as
a linear function of P (t) whose intercept is a linear function of D(t), Sn(t), and
Ĥn(t). Trader n can infer from the market-clearing condition (30) that Ĥ−n is
given by

(A-42) Ĥ−n(t) =
γP
γH

(

P (t)−D(t)
γD
γP

)

−
1

(N − 1)γH
x∗n(t)−

γS
(N − 1)γH

Sn(t).

Plugging equation (A-42) into equation (A-41) and solving for x∗n(t) implements
the optimal trading strategy x∗n(t) as a linear demand schedule which depends on
the price P (t) and state variables Ĥn, Sn(t), and D(t), which the trader directly
observes. This schedule is given by

x∗n(t) =
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1

(A-43)

[(

ψSD − ψSx
γD
γH

)

D(t) +

(

ψSS − ψSx
γS

(N − 1)γH

)

Sn(t)

+ ψSn Ĥn(t) +

(

ψSx
γP
γH

− ψM

)

P (t)

]

.

Symmetry requires that this demand schedule be the same as the demand sched-
ule conjectured for the N − 1 other traders. Equating the coefficients of D(t),
Ĥn(t), Sn(t), and P (t) in equation (A-43) to the conjectured coefficients γD, γH ,
−γS, and −γP results in the following four restrictions that the values of the γ-
parameters and ψ-parameters must satisfy in a symmetric equilibrium with linear
trading strategies:

(A-44)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1 (

ψSD − ψSx
γD
γH

)

= γD,

(A-45)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1

ψSn = γH ,

(A-46)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1 (

ψSS − ψSx
γS

(N − 1)γH

)

= −γS,

(A-47)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1 (

ψSx
γP
γH

− ψM

)

= −γP .

Note that it is not possible to solve this system for the four γ-parameters γH , γS,
γD, and γP because this system of four equations can be written so that the four
γ-parameters enter only as the three ratios γH/γP , γS/γP , and γD/γP . Therefore,
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we solve the system instead for the four unknowns ψSx, γH , γS, and γD. The
solution is
(A-48)

ψSx =
N − 2

2
ψSn, γH =

NγP
2ψM

ψSn, γS = −
(N − 1)γP

ψM
ψSS, γD =

γP
ψM

ψSD.

Define the constants CL and CG by

(A-49) CL := −
ψSn
2ψSS

, CG :=
ψSn
2ψM

N(r + αD)(r + αG)

σGΩ1/2 (τ
1/2
H + (N − 1)τ

1/2
L )

.

When γD in equation (A-48) is plugged into equation (A-41), the coefficient on
D(t) zeros out; this implies that traders will not trade on public information. It
is intuitively obvious that traders cannot trade on the basis of the public infor-
mation D(t) because all traders would want to trade in the same direction and
this would be inconsistent with market clearing. Substituting equation (A-48) into
equation (A-41) yields the solution for optimal strategy.

(A-50) x∗n(t) = γS

(

CL (Hn(t)−H−n(t))− Sn(t)
)

.

Define the average of traders’ expected growth rates Ḡ(t) by

(A-51) Ḡ(t) :=
1

N

N
∑

n=1

Gn(t),

Then, the equilibrium price is

(A-52) P ∗(t) =
D(t)

r + αD
+

CG Ḡ(t)

(r + αD)(r + αG)
.

One might expect that the solution of the maximization problem would yield so-
lutions for the nine ψ-parameters as functions of the four γ-parameters. One might
also expect that imposing symmetry by equating the four optimal γ-parameters
(implied by trader n’s optimal trading strategy) to the four conjectured γ-parameters
would yield solutions for the four γ-parameters as functions of the nine ψ-parameters.
In principle, one could then expect a solution to the thirteen equations in thirteen
unknowns to describe a steady-state equilibrium, if one exists.
Although this is the intuition for the solution methodology, the solution does

not work in this straightforward manner. As mentioned above, the four equations
for the γ-parameters do not determine γP as a function of the nine ψ-parameters.
Instead, the solution to the four γ-equations (A-48) implies a restriction on the
ψ-parameters (the first of equations (A-48)), which must hold in a steady-state
equilibrium. This restriction insures that the incentives to demand and supply
liquidity are balanced, but it does not define a level of liquidity γP .
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Plugging (A-40) and (A-41) back into the Bellman equation and setting the
constant term and the coefficients of Mn, Sn D, S2

n, Sn Ĥn, Sn Ĥ−n, Ĥ
2
n, Ĥ

2
−n,

and Ĥn Ĥ−n to be zero, we obtain nine equations. Using the first equation (A-48)
to substitute ψSn for ψSx, there are in total nine equations in nine unknowns γP ,
ψ0, ψM , ψSD, ψSS, ψSn, ψnn, ψxx, and ψnx.
By setting the constant term, coefficient of M , and coefficient of SD to be zero,

we obtain

(A-53) ψM = −rA,

(A-54) ψSD = −
rA

r + αD
,

(A-55)

ψ0 = 1− log(r) +
1

r

(

−ρ+ 1
2
(1 + Â2)ψnn +

1
2

(

1

N − 1
+ Â2

)

ψxx + Â2ψnx

)

.

In addition, by setting the coefficients of S2
n, Sn Ĥn, Sn Ĥ−n, Ĥ

2
n, Ĥ

2
−n and Ĥn Ĥ−n

to be zero, we obtain six polynomial equations in the six unknowns γP , ψSS, ψSn, ψnn, ψxx,
and ψnx. Defining the constants a1, a2, a3, and a4 by

a1 := −αG − τ + τ
1/2
H (τ

1/2
H + Âτ

1/2
0 ),(A-56)

a2 := −αG − τ + (N − 1)τ
1/2
L (τ

1/2
L + Âτ

1/2
0 ),

a3 := (τ
1/2
H + Âτ

1/2
0 )(N − 1)τ

1/2
L ,

a4 := (τ
1/2
L + Âτ

1/2
0 )τ

1/2
H ,

these six equations in six unknowns can be written

S2
n :(A-57)

0 = −1
2
rψSS −

γP (N − 1)

rA
ψ2
SS +

r2A2σ2
D

2(r + αD)2
+ 1

2
(1 + Â2)ψ2

Sn

+1
2

(

1

N − 1
+ Â2

)

(N − 2)2

4
ψ2
Sn −

rA

r + αD
ÂσD

N

2
ψSn + Â2N − 2

2
ψ2
Sn,

SnĤn :(A-58)

0 = −rψSn −
γP (N − 1)

rA
ψSSψSn −

rA

r + αD
σGΩ

1/2τ
1/2
H + a1ψSn

+
N − 2

2
a4ψSn + (1 + Â2)ψnnψSn +

N − 2

2

(

1

N − 1
+ Â2

)

ψnxψSn

−
rA

r + αD
ÂσD (ψnn + ψnx) + Â2ψnxψSn +

N − 2

2
Â2ψnnψSn,
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SnĤ−n :(A-59)

0 = −r
N − 2

2
ψSn +

γP (N − 1)

rA
ψSSψSn −

rA

r + αD
σGΩ

1/2(N − 1)τ
1/2
L

+
(

a3 +
N − 2

2
a2

)

ψSn + (1 + Â2)ψSnψnx +
N − 2

2

(

1

N − 1
+ Â2

)

ψxxψSn

−
rA

r + αD
ÂσD (ψxx + ψnx) + Â2ψxxψSn +

N − 2

2
Â2ψnxψSn,

Ĥ2
n :(A-60)

0 = −
r

2
ψnn −

γP (N − 1)

4rA
ψ2
Sn + a1ψnn + a4ψnx +

1
2
(1 + Â2)ψ2

nn

+1
2

(

1

N − 1
+ Â2

)

ψ2
nx + Â2ψnnψnx,

Ĥ2
−n :(A-61)

0 = −
r

2
ψxx −

γP (N − 1)

4rA
ψ2
Sn + a2ψxx + a3ψnx +

1 + Â2

2
ψ2
nx

+1
2

(

1

N − 1
+ Â2

)

ψ2
xx + Â2ψxxψnx,

ĤnĤ−n :(A-62)

0 = −rψnx +
γP (N − 1)

2rA
ψ2
Sn + a3ψnn + a4ψxx + (a1 + a2)ψnx

+(1 + Â2)ψnnψnx +

(

1

N − 1
+ Â2

)

ψxxψnx + Â2
(

ψnnψxx + ψ2
nx

)

.

We have not discovered a simple closed-form solution for equations (A-57)–
(A-62); instead, we attempt to solve these equations numerically.
Equations (A-57)–(A-62) are necessary but not sufficient conditions for steady-

state equilibrium with symmetric, linear flow-strategies. For a solution to the
six polynomial equations to define a stationary equilibrium, it is sufficient for the
solution to satisfy (1) a second-order condition implying γP > 0, (2) a stationarity
condition implying γS > 0, (3) a transversality condition requiring r > 0, and (4) a
budget constraint ruling out Ponzi schemes (implied by r > 0 and stationarity of
inventories).
(1) The second order condition requires γP > 0. For the minimum in the opti-

mization problem (A-39) to exist, the second order condition requires the 2 × 2 ma-
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trix

(A-63)

(

−A2

V
0

0 2 r A
(N−1)γP

)

to be positive definite. Since the value function V is negative, this condition holds if
and only if γP > 0. This is equivalent to requiring downward-sloping flow-demand
schedules; it is also equivalent to requiring temporary price impact to be positive.
(2) If γP > 0 but γS < 0, then permanent price impact slopes the wrong way.

Each trader’s inventories grow exponentially over time, violating the requirement
that inventories have a stationary distribution.
(3) The transversality condition for the value function V (. . .) is

(A-64) lim
T→+∞

Ent {e
−ρ(T−t) V (Mn(T ), Sn(T ), D(T ), Ĥn(T ), Ĥ−n(T ))} = 0.

From the HJB equation and equations (A-57)–(A-62), we have

Ent {dV (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t))} =(A-65)

−(r − ρ) V (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t)) dt.

This yields

Ent {e
−ρ(T−t) V (Mn(T ), Sn(T ), D(T ), Ĥn(T ), Ĥ−n(T ))} =(A-66)

e−r(T−t) V (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t)),

which implies that the transversality condition (A-64) is satisfied if r > 0.
(4) The budget constraint constraint ruling out Ponzi schemes (A-20) is auto-

matically satisfied if r > 0 and the state variables are stationary.
Since the model assumes r > 0, the inequalities γP > 0 and γS > 0 are necessary

and sufficient conditions for a solution to the six equations to characterize the
desired equilibrium.
Under the assumptions γP > 0 and γS > 0, analytical results imply γD > 0,

ψM < 0, and ψSD < 0, consistent with the intuition that traders prefer more to
less; we also obtain ψSS > 0, consistent with the intuition that traders are averse to
inventory risk. Our numerical results indicate that all endogenous parameters have
the intuitively correct signs. For example, numerical results indicate that γH > 0,
ψSn < 0, ψSx < 0, ψnn < 0, and ψxx < 0, consistent with the intuition that traders
buy when they have bullish information, value greater expected dividends, and
make greater profits (whether long or short) from more extreme signals. The sign
of ψnx is intuitively and numerically ambiguous.

A.4. Proof of Theorem 4

Let a vector (γ∗P , ψ
∗
SS, ψ

∗
Sn, ψ

∗
nn, ψ

∗
nx, ψ

∗
xx) be a solution to the system (A-57)–

(A-62) for exogenous parameters A, σD, σG, r, αG, αD, τ0, τL, and τH . If
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risk aversion is rescaled by factor F from A to A/F and other exogenous pa-
rameters are kept unchanged, then it is straightforward to show that a vector
(γ∗PF, ψ∗

SS/F
2, ψ∗

Sn/F, ψ
∗
nn, ψ

∗
nx, ψ

∗
xx) is the solution to the system (A-57)–

(A-62). From equations (A-48), (A-49), and (32), it then follows that CL changes
to CL F , λ changes to λ/F , κ changes to κ/F , but γS and CG remain the same.

A.5. Proof of Corollary 1

With γP = 0, it is clear that ψnn = ψnx = ψxx = 0 solves the last three
equations (A-60)–(A-62) of the six equations (A-57)–(A-62), consistent with the
intuition that information has no value if there is no market liquidity. With γP =
ψnn = ψxx = ψnx = 0, then the first three equations (A-57)–(A-59) become

0 = −1
2
rψSS +

r2A2σ2
D

2(r + αD)2
+ 1

2

(

1

N − 1
+ Â2

)

(N − 2)2

4
ψ2
Sn(A-67)

+1
2
(1 + Â2)ψ2

Sn −
rA

r + αD
ÂσD

N

2
ψSn + Â2N − 2

2
ψ2
Sn,

0 = −rψSn −
rA

r + αD
σGΩ

1/2τ
1/2
H + a1ψSn +

N − 2

2
a4ψSn,(A-68)

0 = −r
N − 2

2
ψSn −

rA

r + αD
σGΩ

1/2(N − 1)τ
1/2
L +

(

a3 +
N − 2

2
a2

)

ψSn.(A-69)

Equations (A-68) and (A-69) are both linear equations in ψSn. They have the
same solution if and only if the existence condition is satisfied as an equality,
∆H = 0, in which case the unique solution for ψSn is

(A-70) ψSn = −
rAσGΩ

1/2τ
1/2
H

(r + αD)(r + αG)
.

Substituting (A-70) into (A-67) yields

(A-71) ψSS =
rA2

(r + αD)2





(

σD +
σGΩ

1/2τ
1/2
0

r + αG

)2

+
(τ − τ0)σ

2
GΩ

(r + αG)2



 .

This implies CG = 1:

CG = −
ψSn
2rA

N(r + αD)(r + αG)

σGΩ1/2
(

τ
1/2
H + (N − 1)τ

1/2
L

)(A-72)

=
Nτ

1/2
H

2
(

τ
1/2
H + (N − 1)τ

1/2
L

) = 1.
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A.6. Limiting Case with N → ∞, τL = 0, and Â→ 0

Set τL = 0, and then evaluate the solution in the limit as N → ∞ and Â → 0.
We conjecture and verify that γP = N γ̄P , ψSn = N−1 ψ̄Sn, ψSS = N−1 ψ̄SS,
ψnn = ψ̄nn, ψnx = ψ̄nx, and ψxx = ψ̄xx, where γ̄P , ψ̄Sn, ψ̄SS, ψ̄nn, ψ̄nx, and ψ̄xx are
constants that do not depend on N .
Solving the system of equations (A-57)–(A-62) yields

(A-73) ψ̄Sn = −
2ArΩ1/2σGτ

1/2
H

(r + αD)(r + αG + τ)
, ψ̄SS =

A2r2σ2
D

(r + αD)2(r + αG + τ)
,

(A-74) γ̄P =
(r + αD)

2(r + αG + τ)2

2Arσ2
D

,

(A-75)

ψ̄nn = 1
2

(

r + 2(αG + τ − τH)−

(

(r + 2(αG + τ − τH))
2 +

4Ωσ2
GτH
σ2
D

)1/2
)

,

(A-76) ψ̄nx =
Ωσ2

GτH/σ
2
D

r + 2(αG + τ)− τH − ψ̄nn
,

(A-77) ψ̄xx =
1

r + 2αG + 2τ

(

ψ̄2
nx −

Ωσ2
GτH
σ2
D

)

.

This implies that

(A-78) CG →
r + αG

r + αG + τ
< 1, λ→ 0, κ→ 0,

(A-79) CL =
Ω1/2σGτ

1/2
H (r + αD)

Arσ2
D

,

(A-80) γS =
(N − 1)γ̄P

rA
ψ̄SS =

(N − 1)(r + αG + τ)

2
→ ∞.

A.7. Dampening Effect: The Present Value of Expected
Cumulative Dividends and Cash Flow

From (A-25), (A-29), (A-30), and (A-31), we can derive the stochastic process
for Gn(t) and G−n(t) :=

1
N−1

∑

m=1,...,N ; m6=nGm(t) as follows:
(A-81)

dGn(t) = −αG Gn(t)dt+ σG Ω1/2






τ
1/2
0 dBn

0 (t) + τ
1/2
H dBn

n(t) + τ
1/2
L

N
∑

m=1
m6=n

dBn
m(t)






,
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(A-82)

dG−n(t) = −(αG + τ) G−n(t)dt+
(

τ0 + τ
1/2
L

(

2τ
1/2
H + (N − 2)τ

1/2
L

))

Gn(t)dt

+σG Ω1/2






τ
1/2
0 dBn

0 (t) + τ
1/2
L dBn

n(t) +
τ
1/2
H + (N − 2)τ

1/2
L

N − 1

N
∑

m=1
m6=n

dBn
m(t)






.

From (A-82), when Gm(t) = Gn(t), trader n believes that other traders’ estimates

of expected growth rates Gm(t) will mean-revert to zero at a rate αG + (τ
1/2
H −

τ
1/2
L )2 > αG. From (A-81), trader n believes that his own estimate of expected
growth rate Gn(t) will mean-revert to zero at a rate αG.
From (A-81), (A-82), and (18), the expected dynamics of Gn(t), G−n(t), and

D(t) are given by

(A-83) En0 [Gn(t)] = e−αGtGn(0),

(A-84)

En0 [G−n(t)] =
τ0 + τ

1/2
L

(

2τ
1/2
H + (N − 2)τ

1/2
L

)

τ

(

e−αGt− e−(αG+τ)t
)

Gn(0)+e−(αG+τ)tG−n(0),

(A-85) En0 [D(t)] =
1

αD − αG

(

e−αGt− e−αDt
)

Gn(0) + e−αDtD(0).

The present value of expected cumulative dividends and cash flow from liquidat-
ing one share of the stock at date t using trader n’s valuation is

(A-86) PVn(0, t) := En0

[

∫ t

0

e−ruD(u)du+ e−rt
( D(t)

r + αD
+

Gn(t)

(r + αD)(r + αG)

)]

.

Substituting (A-83) and (A-85) into (A-86), it can be shown that (A-86) is equal
to

(A-87) Fn(0) =
D(0)

r + αD
+

Gn(0)

(r + αD)(r + αG)
.

The present value of expected cumulative dividends and cash flow from liquidat-
ing one share of the stock at date t using others’ valuations

∑

m6=n Fm(t)/(N − 1)
is

(A-88) PV−n(0, t) := En0

[

∫ t

0

e−ruD(u)du+e−rt
( D(t)

r + αD
+

G−n(t)

(r + αD)(r + αG)

)]

.

Assuming Gm(0) = Gn(0) = Ḡ(0) and substituting (A-83)–(A-85) into (A-88), it
can be shown that equation (A-88) is equal to

(A-89) PV−n(0, t) = Fn(0) +
(τ

1/2
H − τ

1/2
L )2

τ(r + αG)(r + αD)

(

e−(r+αG+τ)t− e−(r+αG)t
)

Gn(0).
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Similarly, the present value of expected cumulative dividends and cash flow from
liquidating one share of the stock at date t at the equilibrium price P (t) is

(A-90) PVp(0, t) := En0

[

∫ t

0

e−ruD(u)du+ e−rt
[ D(t)

r + αD
+

CG Ḡ(t)

(r + αD)(r + αG)

)]

.

Substituting (A-83)–(A-85) into (A-90), it can be shown that (A-90) is equivalent
to
(A-91)

PVp(0, t) = Fn(0) +
CG

(

N − (τ
1/2
H − τ

1/2
L )2/τ (N − 1)

)

−N

N (r + αG) (r + αD)
e−(r+αG)t Gn(0)

+
CG (τ

1/2
H − τ

1/2
L )2/τ (N − 1)

N (r + αG) (r + αD)
e−(r+αG+τ)t Gn(0).

From (A-91), it follows that
(A-92)
dPVp(0, t)

dt
=

Gn(0) e
−(r+αG)t

N (r + αG) (r + αD)

((

N−CG

(

N−(τ
1/2
H −τ

1/2
L )2/τ(N−1)

))

(r+αG)

CG (τ
1/2
H − τ

1/2
L )2/τ(N − 1)(r + αG + τ) e−τt

)

.

Clearly, (A-92) implies dPVp(0,t)
dt

→ 0 when t→ ∞. Define

(A-93) t̂ := − ln

((

1 +
(1− CG)Nτ

CG(τ
1/2
H − τ

1/2
L )2(N − 1)

)

r + αG
r + αG + τ

)

/τ.

Equation (A-92) implies dPVp(0,t)
dt

> 0 if and only if t > t̂. It can be shown that

t̂ > 0 if and only if CG > ĈG :=
(

1 + (1− 1/N)(τ
1/2
H − τ

1/2
L )2/(r + αG)

)−1

. This

yields the following results:

• If CG ≤ ĈG, then
dPVp(0,t)

dt
> 0 for all t > 0.

• If CG > ĈG, then dPVp(0,t)

dt
= 0 for t = t̂, dPVp(0,t)

dt
> 0 for t > t̂, and

dPVp(0,t)
dt

< 0 for t < t̂.

From (A-88), if follows that

(A-94)
dPV−n(0, t)

dt
=

(τ
1/2
H − τ

1/2
L )2 Gn(0) e−(r+αG)t

τ(r + αG)(r + αD)

(

(r+αG)−(r+αG+τ)e
−τt
)

.

(A-94) implies that dPV
−n(0,t)
dt

< 0 iff t < ln
(

1 + τ
r+αG

)

/τ.
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A.8. Proof of Theorem 6

The proof of Part 1 is trivial and thus omitted here. If traders are correct on
average, it follows that
(A-95)

dĤn(t)− dĤ−n(t) = −(αG+ τ)(Ĥn(t)− Ĥ−n(t))dt+ dBn(t)−
1

N−1

∑

m=1,m6=n

dBm(t).

Equations (38) and (39) imply the simple bivariate process of target inventories
and actual inventories as in Part 2. Simple calculations yield

(A-96) STIn (t) = CL

∫ t

−∞

e−(αG+τ)(t−k)

(

dBn(k)−
1

N − 1

∑

m=1,m6=n

dBm(k)

)

,

(A-97)

Sn(t) = CLγS

∫ t

−∞

e−(αG+τ)(t−k)− e−γS(t−k)

γS − αG − τ

(

dBn(k)−
1

N − 1

∑

m=1,m6=n

dBm(k)

)

.

From (A-96) and (A-97), simple calculations yield

(A-98) Corr{Sn(t), Sn(t+∆t)} =
(αG + τ) e−γS ∆t−γS e−(αG+τ) ∆t

αG + τ − γS
,

(A-99) Corr{Sn(t), S
TI
n (t)} =

( γS
γS + αG + τ

)1/2

.
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B. A Competitive Model of Trading

In this section, we consider a model that is similar to the smooth trading model
with the only difference that traders are perfectly competitive. The competitive
equilibrium is different from the equilibrium with imperfect competition. Traders
adjust their inventories immediately; they do not smooth out their trading over
time. The one-period model is discussed next, followed by the continuous-time
model of perfect competition.

B.1. One-Period Model

The setting is almost identical to the setting of our model of imperfect competi-
tion. For clarity, we repeat analogous assumptions here.
A risky asset with random liquidation value v ∼ N(0, 1/τv) is traded for a safe

numeraire asset. Each of N traders n = 1, . . . , N is endowed with Sn shares of
a zero-net-supply risky asset, implying

∑N
n=1 Sn = 0. Traders observe signals

about the normalized liquidation value τ
1/2
v v. All traders observe a public signal

i0 := τ
1/2
0 (τ

1/2
v v) + e0 with e0 ∼ N(0, 1). Each trader n observes a private signal

in := τ
1/2
n (τ

1/2
v v)+en with en ∼ N(0, 1). The asset payoff v, the public signal error

e0, and N private signal errors e1, . . . , eN are independently distributed.
Traders agree about the precision of the public signal τ0 and agree to disagree

about the precisions of private signals τn. Each trader is “relatively overconfident,”
believing his own signal has a high precision τn = τH and other traders’ signals
have low precision τm = τL for m 6= n, with τH > τL ≥ 0.
Each trader submits a demand schedule Xn(p) := Xn(i0, in, Sn, p) to a single-

price auction. An auctioneer calculates the market-clearing price p := p[X1, . . . , XN ].
Trader n’s terminal wealth is

(B-1) Wn := v (Sn +Xn(p))− p Xn(p).

The difference with equation (1) is that each trader n assumes that the price p does
not depend on the quantities he trades. Each trader maximizes the same expected
exponential utility function of wealth En{− e−AWn} using his own beliefs about τH
and τL to calculate the expectation.
Trader n maximizes his expected utility, or equivalently he maximizes En{Wn}−

1
2
A V arn{Wn}. He chooses the quantity to trade xn that solves the maximization

problem
(B-2)

max
xn

(

τ
1/2
v

τ

(

τ
1/2
0 i0 + τ

1/2
H in + (N − 1)τ

1/2
L i−n

)

(Sn + xn)− p xn −
A

2τ
(Sn + xn)

2

)

.

The first-order condition with respect to xn yields

(B-3) x∗n =
1

A

(

τ 1/2v

(

τ
1/2
0 i0 + τ

1/2
H in + (N − 1)τ

1/2
L i−n

)

− p τ
)

− Sn.
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Suppose that traders submit symmetric linear demand schedules of the form

(B-4) xn(i0, in, Sn, p) = α i0 + β in − γ p− δ Sn, n = 1, . . . , N.

The market-clearing condition
∑N

n=1 xn = 0 implies

(B-5) p =
α

γ
i0 +

β

γ

1

N

N
∑

n=1

in,

Substituting (B-5) into (B-4) yields

(B-6) xn = β

(

in −
1

N

N
∑

m=1

im

)

− δ Sn.

Thus, each trader trades on the difference between his signal in and the average of
all N signals and also trades out of his current inventory Sn.
Substituting (B-5) into (B-3), the equilibrium strategy x∗n can be expressed as a

linear function of i0, in,
∑N

n=1 in, and Sn. Equating coefficients to the corresponding
coefficients in equation (B-6) yields

(B-7) δ = 1, α =
τ
1/2
v τ

1/2
0

(

τ
1/2
H − τ

1/2
L

)

A
(

τ
1/2
H + (N − 1)τ

1/2
L

) ,

β =
1

A
τ 1/2v

(

τ
1/2
H − τ

1/2
L

)

, γ =
τ
(

τ
1/2
H − τ

1/2
L

)

A
(

τ
1/2
H + (N − 1)τ

1/2
L

) .

Substituting α, β and γ into equations (B-5) and (B-6) yields

(B-8) x∗n = 1
A

(

1− 1
N

)

τ 1/2v (τ
1/2
H − τ

1/2
L )(in − i−n)− Sn.

Define the target inventory as

(B-9) STIn = 1
A

(

1− 1
N

)

τ 1/2v (τ
1/2
H − τ

1/2
L ) (in − i−n).

Equation (B-8) is similar to equation (11), except for the endogenous constant
δ = 1, i.e, each trader trades toward to his “target inventory” STIn immediately
in the competitive model. Note that target inventories are identical to target
inventories (13) in the model with imperfect competition.
As in equation (12) for the case of imperfect competition, the equilibrium price

p∗ is equal to the average of traders’ valuations:

(B-10) p∗ = 1
N

N
∑

n=1

En{v} =
τ
1/2
v

τ

(

τ
1/2
0 i0 +

τ
1/2
H +(N−1)τ

1/2
L

N

N
∑

n=1

in

)

.
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To summarize, in the model of perfect competition, both the target inventories
and equilibrium price are the same as in our smooth trading model with imperfect
competition. The key difference is that in the model of perfect competition, traders
trade toward their target inventories immediately instead of gradually.

B.2. A Continuous-time Model of Perfect Competition

For the competitive equilibrium, we use the same notations and information
structure as in our smooth trading model of imperfect competition. The only
difference from our smooth trading model is that traders do not take into account
price impact when solving for their optimal demand. For all dates t > −∞, the
optimal strategies S∗

n and C∗
n solve trader n’s maximization problem

(B-11) max
{Cn,Sn}

En
t

{
∫ ∞

s=t

e−ρ(s−t) U(cn(s)) ds

}

,

where the wealth Wn(t) follows the process

(B-12) dWn(t) = r Wn(t) dt+ Sn(t) (dP (t) +D(t) dt− r P (t) dt)− cn(t) dt.

These two equations are similar to equations (A-17) and (22), but there are several
differences. First, traders take prices in equation (B-12) as given. Second, in the
model with perfect competition traders can costlessly transfer funds from their
money account to stock account. It is therefore sufficient to keep track only of
aggregate wealth dynamics, rather than separately keep track of a money account
and a stock account.
Traders use the history of the dividend process, the history of their own private

signals, and the average of all signals, as inferred from prices, to obtain their
estimates of the growth rate. The inference problem is identical to the one in the
smooth trading model.
To solve the equilibrium, we conjecture that price is a linear function of D(t)

and Ḡ(t), specifically,

(B-13) P (t) =
D(t)

r + αD
+ CG

Ḡ(t)

(r + αD)(r + αG)
.

It can be shown that

dP (t) = −
1

r + αD

(

αDD(t)− σGΩ
1/2
(

τ
1/2
H Ĥn(t) + (N − 1)τ

1/2
L Ĥ−n(t)

))

dt

+
CGσGΩ

1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αG)
((a1 + (N − 1)a4)Ĥn(t) + (a3 + (N − 1)a2)Ĥ−n(t))dt

+
1

r + αD
((G∗(t)−Gn(t))dt+ σDdBD)

+
CGσGΩ

1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αG)

(

NÂdBn
0 (t) + dBn

n(t) +
∑

m=1;m6=n

dBn
m(t)

)

.
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We conjecture and verify that the value function V (Wn, Ĥn, Ĥ−n) has the specific
quadratic exponential form

(B-14) V (Wn, Ĥn, Ĥ−n) = − exp
(

ψ0+ψWWn+
1
2
ψnnĤ

2
n+

1
2
ψxxĤ

2
−n+ψnxĤnĤ−n

)

.

As in our smooth trading model, the five constants ψ0, ψW , ψnn, ψxx, and ψnx
have values consistent with a steady-state equilibrium. The terms ψnn, ψxx, and
ψnx capture the value of future trading opportunities based on current public and
private information. The value of trading on innovations to future information is
built into the constant term ψ0. Equation (B-14) is similar to equation (A-37),
except that it has a simpler form because the five terms Mn, S

2
n, SnD, SnĤn, and

SnĤ−n are effectively replaced by one term, Wn.
The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the conjectured

value function V (Wn, Ĥn, Ĥ−n) in equation (B-14) is

0 = min
cn,sn

−
e−Acn

V
− ρ+ ψW

(

rWn + SnD(t)− cn − rP (t)Sn(t)−
αD

r + αD
D(t)Sn

+
σGΩ

1/2

r + αD

(

τ
1/2
H Ĥn(t) + (N − 1)τ

1/2
L Ĥ−n(t)

)

Sn

+
CGσGΩ

1/2(τ
1/2
H + (N − 1)τ

1/2
L )

N(r + αD)(r + αG)

(

(a1 + (N − 1)a4)Ĥn(t) + (a3 + (N − 1)a2)Ĥ−n(t)
)

Sn

)

+
(

ψnnĤn(t) + ψnxĤ−n(t)
)(

−(αG + τ)Ĥn + (τ
1/2
H + Âτ

1/2
0 )(τ

1/2
H Ĥn + (N − 1)τ

1/2
L Ĥ−n)

)

+
(

ψxxĤ−n(t) + ψnxĤn(t)
)(

−(αG + τ)Ĥ−n + (τ
1/2
L + Âτ

1/2
0 )(τ

1/2
H Ĥn + (N − 1)τ

1/2
L Ĥ−n)

)

+1
2
ψ2
WS

2
n

(

C2
Gσ

2
GΩ(NÂ

2 + 1)(τ
1/2
H + (N − 1)τ

1/2
L )2

N(r + αD)2(r + αG)2
+

σ2
D

(r + αD)2
+

2CGσGσDΩ
1/2τ

1/2
0

(r + αD)2(r + αG)

)

+1
2

(

(ψnnĤn(t) + ψnxĤ−n(t))
2 + ψnn

)(

1 + Â2
)

+1
2

(

(ψxxĤ−n(t) + ψnxĤn(t))
2 + ψxx

)

(

1

N − 1
+ Â2

)

+ψWSn

(

(ψnn + ψnx)Ĥn(t) + (ψxx + ψnx)Ĥ−n(t)
)

(

CGσGΩ
1/2

N(r + αD)(r + αG)
(τ

1/2
H + (N − 1)τ

1/2
L )(NÂ2 + 1) +

σDÂ

r + αD

)

+
(

(ψnnĤn(t) + ψnxĤ−n(t)) (ψxxĤ−n(t) + ψnxĤn(t)) + ψnx

)

Â2,
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where constants a1, a2, a3, and a4 are defined as

a1 := −αG − τ + τ
1/2
H (τ

1/2
H + Âτ

1/2
0 ),(B-15)

a2 := −αG − τ + (N − 1)τ
1/2
L (τ

1/2
L + Âτ

1/2
0 ),

a3 := (τ
1/2
H + Âτ

1/2
0 )(N − 1)τ

1/2
L ,

a4 := (τ
1/2
L + Âτ

1/2
0 )τ

1/2
H .

As in the smooth trading model, the solution for optimal consumption is

(B-16) c∗n(t) = −
1

A
log
(ψW V (t)

A

)

.

Plugging optimal consumption and P (t) from equation (B-13) into the HJB equa-
tion yields a quadratic function of Sn. It can be shown that the optimal trading
strategy is a linear function of the state variables Ĥn(t) and Ĥ−n(t),

S∗
n(t) = C

(

CGσGΩ
1/2
(

τ
1/2
H + (N − 1)τ

1/2
L

)(

(r − a1 − (N − 1)a4)Ĥn(t)

+ ((N − 1)(r − a2)− a3)Ĥ−n(t)
)

− σGΩ
1/2(r + αG)N

(

τ
1/2
H Ĥn(t) + (N − 1)τ

1/2
L Ĥ−n(t)

)

−
(

(ψnn + ψnx)Ĥn(t) + (ψxx + ψnx)Ĥ−n(t)
)

(

CGσGΩ
1/2(τ

1/2
H + (N − 1)τ

1/2
L )(NÂ2 + 1) + σDÂN(r + αG)

))

,(B-17)

where

C :=
(r + αD)(r + αG)/ψW

C2
Gσ

2
GΩ(τ

1/2
H + (N − 1)τ

1/2
L )2(NÂ2 + 1) +Nσ2

D(r + αG)2 + 2N(r + αG)σDCGσGΩ1/2τ
1/2
0

.

Market clearing,
∑N

n=1 S
∗
n(t) = 0, implies

(B-18)

CG =
N(r + αG)

(

σGΩ
1/2 + σDÂ(ψnn + ψxx + 2ψnx)/(τ

1/2
H + (N − 1)τ

1/2
L )

)

σGΩ1/2
(

N(r + αG) + (N − 1)(τ
1/2
H − τ

1/2
L )2 − (1 +NÂ2)(ψnn + ψxx + 2ψnx)

) .

Combining equations (B-17) and (B-18) yields

(B-19) S∗
n(t) = CL (Ĥn − Ĥ−n),

where the constant CL is defined as
(B-20)

CL := C
(

σGΩ
1/2
(

CG(τ
1/2
H + (N − 1)τ

1/2
L )(r − a1 − (N − 1)a4)−Nτ

1/2
H (r + αG)

)
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− (ψnn + ψnx)
(

CGσGΩ
1/2(τ

1/2
H + (N − 1)τ

1/2
L )(1 +NÂ2) + σDÂN(r + αG)

))

.

Plugging (B-16) and (B-19) back into the Bellman equation and setting the con-
stant term and the coefficients of Wn, Ĥ

2
n, Ĥ

2
−n, and Ĥn Ĥ−n to be zero yields five

equations, which can be solved for the five unknown parameters ψ0, ψW , ψnn, ψnx,
and ψxx.
Equating the constant term and the coefficient of Wn to zero yields

(B-21) ψW = −rA,

(B-22)

ψ0 = 1− log(r) +
1

r

(

−ρ+ 1
2
(1 + Â2)ψnn +

1
2

(

1

N − 1
+ Â2

)

ψxx + Â2ψnx

)

.

Equating the coefficients of Ĥ2
n, Ĥ

2
−n, and Ĥn Ĥ−n to zero results in three polyno-

mial equations in the three unknowns ψnn, ψxx, and ψnx. Defining c1, c2, c3, and
c4 by

c1 :=
C2
Gσ

2
GΩ(NÂ

2 + 1)(τ
1/2
H + (N − 1)τ

1/2
L )2

N(r + αD)2(r + αG)2
+

σ2
D

(r + αD)2
+

2CGσGσDΩ
1/2τ

1/2
0

(r + αD)2(r + αG)
,

c2 :=
CGσGΩ

1/2

N(r + αD)(r + αG)
(τ

1/2
H + (N − 1)τ

1/2
L )(NÂ2 + 1) +

σDÂ

r + αD
,

c3 :=
rAσGΩ

1/2CL
r + αD

(

CG(τ
1/2
H + (N − 1)τ

1/2
L )(r − a1 − (N − 1)a4)

N(r + αG)
− τ

1/2
H

)

,

c4 :=
rAσGΩ

1/2CL
r + αD

(

CG(τ
1/2
H + (N − 1)τ

1/2
L )(r − a2 −

a3
N−1

)

N(r + αG)
− τ

1/2
L

)

,

these three equations in three unknowns can be written as follows:

Ĥ2
n :(B-23)

0 = −
r

2
ψnn + a1ψnn + a4ψnx − rACLc2(ψnn + ψnx) +

1
2
(1 + Â2)ψ2

nn

+1
2

(

1

N − 1
+ Â2

)

ψ2
nx + Â2ψnnψnx + c3 +

1
2
r2A2c1C

2
L,

Ĥ2
−n :(B-24)

0 = −
r

2
ψxx + a2ψxx + a3ψnx + rACLc2(ψxx + ψnx) +

1 + Â2

2
ψ2
nx

+1
2

(

1

N − 1
+ Â2

)

ψ2
xx + Â2ψxxψnx − (N − 1)c4 +

1
2
r2A2c1C

2
L,
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ĤnĤ−n :(B-25)

0 = −rψnx + (a1 + a2)ψnx + a3ψnn + a4ψxx + rACLc2(ψnn − ψxx)

+(1 + Â2)ψnnψnx +

(

1

N − 1
+ Â2

)

ψxxψnx + Â2
(

ψnnψxx + ψ2
nx

)

+(N − 1)c4 − c3 − r2A2c1C
2
L.

To summarize, optimal consumption is defined in (B-16), the optimal trading
strategy is defined in (B-19), and the endogenous coefficient CL is defined in (B-20).
The equilibrium price is defined in (B-13), and the endogenous coefficient CG is
defined in (B-18). The parameters ψW and ψ0 are presented in (B-21) and (B-22).
The parameters ψnn, ψnx, and ψxx are obtained from numerical solution of the
system of the three equations (B-23)–(B-25). These results are stated in theorem 5.
Information has no value if there is no trading, so that ψnn = ψnx = ψxx = 0

solves the three equations (B-23)–(B-25) when there is no liquidity. This implies
(B-26)
c3+

1
2
r2A2c1C

2
L = 0, −(N−1)c4+

1
2
r2A2c1C

2
L = 0, (N−1)c4−c3−r

2A2c1C
2
L = 0.

These equations imply that liquidity vanishes when τH = τL and CG = 1. This
is different from our smooth trading model of disagreement with imperfect com-

petition, in which market liquidity vanishes when τ
1/2
H /τ

1/2
L = 2 + 2/(N − 2) and

CG = 1.
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Figure 9. Coefficients CG and CL against τH/τL while fixing τ = 7.4.

Figure 9 shows the effect of changes in the degree of overconfidence τH/τL on
the endogenous parameters CG and CL. To compare the results with our smooth
trading model, we use the same exogenous parameter values as in figure 2 and
panel (a) of figure 7. The horizontal axis shows the ratio τH/τL. As this ratio
increases, τH is increasing and τL is decreasing so that the total precision τ is fixed
(and other exogenous parameters are also fixed). Higher values of the ratio τH/τL
correspond to higher degrees of overconfidence. As disagreement τH/τL increases,
the left panel shows that the parameter CG declines monotonically, while the right
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panel shows that the parameter CL, which governs the size of target inventories,
first increases and then decreases.
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Figure 10. Coefficients CG, CL against N while fixing τ = 1.4 and τL = 0.

For finite N , figure 10 shows the effect of changes in the number of traders N on
CG and CL, using the same exogenous parameter values as in figure 3 and panel (b)
of figure 7. As N increases, the left panel shows that CG decreases monotonically
toward a constant asymptote, and the right panel shows that CL increases mono-
tonically toward a constant asymptote. When N is large, our numerical results
show that our smooth trading model of imperfect competition converges to the
equilibrium of the competitive model.
As in the smooth trading model, we find a closed-form solution when we set

τL = 0, and then evaluate the solution in the limit as N → ∞ and Â → 0. We
conjecture and verify that ψnn = ψ̄nn, ψnx = ψ̄nx, and ψxx = ψ̄xx, where ψ̄nn, ψ̄nx,
and ψ̄xx are constants that do not depend on N .
Solving the system of equations (B-23)–(B-25) yields

(B-27)

ψ̄nn = 1
2

(

r + 2(αG + τ − τH)−

(

(r + 2(αG + τ − τH))
2 +

4Ωσ2
GτH
σ2
D

)1/2
)

,

(B-28) ψ̄nx =
Ωσ2

GτH/σ
2
D

r + 2(αG + τ)− τH − ψ̄nn
,

(B-29) ψ̄xx =
1

r + 2αG + 2τ

(

ψ̄2
nx −

Ωσ2
GτH
σ2
D

)

.

Equations (B-18) and (B-20) imply that

(B-30) CG →
r + αG

r + αG + τ
< 1, CL =

Ω1/2σGτ
1/2
H (r + αD)

Arσ2
D

.
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These results are exactly the same as the limiting case when N → ∞ and Â → 0
in the smooth trading model. This confirms that our smooth trading model of
imperfect competition converges to the competitive model when N → ∞.
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C. A Continuous-Time Model of Smooth
Trading with Private Values

In this section, we consider an alternative smooth trading model in which private
values with a common prior replace disagreement (with different priors) as the
modeling device which makes trade possible in equilibrium. We show that optimal
trading strategies balance the trade-off between the temporary price impact costs
of a trader’s own trades and the decay of his private information resulting from
the permanent price impact of other traders trading on similar information. When
investors put enough weight on their private values, an equilibrium exists, prices
immediately reveal a weighted average of all traders’ signals and private values,
and traders continue to trade gradually toward their target inventories.
The model has the following key features: (1) There is only one type of trader,

a strategic informed trader; there are no noise traders or market makers. (2) Each
trader has private information about the same underlying fundamental value; the
“noise” in their signals is uncorrelated. (3) All signals have the same precision;
the structure of the model is common knowledge; traders share a common prior
and apply Bayes law correctly and consistently. (4) Each trader gains private
value from investing in the asset; the private value is uncorrelated with the fun-
damental value. (5) Traders trade strategically, correctly taking into account how
the permanent and temporary price impact of their trades affects the trading of
other traders. (6) Random variables are jointly normally distributed and traders
have additive exponential utility functions. (7) Traders are “symmetric” in the
sense that they have the same utility functions and symmetrically different beliefs
about the information structure in the economy. (8) All model state variables are
stationary.
We describe an “almost closed form” steady-state equilibrium with “smooth

trading” characterized precisely by endogenous parameters solving a set of five
polynomial equations in five unknowns. We show that an equilibrium exists when
traders put large enough weight on their private values. Although it is necessary to
solve numerically for an endogenous factor by which noisy private values lower the
precision of signals inferred from prices, other endogenous parameters are obtained
as closed-form functions of this endogenous factor.
The equilibrium in the model with private values is similar to the model with

overconfidence. There is, however, one important difference: In the model with
private values, there is no price dampening associated with the “Keynesian beauty
contest.”
In the model with private values—unlike the model based on disagreement—

even though traders have different valuations of the asset at present, they do not
disagree about the dynamics of how those valuations will change in the future; this
makes prices equal to a noisy weighted average of traders’ buy-and-hold valuations,
with the weights summing exactly to one, not to a dampened value less than one.
In the model with disagreement, traders not only trade because they disagree



74

with the average of other traders’ valuations in the present, but they also trade
based on disagreement concerning their predictions about how the average of other
traders’ valuations will change in the future. This makes prices equal to a weighted
average of traders’ buy-and-hold valuations, with the weights summing to a con-
stant less than one.

C.1. Model Set-Up

There are N risk averse oligopolistic traders who trade a risky zero-net-supply
asset against a risk-free asset, which earns constant risk-free rate r > 0.
The risky asset is traded at price P (t) and pays out dividends at continuous rate

D(t). Dividends follow a stochastic process with mean-reverting stochastic growth
rate G∗(t), constant instantaneous volatility σD > 0, and constant rate of mean
reversion αD > 0,

(C-1) dD(t) := −αD D(t) dt+G∗(t) dt+ σD dBD(t).

The growth rate G∗(t) follows an AR-1 process with mean reversion αG and volatil-
ity σG:

(C-2) dG∗(t) := −αG G
∗(t) dt+ σG dBG(t).

The dividend is publicly observable, but the growth rate G∗(t) is not observed by
any trader. This structure of payoffs is similar to equations (18) and (19) in the
model of disagreement.
The information structure is slightly different from the model with disagreement.

Each trader n observes a continuous stream of private information In(t) about a
common value G∗(t),

(C-3) dIn(t) := τ
1/2
I

G∗(t)

σG Ω1/2
dt+ dBIn(t), n = 1, . . . , N.

Since the drift τ
1/2
I G∗(t)/(σGΩ

1/2) is proportional to G∗(t), each increment dIn(t)
in the process In(t) is a noisy observation of the unobserved growth rate G∗(t).
The denominator σGΩ1/2 scales G∗(t) so that the conditional scaled error variance
is one. This simplifies intuitive interpretation of the model. The parameter Ω
measures the steady-state error variance in units of time, as discussed below. The
“precision” parameter τI measures the informativeness of the signal dIn(t) as a
signal-to-noise ratio describing how fast the information flow generates a signal of
a given level of statistical significance. Since traders agree on how much information
τI each signal contains, the traders share a common prior. In the similar equation
(20) for the model with disagreement, each trader assigns a higher precision τH to
his own signal and lower precision τL to signals of others; therefore, traders do not
share a common prior.
Using the scaling parameter Ω, the information content of the publicly observable

dividend D(t) can be expressed in a form consistent with the notation for private
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signals In(t) in equation (C-3). Define dI0(t) := [αD D(t) dt+ dD(t)] /σD and
τ0 := Ωσ2

G/σ
2
D with dB0 := dBD. Then the public information I0(t) in the divided

stream (C-1) can equivalently be written

(C-4) dI0(t) := τ
1/2
0

G∗(t)

σG Ω1/2
dt+ dB0(t).

Observing the process I0(t) is informationally equivalent to observing the divi-
dend process D(t). The quantity τ0 measures the precision of the dividend process
in units analogous to the units of precision for private signals. We assume that
dBD(t), dBG(t), dBI1(t), . . . , dBIN(t), dBJ1(t), . . . , dBJN(t) are independently-distributed,
standardized Brownian motions. This notation simplifies the filtering formulas we
are about to derive.
Unlike in the model with disagreement, the risky asset generates privately-

observed private benefits for traders owning it; this assumption helps to gen-
erate trade. Specifically, we assume that the risky asset generates a cash flow
D(t) + πJ H

J
n (t), where the first component is a publicly-observed, common-value

cash dividend—as in the model with disagreement—and the additional second
component is a privately-observed cash-equivalent of the private benefit trader n
receives from holding the risky asset. We assume that the trader n’s private benefit
HJ
n (t) follows an AR-1 process with the mean reversion rate δJ ,

(C-5) dHJ
n (t) = −δJH

J
n (t)dt + dBJn(t), n = 1, . . . , N.

where πJ and δJ are constants. In order to keep the number of state variables the
same as the number of state variables in the model of disagreement, it is necessary
to set the mean reversion rate δJ to equal a specific value. As shown below, this
specific value equates the mean-reversion rate of private values δJ to the mean
reversion rate of private signals. Since there are no a priori reasons to believe that
private value and information flow share similar dynamics, this assumption is a
key limitation of the smooth-trading model with private values.
Each trader’s information set at time t, denoted Fn(t), consists of the histories of

the publicly-observed dividend process D(s), the trader’s own private information
In(s), the trader’s private observation of his own private value HJ

n (t), and the
market price P (s), s ∈ (−∞, t]. All traders process information rationally.
Let Sn(t) denote the inventory of trader n at time t. Assume the risky asset is in

zero net supply, implying
∑N

n=1 Sn(t) = 0. Each trader’s trading strategy Xn is as-
sumed to be a mapping from his information set Fn(t) at time t into a “flow-demand
schedule” which defines the derivative of his inventory xn(t) := Xn(t, P (t);Fn(t))
(“trading intensity”) as a function of the market-clearing price P (t). An auctioneer
continuously calculates the market-clearing price P (t) := P [X1, . . . , XN ](t) such
that the market-clearing condition

∑N
n=1 xn(t) = 0 is satisfied. Let Ent {. . .} denote

the conditional expectations operator E{. . . |Fn(t)} based on trader n’s beliefs.
Each trader has time-additively-separable exponential utility function U(cn(s)) :=

− e−A cn(s) with constant-absolute-risk-aversion parameter A and the time prefer-
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ence parameter ρ. Trader n’s consumption strategy Cn defines a consumption rate
cn(t) := Cn(t;Fn(t)).
We define an equilibrium as a set of trading strategies X∗

1 , . . . , X
∗
N and con-

sumption strategies C∗
1 , . . . , C

∗
N such that, for n = 1, . . . , N , trader n’s optimal

consumption and trading strategies Xn = X∗
n and Cn = C∗

n solve his maximization
problem taking as given the optimal strategies of the other traders. Trader n’s
maximization problem is

(C-6) Jn(Fn(t);X
∗
n, C

∗
n;X

∗
m, m 6= n) = max

{Cn,Xn}
Ent

{∫ ∞

s=t

e−ρ(s−t) U(cn(s)) ds

}

,

where inventories follow the process dSn(t) = xn(t) dt and money holdings Mn(t)
follow the process

(C-7) dMn(t) =
(

r Mn(t) + Sn(t)
(

D(t) + πJ H
J
n (t)

)

− cn(t)− P (t) xn(t)
)

dt.

Equation (C-7) is similar to equation (22) for the model with disagreement, except
for the term πJH

J
n (t), which measures the cash-equivalent of the private benefit of

owning the asset as a “convenience yield.”
Note that the price P (t), quantity xn(t), and consumption cn(t) are the abbre-

viations
(C-8)

P (t) := P [X1, . . . , XN ](t), xn(t) :=
dSn(t)

dt
= Xn(t, P (t);Fn(t)), cn(t) := Cn(t;Fn(t)).

When solving the maximization problem, trader n takes as given the trading
strategies Xm, m 6= n, for the other N −1 traders; in doing so, he exercises market
power by taking into account how his own trading strategy affects equilibrium
prices P (t) and future trading opportunities. The optimal strategy must satisfy
the transversality condition Ent {e

−ρ(T−t) Jn(Fn(T ), X
∗
n, C

∗
n; . . .)} → 0 as T → ∞.

Innovations in private values show up as noise in prices, as a result of which
traders infer from prices only a noisy version of the average of other traders’ signals.
We will show next that each trader can infer from the equilibrium prices only the
average of a linear combination 1

N−1

∑

m6=n (Im(t) + k BJm(t)) of other traders’
private signals Im(t) and private values BJm(t). The value of the weight k on
private values is determined endogenously in equilibrium.

C.2. Bayesian Updating

Let Gn(t) := Ent {G
∗(t)} denote trader n’s estimate of the unobserved growth rate

G∗(t) conditional on his information set at time t. This information set consists
of dividend information I0(s), the trader’s private signal In(s), the trader’s private
value HJ

n (t), and the noisy average of other traders’ signals inferred from prices
1

N−1

∑

m6=n (Im(s) + k BJm(s)), s ∈ (−∞, t].
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Define Ω as the error variance Ω := Varn{(G∗(t) − Gn(t))/σG}. We assume a
symmetric steady state in which Ω is a constant which does not depend on time t
or trader n. There are simple and intuitive formulas for information processing:

LEMMA 2: Let τ denote the sum of precisions

(C-9) τ := τ0 + τI + (N − 1)
1

1 + k2
τI .

Then Ω and dGn(t) satisfy

(C-10) Ω−1 :=
(

Varn
{

G∗(t)−Gn(t)

σG

}

)−1

= 2 αG + τ,

(C-11)

dGn(t) = − (αG + τ)Gn(t)dt+σGΩ
1/2

(

τ
1/2
0 dI0(t) + τ

1/2
I dIn(t) +

τ
1/2
I

1 + k2

N
∑

m6=n

(dIm(t) + k dBJm(t))

)

.

The proof is in Appendix section C.8. This lemma is similar to Lemma 1 in
Appendix section A.2, except trader n attributes a precision τI to his own signal
dIn(t) and a lower precision τI/(1+k

2)2 to other traders’ signals dIm(t)+kdBJm(t),
since those signals are contaminated by trading due to private values. The total
precision of information τ is not quasi-exogenous, as in the model of disagreement,
but rather depends on the endogenous factor k, whose value will be derived below.
Note that Ω is not a “free parameter;” instead, it is determined as an endogenous

function of the other parameters. Equation (C-10) implies that Ω is the solution to
the quadratic equation Ω−1 = 2 αG +Ω σ2

G/σ
2
D + τ . In equations (C-3) and (C-4),

we scale the units with which precision is measured by the endogenous parameter
Ω because this leads to simpler Kalman filtering expressions which more clearly
bring out the intuition of signal processing.
Similar to equations (25) and (A-30), define statistics HI

n(t) corresponding to
information flow dIn as

(C-12) HI
n(t) :=

∫ t

u=−∞

e−(αG+τ) (t−u) dIn(u), n = 0, 1, ...N,

which implies

(C-13) dHI
n(t) = −(αG + τ)HI

n(t) dt+ dIn(t), n = 0, 1, ...N.

A trader also infers a noisy average of other traders’ signals HI
m(t)+kH

J
m(t) from

equilibrium prices. To prevent intractability resulting from an exploding number of
state variables and to keep the number of state variables in both models the same,
it is necessary to make the restrictive assumption that the private signals HI

n(t)
and the private values HJ

n (t) mean-revert to zero at the same rate; this requires
the assumption δJ := αG + τ .
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Define signals Hn(t) and H−n(t), adjusted to reflect private values, by

(C-14) Hn(t) := HI
n(t) + k HJ

n (t), H−n(t) :=
1

N − 1

∑

m6=n

(

HI
m(t) + k HJ

m(t)
)

.

Equation (C-11) implies that the estimate Gn(t) can be conveniently written as a
linear combination of sufficient statistics HI

0 (t), H
I
n(t), and H−n(t):

(C-15) Gn(t) = σG Ω1/2

(

τ
1/2
0 HI

0 (t) + τ
1/2
I HI

n(t) + (N − 1)
τ
1/2
I

1 + k2
H−n(t)

)

.

This equation is similar to equation (27) in the model with disagreement.
As we show below, trader n’s optimal trading strategy depends on several vari-

ables. First, it depends on trader n’s estimates of the unobserved growth rate
G∗(t). Second, it depends on the dynamic statistical relationship between this
growth rate and the signals HI

0 (t) and H
I
n(t), which reflect his public and private

information about fundamental value. Third, it depends on HJ
n (t), which reflects

his own private value. Finally, it depends on H−n(t), which reflects the noisy
private information of other traders that trader n extracts from prices with con-
tamination from “noise” associated with their private values. We next examine
the dynamics of some of these variables.
Define the N + 1 processes dBn

0 , dB
n
In, and dB

n
m, m = 1, . . . N , m 6= n, by

(C-16) dBn
0 (t) = τ

1/2
0

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBD(t),

(C-17) dBn
In(t) = τ

1/2
I

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBIn(t),

and

(C-18) dBn
m(t) = τ

1/2
I

G∗(t)−Gn(t)

σG Ω1/2
dt+ dBIm(t) + k dBJm(t).

The superscript n indicates conditioning on the information set of trader n. Since
trader n’s forecast of the error G∗(t) − Gn(t) is zero given his information set,
these N + 1 processes are independently-distributed Brownian motions from the
perspective of trader n. In terms of these Brownian motions, trader n believes that
signals change as follows:

(C-19) dHI
0 (t) = −(αG + τ)HI

0 (t) dt+ τ
1/2
0

Gn(t)

σG Ω1/2
dt+ dBn

0 (t),

(C-20) dHI
n(t) = −(αG + τ)HI

n(t) dt+ τ
1/2
I

Gn(t)

σG Ω1/2
dt+ dBn

In(t),
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(C-21) dH−n(t) = −(αG+τ)H−n(t)dt+τ
1/2
I

Gn(t)

σG Ω1/2
dt+

1

N − 1

∑

m=1,..N ;m6=n

dBn
m(t).

Note that each signal drifts toward zero at rate αG+τ and drifts toward the optimal
forecast Gn(t) at a rate proportional to the square root of the signal’s precisions

τ
1/2
0 or τ

1/2
I , respectively.

C.3. Utility Maximization with Market Power

We use the no regret approach to calculate the value function Jn(. . .). We assume
that trader n observes his residual supply schedule P (.) := Pn(., t) at each point
in time and picks an optimal point on the residual supply schedule. We then show
that the solution to this less constrained problem implements the optimal solution
to the more constrained problem which defines Jn(. . .).
For the less constrained problem, we conjecture a steady-state value function

V (Mn, Sn, D,H
I
0 , H

I
n, H

J
n , H−n), where Mn denotes trader n’s cash holdings (mea-

sured in dollars) and Sn denotes trader n’s holdings of the traded asset (measured
in shares).
We expect the asset price to be a linear combination of two components: (1)

a dividend level component linear in dividends D(t) and (2) a dividend-growth
component linear in the variables HI

0 (t), H
I
n(t), H

J
n (t), and H−n(t). The symmetric

linear conjectured form of the residual supply function implies that observation
of the average of other traders’ signals H−n(t) is informationally equivalent to
observation of the intercept of the trader’s residual supply schedule. We therefore
include H−n(t) as a state variable in the value function and omit the price P (t).
In deriving the equilibrium, the problem is simplified if the three state variables

HI
0 (t), H

I
n(t), and H−n(t) are replaced with two “composite” signals, which we

denote ĤI
n(t) and Ĥ−n(t). Define the weighting constant Â by

(C-22) Â :=
τ
1/2
0

τ
1/2
I (1 + (N − 1)/(1 + k2))

.

Define the two composite signals ĤI
n(t) and Ĥ−n(t) by

(C-23) ĤI
n(t) := HI

n(t) + Â HI
0 (t),

(C-24) Ĥ−n(t) := H−n(t) + Â HI
0 (t).

These composite signals incorporate public information contained in the dividend
stream. Define

(C-25) Ĥn(t) := ĤI
n(t) + k HJ

n (t).
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Trader n’s estimate of dividend growth rate can be expressed as a function of the
two composite signals ĤI

n(t) and Ĥ−n(t),

(C-26) Gn(t) = σG Ω1/2

(

τ
1/2
I ĤI

n(t) + (N − 1)
1

1 + k2
τ
1/2
I Ĥ−n(t)

)

.

Note that this estimate does not depend on trader n’s private valueHJ
n (t), since the

term HJ
n (t) captures the private benefit of owning the risky asset, not information

about its common fundamental value.
We conjecture (and verify below) a steady-state value function of the form

V (Mn, Sn, D, Ĥn, Ĥ−n). Letting (cn(t), xn(t)) denote the optimal consumption and
investment policy, we have

(C-27) V (Mn, Sn, D, Ĥn, Ĥ−n) := max
{cn(t),xn(t)}

Ent

{
∫ ∞

s=t

− e−ρ(s−t)−A cn(s) ds

}

.

The six state variables satisfy six stochastic differential equations
(C-28)

dMn(t) =
(

r Mn(t) + Sn(t) (D(t) + πJ H
J
n (t))− cn(t)− P (xn(t)) xn(t)

)

dt,

(C-29) dSn(t) = xn(t) dt,

(C-30) dD(t) = −αD D(t) dt+Gn(t) dt+ σD dB
n
0 (t),

(C-31) dHJ
n (t) = −(αG + τ)HJ

n (t)dt+ dBJn(t),

dĤI
n(t) = − (αG + τ) ĤI

n(t) dt(C-32)

+ (τ
1/2
I + Âτ

1/2
0 ) τ

1/2
I

(

ĤI
n(t) +

N − 1

1 + k2
Ĥ−n(t)

)

dt

+ Â dBn
0 (t) + dBn

In(t),

dĤ−n(t) = − (αG + τ) Ĥ−n(t) dt(C-33)

+ (τ
1/2
I + Âτ

1/2
0 ) τ

1/2
I

(

ĤI
n(t) +

N − 1

1 + k2
Ĥ−n(t)

)

dt

+ Â dBn
0 (t) +

1

N − 1

∑

m=1,..N ;m6=n

dBn
m(t).

The dynamics of ĤI
n(t) and Ĥ−n(t) in equations (C-32) and (C-33) can be derived

from equations (C-19), (C-20), and (C-21). It can be shown that the value function



81

conveniently depends on state variables ĤI
n(t) and H

J
n (t) only through Ĥn(t), and

dĤn(t) = − (αG + τ) Ĥn(t) dt(C-34)

+ (τ
1/2
I + Âτ

1/2
0 ) τ

1/2
I

(

ĤI
n(t) +

N − 1

1 + k2
Ĥ−n(t)

)

dt

+ Â dBn
0 (t) + dBn

In(t) + k dBJn(t).

This system of equations is similar to the system of equations (A-32)–(A-35).
Equation (C-28), describing the dynamics of cash M(t), differs from equation

(A-33) by including an additional term related to private benefits πJ H
J
n (t).

Furthermore, in the second lines of equations (C-33) and (C-34), the factors

τ
1/2
I + Âτ

1/2
0 are the same in both equations. In the otherwise similar model based

on disagreement, these two factors are different; the factor is equal to τ
1/2
H + Âτ

1/2
0

in equation (A-34) and τ
1/2
L + Âτ

1/2
0 in equation (A-35). The equality of these two

factors in the model based on private values ultimately leads to an important differ-
ence between the disagreement model and the private-values model with common
prior. The model with private values does not generate “price dampening,” which
is associated with the logic of a Keynesian beauty contest in the model based on
disagreement.
More specifically, in the model with disagreement, each trader believes that his

own signal drifts toward the fundamental value at a rate reflecting his own high
precision τH , while the average of other traders’ signals drifts toward the funda-
mental value at a rate reflecting a lower precision τL (equations (A-34) and (A-35)).
In the model with private values, by contrast, each trader believes that both his
own signal and the noisy signal of other traders, inferred from prices, drift toward
the fundamental value at a rate reflecting the higher precision τI , not the lower
precision affected by noise added by private values (equations (C-33) and (C-34)).
Thus, this noise affects the precision of the signal inferred from prices as an es-
timate of fundamental value in the present, i.e., Gn(t) in equation (C-15), but it
does not affect the drift of this estimate. In the model with disagreement, equation
(A-36) shows that trader n believes that Hn −H−n decays at rate αG+ τ but also
drifts in a direction proportional to Gn(t). In the model with private values, each
trader believes that the quantity equivalent to Hn −H−n follows an AR-1 process
and the drift term proportional to Gn(t) becomes zero.
The value function V ( ) satisfies the transversality condition

(C-35) lim
T→+∞

Ent {e
−ρ(T−t) V (Mn(T ), Sn(T ), D(T ), Ĥn(T ), Ĥ−n(T ))} = 0.

C.4. Linear Conjectured Strategies

Based on his information set, each trader submits a flow-demand schedule for the
rate at which he will buy the asset at time t as a function of the market-clearing
price. Trader n conjectures that the other N − 1 traders, m = 1, . . .N , m 6= n,
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submit symmetric linear demand schedules of the form

(C-36) Xm(t) =
dSn(t)

dt
= γD D(t) + γH Ĥm(t)− γS Sm(t)− γP P (t),

where Ĥm(t) := ĤI
m + k HJ

m sums together both private information about the
fundamental value and the privately-observed private value. The demand schedules
are defined by the four constants γD, γH , γS, and γP .
Let xn(t) = Xn(t, P (t)) = dSn(t)/dt denote the “flow-quantity” traded by

trader n. From the market-clearing condition and the linear conjecture for de-
mand schedules of other traders, it follows that

(C-37) xn(t) +
∑

m=1,..N ;m6=n

(

γD D(t) + γH Ĥm(t)− γS Sm(t)− γP P (t)
)

= 0.

Using zero net supply
∑N

m=1 Sm(t) = 0, this can be solved for trader n’s conjectured
price impact function (written P (.) instead of P (., t))

(C-38) P (xn(t)) =
γD
γP

D(t) +
γH
γP

Ĥ−n(t) +
γS
γP

1

N − 1
Sn(t) +

1

(N − 1)γP
xn(t).

Plugging the price impact function (C-38) into the optimization problem (C-27),
trader n solves for his optimal consumption and demand schedule.

C.5. Conjectured Value Function

We conjecture and verify that the value function V (Mn, Sn, D, Ĥn, Ĥ−n) has the
specific quadratic exponential form

V (Mn, Sn, D, Ĥn, Ĥ−n) = − exp
(

ψ0 + ψMMn +
1
2
ψSSS

2
n + ψSDSnD(C-39)

+ψSn SnĤn + ψSx SnĤ−n +
1
2
ψnn (Ĥn − Ĥ−n)

2
)

.

The seven constants ψ0, ψM , ψSS, ψSD, ψSn, ψSx, and ψnn have values consistent
with a steady-state equilibrium.
The term ψM measures the utility value of cash. The terms ψSS, ψSD, ψSn, and

ψSx measure the utility value of risky asset holdings. The term ψnn captures the
value of future trading opportunities based on current public and private infor-
mation, as well as private values. The value of trading on innovations to future
information is built into the constant term ψ0.
The value function (C-39) for the model with private values has a simpler form

than the value function (A-37) for the model with disagreement. In the model
with private values, the value of future profit opportunities can be conveniently
written as 1

2
ψnn (Ĥn − Ĥ−n)

2. In the model of disagreement, the value of future
trading opportunities takes the more complicated form of a linear combination of
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separate terms Ĥ2
n, Ĥ

2
−n, and ĤnĤ−n, with three different coefficients 1

2
ψnn,

1
2
ψxx,

and ψnx. The intuition is that the price dampening effect due to the Keynesian
beauty contest makes calculations of future profit opportunities more complicated
in the model with disagreement

C.6. Characterization of Steady-State Symmetric
Equilibrium with Linear Trading Strategies and

Quadratic Value Functions

To solve for a steady-state equilibrium, it is necessary to determine simulta-
neously values for the four γ-parameters defining the optimal demand schedule
in equation (C-36), the seven ψ-parameters defining the value function in equa-
tion (C-39), and the parameter k quantifying the weight on private signals in
equation (C-9).
The solution to these equations is discussed in Appendix section C.9. We obtain

the following theorem:

THEOREM 7: Characterization of Equilibrium. There exists a steady-state,
Bayesian-perfect equilibrium with symmetric, linear flow-strategies with positive
trading volume if and only if the five polynomial equations (C-64)–(C-68) have a
solution satisfying γP > 0 and γS > 0. Such an equilibrium has the following
properties:

1) There is an endogenously determined constant CL := − ψSn

2ψSS
> 0, such that

trader n’s optimal flow-strategy x∗n(t) makes time-differentiable inventories
Sn(t) change at rate

(C-40) x∗n(t) =
dSn(t)

dt
= γS

(

CL (Ĥn(t)− Ĥ−n(t))− Sn(t)
)

.

2) The equilibrium price is

(C-41) P ∗(t) =
D(t)

r + αD
+
Ḡ(t) + σGΩ

1/2kτ
1/2
I

1
N

∑N
n=1H

J
n (t)

(r + αD)(r + αG)
,

where Ḡ(t) denotes the average of traders’ expected growth rates,
(C-42)

Ḡ(t)+σGΩ
1/2kτ

1/2
I

1
N

N
∑

n=1

HJ
n (t) := σGΩ

1/2 1
N

N
∑

n=1

(

τ
1/2
I Ĥn(t) + (N − 1)

1

1 + k2
τ
1/2
I Ĥ−n(t)

)

.

Note there is always a trivial no-trade equilibrium. If each trader submits a
no-trade demand schedule Xn(t, .) ≡ 0, then such a no-trade demand schedule is
optimal for all traders. This is not a symmetric linear equilibrium in which an
auctioneer can establish a meaningful market price.
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Equations (C-40) and (C-41) imply that the equilibrium with trade has a sur-
prisingly simple structure in which quantities adjust to new information slowly,
while prices adjust instantaneously. Equation (C-40) is similar to equation (33) in
the model with disagreement. It implies that each trader has a target inventory
proportional to the difference between his own private signal Ĥn(t) and the average
of other traders’ private signals Ĥ−n(t) inferred from prices; note that these private
signals are sums of fundamental-information components and private-values com-
ponents. Each trader continuously moves his inventory toward his target inventory
so that the difference decays at rate γS.
The equation (C-41) is similar to the equation (34) in the model with disagree-

ment. It implies that the price is a linear function of the weighted average of all
traders’ expected growth rates, adjusted by adding terms representing their private
values. The equilibrium price can be also written as the precision-weighted average
of the N composite signals Ĥn(t),
(C-43)

P ∗(t) =
D(t)

r + αD
+

σG Ω1/2

(r + αD)(r + αG)

τ
1/2
I (1 + (N − 1)/(1 + k2))

N

∑

n=1,..N

Ĥn(t).

The price responds instantaneously to innovations in each trader’s private informa-
tion and private value reflected in variables Ĥn(t) := ĤI

n(t) + kHJ
n (t), so that the

average of all signals is immediately revealed. This occurs despite the fact that,
to reduce trading costs resulting from adverse selection, each trader intentionally
slows down his trading to reduce other traders’ estimates of the magnitude of his
private signal. Note also that equation (C-41) does not have a price dampening
multiplier CG < 1, unlike the model with disagreement.
Another difference from the model with disagreement is that the total precision

τ in the information flow depends on the factor k, which is endogenously derived
in equation (C-70).
Mathematical intuition and numerical calculations (as discussed below) suggest

that the existence condition for the continuous-time model is the following:

CONJECTURE 2: Existence Condition. An equilibrium with trade exists if
and only if

(C-44) k2 >
N

N − 2
,

Equation (C-44) implies that the existence condition is 1 + k2 > 2 + 2
N−2

, which

is equivalent to the existence condition τ
1/2
H /τ

1/2
L > 2 + 2

N−2
in (35) in our smooth

trading model with disagreement. It is worth emphasizing that the weight k on
private benefits in signals inferred from prices is endogenously determined in the

model with private values, whereas τ
1/2
H /τ

1/2
L is the ratio of exogenously specified

parameters in the model with disagreement. It can be shown that k is approxi-
mately proportional to the coefficient on private benefits πJ , when πJ is large, as
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illustrated numerically in figure 11. When the private benefit of holding the risky
asset is larger, all traders trade on it more intensely, this reduces the precision of
other traders’ information inferred from prices, and the total information revealed
in prices (C-9) becomes smaller (because k increases).

40 60 80 100 120
0
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10

15

20

25

ΠJ

k

Figure 11. k against πJ .

The existence condition can be expressed in terms of exogenous parameters.
Replacing k with the exogenous parameter πJ , it follows that an equilibrium with
trade exists if and only if

(C-45) πJ >
N1/2 σG Ω1/2 τ

1/2
I

(N − 2)1/2 (r + αD)

(

1 +
τ

r + αG

)

,

where

(C-46) Ω =
σ2
D

2σ2
G



−

(

2αG +
N

2
τI

)

+

(

(

2αG +
N

2
τI

)2

+
4σ2

G

σ2
D

)1/2


 .

Although we have not been able to prove analytically the conditions under which
equilibrium exists, extensive numerical analysis supports the following intuitive
argument. We expect equilibrium with trade to exist only if traders put enough
weight on their private values. If πJ is very large (and thus k is very large), an
equilibrium should exist. As πJ falls toward some critical value, the parameter γP—
which measures the liquidity of the market—should fall to a value close to zero, the
equilibrium should involve very little trade, and the value function should resemble
a no-trade equilibrium. The value of k such that γP = 0 defines a “critical” value
k∗ such that equilibrium exists if and only if k > k∗.
This intuitive argument leads to a mathematically precise existence condition

derived from the five equations in five unknowns (C-64)–(C-68) in Appendix sec-
tion C.9. This equilibrium is derived by plugging γP = 0, representing the case
with no market liquidity, into these equations. With γP = 0, it is clear that ψnn = 0
solves the last equation (C-68), consistent with the intuition that private informa-
tion has no value if there is no market liquidity. It is also straightforward to show
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that a solution to the first four equations (C-64)–(C-67) requires the critical value
k∗ to satisfy 1+(k∗)2 = 2+2/(N−2). We therefore conjecture that an equilibrium
with trade, consistent with theorem 7, exists if and only if condition (C-44) holds.
Our extensive examination of numerical solutions to the five equations (C-64)–

(C-68) supports this conjecture. We have found that precisely one solution with
downward-sloping demand schedules (γP > 0) is discovered when the existence
condition (C-44) is satisfied. Although k requires a numerical solution of (C-70),
as shown in Appendix section C.9, we can solve for ψsn, ψSS, ψnn, and γP as
closed-form functions of k. For the limiting case πJ → ∞, we can also obtain a
closed-form solution for all the endogenous parameters.

C.7. Conclusion

We describe a symmetric continuous-time model of trading among oligopolistic
informed traders with asymmetric information and private values. This framework
is tractable, and we obtain an “almost-closed-form” solution. We show that, with
enough weight on the private value, an equilibrium exists in which prices imme-
diately reveal the average of all traders’ private signals (defined as the sum of
fundamental signals and private-values multiplied by an endogenous factor k), but
traders continue to trade gradually toward target inventories. In contrast to the
model with overconfidence, prices do not reflect a “Keynesian beauty contest.”

C.8. Proof of Lemma 2

Applying the Stratonovich-Kalman-Bucy filter to the filtering problem summa-
rized by equation (C-2) for signals and by equations (C-3) and (C-4) for observa-
tions, we find that the filtering estimate is defined by the Itô differential equation

dG(t) = −αG G(t) dt+ σGΩ
1/2
{

τ
1/2
0

(

dI0(t)−G(t)
τ
1/2
0

σG Ω1/2
dt
)

(C-47)

+τ
1/2
I

(

dIn(t)−G(t)
τ
1/2
I

σG Ω1/2
dt
)

+
τ
1/2
I

1 + k2

∑

m6=n

(

dIm(t)−G(t)
τ
1/2
I

σG Ω1/2
dt+ k dBJm

)}

.

The mean-square filtering error of the estimate G(t), denoted σ2
G Ω(t), is defined

by the Riccati differential equation

(C-48) σ2
G

dΩ(t)

dt
= −2αG σ

2
G Ω(t) + σ2

G − σ2
G Ω(t)

(

τ0 + τI +
τI

1 + k2

)

.

Rearranging terms in the first equation yields equation (C-11). Using the steady-
state assumption that dΩ/dt = 0 and solving the second equation for the steady
state value Ω = Ω(t) yields equation (C-10).
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C.9. Proof of Theorem 7

Suppressing a subscript n for notational simplicity, the HJB equation correspond-
ing to the conjectured value function V (Mn, Sn, D, Ĥn, Ĥ−n) in equation (C-27) is

(C-49)

0 = max
cn,xn

{

U(cn)− ρV +
∂V

∂Mn
(rMn + Sn(D + πJH

J
n )− cn − P (xn) xn) +

∂V

∂Sn
xn

}

+
∂V

∂D

(

−αDD + σGΩ
1/2τ

1/2
I

(

ĤI
n + (N − 1)/(1 + k2) Ĥ−n

))

+
∂V

∂Ĥn

(

−(αG + τ)Ĥn(t) + (τ
1/2
I + Âτ

1/2
0 ) τ

1/2
I (ĤI

n + (N − 1)/(1 + k2) Ĥ−n)
)

+
∂V

∂Ĥ−n

(

−(αG + τ)Ĥ−n(t) + (τ
1/2
I + Âτ

1/2
0 ) τ

1/2
I (ĤI

n + (N − 1)/(1 + k2) Ĥ−n)
)

+1
2

∂2V

∂D2
σ2
D + 1

2

∂2V

∂Ĥ2
n

(

1 + Â2 + k2
)

+ 1
2

∂2V

∂Ĥ2
−n

(

1

N − 1
(1 + k2) + Â2

)

+

(

∂2V

∂D∂Ĥn

+
∂2V

∂D∂Ĥ−n

)

Â σD +
∂2V

∂Ĥn∂Ĥ−n

Â2.

For the specific quadratic specification of the value function in equation (C-39),
the HJB equation becomes

(C-50)

0 = min
cn,xn

{

−
e−Acn

V
− ρ+ ψM (rMn + Sn (D + πJH

J
n )− cn − P (xn) xn)

+ (ψSSSn + ψSDD + ψSnĤn + ψSxĤ−n) xn

}

+ψSDSn

(

−αDD + σGΩ
1/2τ

1/2
I

(

ĤI
n + (N − 1)/(1 + k2) Ĥ−n

))

+
(

ψSnSn + ψnn(Ĥn − Ĥ−n)
)

(

−(αG + τ)Ĥn(t) + (τ
1/2
I + Âτ

1/2
0 ) τ

1/2
I (ĤI

n + (N − 1)/(1 + k2) Ĥ−n)
)

+
(

ψSxSn + ψnn(Ĥ−n − Ĥn)
)

(

−(αG + τ)Ĥ−n(t) + (τ
1/2
I + Âτ

1/2
0 ) τ

1/2
I (ĤI

n + (N − 1)/(1 + k2) Ĥ−n)
)

+1
2
ψ2
SDS

2
nσ

2
D + 1

2

(

(ψSnSn + ψnn(Ĥn − Ĥ−n))
2 + ψnn

) (

1 + Â2 + k2
)

+1
2

(

(ψSxSn + ψnn(Ĥ−n − Ĥn))
2 + ψnn

)

(

1

N − 1
(1 + k2) + Â2

)

+(ψSn + ψSx) Sn ψSD Sn Â σD

+
((

ψSnSn + ψnn(Ĥn − Ĥ−n)
) (

ψSxSn + ψnn(Ĥ−n − Ĥn)
)

− ψnn

)

Â2.
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The solution for optimal consumption is

(C-51) c∗n(t) = −
1

A
log
(ψM V (t)

A

)

.

In the HJB equation (C-50), the price P (xn) is linear in xn based on equa-
tion (C-38). Plugging P (xn) from equation (C-38) into the HJB equation (C-50)
yields a quadratic function of xn, which captures the effect of trader n’s trading
rate xn on prices. Because the exponent of the conjectured value function is a
quadratic function of the state variables, the optimal trading strategy is a linear
function of the state variables given by

x∗n(t) =
(N−1)γP

2ψM

[(

ψSD − ψMγD
γP

)

D(t) +
(

ψSS −
ψMγS

(N−1)γP

)

Sn(t)(C-52)

+ ψSn Ĥn(t) +
(

ψSx −
ψMγH
γP

)

Ĥ−n(t)
]

.

The derivation of this optimal trading strategy assumes that trader n observes
the values of D(t), Sn(t), Ĥn(t), and Ĥ−n(t). Although trader n does not actually
observe Ĥ−n(t), he can implement the optimal quantity x∗n(t) by submitting an
appropriate linear demand schedule. We can think of this demand schedule as
a linear function of P (t) whose intercept is a linear function of D(t), Sn(t), and
Ĥn(t). Trader n can infer from the market-clearing condition (C-37) that Ĥ−n is
given by

(C-53) Ĥ−n(t) =
γP
γH

(

P (t)−D(t)
γD
γP

)

−
1

(N − 1)γH
x∗n(t)−

γS
(N − 1)γH

Sn(t).

Plugging equation (C-53) into equation (C-52) and solving for x∗n(t) implements
the optimal trading strategy x∗n(t) as a linear demand schedule which depends on
the price P (t) and state variables Ĥn, Sn(t), and D(t), which the trader directly
observes. This schedule is given by

x∗n(t) =
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1

(C-54)

[(

ψSD − ψSx
γD
γH

)

D(t) +

(

ψSS − ψSx
γS

(N − 1)γH

)

Sn(t)

+ ψSn Ĥn(t) +

(

ψSx
γP
γH

− ψM

)

P (t)

]

.

Symmetry requires that this demand schedule be the same as the demand sched-
ule conjectured for the N − 1 other traders. Equating the coefficients of D(t),
Ĥn(t), Sn(t), and P (t) in equation (C-54) to the conjectured coefficients γD, γH ,
−γS, and −γP results in the following four restrictions that the values of the γ-
parameters and ψ-parameters must satisfy in a symmetric equilibrium with linear
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trading strategies:

(C-55)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1 (

ψSD − ψSx
γD
γH

)

= γD,

(C-56)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1

ψSn = γH ,

(C-57)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1 (

ψSS − ψSx
γS

(N − 1)γH

)

= −γS,

(C-58)
(N − 1)γP

ψM

(

1 +
ψSx
ψM

γP
γH

)−1 (

ψSx
γP
γH

− ψM

)

= −γP .

Solving this system, we obtain four equations in terms of the four unknowns ψSx,
γH , γS, and γD. The solution is
(C-59)

ψSx =
N − 2

2
ψSn, γH =

NγP
2ψM

ψSn, γS = −
(N − 1)γP

ψM
ψSS, γD =

γP
ψM

ψSD.

Plugging the last equation into equation (C-52) implies that traders will not trade
on public information. It is intuitively obvious that traders cannot trade on the
basis of the public information D(t) because all traders would want to trade in
the same direction. Substituting equation (C-59) into equation (C-52) yields the
solution for optimal strategy.

(C-60) x∗n(t) = γS

(

CL (Ĥn(t)− Ĥ−n(t))− Sn(t)
)

.

The four equations for the γ-parameters do not determine γP as a function of
the nine ψ-parameters. Instead, the solution to the four γ-equations implies a
restriction on the ψ-parameters which must hold in a steady state-equilibrium.
Plug (C-51) and (C-52) back into the Bellman equation and set the constant

term and the coefficients of Mn, Sn D, S2
n, Sn Ĥn, Sn Ĥ−n, and (Ĥn − Ĥ−n)

2 to
be zero. In addition, set the coefficient of Sn H

J
n equal to the coefficient of Sn Ĥ

I
n

multiplying k so that the value function only depends on ĤI
n and HJ

n through state
variable Ĥn. There are in total eight equations in eight unknowns γP , ψ0, ψM , ψSD,
ψSS, ψSn, ψnn, and k.
Setting the constant term, coefficient of M , and coefficient of SD to be zero

yields

(C-61) ψM = −rA,
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(C-62) ψSD = −
rA

r + αD
,

(C-63) ψ0 = 1− log(r) +
1

r

(

−ρ+ 1
2

N

N − 1
(1 + k2) ψnn

)

.

In addition, combining Sn Ĥ
I
n with Sn H

J
n and setting the coefficients of S2

n,
Sn Ĥn, Sn Ĥ−n, and (Ĥn − Ĥ−n)

2 to zero yields five polynomial equations in the
five unknowns γP , ψSS, ψSn, ψnn, and k. These five equations in five unknowns
can be written

S2
n :(C-64)

0 = −1
2
rψSS −

γP (N − 1)

rA
ψ2
SS +

r2A2σ2
D

2(r + αD)2
+ 1

2
(1 + Â2 + k2)ψ2

Sn

+1
2

(

1 + k2

N − 1
+ Â2

)

(N − 2)2

4
ψ2
Sn −

rA

r + αD
ÂσD

N

2
ψSn + Â2N − 2

2
ψ2
Sn,

SnH
I
n, SnH

J
n :(C-65)

0 = −(r + αG + τ)ψSn −
γP (N − 1)

rA
ψSSψSn −

rAπJ
k

+
N(1 + k2)

2(N − 1)
ψnnψSn,

SnĤn :(C-66)

0 = −(r + αG + τ)ψSn −
γP (N − 1)

rA
ψSSψSn −

rA

r + αD
σGΩ

1/2τ
1/2
I

+
N

2
(τ

1/2
I + Âτ

1/2
0 )τ

1/2
I ψSn + (1 + k2)

N

2(N − 1)
ψnnψSn,

SnĤ−n :(C-67)

0 = −(r + αG + τ)
N − 2

2
ψSn +

γP (N − 1)

rA
ψSSψSn −

N(1 + k2)

2(N − 1)
ψSnψnn

−
rA

r + αD
σGΩ

1/2(N − 1)
τ
1/2
I

(1 + k2)
+
N

2
(τ

1/2
I + Âτ

1/2
0 )τ

1/2
I

N − 1

1 + k2
ψSn,

(Ĥn − Ĥ−n)
2 :(C-68)

0 = −(
r

2
+ αG + τ)ψnn −

γP (N − 1)

4rA
ψ2
Sn +

1 + k2

2

N

N − 1
ψ2
nn.
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We describe next how to solve the system (C-64) and (C-68). Equations (C-66)
and (C-67) imply

(C-69) ψSn = −
2r A σG Ω1/2 τ

1/2
I (1 + (N − 1)/(1 + k2))

N (r + αD) (r + αG)
.

Equations (C-65) and (C-66) imply that the constant k is given by

(C-70) k =
(r + αD) πJ

σG Ω1/2 τ
1/2
I

(

1 + τ
r+αG

) .

From (C-65), solve for ψSS as a function of γP and ψnn to obtain

(C-71) ψSS =
rA

γP (N − 1)

(

N(1 + k2) ψnn
2(N − 1)

− (r + αG + τ)

(

1−
N(1 + k2)

2(N + k2)

))

.

From (C-68), solve for γP as a function of ψnn to obtain
(C-72)

γP =
N2 (r + αD)

2 (r + αG)
2

(N − 1) rA σ2
G Ω τI (1 +

N−1
1+k2

)2

(

N

N − 1

1 + k2

2
ψ2
nn − (1

2
r + αG + τ) ψnn

)

.

Then substitute both γP and ψnn into (C-64) to obtain a quadratic equation for
ψnn. This equation has two real roots. Take the negative root, which implies
private signals have positive value, to obtain

(C-73) ψnn =
−b− (b2 − 4ac)1/2

2a
,

where

a :=

(

1
2
σ2
D +

Â σD σG Ω1/2 τ
1/2
I (1 + N−1

1+k2
)

r + αG

)

N3(r + αG)
2(1 + k2)

2(N − 1) σ2
G Ω τI (1 +

N−1
1+k2

)2

+
N2 (1 + k2) (1 + k2 +N Â2)

4 (N − 1)
,

b :=

(

1
2
σ2
D +

Â σD σG Ω1/2 τ
1/2
I (1 + N−1

1+k2
)

r + αG

)

N2 (r + αG)
2 (1

2
r + αG + τ)

σ2
G Ω τI (1 +

N−1
1+k2

)2

−
N2 (1 + k2 + (N − 1) Â2)

2 (N − 1)
(1
2
r + αG + τ)−

rN (1 + k2)

4 (N − 1)

+
N (1 + k2) (r + αG + τ)

N − 1

N + (2−N) k2

2 (N + k2)
,

c := 1
2
r (r + αG + τ)

N + (2−N) k2

2 (N + k2)
− (r + αG + τ)2

(N + (2−N) k2)2

4 (N + k2)2
.
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Substituting ψnn into (C-71) and (C-72) yields solutions for γP and ψSS.
To summarize, even though k is determined numerically from equation (C-70),

since the total precision τ itself in that equation depends on k, other unknowns
can be written as explicit functions of k. When πJ and thus k are very large, k is
approximately proportional to πJ , with

(C-74) k ≈
r + αD

σGΩ1/2τ
1/2
I (1 + τ0+τI

r+αG
)
πJ ;

this gives a closed-form solution when πJ → ∞.
The transversality condition is equivalent to r > 0: The HJB equation and

equations (C-64)–(C-68) imply

Ent {dV (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t))} =(C-75)

−(r − ρ) V (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t)) dt.

This yields

Ent {e
−ρ(T−t) V (Mn(T ), Sn(T ), D(T ), Ĥn(T ), Ĥ−n(T ))} =(C-76)

e−r(T−t) V (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t)),

which implies that the transversality condition (C-35) is indeed satisfied if r > 0.


