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We depart from Savage’s (1954) common state space assumption and intro-
duce a model that allows for a subjective understanding of uncertainty. Within
the revealed preference paradigm, we uniquely identify the agent’s subjective
state space via her preferences conditional on incoming information. According
to our representation, the agent’s subjective contingencies are coarser than the
analyst’s states; she uses an additively separable utility with respect to her set of
contingencies; and she adopts an updating rule that follows the Bayesian spirit
but is limited by her perception of uncertainty. We illustrate our theory with an
application to the Confirmatory Bias.

1 Introduction

1.1 Motivation and objectives

The assumptions of the standard expected utility theory of choice under uncertainty have

been challenged from many angles to produce various models with much higher descriptive

power. These models have been used successfully in applications that range from mechanism

design in microeconomics to the equity premium puzzle in macroeconomics. In this paper,

we focus on the assumption of the standard theory that is not stated as an axiom in

Savage (1954) but, rather, is built into his framework — that the same state space is used

both by the analyst to formulate the model and by the decision maker to evaluate the
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uncertain prospects at hand.1

Consider the real-world decision problem of an individual choosing assets for investment.

For such a problem, the formulation of a detailed state space on which to base the decision

presents a number of tradeoffs. One state space may consist of vectors of potential returns

in, say, one year of all assets traded in the market. For the decision problem at hand,

such a state space is exhaustive. However, it is cognitively quite demanding to operate

with a state space that contains innumerable combinations of values of several thousand

variables. At the other extreme, the decision maker may consider only a few variables, such

as the overall state of the economy, the consumer confidence index, or the prices of natural

resources. All combinations of possible realizations of these variables form a different set

of contingencies that is obviously coarse. However, besides their operational efficiency, the

elements of this space may be interpreted in natural language and, ultimately, may be much

easier to assign probabilities to. Clearly, there are many more ways in which the decision

maker can organize her process of reasoning about the surrounding uncertainty.

This paper develops a revealed preference theory that departs from the standard theory

of choice under uncertainty by giving the decision maker the freedom to come up with her

own subjective contingencies for thinking about uncertainty. Our main goal is to link the

structure of these contingencies to observable choice behavior.

Note that, unlike the vast literature initiated by Kreps (1979), our theory of subjective

contingencies does not attempt to capture the decision maker’s “states of mind.” Put

differently, the uncertainty in the model is not about her future taste or risk aversion or

any other aspect of her personality. Our objective is quite different, and the only source of

uncertainty in the model is the outside world. Formally, our agent can be described by a

single utility function that represents her tastes (as well as a single belief, if the modeler

so wishes), while her “subjective states” represent her perception of the uncertainty about

nature.

The contribution of the paper can be described as follows. First, we propose a way

to address the situation in which it is desirable to disentangle the decision maker’s and

the analyst’s views. In particular, the decision maker is allowed to select her own “state

1The shortcomings of the Savagean state space assumption are discussed by, among others, Dekel,
Lipman, and Rustichini (1998, 2001), Gilboa (2009, p. 136–137), Ghirardato (2001), and Epstein, Marinacci,
and Seo (2007).
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space” to reason about uncertainty. As our theory demonstrates, such situations can be

modeled within the classic Savagean framework with the standard extension to allow for

partial resolution of uncertainty and updating. The decision maker’s subjective perception

of uncertainty — the set of “states” or contingencies with which she operates — can be

identified from choice data, and, hence, does not need to be fixed exogenously or known

by the analyst in advance. The identification comes from a novel source — the analysis

of the decision maker’s conditional preferences that incorporate the information that some

event has occurred. Moreover, our approach is applicable regardless of whether preferences

conform to the expected utility model or display some ambiguity-sensitive pattern. Second,

we propose a tractable representation of the decision maker’s preferences that is consistent

with the existing models in the literature, as well as a novel updating rule to account for

incoming information. The proposed updating rule is based on the concept of consistency

between the arrived information and a subjective contingency of the decision maker. It is

behaviorally different from the standard Bayesian updating but adheres to its spirit within

the limits of the decision maker’s perception of events. Third, on the more technical side, we

formulate the well-known property of dynamic consistency from a subjective perspective so

that the model allows the decision maker to view uncertainty differently from the analyst.

In addition, we introduce a few novel axioms that put discipline into the model: they reflect

the idea that the decision maker has a certain level of understanding of the relationships

among events and does not suffer from unrelated cognitive limitations or misconceptions,

such as the conjunction fallacy.

If the decision maker’s subjective “state space” is effectively equivalent to the analyst’s

state space, then the decision maker understands all events fully. If she does not understand

some events fully, the decision maker’s dynamic choice exhibits patterns that the analyst

may regard as errors — classified as inclusion and exclusion errors. As an illustration

of the behavioral implications, we present a simple example that shows that subjective

understanding of uncertainty can lead to the Confirmatory Bias, a well-known phenomenon

that the literature describes as mainly a manifestation of bounded rationality.

One might find it conceivable that the agent’s coarse “state space” (and, hence, the type

of behavior discussed) could be related to unawareness. While this is definitely a possibility,

we note that the agent’s selection of a particular set of subjective contingencies — her
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subjective “state space” — also may be dictated by cognitive constraints; be a result of

some optimization that takes into account costs of reasoning through large state spaces;

or even be a matter of taste, by which the decision maker deliberately decides to ignore

some dimensions of the uncertainty that she is facing. Moreover, we are not interested in

the reasons that have prompted the decision maker to use a particular set of subjective

contingencies. From a revealed preference perspective, we limit our scope to developing a

way to learn from the choice data what these subjective contingencies are. To this end,

we provide a representation result and an updating rule; and we discuss some implications

of our assumptions, such as inclusion and exclusion errors, that are independent of the

underlying reasons for using a subjective state space — whether unawareness or some

other factor.2

To illustrate our objectives, we consider a stylized problem of a decision maker who

evaluates the possibility of investing in a firm’s stock at the beginning of a year. By the

end of the year, the firm will pay out the accumulated profit as a dividend and then close.

For simplicity, suppose that there is no time discounting, and the dividend can take the

value of only $4, $2, or $1 per share. Thus, the investor faces a decision problem under

uncertainty, whereas the analyst observes the investor’s willingness to buy shares, as well

as their derivatives, at various prices. In addition, the data also contain the investor’s will-

ingness to buy the instruments, conditional on mid-year financial reports stating whether

the interim profit is low or high. For the sake of discussion, suppose that the investor ex

ante believes that the dividend of $4 is possible — e.g., she is willing to pay a positive

price for a European call option with the strike price of $3. Also, suppose that, conditional

on learning that the interim profit is low, she is willing to pay, at most, $1 for the firm’s

share — that is, she thinks that the dividend can only be $1. Now, let us bring the analyst

into the picture. Suppose that he knows all the details about the firm’s operation and de-

scribes the uncertainty about the payouts with the state space Ω = {ωg, ωm, ωb}, where ωg

2We also wish to note that building a formal bridge between our model and a theory of unawareness
not only requires choosing a specific way of modeling unawareness, but also taking a stand about what
the decision maker is unaware of. As will be clear from our setup, it cannot be that the decision maker is
unaware of some individual states or events, as our theory requires the decision maker to form preferences
conditional on all events and imposes a version of dynamic consistency. Hence, a successful link between our
model and unawareness requires postulating that the source of the decision maker’s potential unawareness
are some other types of objects, or, more likely, a relationship between objects.
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represents the scenario of a strong demand for the firm’s product throughout the year that

the firm correctly anticipates and responds to by expanding; ωm represents the scenario of

a strong demand to which the firm does not respond; and ωb represents the scenario of a

weak demand. Holding one share of the firm entitles the holder to the dividend payments of

$4 in state ωg, $2 in state ωm, and $1 in state ωb. To the analyst, the firm’s business model

also implies that a low-profit mid-year report corresponds to the subset {ωg, ωb} of the

state space — the report means either that demand is weak or that the firm is sacrificing

its profits temporarily in order to expand and reap higher profits by the end of the year.

Hence, the analyst concludes that the investor’s choices cannot be accommodated within

the standard Savagean paradigm, as they are inconsistent with assigning any probability,

zero or nonzero, to the state ωg. Indeed, if the probability of ωg (and, hence, receiving the

dividend of $4) were zero, then the investor would not be willing to pay for an option with

the strike price of $3. If the probability of ωg were nonzero, then she would be willing to

pay more than $1 for the firm’s share conditional on the event {ωg, ωb}.3 Moreover, the

analyst can infer that the investor probably perceives the uncertainty differently, in a way

that is incompatible with his state space Ω. Given the analyst’s knowledge, the event “the

interim profit is low” is formally mapped to the subset {ωg, ωb} of his state space and is

interpreted differently by the decision maker: it seems that the decision maker does not

realize that the interim profit can be low because the firm is expanding and that expansion

can actually be a good signal for an investor. We will revisit this example after stating our

main theorem. There, we will also illustrate the idea that our model has a certain discipline

and cannot describe arbitrary departures from the standard expected utility paradigm. In

particular, given the investor’s choices described above, our model implies that she must

believe that the dividend of $4 is possible after some other event — for instance, the event

{ωm} of the high-profit mid-year report. At the level of interpretation, it might be that, in

the simplified world of the decision maker, the higher the mid-year profit, the higher the

expected end-of-year dividend.

As this example suggests, violations of Bayesian updating will arise in our model as the

3This contradiction is naturally affected by the analyst’s selection of his state space Ω. The state space
described above is succinct and exhaustive given what the analyst knows. However, his selection of the
state space may be driven not solely by that — any enlargement of the state space implies an expansion
of the space of mappings from states to outcomes and, therefore, is also constrained by what is observable
or contractible in a particular environment.
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observable manifestation that the decision maker understands the surrounding uncertainty

and processes incoming information through a simpler set of subjective contingencies com-

pared to the analyst’s state space. The literature has recognized the potential link between

deviations from Bayes Rule and the complexity (or, more generally, the limited understand-

ing) of the world. In that vein, Manski (2004), for instance, emphasizes the importance of

eliciting the agent’s view of the world in order to better understand the effective updating

mechanism that she adopts.4

1.2 Preview of the results

Our model is constructed for the benefit of the analyst whose objective is to test whether

the decision maker’s preferences satisfy certain consistency properties and represent her

choices with a particular utility function. To this end, we take the perspective of an external

observer and focus on the analyst’s model of the agent’s behavior. We posit that the analyst

operates in the Savage framework: he brings forth a state space Ω (which, of course, need

not be known to the decision maker) and expresses any action that the decision maker may

choose by a vector that assigns an outcome to each state in Ω. Following the tradition, an

act refers to the formal representation of an action as a state-contingent profile of outcomes.

We assume that the analyst’s state space is comprehensive, in the sense that the decision

maker cannot discern eventualities that are indistinguishable from the analyst’s view.5

The decision maker’s choices are modeled through a collection of preferences over acts, ex

ante and conditional on the information that some event has occurred. A key aspect of our

model is that we study the decision maker’s behavior in the ordinal course of updating her

preferences in response to the partial resolution of uncertainty; that is, pieces of information

do not come as revelations that can change the agent’s understanding of uncertainty. For

instance, in our financial example, learning that the interim profit is low does not induce

4“[...] The information that persons receive rarely maps cleanly into a textbook exercise in probability
updating. [...] Expectations formation in real life requires persons to assimilate government announcements,
media reports, personal observations, and other forms of information that may be generated in obscure
ways. [...] Understanding expectations formation will also require intensive probing of persons to learn
how they perceive their environments and how they process such new information as they may receive”
(Manski, 2004, pp. 1368-69).

5This assumption seems very natural in applications and is, implicitly, dominant in the vast axiomatic
literature on decision making under uncertainty (see, e.g., Gilboa and Marinacci (2013)).
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the investor to learn about the strategy of sacrificing profits for the sake of growth if such

a possibility did not occur to her before, even though she can conceive of the possibility of

a $4 dividend per se.

Our main results show that a set of mild axioms is equivalent to the decision maker acting

as if (i) she has in mind a collection of subjective contingencies represented by subsets of Ω

that capture her coarse understanding of uncertainty; and (ii) she uses a particular updating

procedure to account for incoming information.

According to our first representation result, the decision maker ranks acts f and g at the

ex ante stage as

f ≿ g ⇔ ∑
i∈S

Vi(f) ≥ ∑
i∈S

Vi(g),

and, conditional on the information that an event E ⊂ Ω has occurred, as

f ≿E g ⇔ ∑
i ∈ S consistent with E

Vi(f) ≥ ∑
i ∈ S consistent with E

Vi(g).

The formal content of the expression “i ∈ S consistent with E” in this pseudo-representation

is stated in Theorem 1. The index set S enumerates the decision maker’s subjective contin-

gencies, which form a partition of Ω (or a subset of Ω). The functionals Vi for i ∈ S capture

the assignment of a utility level to an act for each contingency. Then, the decision maker

calculates the overall value of an act using an additively separable criterion.

The link between ex ante and conditional preferences plays a key role in the model:

to compare acts conditionally, the decision maker uses the same collection of functionals

Vi but, similar to the standard Bayesian agent, considers only those contingencies that are

consistent with the received information and discards the rest. Consistency of a contingency

with an event is assessed subjectively and is the channel through which the agent reveals her

coarse understanding of uncertainty. The reason is that our agent processes information by

using her own subjective contingencies, which are less expressive than the analyst’s state

space. Consequently, her inferences from a given piece of information might be different

from those she would make if she had the analyst’s state space in mind. To provide some

intuition, if the agent understands the uncertainty fully (we define this term formally later),

and if, ex ante, she treats all states in Ω as possible, then S can be identified with Ω; in this

case, a contingency i ∈ S is consistent with an event E if and only if i ∈ E. On the contrary,
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if the agent has a coarse understanding of uncertainty, then some (or all) contingencies in S

can be identified with (non-singleton) subsets of Ω. In turn, such a limited understanding

of uncertainty affects the way preferences are updated by prompting the agent to make

inferences that the analyst may view as errors. In particular, the agent may treat a state as

possible, conditional on some event E, even if such a state does not belong to E (inclusion

error); and, conversely, she may treat a state as ex ante non-null but impossible, conditional

on some event E, even if it does belong to E (exclusion error).

A noteworthy feature of our representation results is that, unlike Savagean states, each

subjective contingency does not describe one complete resolution of uncertainty. In turn, the

collection {Vi}i∈S of functionals plays precisely the role of specifying the agent’s evaluation

of an act on each contingency i. Our first representation result does not impose any strong

structure on these functionals and focuses, instead, on the key implications of allowing for

a subjective view of the world. Our aim is to provide a general utility representation that

serves as a unifying model for various specifications of (i) the mapping that determines the

utility level associated with each act on each contingency; and (ii) the procedure establishing

the consistency of each contingency with a realized event. Relatedly, we remain agnostic on

whether or not the agent is aware of her coarse understanding of uncertainty. Nevertheless,

the flexibility of our representation allows more-specific interpretations and leaves room to

study whether the agent is pessimistic or optimistic toward resolution of uncertainty that

she does not fully understand.6

Our second representation result is a special case of the general model and takes a

particularly tractable form. Given any f, g ∈ F ,

f ≿ g ⇔ ∑
i∈S

u(f∗(i))µi ≥∑
i∈S

u(g∗(i))µi,

where each f ∈ F is represented by a subjective act f∗ ∶ S → X , mapping subjective

contingencies into outcomes, defined as f∗(i) = ∑ω∈Ω pi(ω)f(ω) for all i ∈ S . Conditional

on an event E,

f ≿E g ⇔ ∑
i∈S(E)

u(f∗(i))µi∣E ≥ ∑
i∈S(E)

u(g∗(i))µi∣E ,

where µi∣E = µi

∑j∈S(E) µj
and S(E) ∶= {i ∈ S ∶ ∑ω∈E pi(ω) ≥ αi}.

6For instance, in the special case in which the functions Vi take the maxmin form, one may argue that
the decision maker behaves cautiously because she is aware of her coarse understanding of uncertainty.
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In this representation, u denotes a von Neumann-Morgenstern utility function; µi is the

subjective probability of the contingency i; and pi(ω) is the relative weight of the state ω

in the contingency i. The key part is the formula to determine the contingencies that are

consistent with E (i.e., the set S(E)): when checking for consistency, the agent “disregards”

states that have weights below a certain threshold. Note that, although the agent’s ex ante

behavior is consistent with the Subjective Expected Utility model, she perceives uncertainty

in a coarse way. Therefore, this specification can be thought of as a minimal departure from

the standard paradigm that allows for a subjective understanding of uncertainty.

The two main theorems of the paper provide axiomatic characterizations of these prefer-

ence representations by focusing on the way information is processed. Note that we impose

a dynamic consistency property, which maintains that the decision maker is capable of

contingent planning, and arriving information never comes as a surprise. Thus, she is not

prompted to revise her plans. Hence, this axiom formally reflects our objective of studying

the decision maker’s understanding of uncertainty “here and now,” without referring to the

possibility of discovering new eventualities that she did not consider at an earlier stage and

of acquiring a more sophisticated vision as uncertainty unfolds.

Finally, we perform a comparative statics analysis along multiple dimensions. First, we

provide a behavioral characterization of the situations in which one agent understands

uncertainty better than another. Second, we identify choice patterns that can be interpreted

as updating errors (relative to the analyst’s state space) and characterize the notion of being

more (or less) prone to inclusion and exclusion errors.

The rest of the paper is organized as follows. Next, we discuss the related literature. Sec-

tion 2 introduces the setup. Section 3 presents our general model: the axiomatic foundations

and the representation theorem, as well as uniqueness and comparative statics results. Sec-

tion 4 specializes to a more structured model akin to subjective expected utility. Example 2

in Subsection 4.2 uses this special case in an application to the Confirmatory Bias.

1.3 Related Literature

The most relevant works for our study are Mukerji (1997) and Ghirardato (2001), as well

as Ahn and Ergin (2010).

Mukerji (1997) and Ghirardato (2001) study a decision maker who perceives the state

9

Date: 2016-10-28 15:45:21 Revision: 1.97.2.1



space imperfectly. Mukerji (1997) introduces two kinds of state spaces: In his notation, Ω

represents a state space on which the decision maker is capable of forming beliefs, and Θ is

the space of “payoff-relevant” states on which the acts are defined. The connection between

them — an implication mapping Γ ∶ Ω ⇉ Θ — represents the decision maker’s knowledge.

Then, Mukerji discusses the relationship between beliefs on Ω and induced beliefs on Θ, and

argues that the conservative attitude of the decision maker should lead to Choquet expected

utility preferences over acts. Ghirardato (2001) considers preferences that are defined over

acts that map coarse states into sets of outcomes — i.e., acts are multivalued correspon-

dences. In this way, Ghirardato develops a model in which a sophisticated decision maker

can cope with the coarseness of her perception of uncertainty: the model has a parameter

that represents the agent’s pessimism regarding the possible outcomes of the multivalued

acts, and the overall value of an act is computed as a Choquet integral. These two works

and our paper are complementary with respect to their objectives. Mukerji (1997) and Ghi-

rardato (2001) propose very insightful models that are applicable once the analyst has fixed

the way the decision maker understands uncertainty — the Γ mapping in Mukerji (1997)

or the representation of natural actions of the decision maker via multivalued acts defined

on some coarse state space in Ghirardato (2001). In our work, the stage of computing the

value of a particular act is captured through general functions Vi, whose structure is open

to further research (and via a simple expected utility-like weighted sum in the case of the

second representation). Instead, we perform a revealed preference-type analysis that focuses

on identifying the decision maker’s subjective understanding of uncertainty — her coarse

“state space” — in the first place.

Ahn and Ergin (2010) incorporate framing effects into a model of decision making un-

der uncertainty. They are interested in comparing the agent’s preferences across different

frames, and their theory identifies events that are immune to framing effects — there-

fore transparent — and events that can be overlooked. Ahn and Ergin’s (2010) setting

assumes that the analyst directly observes contingencies that are relevant to the decision

maker in evaluating an act; in their setting, descriptions of acts take the form of a list

of contingency-outcome pairs. We, on the other hand, are interested in learning what the

decision maker’s contingencies are, and Ahn and Ergin’s concept of immune events and

our concept of fully understood events are not comparable. If one views decision frames
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more broadly, not just as partitions of the state space, then the content of this paper can

be thought of as a model of the decision maker in one particular frame. If some events are

described differently (without changing their meaning from the analyst’s perspective), then

our decision maker’s conditional preferences may be different. Since we focus more on the

decision maker’s understanding of events, not of acts, it is possible to think of an extension

for our theory that explicitly introduces a representation of events (e.g., via propositional

statements)7 and regard them as frames. Then, one can use our approach to elicit the

decision maker’s understanding of uncertainty for each frame and study the ways in which

this understanding varies with different frames.8

The concept of a subjective state space goes back, at least, to Kreps (1979, 1992). In

a framework of preferences over menus of alternatives, Kreps suggests that a preference

for flexibility reflects uncertainty about the individual’s future preferences. In his setting,

the subjective states correspond exactly to possible future preferences. By refining Kreps’

menu approach, Dekel, Lipman, and Rustichini (2001) deliver conditions for the unique-

ness of the state space, whereas Epstein, Marinacci, and Seo (2007) relate an individual’s

awareness of her coarse state space to ambiguity-sensitive behavior. Nehring (1999) and

Epstein and Seo (2009) provide further alternative extensions of Kreps’ work. Ahn and

Sarver (2013) propose a joint representation of ex ante preference for flexibility, as in Dekel

et al. (2001), and ex post random choice behavior, as in Gul and Pesendorfer (2006). The

connection between our work and the above papers lies in our shared concern with iden-

tifying a subjective “state space.” However, our theory does not fall within the bounds of

this literature because of both the methodology and the objectives. Our framework is not

based on menus, and our subjective “states” do not consist of the agent’s utility functions

(or sets of functions). We also have a different objective, as we are interested primarily in

the subjective view of the states of nature in its relationship with information processing.

The notion of subjective acts plays an important role in the work of Kochov (2015). In

a setting of preferences over consumption streams, his main goal is to identify events that

can be thought of as unforeseen. The gist of his notion is that an event is interpreted as

7See, e.g., Mukerji (1997, §3) or Lipman (1999).
8It is also conceivable that describing events differently may prompt the decision maker to think about

possibilities that did not occur to her before and to change her awareness. Hence, one can also think about
an extension that adds changing awareness to our model.
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unforeseen if the agent is unable to realize that her payoff is, in fact, independent of the

occurrence of this event because of a specific intertemporal structure of the stream she is

facing. Kochov also proposes a transformation of acts into their subjective form that makes

them measurable with respect to the algebra generated by foreseen events. Despite some

terminological overlap, the main research question of our work is orthogonal to Kochov’s:

in particular, we focus on the choice behavior that manifests even in the absence of the time

dimension. Hence, one can think of a decision maker who operates with a “state space”

that is different from the analyst’s, but does not exhibit choice patterns discussed in his

work and for whom all events are foreseen, or the opposite, or exhibits both traits.

A noteworthy feature of our model is that the agent reveals her limited understanding of

uncertainty by displaying choices that are inconsistent with Bayes’ Rule. In the axiomatic

decision theory literature, Epstein (2006) provides a foundation for non-Bayesian updating

by positing that individuals may be tempted to change their ex ante beliefs about future

states after observing the realization of a signal at an interim stage. Ortoleva (2012) gen-

eralizes Bayes’ Rule to study the decision maker’s reactions following the realization of

events that were thought to have small (or zero) probability. These works accommodate

various well-known findings, such as overreaction or underreaction to arriving information.

In our model, departures from Bayes’ Rule are direct consequences of the agent’s coarse

understanding of uncertainty.

2 Setup

Let X denote the set of outcomes — formally, a nonempty convex subset of a separable

metric space (for instance, X could be the set of all lotteries on a set of elementary prizes).

We assume that X is commonly understood by the analyst and the decision maker. From

the analyst’s perspective, the uncertainty is captured by a finite state space denoted by

Ω. A state-contingent act is a function f ∶ Ω → X ; the set of all state-contingent acts is

denoted by F . Our objects of interest are ex ante and conditional preferences on F .9

The binary relation ≿E on F describes the agent’s preferences conditional on the realiza-

9These are the semantics used by the analyst to describe the agent’s observed behavior. One could take
a syntactic approach and derive the set F from an abstract set of actions available to the decision maker.
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tion of an event E ⊆ Ω; similarly, ≿Ω describes the ex ante preferences before receiving any

information.10 By a preference relation we understand a binary relation that is reflexive,

transitive, and complete. The ex ante preference relation ≿Ω is denoted simply by ≿. As

argued in the Introduction, our analysis relies on the assumption that the occurrence of an

event does not affect the agent’s understanding of uncertainty. That is, we assume that the

agent acquires this information in a way that does not make her realize possible connections

among facts that she did not understand before or otherwise change her perception of the

world.

We also observe that defining the decision maker’s preferences on F is not without loss of

generality. Indeed, it implies that the agent must regard as interchangeable any two actions

that, in the analyst’s space, are represented by identical state-contingent acts. Hence, this

modeling choice rules out the possibility that the agent’s view of uncertainty is finer than

that of the analyst. Albeit interesting, such a situation is beyond the scope of this paper.

3 General Representation of Preferences With Sub-

jective Contingencies

3.1 Axiomatic foundations

We next turn to the set of axioms that form the foundations of our model. Since the

analyst (or the modeler) and the decision maker have different perspectives on uncertainty,

we have to decide whose point of view to adopt in formulating the axioms. This choice

affects the way axioms are stated (and the language to be used) and interpreted. When

formulated from the analyst’s viewpoint, they describe properties of the choice behavior

that he should expect from a decision maker who may understand the uncertainty and

its resolution differently, but who is fully rational otherwise. In particular, if the decision

maker were to read the axioms herself, she would not have to understand them. By contrast,

when formulated from the decision maker’s viewpoint, axioms may represent principles that

appear reasonable from her perspective and according to which she would like to act to be

consistent in her choices. This paper takes the analyst’s viewpoint in laying the axiomatic

10Studying conditional preferences in a Bayesian setting goes back, at least, to Myerson (1986a,b).
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foundation. As a result, the axioms are testable without the analyst knowing anything

about the decision maker’s perspective in advance.

Basic assumptions

We start with three technical conditions. The first is that the agent’s preferences are con-

tinuous. Second, we require that the space of outcomes admits elements that are best and

worst — i.e., the space of outcomes is order-bounded. This assumption does not play an

important role in our results, but simplifies the transition from outcomes to utility levels.

Third, we postulate that the uncertainty faced by the decision maker is nontrivial — i.e.,

there exist at least three distinct informative events.

Axiom A1 (Continuity). For any h ∈ F , the sets {f ∈ F ∶ f ≿ h}, {f ∈ F ∶ h ≿ f},

{f ∈ F ∶ f ≿E h}, and {f ∈ F ∶ h ≿E f} for all E ⊂ Ω are closed.

Axiom A2 (Best and Worst Outcomes). There exist x∗, x∗ ∈ X such that x∗ ≿ f and f ≿ x∗

for all f ∈ F .

Axiom A3 (Nontriviality). There exist A,B,C ⊂ Ω such that ≿A, ≿B, and ≿C are nonde-

generate and differ from each other and from ≿.11

To conclude the list of basic axioms, we make two assumptions about consistency between

ex ante and conditional preferences.

As in many models of choice under uncertainty, we seek separation between “beliefs” and

“tastes,” and we assume that the decision maker’s tastes are not affected by information

that partially resolves the uncertainty. Therefore, the ranking of constant outcomes remains

unchanged for all nondegenerate conditional preferences.

Axiom A4 (Outcome Preference Consistency). For all E ⊂ Ω and x, y ∈ X, if ≿E is

nondegenerate, then x ≿ y⇔ x ≿E y.

Next, we introduce a subjective version of the dynamic consistency property. As discussed

earlier, this is going to be one of the key axioms in our analysis.

To state the axiom, we recall the standard definition of a null event: for any preference

relation ≿, an event E is called ≿-null if, for any acts f and g that differ only on E, we have

f ∼ g. Let us also introduce one piece of notation.

11A preference relation ≿ is said to be degenerate if f ∼ g holds for all f, g ∈ F .

14

Date: 2016-10-28 15:45:21 Revision: 1.97.2.1



Notation 1. For any E ⊆ Ω and ω ∈ Ω, we write PE(ω) to denote the statement that ω is

not ≿E-null; i.e., there exist f ∈ F and x, y ∈X such that x{ω}f ≻E y {ω}f .12

Hence, PE(ω) signifies that the state ω is revealed to remain subjectively possible after

the decision maker learns that E has occurred.

The dynamic consistency property can be stated as follows.

Axiom A5 (Subjective Dynamic Consistency). For any E ⊂ Ω such that ≿E is nondegen-

erate, and any f, g ∈ F such that f(ω) = g(ω) for all ω ∈ Ω such that ¬PE(ω), we have

f ≿E g⇔ f ≿ g.

The rationale behind this axiom is based on the standard argument. Suppose that the

decision maker faces two acts that are identical in states that are ruled out by an event

E. Then, ex ante, she should understand that her choice between these two acts matters

only if E occurs. Accordingly, the axiom asserts that her ex ante choice and her choice

conditional on E are the same.

This property provides an important link between information and choice that has far-

reaching implications for modeling the type of behavior that we are interested in. Indeed, it

implies that a message that an event E has occurred conveys nothing besides this mere fact

and, therefore, does not affect the agent’s understanding of uncertainty. Thus, Subjective

Dynamic Consistency indicates that our agent is forward-looking, can contemplate future

events at the ex ante stage, and, after learning that the event E has occurred, is always

willing to carry out the parts of contingent plans that were optimal ex ante.

Note, also, that the statement of the axiom departs slightly from the commonly used ones

because it takes a subjective perspective on the agent’s reasoning. Instead of considering

acts f and g, which coincide outside of an event E “objectively” — for all ω ∉ E, — our

formulation applies to acts that coincide for ω’s that are revealed to be ruled out by E (in

the sense that PE(ω) does not hold). In this way, we do not require the agent to share the

analyst’s view on whether two given acts may yield different payoffs only if E occurs, and,

at the same time, we are able to keep the statement of the axiom fully testable.

12As usual, for any x ∈ X,ω ∈ Ω, and f ∈ F , we denote by x{ω} f the act in F yielding the outcome x

in the state ω, and f(ω′) in all states ω′ ≠ ω.
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Information-processing axioms

The second group of axioms is concerned with how the decision maker processes information

about events that occur.

Consistent with our objective of modeling a decision maker who has no difficulty un-

derstanding the descriptions of events but may not understand fully how they resolve the

payoff-relevant uncertainty, we assume that larger events imply wider sets of possibilities.

Axiom A6 (Monotonicity of the Possibility Predicate). For any A ⊆ B ⊆ Ω and any ω ∈ Ω,

PA(ω)⇒ PB(ω).

Next, we assume that if two events are revealed to be equivalent in terms of what is

subjectively possible if they occur, then the conditional preferences on these two events

have to be identical.

Axiom A7 (Equivalence of Events). Suppose that E,E′ ⊆ Ω are related so that

(i) for any ω ∈ E′/E, PE(ω) holds, and

(ii) for any ω ∈ E/E′, PE(ω) does not hold.

Then, ≿E′ = ≿E.

In words, if two events are such that (i) states that E′ contains in addition to E are

already deemed possible after E, and (ii) states that E′ misses relative to E are already

deemed to be impossible after E, then these two events generate identical conditional

preferences. Compared to the previous axiom, this axiom maintains a stronger connection

between two events and the respective conditional preferences — they must rank all acts

in exactly the same way.

To assess the type of behavior allowed by this axiom, it is useful to examine its con-

tent in the standard case of subjective expected utility preferences, full understanding of

uncertainty, and Bayesian updating. In this case, ex ante and conditional preferences are

represented by

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

V (f) = ∑
ω∈Ω

u(f(ω))p(ω),

V (f ∣ E) = ∑
ω∈E

u(f(ω))p(ω) for E ⊂ Ω,
(1)

where p is a probability measure on Ω, and u is a utility function over outcomes. Hence,

in Part (ii), if ω ∈ E but PE(ω) does not hold, then p(ω) = 0. In this case, the decision

maker’s preferences conditional on E′ are the same as those conditional on E. Part (i)

16

Date: 2016-10-28 15:45:21 Revision: 1.97.2.1



in the standard case becomes vacuous, because the combination of conditions ω ∉ E and

PE(ω) in the antecedent is impossible.

It remains to impose minimal requirements on the decision maker’s understanding of

intersections and unions of events.

Axiom A8 (Understanding of Relationships Between Events). Suppose that A ⊆ Ω is such

that PA(ω) ⇔ ω ∈ A for all ω ∈ Ω, and B ⊆ Ω. Then,

(i) If there exists ω0 ∈ Ω such that PA(ω0) and PB(ω0) hold, then PA∩B(ω0) must also

hold.

(ii) If there exists ω0 ∈ Ω such that PA∪B(ω0) holds but PA(ω0) does not, then PB(ω0)

must hold.

The axiom is intuitive. Yet, it is not implied by anything else that we have postulated,

and imposes a certain discipline on the decision maker’s understanding of what is possible

in various situations. The axiom also contains one non-trivial qualification that A is such

that PA(ω) holds if and only if ω ∈ A. It captures what we will later call a full understanding

of the event A and, hence, restricts the applicability of the axiom to situations in which

the analyst observes that the decision maker completely understands at least one of the

two events in question.

Finally, we impose one more assumption regarding the decision maker’s reaction to events

that are deemed impossible. For expositional simplicity, we have already assumed that if

the decision maker is asked to rank acts conditional on an event that, ex ante, she viewed

as impossible, then she reports indifference between any two acts — i.e., her preferences

become degenerate. This assumption is implicitly built into the statements of some of the

earlier axioms — for instance, in the form of the qualification “for any E such that ≿E is

nondegenerate.”13 Now, we postulate that the decision maker regards as impossible events

whose descriptions are objectively self-contradicting and that are represented by the empty

set.

Axiom A9 (Indifference Upon Impossible Events). For all f, g ∈ F , f ∼∅ g.14

13For our theory at large, it is not strictly necessary to make assumptions about the decision maker’s
preferences after occurrence of events that were regarded as impossible at the ex ante stage. An earlier
version of this paper proceeded without any such assumptions — at the expense of making the setup and
the representation theorems a bit heavier.

14This assumption is also not strictly necessary. Moreover, unlike previous axioms, this one can be tested
only by asking the decision maker hypothetical questions, but not by observing her choice conditional on
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3.2 The representation

The following definition will be useful for stating our representation result.

Definition 2. We say that a set S ⊆ Ω is the support of a function F ∶ F → R if

(i) F (f) = F (g) for all f, g ∈ F such that f ∣S = g∣S; and

(ii) for each ω ∈ S, there exist f ∈ F and x, y ∈X such that F (x{ω}f) ≠ F (y {ω}f).

Now, we are ready to state our main theorem, which follows in an if-and-only-if manner

from the axioms stated earlier.

Theorem 1. An ex ante preference relation ≿ and a collection {≿E}E⊂Ω of conditional

preference relations jointly satisfy Axioms (A1)–(A9) if and only if there exist

• a set of indices (subjective states) S = {1, . . . , n} for some n ∈ N with n ≥ 3;

• a collection Π = {C1, . . . ,Cn} of nonempty and mutually disjoint subsets of Ω;

• a collection of nonconstant continuous functions Vi ∶ F → R for i ∈ S, with a compact

range, and such that Ci is the support of Vi for all i ∈ S; and

• a collection of functions σi ∶ 2Ci → {0,1} for i ∈ S, such that, for all i ∈ S, σi(∅) = 0,

σi(Ci) = 1, and σi(A) ≥ σi(B) for all A,B ⊆ Ci satisfying A ⊇ B

such that:

(i) ≿ is represented by

V (f) =∑
i∈S

Vi(f) ∀f ∈ F ; (2)

(ii) For each E ⊂ Ω, ≿E is represented by

V (f ∣ E) = ∑
i∈S∶σi(E∩Ci)=1

Vi(f) ∀f ∈ F ; (3)

(iii) Functions (Vi)i∈S agree on ranking sure outcomes

Vi(x) ≥ Vi(y) ⇔ Vj(x) ≥ Vj(y) ∀i, j ∈ S and x, y ∈X. (4)

The main message of the theorem can be summarized as follows.

1. The decision maker’s view of uncertainty is captured by a set S of contingencies.

Each contingency i ∈ S identifies a nonempty subset Ci of Ω, a function Vi∶ F → R

the actual realization of the event. Dropping this axiom, however, requires extending the statements of
subsequent theorems, and we do not regard an additional generalization in that direction as worthwhile.
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specifying the utility value of an act on contingency i, and a function σi ∶ 2Ci → {0,1}

determining whether contingency i is consistent with an event E.

2. Conditional on the realization of an event E, the decision maker identifies a subset

of contingencies that she perceives to be consistent with the received information,

and she updates her preferences in a Bayesian-like manner — this is captured by

the relationship between Equations (3) and (2). Observe that, in the simplest case in

which E = Ci, we have V (f ∣ Ci) = Vi(f) for i ∈ S , and, therefore, Representation (3)

implies that V (f) = ∑i∈S V (f ∣ Ci).

3. When evaluating acts, the decision maker’s preferences are additively separable with

respect to her subjective contingencies — this is captured by Equation (2).

As emphasized in the Introduction, the key feature of the contingencies is that they are

subjective — i.e., the decision maker is free to come up with her own set of contingencies

that reflect her understanding of what is possible. Her choice behavior reveals such contin-

gencies. In particular, our proof of the theorem in the Appendix is based on a constructive

procedure; hence, the analyst can, in principle, follow its steps to recover the decision

maker’s subjective contingencies by asking her to rank sufficiently many acts. Anticipating

the result in Subsection 3.3, we also note that the set of contingencies is identified uniquely.

Another important property of the subjective contingencies is that they correspond to

sets of the analyst’s states — the cells of Π — and, as such, are coarse. This coarseness has

no notable implications for the agent’s ex ante preferences in isolation. Rather, it manifests

in the way preferences are updated; for instance, it may result in overlooking or misclas-

sifying certain scenarios, as illustrated in the investment example from the Introduction.

However, within the bounds of her understanding, the agent does her best to process in-

formation. Namely, she determines which contingencies remain a possibility and which are

ruled out; then, similar to the standard Bayesian updating recollected in (1), she computes

the conditional value of an act by dropping the additive terms referring to contingencies

that are no longer relevant.

The novelties in our updating rule are related to the fact that the decision maker’s con-

tingencies are coarse. If an event E ⊆ Ω is measurable with respect to the algebra generated

by the partition Π, then the updating rule implied by Theorem 1 takes a rather conven-

tional form: a contingency Ci disappears from the representation of conditional preferences
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if Ci ∩E = ∅, and stays otherwise. However, if E is not measurable, then the conditional

preference relation ≿E coincides with the conditional preference relation ≿Ẽ , where Ẽ is a

measurable event that is uniquely determined by E.15 Specifically, if Ci is entirely con-

tained in E, then it is also contained in Ẽ; symmetrically, if Ci does not intersect E, then

it does not intersect Ẽ. If ∅ ≠ Ci ∩E ⊂ Ci, then both situations Ci ∩ Ẽ = Ci and Ci ∩ Ẽ = ∅

are possible and depend on the value of σi. In particular, one can envision an agent for

whom Ci ∩ Ẽ = Ci most of the time (or always), or for whom Ci ∩ Ẽ = ∅ most of the time

(or always). Section 4 also presents a refined model in which the question about whether a

contingency Ci is consistent with the event E is answered depending on the total mass of

points in Ci ∩E.

The additive separability of representations (2)–(3) is noteworthy because this kind of

structure is a precursor to defining the agent’s beliefs about contingencies. The represen-

tation clearly determines what the decision maker regards as possible or impossible. In

particular, the states outside of the union of the cells of Π are null and have no impact

on the evaluation of acts. (In loose terms, the possibilities that are not covered by Π are

viewed by the decision maker as having zero probability.) However, due to its generality,

Theorem 1 is silent about the relative likelihood of contingencies in S . One simple reason

is that our functions Vi for i ∈ S are not normalized. However, the likelihoods of the con-

tingencies can be pinned down by imposing more structure on the ex ante preferences, and

one particular refinement of the model of Theorem 1 is provided in Section 4. We also note

that the standard Bayesian expected utility maximization is a special case of our model,

as elaborated in Subsection 3.4.

Examples

Next, we revisit the investment example from the Introduction to illustrate how our rep-

resentation works and how the described choice behavior translates into a concrete speci-

fication of the objects listed in the statement of the theorem.

Example 1. Recall that in the discussed example, the analyst’s state space is Ω = {ωg, ωm, ωb},

where ωg represents the situation of strong demand and expansion, in which a firm pays the

15This is the sense in which the decision maker’s updating process is limited by her understanding of
the world.
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dividend of $4 per share; ωm represents the situation of strong demand but no expansion, in

which the firm pays $2; and ωb represents the situation of weak demand, in which the firm

pays $1. The decision maker is observed to rank (1,0,0) ≻ (0,0,0) and (4,2,1) ∼Elow (0,0,1)

for Elow = {ωg, ωb}. As implied by intermediate results that we establish in the course of

proving the theorem, the collection of all non-null states of the conditional preference re-

lation ≿E for any E ⊆ Ω is a union of elements of the partition Π. Hence, it must be that

{ωb} is an element of Π. Clearly, {ωg} is not an element of Π, and, hence, if all states

are ex ante non-null, it must be that {ωg, ωm} is an element of Π. It follows that our story

is consistent with the decision maker having two subjective “states”: Π = {C1,C2} where

C1 = {ωb} and C2 = {ωg, ωm}. Then, σ1 is defined trivially by σ1(∅) = 0 and σ1({ωb}) = 1.

The functions V1 and V2 should be defined such that V2(1,0,0) > V2(0,0,0), their supports

are C1 and C2, respectively, and they agree as in (4).16

Regarding σ2, the decision maker’s choices mentioned above are insufficient to pin it

down uniquely. One example of the specification of σ2 that does the job is σ2(∅) = 0,

σ2({ωg}) = 0, σ2({ωm}) = 1, σ2({ωg, ωm}) = 1. Note that, under this specification, it must

be that (1,0,0) ≻Ehigh (0,0,0), where Ehigh = {ωm} is the event of the mid-year report of

high interim profit. We also see that ≿Ehigh=≿Ẽ, where Ẽ = {ωg, ωm} = C2 is the event that

the demand is strong — in the proposed specification, the decision maker subjectively views

the events “high interim profit” and “strong demand” as equivalent. On a separate note,

observe that, regardless of the specification of σ2, it must be that (1,0,0) ≻C2
(0,0,0).

This example also illustrates another important aspect of the differences between the

decision maker’s and the analyst’s understanding of the world. Notice that the specification

σ2({ωg}) = 0 implies that the event {ωg} (“strong demand but low interim profit”) is

subjectively impossible — the conditional preference relation ≿{ωg} is degenerate. At the

same time, the decision maker is willing to pay a positive price for the vector (1,0,0) that

promises a positive payoff in state ωg only. This may look like an inconsistency in the

decision maker’s behavior. However, note that it is the analyst’s state space that provides

a direct link between the case of strong demand plus low interim profit and the dividend

16For instance, there can be a von Neumann-Morgenstern utility function u over monetary lotteries,
V1(zg, zm, zb) = u(zb), and V2(zg, zm, zb) = Ṽ (u(zg), u(zm)), where Ṽ ∶ R2

→ R is some strictly monotone

function. Ṽ can be linear, as in the expected utility theory, or nonlinear, as in the theory of choice under
ambiguity.
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A,a A,m A, b

B,a B,m B, b

C1 C2

C3 C4

Figure 1.— Subjective contingencies in the Confirmatory Bias example

payment of $4. If the decision maker understands the uncertainty differently and operates

with a different set of contingencies, then this link ceases to be self-evident. This situation

is typical in our model. While our decision maker may make inferences that look erroneous

to the analyst, it is not a sign of mistakes on the logical or computational levels. Rather,

those errors stem from the decision maker’s cognitive state (e.g., what she knows about the

firm’s business) and may be viewed as parallel to Type-I and Type-II errors in mathematical

statistics.

The next example illustrates the model in application to the widely documented Confir-

matory Bias — the tendency to view arriving information through the lens of one’s primary

hypothesis, overweighting the news that supports it, and underweighting (or dismissing)

the news that does not.17

Example 2. Let A and B be two exhaustive and mutually exclusive hypotheses, and assume

that the decision maker receives a signal s ∈ {a,m, b} that provides some noisy information

about the true hypothesis and has the following conditional probabilities:

x = a x =m x = b

Pr(s = x ∣ A) 0.5 0.3 0.2

Pr(s = x ∣ B) 0.2 0.3 0.5

Given those probabilities, signal s = a is noisy evidence in favor of A; signal s = b is noisy

evidence in favor of B; and s =m represents mixed evidence. Our aim is to model an agent

who has a bias towards B in interpreting the signal.

17The primary hypothesis can be selected according to its likelihood or because the person hopes, or fears,
that it is true. For an early psychological experiment, see, e.g., Wason (1960). In the classical experiment
of Darley and Gross (1983), subjects viewed the same tape of a schoolgirl doing an achievement test but
formed quite different opinions about her performance depending on the cues about her socioeconomic
background. In economics, see, e.g., the model developed by Rabin and Schrag (1999).
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Let the state space be Ω = {A,B} × {a,m, b}, and the decision maker’s subjective con-

tingencies be represented by C1 = {A} × {a}, C2 = {A} × {m,b}, C3 = {B} × {a,m}, and

C4 = {B} × {b}, as illustrated in Figure 1. In words, she subjectively sees only four pos-

sibilities: C1 — the true hypothesis is A, and the evidence is s = a (suggestive of A);

C2 — the true hypothesis is A, but the evidence is s ≠ a (not suggestive of A); C3 —

the true hypothesis is B, but the evidence is s ≠ b (not suggestive of B); and C4 — the

true hypothesis is B, and the evidence is s = b (suggestive of B). Moreover, suppose that

σ2({A} × {m}) = σ2({A} × {b}) = 0 and σ3({B} × {a}) = σ3({B} × {m}) = 1, whereas σ1

and σ4 are defined trivially. Note that the events “A holds” and “B holds” are represented

by unions of some cells of the partition {C1,C2,C3,C4}, so, intuitively, our decision maker

treats them in the same way as a Bayesian agent.18 However, the same is not true for the

event “the signal is b.” Also note that the construction of σ2 and σ3 is not symmetric with

respect to exchanging A and B — this asymmetry is what will create a bias towards B.

For the sake of the example, assume that the functions Vi’s are linear — that is, they

have the Subjective Expected Utility form with a risk-neutral utility and some subjective

probability p on Ω.19 For convenience, we express p as p = µpi, where µ is a probability

measure over S and pi is a probability measure over Ci, for all i ∈ S. Hence, Vi(f) =

µ(Ci)∑ω∈Ci
f(ω)pi(ω) for all i ∈ S. Assume that the ex ante probability that B holds is

0.6. In accordance with this and the specification of the signals, we let µ and pi take the

following values: µ = (0.2,0.2,0.3,0.3), p2 = (0.6,0.4), and p3 = (0.4,0.6).

Then, let f be an act that pays 1 if B and 0 if A, and let h be an act that pays 1 always.

Using h as the measuring rod, we can evaluate what the agent thinks about the likelihood

of B after receiving some information. That is, we can compute the conditional values of

f as follows:

V (f ∣ s = a) = µ(C3) = 0.6 [µ(C1) + µ(C3)] = 0.6 V (h ∣ s = a),
V (f ∣ s ∈ {m,b}) = µ(C3) + µ(C4) = 0.75 [µ(C2) + µ(C3) + µ(C4)] = 0.75 V (h ∣ s ∈ {m,b}),
V (f ∣ s = b) = µ(C4) = 1 V (h ∣ s = b).

In all three cases, the decision maker’s evaluation of the “bet” on B is higher than what

18We will discuss the relevant formal concept in Section 3.4.
19The case of the Subjective Expected Utility form is characterized in Theorem 6, whereas Theorem 1

focuses on the general concept of subjective uncertainty that is independent of the functional forms taken
by Vi and σi.
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it would be if conditional probabilities were computed by the standard Bayesian decision

maker (0.375, ≈ 0.7059, ≈ 0.7895, respectively). Moreover, if s = a, the decision maker’s

“posterior” regarding B equals her prior, despite the evidence against B; so, she acts as

if she ignores this evidence. If s = b, our decision maker’s bias takes the extreme form of

viewing the signal as convincing evidence that her favorite hypothesis is true. Generally,

her behavior can be interpreted as if she applies higher standards to evidence against B than

to evidence against A, despite the symmetric conditional probabilities of the signals.

The main driving force in the above observations is that the decision maker regards mixed

or conflicting signals as consistent with B, more than she does with A. The subjective

treatment of the evidence is captured by the structure of functions σ2 and σ3 and is enabled

by the subjective (and coarse) understanding of uncertainty in the first place.

The ability of our model to generate the Confirmatory Bias is not a key finding of the

paper. Rather, it is an illustration that our work addresses not only theoretical concerns

about the Savagean common state space assumption as outlined in the Introduction, but can

also accommodate behavioral patterns that are well-documented empirically. Presumably,

there may well be other biases in information processing that our theory can rationalize

and for which the representation of Theorem 1 provides a tractable way of modeling. As

an illustration, consider the so-called Conservatism Bias, which is the tendency to give a

lower weight to new information and to overweight prior beliefs.20 The Conservatism Bias

can be obtained in a setup similar to that in Example 2 if the agent’s contingencies are

C1 = {A} × {a}, C2 = {A} × {m,b}, C3 = {B} × {a}, C4 = {B} × {m,b}. Furthermore, our

theory can be applied to phenomena such as the Winner’s Curse.

3.3 Uniqueness

We turn to the question of uniqueness and show that the representation result in Theorem 1

has strong properties in this regard. This feature is particularly relevant since the question

of uniqueness of subjective state spaces has drawn substantial attention in different contexts

of the decision theory literature.

20This bias is discussed in Tversky and Kahneman (1974); for recent experimental evidence, see Gneezy,
Hoffman, Lane, List, Livingston, and Seilier (2016).
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Definition 3. We refer to a quadruple (S , (Ci)i∈S , (Vi)i∈S , (σi)i∈S) that satisfies the condi-

tions of Theorem 1 as a representation with subjective contingencies.

Proposition 2. Suppose that (S , (Ci)i∈S , (Vi)i∈S , (σi)i∈S) and (S ′, (C ′i)i∈S ′ ,
(V ′i )i∈S ′, (σ′i)i∈S ′) are two representations with subjective contingencies. Then, they represent

the same system (≿,{≿E}E⊂Ω) of preference relations if and only if there exists a bijection

π ∶ S → S ′ such that

(i) C ′πi
= Ci for all i ∈ S;

(ii) there exist α > 0 and βi ∈ R for i ∈ S, such that V ′πi
= αVi + βi for all i ∈ S; and

(iii) σ′πi
= σi for all i ∈ S.

In words: First, the set of subjective contingencies and the corresponding partition of

the state space are identified uniquely. Second, the model uniquely identifies the rules to

determine contingencies that are consistent with an event. Finally, the model identifies,

up to a joint positive affine transformation, the collection of evaluation functionals — the

mappings from an act to the utility level that obtains from this act in each contingency.

3.4 Comparative statics

3.4.1 Understanding of uncertainty

Next, we discuss the ways in which our decision makers can be compared and the corre-

sponding comparative statics in the representation of their preferences. The starting point

of this exercise is a comparison in terms of their understanding of the nature of uncer-

tainty — i.e., their perception of the state space.

Definition 4. A decision maker described by (≿,{≿A}A⊂Ω) is said to fully understand an

event E ⊆ Ω if

PE(ω) ⇔ PΩ(ω) and ω ∈ E for all ω ∈ Ω.

Definition 5. One decision maker has a finer understanding of uncertainty than another

if the first one fully understands all events E ⊆ Ω that the second one fully understands.

In particular, two decision makers have equal understanding of uncertainty if the first one

fully understands E if and only if the second one fully understands E, for any E ⊆ Ω.
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Now, we characterize our concept of full understanding of an event and the corresponding

comparative notion.

Proposition 3. Suppose that (S ,Π, (Vi)i∈S , (σi)i∈S) is a representation with subjective con-

tingencies, and ≿ is the ex ante preference relation that it represents. Then, the decision

maker fully understands E ⊆ Ω if and only if E is the union of some elements of the

collection Π ∪N (≿), where N (≿) ∶= {{ω} ∣ ω ∈ Ω is ≿-null}.
Note that Π ∪N (≿) is a partition of Ω. Thus, an event is fully understood if and only if

it is measurable with respect to the algebra generated by this partition.

Corollary 4. Suppose that (Sk,Πk, (V k
i )i∈Sk , (σk

i )i∈Sk) for k = 1,2 are two representations

with subjective contingencies, and ≿1 and ≿2 are the ex ante preference relations that they

represent. Then, the first decision maker has a finer understanding of uncertainty if and

only if Π1 ∪N (≿1) is a refinement of Π2 ∪N (≿2).
A decision maker has the maximal understanding of uncertainty if her Π∪N (≿) consists

only of singleton sets. A full understanding of all events (i.e., maximal understanding of

uncertainty) is intrinsic to standard economic agents who have expected utility preferences

and perform Bayesian updating if they are viewed through the lens of our model. Indeed,

suppose that the utility index of an expected utility maximizer is u ∶ X → R, her prior

is p ∈ ∆(Ω), and Ω is enumerated as {ω1, . . . , ωn, . . . , ωn+m} such that p(ωl) > 0 for all

l = 1, . . . , n and p({ωn+1, . . . , ωn+m}) = 0. Then, we can set S = {1, . . . , n}, Π = {{ωi} ∣
i ∈ S}, Vi(f) = u(f(ωi))p(ωi), and our representation (2)–(3) reduces to the standard

procedure (1).

3.4.2 Updating errors

As noted in Section 3.1, our decision maker makes inferences from arriving information

and updates her preferences so that individual states may be treated peculiarly. Indeed,

conditional on an event E, some state ω ∉ E may remain non-null, or, conversely, some ex-

ante-non-null state ω′ ∈ E may become null after updating. Thus, from the analyst’s point of

view, the agent makes inference errors. We refer to the first type of spurious inference as an
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inclusion error and to the second type as an exclusion error. These errors emerge because

the agent has a limited understanding of uncertainty — in a similar fashion, a statistician

makes type-I or type-II errors in hypothesis testing because he is not omniscient and makes

inferences on the basis of finite and imperfect data.

The notation below and Definition 7 provide a formal statement of a comparative notion

that captures situations in which one agent is more prone to exclusion (resp. inclusion)

errors than another.

Notation 6. Let (≿,{≿A}A⊂Ω) be a system of preference relations and E ⊆ Ω. We define

M−(E) ∶= {ω ∈ E ∶ PΩ(ω) and ¬PE(ω) hold},
M+(E) ∶= {ω ∉ E ∶ PE(ω) holds}.

Note that if sets M−(E) or M+(E) are nonempty for some event E, then the decision

maker does not understand this event fully, and the two sets represent the states with

respect to which she makes exclusion and inclusion errors, respectively.

Definition 7. Let two decision makers be described by (≿k,{≿kA}A⊂Ω) for k = 1,2.

(i) Decision Maker 1 is more prone to exclusion errors than Decision Maker 2 if, for any

E ⊆ Ω such that ≿1E and ≿2E are nondegenerate, we have M2
−(E) ⊆M1

−(E).
(ii) Decision Maker 1 is more prone to inclusion errors than Decision Maker 2 if, for any

E ⊆ Ω such that ≿1E and ≿2E are nondegenerate, we have M2
+(E) ⊆M1

+(E).
The subsequent discussion relies heavily on the following notion.

Notation 8. Let (S , (Ci)i∈S , (Vi)i∈S , (σi)i∈S) be a representation with subjective contin-

gencies. Then, we refer to

Sc ∶= {i ∈ S ∶ ∣Ci∣ ≥ 2}
as the decision maker’s coarse subjective contingencies.

The term “coarse” refers to the fact that the corresponding cells of the partition repre-

senting contingencies are coarser than singletons. This fact has a direct connection to imper-

fections in the agent’s understanding of uncertainty. Indeed, any set outside of ⋃i∈Sc Ci must

be fully understood, and, for any E ⊆ Ω, the sets M−(E) and M+(E) must be contained in

⋃i∈Sc Ci.

For the purpose of linking the comparative notions introduced earlier to the parameters of

our representation — namely, the consistency maps (σi)i∈S — we focus on the case in which

27

Date: 2016-10-28 15:45:21 Revision: 1.97.2.1



two decision makers have equal understanding of uncertainty. Note that, as Corollary 4 im-

plies, two such decision makers have the same (up to renumbering) sets of coarse subjective

contingencies — that is, if (Sk,Πk, (V k
i )i∈Sk , (σk

i )i∈Sk) for k = 1,2 are the representations

with subjective contingencies of the preferences of two agents with equal understanding of

uncertainty, then there must exist a bijection π ∶ S1
c → S2

c such that C2
πi
= C1

i for all i ∈ S1
c .

Now, we can state the comparative statics result.

Proposition 5. Suppose that (Sk, (Ck
i )i∈Sk , (V k

i )i∈Sk , (σk
i )i∈Sk) for k = 1,2 are two repre-

sentations with subjective contingencies, and the decision makers that they represent have

equal understanding of uncertainty. Furthermore, suppose that the set of coarse subjective

contingencies for both of them is {1, . . . ,m}, and let Ci ∶= C1

i = C
2

i for i = 1, . . . ,m. Then,

the following conditions are equivalent:

(i) Decision Maker 1 is more prone to exclusion errors than Decision Maker 2;

(ii) Decision Maker 2 is more prone to inclusion errors than Decision Maker 1;

(iii) For all i = 1, . . . ,m, we have σ1

i (A) ≤ σ2

i (A) for all A ⊆ Ci.

This result claims, first, that the tendency to make exclusion versus inclusion errors are

two faces of the same trait: if one agent is more inclined than the other to make exclusion

errors, then she must, at the same time, be less inclined to make inclusion errors. Second,

in terms of the representation of their preferences, the fact that one agent is more prone to

make inclusion errors (and less prone to make exclusion errors) than another is captured

by the pointwise dominance relationship between their consistency maps that correspond

to the agents’ common coarse contingencies.

4 A More Structural Representation

While Theorem 1 captures the essential aspects of our theory, it leaves open the question

about reasonable specifications of the evaluation functions Vi and consistency functions σi

for contingencies i ∈ S . In this section, we address this point by imposing a few additional

axioms — Independence, Monotonicity, and one novel informational axiom — and deriving

a more structural representation. This result preserves the gist of Theorem 1 about sub-

jective states and updating and, at the same time, provides a familiar expected utility-like
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structure for functions Vi and a related weight-based specification for σi.

4.1 Axioms

We start by recalling well-known properties that we impose on the ex ante preferences.

Axiom A10 (Monotonicity). If f, g ∈ F and f(ω) ≿ g(ω) for all ω ∈ Ω, then f ≿ g.

Axiom A11 (Independence). If f, g, h ∈ F and α ∈ (0,1), then
f ≿ g ⇔ αf + (1 − α)h ≿ αg + (1 − α)h.

Axioms (A10) and (A11) are the classic assumptions paving the way for the subjective

expected utility theory of Anscombe and Aumann (1963).

In addition, we introduce an axiom that provides a link between the decision maker’s

attitude towards betting on an event and her ability to evaluate acts conditional on that

event.

Axiom A12 (Admissibility of Valuable Events). Let x, y ∈X such that x ≻ y, A,B ⊆ Ω such

that ≿A is nondegenerate, and PA(ω) for all ω ∈ B. If xBy ≿ xAy, then ≿B is nondegenerate.

The essence of the axiom is that if ≿A is nondegenerate and a “bet” on an event B is

ex ante preferred to a bet on A, then B cannot be void and ≿B should be nondegenerate,

too. In the standard theory of Bayesian updating, in which admissibility of an event equals

having positive probability, this implication always holds. In our theory, the axiom contains

an additional qualification: we assume that any state in B is revealed to be possible after

the event A has occurred, which implies that A and B are comparable in their informational

content.

4.2 The representation

The extended list of axioms leads to the following representation.

Theorem 6. A system (≿,{≿A}A⊂Ω) of preference relations satisfies Axioms (A1)–(A12)

if and only if there exist

• a set of indices (subjective states) S = {1, . . . , n} for some n ∈ N with n ≥ 3;

• a collection Π = {C1, . . . ,Cn} of nonempty and mutually disjoint subsets of Ω;

• a nonconstant, continuous, and affine function u ∶X → R with a compact range;
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• a probability measure µ ∈∆(S);
• a collection of probability measures pi ∈ ∆(Ω) for i ∈ S such that Ci is the support of

pi; and

• a collection of numbers αi ∈ (0,1] for i ∈ S
such that:

(i) For all f, g ∈ F ,

f ≿ g ⇔ ∑
i∈S

u(f∗(i))µi ≥∑
i∈S

u(g∗(i))µi, (5)

where, for each f ∈ F , f∗ ∶ S →X is defined as

f∗(i) = ∑
ω∈Ω

pi(ω)f(ω) ∀i∈S ; (6)

(ii) For all f, g ∈ F and E ⊂ Ω,

f ≿E g ⇔ ∑
i∈S(E)

u(f∗(i))µi∣E ≥ ∑
i∈S(E)

u(g∗(i))µi∣E , (7)

where

µi∣E =
µi

∑j∈S(E)µj

(8)

and

S(E) ∶= {i ∈ S ∶ ∑
ω∈E

pi(ω) ≥ αi} . (9)

In comparison to the analysis of Section 3, the first feature of this theorem consists of

refining the general additively separable representation of Theorem 1 to make subjective

contingencies have probabilities (captured by µ ∈∆(S)).
The second feature is related to the much more specific procedure of computing the

value of an act on a single contingency. The decision maker can be viewed as operating

with subjective transformations of acts, denoted above by f∗ and g∗, that map contingencies

to outcomes. These transformations are represented as weighted averages of the values of

the original acts f and g. Hence, the decision maker compares acts by applying a subjective

expected utility criterion to their subjective transformations.

For the purpose of ranking acts conditionally on some event, the decision maker discards

the contingencies that are deemed irrelevant and then normalizes the probabilities of the

remaining contingencies (i.e., re-calculates the probabilities by dividing them by their sum).
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Hence, at the level of contingencies, the decision maker operates with probabilities in a

perfectly Bayesian way. Within the scope of our general representation, the procedure

captured by (5)–(8) constitutes the minimal departure from the standard paradigm.

The third feature lies in the specification of the contingencies that remain relevant after

the realization of some event. Instead of relying on arbitrary monotone set functions, the

procedure consists of computing the total weight of the intersection of the event and the

set of states representing a contingency, and then using a threshold strategy to determine

whether this contingency is consistent with the event. Moreover, the weights used for these

calculations are the same as those used for computing the values of acts. As an interpre-

tation, the decision maker captured by this procedure acts as if she is “overlooking” the

low-weight states when incorporating arriving information into her decisions.

Next, we illustrate Theorem 6 by briefly revisiting our application to the Confirmatory

Bias.

Example 3 (Continuation of Example 2). From Example 2, recall that the agent consid-

ers hypotheses A and B and receives a noisy signal s ∈ {a,m, b} representing the correct

hypothesis with conditional probabilities listed therein. Our goal is to model an agent who

has a bias towards B in interpreting the signal. The ex ante probability that B holds is 0.6.

As before, let the state space be Ω = {A,B} × {a,m, b}, the subjective contingencies be

C1 = {A} × {a}, C2 = {A} × {m,b}, C3 = {B} × {a,m}, C4 = {B} × {b}, and the probability

measures be µ = (0.2,0.2,0.3,0.3), p2 = (0.6,0.4), p3 = (0.4,0.6). Example 2 has already

made use of the SEU form for the functions Vi’s. Now, the conditional evaluations of act f

paying 1 if B and 0 if A are computed simply as follows:21 V (f ∣ s = a) = µ(C3)
µ(C1)+µ(C3)

= 0.6;

V (f ∣ s ∈ {m,b}) = µ(C3)+µ(C4)
µ(C2)+µ(C3)+µ(C4)

= 0.75; and V (f ∣ s = b) = µ(C4)
µ(C4)

= 1.

The novelty is that, by Theorem 6, we can also adopt a more specific updating mechanism

based on the weights pi and the thresholds αi. So, let α2 = 1 and α3 = 0.4. In this calibration,

the entire analysis of Example 2 holds. However, the strong bias for B in interpreting the

signal is now related to a high value for α2 and a relatively low one for α3.

21In Example 2, we used act h as a measuring rod to simplify exposition (and to avoid re-normalization of
conditional probabilities to 1). We no longer need this, given the more structured derivation of Theorem 6.
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4.3 Uniqueness

Definition 9. We refer to a tuple (S , (Ci)i∈S , u, µ, (pi)i∈S , (αi)i∈S) that satisfies the condi-

tions of Theorem 6 as an expected utility representation with subjective contingencies.

The uniqueness properties of our expected utility representation with subjective contin-

gencies are summarized by the following proposition.

Proposition 7. Suppose that (S , (Ci)i∈S , u, µ, (pi)i∈S , (αi)i∈S) and (S ′, (C ′i)i∈S ′, u′, µ′, (p′i)i∈S ′,
(α′i)i∈S ′) are two expected utility representations with subjective contingencies. Then, they

represent the same system (≿,{≿A}A⊂Ω) of preference relations if and only if

(i) there exist k > 0 and b ∈ R such that u′ = ku + b;
(ii) there exists a bijection π ∶ S → S ′ such that, for all i ∈ S, C ′πi

= Ci, µ′πi
= µi, p′πi

= pi;

(iii) α′πi
∈ (αmin

i , αmax
i ], where

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αmin
i ∶=max{∑ω∈A pi(ω) ∣ A ⊆ Ci and ≿A is degenerate} and

αmax
i ∶=min {∑ω∈A pi(ω) ∣ A ⊆ Ci and ≿A is nondegenerate} . (10)

As usual, the utility function is unique up to a positive affine transformation; most

of the parameters related to subjective contingencies are unique up to relabeling of the

contingencies; and the only nontrivial part of the statement concerns the thresholds (αi)i∈S .
These thresholds can be identified only up to an interval for a simple reason — our state

space is finite, and, hence, the total weights ∑ω∈A pi(ω) for different A ⊆ Ω form a discrete

set. We also note that the thresholds αi of the representation can be chosen within each

interval (αmin
i , αmax

i ] arbitrarily and independently across different contingencies, and the

boundaries of these intervals can be determined uniquely from the agent’s choice behavior.22

22To substantiate this claim, we give (without a proof) a behavioral definition of αmin and αmax. Suppose
that A ⊂ Ω is such that ω ∈ A ⇔ PA(ω), A does not have a proper subset with the same property, and
B ⊂ Ω is such that A ∩ B = ∅. Then, A constitutes one of the agent’s subjective contingencies, and the
corresponding threshold boundaries can be computed as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

αmin
A ∶=max{CE(x∗ (E∪B)x∗)−CE(x∗Bx∗)

CE(x∗Ax∗)
∣ E ⊆ A,≿E∪B = ≿B} and

αmax
A ∶=min{CE(x∗ (E∪B)x∗)−CE(x∗Bx∗)

CE(x∗Ax∗)
∣ E ⊆ A,≿E∪B ≠ ≿B} ,

where CE ∶ F → [0,1] is the functional defined as CE(f) = γ⇔ f ∼ γx∗ + (1 − γ)x∗.
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As a final remark, note that the limits on the identification of the collection (αi)i∈S —

up to an interval — do not preclude comparing these parameters across different agents. In

particular, if two decision makers have the same ex ante preferences and equal understand-

ing of uncertainty, then they may differ only in their thresholds (αi)i∈S , and the following

observation holds:

Observation 8. Suppose that two decision makers are described by (≿,{≿kA}A⊂Ω) for k =

1,2, and their preferences admit expected utility representations with subjective contingen-

cies (S , (Ci)i∈S , u, µ, (pi)i∈S , (αk
i )i∈S) for k = 1,2. Furthermore, suppose that (αkmin

i )i∈S and

(αkmax
i )i∈S are defined by (10) for k = 1,2. Then, for each i ∈ S,

(α1min
i , α1max

i ] = (α2min
i , α2max

i ] or (α1min
i , α1max

i ] ∩ (α2min
i , α2max

i ] = ∅.
The key implication of this observation is that if, for some i ∈ S , the intervals for the

thresholds αi for these two agents are not identical, then one of the intervals must lie

entirely to the left of the other one.

4.4 Comparative Statics

Since the expected utility representation with subjective contingencies is a special case of

the general representation, the comparative notion of understanding of uncertainty and the

corresponding characterization of Proposition 3 apply directly to the model presented in

Section 4.2. Therefore, we focus here on the behavioral properties of the new parameters

introduced there — namely, (αi)i∈S .
Consider two decision makers described by (≿k,{≿kA}A⊂Ω) for k = 1,2, with an equal un-

derstanding of uncertainty and such that ≿1 = ≿2. In terms of the representation, this implies

that S1 = S2,Π1 = Π2, µ1

i = µ
2

i , p
1

i = p
2

i for all i, and u1 is a positive affine transformation of

u2. Hence, such decision makers differ only in the way they update their preferences. In the

next proposition, we apply the comparative notion of proneness to inclusion and exclusion

errors (Definition 7) to our expected utility model with subjective contingencies.

Proposition 9. Suppose that two decision makers are described by (≿,{≿kA}A⊂Ω) for k = 1,2,

and their preferences admit expected utility representations with subjective contingencies

(S , (Ci)i∈S , u, µ, (pi)i∈S , (αk
i )i∈S) for k = 1,2. Then, the following conditions are equivalent:
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(i) Decision Maker 1 is more prone to exclusion errors than Decision Maker 2;

(ii) Decision Maker 2 is more prone to inclusion errors than Decision Maker 1;

(iii) For each i ∈ S, α1min

i = α2min

i or α1min

i ≥ α2max

i .

As in Proposition 5, the tendency to make exclusion versus inclusion errors represents

two faces of the same trait. The novelty here lies in Condition (iii), in which the original

characterization in terms of pointwise dominance of the consistency maps is replaced with

a more structured form of an ordering of intervals on the real line. Specifically, two decision

makers are comparable in terms of their predisposition to make errors in their conditional

behavior whenever, for each contingency i, the interval of possible values of αi for one agent

weakly dominates the corresponding one of the other agent.

Appendix

Throughout the entire Appendix, we use the mapping Q ∶ 2Ω → 2Ω defined as Q(E) ∶=
{ω ∈ Ω ∶ PE(ω) holds}. This correspondence determines the states that are revealed to be

possible after each event.

A Proofs of the results of Section 3

Lemma 10. Assume that axioms (A1)–(A9) hold. Then:

(i) For any A ⊆ Ω, ≿Q(A) = ≿A, and Q(Q(A)) = Q(A).
(ii) For any S,T ⊆ Ω such that Q(S) = S and Q(T ) = T , we have Q(S/T ) = S/T .
Proof. Claim (i). The claim that ≿Q(A) = ≿A follows from the Equivalence of Events axiom,

and Q(Q(A)) = Q(A) follows immediately from that.

Claim (ii). Let S′ ∶= S/T . If S′ = ∅, the claim holds by the definition of Q. Suppose that

S′ ≠ ∅. Observe that S ⊆ Q(S ∪ T ) by Monotonicity of the Possibility Predicate. Hence,

S′ ⊆ Q(S ∪ T )/T = Q(S ∪ T )/Q(T ) = Q(S′ ∪ T )/Q(T ) ⊆ Q(S′), where the latter inclusion

holds by Understanding of Relationships Between Events, Part (i), applied to sets T and

S′.
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Next, we claim that Q(S′) ∩ T = ∅. Indeed, if there exists ω0 ∈ Q(S′) ∩ T , then P∅(ω0)
should hold by Understanding of Relationships Between Events, Part (ii), applied to sets

T and S′, a contradiction to Indifference Upon Impossible Events. Since Q(S′) ⊆ S by

Monotonicity of the Possibility Predicate, we conclude that Q(S′) ⊆ S′, which completes

the proof.

Lemma 11. Assume that axioms (A1)–(A9) hold. For any E ⊆ Ω and f, g ∈ F , if Q(E) ⊆
{ω ∈ Ω ∶ f(ω) = g(ω)}, then f ∼E g.
Proof. Fix an arbitrary E ⊆ Ω and f, g ∈ F such that Q(E) ⊆ {ω ∈ Ω ∶ f(ω) = g(ω)}. Let
ω1, . . . , ωm be an enumeration of the states of Ω. For each i = 0, . . . ,m, let hi ∈ F be defined

as hi = g {ωi+1, . . . , ωm}f , and note that h0 = g and hm = f . We claim that hi−1 ∼E hi for all

i = 1, . . . ,m, which will prove the claim of the lemma by the transitivity of ∼E.

Indeed hi−1(ωj) = hi(ωj) for all j ≠ i, while hi−1(ωi) = g(ωi) and hi(ωi) = f(ωi). If
g(ωi) = f(ωi), then hi−1 = hi, and the claim is proven. Otherwise, we have ¬PE(ωi), and,
therefore, hi−1 ∼E hi by the definition of ¬PE(ωi).
Lemma 12. Assume that axioms (A1)–(A9) hold and suppose that {C1, . . . ,Cn} for some

n ∈ N is a partition of Q(Ω) such that Q(Ci) = Ci for all i = 1, . . . , n. Then, for all f, g ∈ F

such that f ∼Ci
g for all i = 1, . . . , n, we have f ∼ g.

Proof. For each i = 0, . . . , n, let hi ∈ F be defined as

hi(ω) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g(ω), if ω ∈ Ci+1 ∪ . . . Cn,

f(ω), otherwise.

We will prove by induction that hi ∼ g for all i = 0, . . . , n, which will establish the claim of

this lemma because hn = f .

If i = 0, then h0 ∼ g by Lemma 11 when Ω plays the role of E. Assume that hi−1 ∼ g for

some i = 1, . . . , n. Then, observe that hi−1 ∼Ci
g by Lemma 11, g ∼Ci

f by the conditions

of the lemma, and f ∼Ci
hi by Lemma 11. Therefore, by transitivity, we have hi−1 ∼Ci

hi.

Since that hi−1(ω) = hi(ω) for all ω ∉ Ci, Dynamic Consistency implies that hi−1 ∼ hi, and,

hence, hi ∼ g.
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Lemma 13. Assume that axioms (A1)–(A9) hold and suppose that {C1, . . . ,Cn} for some

n ∈ N is a partition of Q(Ω) such that Q(Ci) = Ci for all i = 1, . . . , n, and Ui ∶ F → R

are continuous utility representations of ≿Ci
for i = 1, . . . , n. Let U ∶ F → Γ be defined

as U(f) = (U1(f), . . . , Un(f)) for all f ∈ F , and U ∶= U(F). Finally, let v0 ∈ U and

(vm)m∈N ∈ UN be such that vm → v0 as m → ∞. Then, there exist a subsequence (vmk)k∈N,

f 0 ∈ F , and (fk)k∈N ∈ FN such that U(fk) = vmk for all k ∈ N, U(f 0) = v0, and fk → f 0 as

k →∞.

Proof. For i = 1, . . . , n, let ϕi ∶ [0,1]→ X be defined as ϕi(α) = αx∗+(1−α)x∗, and note that

it is continuous. By the Best and Worst Outcomes axiom, Ui(ϕi(0)) ≤ Ui(f) ≤ Ui(ϕi(1))
for all f ∈ F and i = 1, . . . , n. Hence, the mappings Ui ○ ϕi ∶ [0,1] → Ui(F) are surjections

for i = 1, . . . , n. For i = 1, . . . , n, let ψi ∶ Ui(F) → [0,1] be defined such that Ui ○ ϕi ○ ψi are

the identity mappings, and ψ ∶ U → [0,1]n be defined as ψ(u) = (ψ1(u1), . . . , ψn(un)) for all
u ∈ U .

Next, let Φ ∶ [0,1]n → F be defined as Φ(α)(ω) = ϕi(αi) if ω ∈ Ci for some i = 1, . . . , n

and Φ(α)(ω) = x∗ if ω ∉ Q(Ω) for all α ∈ [0,1]n. We claim that U ○ Φ ○ ψ is the identity

mapping on U . Indeed, fix an arbitrary u ∈ U , and let f = Φ(ψ(u)). Observe that, for all

i = 1, . . . , n, we have f(ω) = ϕi(ψi(ui)) for all ω ∈ Ci by the construction of Φ. Therefore,

for all i = 1, . . . , n, we have f ∼Ci
ϕi(ψi(ui)) by Lemma 11, and, since Ui is a utility

representation of ≿Ci
, it follows that Ui(f) = Ui(ϕi(ψi(ui))) = ui.

Now, in the sequence (ψ(vm))m∈N of elements of [0,1]n one can choose a subsequence

(ψ(vmk))k∈N that converges to some α ∈ [0,1]n. Let fk = Φ(ψ(vmk)) for k ∈ N and f 0 = Φ(α).
As shown in the previous step, U(fk) = vmk for all k ∈ N. By the continuity of ϕ, fk → f 0

as k →∞. Moreover, by the continuity of U , U(f 0) = limk→∞U(fk) = v0.

Lemma 14. Suppose that (S , (Ci)i∈S , (Vi)i∈S , (σi)i∈S) is a representation with subjective

contingencies of the system (≿,{≿E}E⊂Ω). Let E ⊆ Ω and ω ∈ Ω. Then, the following condi-

tions are equivalent:

(i) PE(ω) holds;

(ii) there exists j ∈ S such that ω ∈ Cj and σj(E ∩ Cj) = 1, where Cj is a cell of the

partition Π.
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Proof. Suppose that PE(ω) holds but there is no j ∈ S such that ω ∈ Cj and σj(E ∩Cj) = 1.

Then, for any f ∈ F and x, y ∈ X ,

V (x{ω}f ∣ E) = ∑
i∈S∶σi(E∩Ci)=1

Vi(x{ω}f)
= ∑

i∈S∶σi(E∩Ci)=1

Vi(f) (by the properties of Vi)

= V (y {ω}f ∣ E).
Since V (⋅ ∣ E) represents ≿E , this contradicts to the fact that PE(ω) holds.

Conversely, suppose that there exists j ∈ S such that ω ∈ Cj and σj(E ∩ Cj) = 1.

Next, due to the fact that Cj is the support of Vj, we can find f ∈ F and x, y ∈ X such

that Vj(x{ω}f) ≠ Vj(y {ω}f) and assume, without loss of generality, that Vj(x{ω}f) >
Vj(y {ω}f). Then,

V (x{ω}f ∣ E) = ∑
i∈S∶σi(E∩Ci)=1

Vi(x{ω}f)
= Vj(x{ω}f) + ∑

i∈S,i≠j

Vi(x{ω}f)σi(E ∩Ci)
= Vj(x{ω}f) + ∑

i∈S,i≠j

Vi(f)σi(E ∩Ci)
> Vj(y {ω}f) + ∑

i∈S,i≠j

Vi(f)σi(E ∩Ci)
= V (y {ω}f ∣ E),

and, therefore, x{ω}f ≻E y {ω}f because V (⋅ ∣ E) represents ≿E .
Proof of Theorem 1. Only if part. Step 1. The algebra of contingencies. Consider the

collection of events

A ∶= {Q(E) ∣ E ⊆ Ω}.
Note that ∅ = Q(∅) ∈ A by Indifference Upon Impossible Events, and all sets in A are

subsets of Q(Ω) by Monotonicity of the Possibility Predicate. By Lemma 10, we have

S/T ∈ A for any S,T ∈ A. It follows that S ∩ T ∈ A and S ∪ T ∈ A for any S,T ∈ A, and A
is a Boolean algebra.

Step 2. The subjective state space. Since A is finite, we can let Π = {C1, . . . ,Cn} be the

collection of the atoms of A — i.e., a collection of nonempty sets from A such that, for all
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D ∈ A, we have either Ci ∩D = ∅ or Ci ∩D = Ci for all i = 1, . . . , n. Clearly, Π is a partition

of Q(Ω), and, for any D ∈ A, there exists k ∈ N and a collection of indices i1, . . . , ik ∈

{1, . . . , n} such that D = ⋃k
j=1Cij . Let S ∶= {1, . . . , n}. Note that n ≥ 3, because otherwise

by Equivalence of Events there would be at most two distinct nondegenerate conditional

preferences ≿C1
and ≿C2

that are also different from ≿, a violation of Nondegeneracy.

Step 3. Conditional utilities. The space F is connected and separable. Then, for each

i ∈ S , we can apply Debreu Theorem to get a continuous utility function Ui ∶ F → R that

represents the preference relation ≿Ci
. For each i ∈ S , let Γi ∶= Ui(F) and note that Γi

is a nondegenerate interval due to the Outcome Preference Consistency and Nontriviality

axioms. Let Γ ∶= ∏n
i=1 Γi.

Step 4. Additive separability. We define a binary relation ⊵ on Γ as v ⊵ w ⇔ f ≿ g for

some f, g ∈ F such that Ui(f) = vi and Ui(g) = wi for all i = 1, . . . , n. (Note that if f ≿ g

holds for some f, g ∈ F satisfying these conditions, then it holds for any such f, g ∈ F by

Lemma 12.)

Now, we claim that ⊵ has the Coordinate Independence property (Wakker, 1989, Def. II.2.3):

For any v,w ∈ Γ, i ∈ S , a, b ∈ Γi,

(v1, . . . , vi−1, a, vi+1, . . . , vn) ⊵ (w1, . . . ,wi−1, a,wi+1, . . . ,wn) ⇔

(v1, . . . , vi−1, b, vi+1, . . . , vn) ⊵ (w1, . . . ,wi−1, b,wi+1, . . . ,wn).
Indeed, fix arbitrary v,w ∈ Γ, i ∈ S , a, b ∈ Γi, and let f, g ∈ F be such that Uj(f) = vj and

Uj(g) = wj for all j = 1, . . . , n, j ≠ i. For any ζ ∈ Γi, let z ∈ X be such that Ui(z) = ζ , and
observe that

(v1, . . . , vi−1, ζ, vi+1, . . . , vn) ⊵ (w1, . . . ,wi−1, ζ,wi+1, . . . ,wn)⇔
z Ci f ≿ z Ci g ⇔ (by Dynamic Consistency)

z Ci f ≿Q(Ω)/Ci
z Ci g ⇔ (by Lemma 11)

f ≿Q(Ω)/Ci
g.

Note that the latter relationship does not depend on the value of ζ and, therefore, Coordi-

nate Independence is proven.

Next, we prove that ⊵ is continuous — i.e., for any w ∈ Γ, the sets {v ∈ Γ ∶ v ⊵ w} and

{v ∈ Γ ∶ w ⊵ v} are closed. Fix an arbitrary w ∈ Γ, and suppose that v0 ∈ Γ and a sequence
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(vm)m∈N in Γ are such that vm ⊵ w for all m ∈ N and vm → v0 as m → ∞. By Lemma 13,

we can find a subsequence (vmk)k∈N, f 0 ∈ F , and a sequence of acts (fk)k∈N such that, for

all i = 1, . . . , n, we have Ui(fk) = vmk

i for all k ∈ N and Ui(f 0) = v0i , and such that fk → f 0

as k →∞. Now, suppose that g ∈ F is such that Ui(g) = wi for all i = 1, . . . , n. Then, vk ⊵ w

implies that fk ≿ g by the construction of ⊵, which, by Continuity, implies that f 0 ≿ g,

and, in turn, v0 ⊵ w. We conclude that the set {v ∈ Γ ∶ v ⊵ w} is closed. Similarly, it can be

shown that the set {v ∈ Γ ∶ w ⊵ v} is closed, as well.

Finally, we claim that all coordinates in Γ are essential: Indeed, fix arbitrary x, y ∈ X

such that x ≻ y. By Outcome Preference Consistency, we have x ≻Ci
y and Ui(x) > Ui(y)

for all i = 1, . . . , n, Furthermore, for all i = 1, . . . , n, xCi y ∼Ci
x by Lemma 11, and, in

turn, xCi y ≻Ci
y by transitivity, and, hence, xCi y ≻ y by Dynamic Consistency. Then,

(U1(y), . . . , Ui−1(y), Ui(x), Ui+1(y), . . . , Un(y)) ⊳ (U1(y), U2(y), . . . , Un(y)) and, therefore,

coordinate i is essential for all i = 1, . . . , n.

Having established all the above-listed properties of ⊵, we can conclude by Wakker (1989,

Th. III.4.1) that there exist continuous functions Wi ∶ Γi → R for i = 1, . . . , n such that, for

all v,w ∈ Γ, v ⊵ w⇔∑n
i=1Wi(vi) ≥ ∑n

i=1Wi(wi).
Step 5. The ex-ante representation. For any f, g ∈ F , we let v ∶= (U1(f), . . . , Un(f)),

w ∶= (U1(g), . . . , Un(g)), and observe that

f ≿ g ⇔ v ⊵ w ⇔
n

∑
i=1

Wi(Ui(f)) ≥ n

∑
i=1

Wi(Ui(g)).
Let Vi ∶= Wi ○ Ui for all i ∈ S . For each i, the function Vi is continuous (as a composition

of continuous functions), is nonconstant, and has compact range by the Best and Worst

Outcomes axiom. Finally, we prove that Ci is the support of Vi for any i = 1, . . . , n: Indeed,

for any f, g ∈ F such that f ∣Ci
= g∣Ci

, we have f ∼Ci
g by Lemma 11; therefore, Ui(f) = Ui(g)

and, in turn, Vi(f) = Vi(g). Moreover, for each ω ∈ Ci, we have PCi
(ω) by construction,

and, therefore, there exist f ∈ F and x, y ∈ X such that x{ω}f ≻Ci
y {ω}f , which implies

that V (x{ω}f) > V (y {ω}f).
Step 6. The conditional representation on A. For all E ∈ A, let

V (f ∣ E) ∶= ∑
i∈S∶Ci⊆E

Vi(f) ∀f ∈ F .
We claim that ≿E is represented by V (⋅ ∣ E) for all E ∈ A. Indeed, for E = ∅ the claim holds

trivially. Otherwise, consider an arbitrary E ∈ A/{∅}, and notice that ≿E is nondegenerate.
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Fix an arbitrary h ∈ F . Then, for any f, g ∈ F , we have

f ≿E g ⇔ (by Lemma 11)

fEh ≿E gEh ⇔ (by Dynamic Consistency)

fEh ≿ gEh ⇔ (by the ex-ante representation)

∑i∈S Vi(fEh) ≥ ∑i∈S Vi(gEh) ⇔ (because of the support of Vi)

∑i∈S∶Ci⊆E Vi(f) ≥ ∑i∈S∶Ci⊆E Vi(g).
Step 7. The functions σi and the conditional representation. For each i ∈ S , let σi∶2Ci →

{0,1} be a function defined by

σi(E) = 1 ⇔ Ci ⊆ Q(E). (11)

These functions, clearly, satisfy the normalization properties: For all i ∈ S , σi(∅) = 0 and

σi(Ci) = 1 because Q(∅) = ∅ and Q(Ci) = Ci. Furthermore, the mapping Q ∶ 2Ω → 2Ω is

monotone (inclusion-wise) by Monotonicity of the Possibility Predicate, which implies that

σi is monotone for all i ∈ S .

For any f, g ∈ F and E ⊂ Ω, we have

f ≿E g ⇔ (by Part (i) of Lemma 10)

f ≿Q(E) g ⇔ (by Step 6)

∑
i∈S∶Ci⊆Q(E)

Vi(f) ≥ ∑
i∈S∶Ci⊆Q(E)

Vi(g) ⇔ (by (11))

∑
i∈S∶σi(E∩Ci)=1

Vi(f) ≥ ∑
i∈S∶σi(E∩Ci)=1

Vi(g),
and Representation (3) is proven.

If part. Assume that there exist a set S = {1, . . . , n}, a collection Π = {C1, . . . ,Cn} of

subsets of Ω, a collection of functions Vi ∶ F → R, and a collection of functions σi ∶ 2Ci →

{0,1} for i ∈ S as described in Theorem 1 and such that statements (i)–(iii) hold.

Continuity. This follows easily from Representation (2) and the continuity of Vi for i ∈ S .

Best and Worst Outcomes. Since the function V1 has a compact range, there exist x∗, x∗ ∈

X such that V1(x∗) ≥ V1(f) ≥ V1(x∗) for all f ∈ F . By Condition (iii), we have Vi(x∗) ≥
Vi(f) ≥ Vi(x∗) for all f ∈ F and all i ∈ S and, therefore, by (2), we have x∗ ≿ f ≿ x∗ for all

f ∈ F .
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Nontriviality. Since n ≥ 3, we can consider the sets C1,C2,C3, and note that ≿C1
, ≿C2

, and

≿C3
are nondegenerate because Vi are nonconstant for i = 1,2,3. It can be verified that ≿,

≿C1
, ≿C2

, and ≿C3
differ from each other by using (2)–(3) and checking how these preference

relations rank the acts x∗C1 x∗, x∗C2 x∗, x∗C3 x∗.

Outcome Preference Consistency. Fix an arbitrary E ⊂ Ω, and suppose that x, y ∈

X are such that x ≿ y. Then, ∑i∈S Vi(x) ≥ ∑i∈S Vi(y) implies that there exists j ∈ S

such that Vj(x) ≥ Vj(y). By (iii), we have that Vi(x) ≥ Vi(y) for all i ∈ S . Therefore,

∑i∈S∶σi(E∩Ci)=1 Vi(x) ≥ ∑i∈S∶σi(E∩Ci)=1 Vi(y) and x ≿E y. Conversely, suppose that x, y ∈ X

are such that x ≿E y. Since ≿E is nondegenerate, there exists at least one j ∈ S such that

σj(E ∩Cj) = 1. Then, there must be some j ∈ S such that Vj(x) ≥ Vj(y). By (iii), we have

that Vi(x) ≥ Vi(y) for all i ∈ S , and ∑i∈S Vi(x) ≥ ∑i∈S Vi(y), which implies that x ≿ y.

Subjective Dynamic Consistency. Suppose that E ⊂ Ω is such that ≿E is nondegenerate,

and f, g ∈ F are such that f(ω) = g(ω) for all ω ∈ Ω such that ¬PE(ω). The equivalence

∑i∈S Vi(f) ≥ ∑i∈S Vi(g)⇔ ∑i∈S∶σi(E∩Ci)=1 Vi(f) ≥ ∑i∈S∶σi(E∩Ci)=1 Vi(g) obtains if we establish

that Vi(f) = Vi(g) for all i ∈ S such that σi(E ∩ Ci) = 0. To prove the latter, fix any

such i ∈ S . For any ω ∈ Ci, we have ¬PE(ω) due to Lemma 14 and the fact that Π is a

partition, and, hence, f(ω) = g(ω) by assumption. Since Ci is the support of Vi, we obtain

Vi(f) = Vi(g), and the claim is proven.

Monotonicity of the Possibility Predicate. Suppose that A ⊆ B ⊆ Ω and ω ∈ Ω is such that

PA(ω) holds. By Lemma 14, there exists j ∈ S such that ω ∈ Cj and σj(A ∩Cj) = 1. Since

σj is monotone, B ∩ Cj ⊇ A ∩ Cj implies σj(B ∩ Cj) ≥ σj(A ∩ Cj). Thus, PB(ω) holds by

Lemma 14.

Equivalence of Events. Suppose that E,E′ ⊆ Ω are related so that: for any ω ∈ E′/E,
PE(ω) holds; and for any ω ∈ E/E′, PE(ω) does not hold. By (3), ≿E = ≿E′ will be proven

if we show that, for any i ∈ S , σi(E ∩Ci) = σi(E′ ∩Ci). First, suppose that σi(E ∩Ci) = 1.

Then, for all ω ∈ E ∩Ci, we have PE(ω) by Lemma 14, and, hence, it must be that ω ∈ E′.

Therefore, E ∩Ci ⊆ E′ ∩Ci, and σi(E′ ∩Ci) = 1 by the monotonicity of σi. Second, suppose

that σi(E ∩Ci) = 0. Then, for all ω ∈ Ci/E, we have ¬PE(ω) by Lemma 14, and, hence, it

must be that ω ∉ E′. Therefore, E ∩Ci ⊇ E′ ∩Ci, and σi(E′ ∩Ci) = 0 by the monotonicity

of σi.

Understanding of Relationships Between Events. Suppose thatA ⊆ Ω is such that PA(ω)⇔
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ω ∈ A for all ω ∈ Ω, and B ⊆ Ω. Note that Q(A) = A, and, hence, A is a union of some cells

of Π. First, suppose that ω0 ∈ Ω is such that PA(ω0) and PB(ω0) hold. Using Lemma 14, we

find i ∈ S such that ω0 ∈ Ci, σi(A ∩Ci) = 1, and σi(B ∩Ci) = 1. Since σi(∅) = 0, it must be

that A∩Ci = Ci, and, hence, σi(A∩B ∩Ci) = σi(B ∩Ci) = 1. By Lemma 14, it follows that

PA∩B(ω0) holds. Second, suppose that ω0 ∈ Ω is such that PA∪B(ω0) holds but PA(ω0) does
not. Using Lemma 14, we find i ∈ S such that ω0 ∈ Ci, σi((A∪B)∩Ci) = 1, and σi(A∩Ci) = 0.

Since σi(Ci) = 1, it must be that A ∩Ci = ∅, and, hence, σi(B ∩Ci) = σi((A ∪B) ∩Ci) = 1.

By Lemma 14, it follows that PB(ω0) holds.
Indifference Upon Impossible Events. The degeneracy of ≿∅ follows from (3) and the

property that σi(∅) = 0 for all i ∈ S .

Proof of Proposition 2. The sufficiency of Conditions (i)–(iii) can be easily verified. We

will prove the necessity. Let (S , (Ci)i∈S , (Vi)i∈S , (σi)i∈S) and (S ′, (C ′i)i∈S ′ , (V ′i )i∈S ′, (σ′i)i∈S ′)
be two representations with subjective contingencies of the same system (≿,{≿A}A⊂Ω).

Let the algebra A be defined as in Step 1 of the proof of Theorem 1). As follows from

the representation of conditional preferences (3), both {Ci}i∈S and {C ′i}i∈S ′ constitute the

collections of atoms of A. Therefore, there must exist a bijection π ∶ S → S ′ such that

C ′πi
= Ci for all i ∈ S .

Condition (ii) holds directly by Wakker (1989, Obs. III.6.6′).

Now, for any i ∈ S and E ⊆ Ω, it follows from Lemma 14 that

σi(E ∩Ci) = 1⇔ Ci ⊆ Q(E)⇔ C ′πi
⊆ Q(E)⇔ σ′πi

(E ∩Ci) = 1.

Thus, Condition (iii) holds, as well.

Proof of Proposition 3. Fix an arbitrary E ⊆ Ω, and let E′ ⊆ E be defined as E′ = {ω ∈
E ∶ PΩ(ω) holds}.

We claim that if PΩ(ω) does not hold for some ω ∈ Ω, then PE(ω) does not hold, either.
Indeed, if PE(ω) holds, then one can find x, y ∈X and f ∈ F such that x{ω}f ≻E y {ω}f .
Then, ≿E is nondegenerate and, by the Subjective Dynamic Consistency axiom, it must be

that x{ω}f ≻ y {ω}f , a contradiction.

Then, by the Equivalence of Events axiom, ≿E = ≿E′. Hence, PE(ω) holds if and only

if PE′(ω) holds. Consequently, by the definition of Q, E is fully understood if and only if

E′ = Q(E′).
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Recall the algebra A = {Q(A) ∣ A ⊆ Ω} constructed in the proof of Theorem 1, the atoms

of which are C1, . . . ,Cn, the cells of Π. Then, E′ = Q(E′) if and only if E′ is a union of

some elements of Π. We conclude that E is fully understood if and only if E is a union of

some elements of Π ∪N(≿).

Proof of Proposition 5. We prove the proposition by showing that (i)⇔ (iii) and (ii)⇔

(iii).

(iii) ⇒ (i) Suppose that σ1

i (S) ≤ σ2

i (S) for all S ⊆ Ci and all i = {1, . . . ,m}. Fix an

arbitrary E ⊆ Ω such that ≿1E and ≿2E are nondegenerate, and let A ∶= M2
−(E), noting

that A ⊆ E. Let I ∶= {i ∈ {1, . . . ,m} ∶ A ∩ Ci ≠ ∅}. As follows from Lemma 14, we have

σ2

i (E ∩Ci) = 0 for all i ∈ I . Then, σ1

i (A ∩Ci) = 0 and, hence, A ∩Ci ⊆M1
−(E) for all i ∈ I

by the same Lemma 14. Since A = ⋃i∈I(A ∩Ci), we obtain A ⊆M1
−(E).

(iii) ⇒ (ii) Suppose that σ1

i (S) ≤ σ2

i (S) for all S ⊆ Ci and all i = {1, . . . ,m}. Fix an

arbitrary E ⊆ Ω such that ≿1E and ≿2E are nondegenerate, and let A ∶=M1
+(E), noting that

A ∩ E = ∅. Let I ∶= {i ∈ {1, . . . ,m} ∶ A ∩ Ci ≠ ∅}. As follows from Lemma 14, we have

σ1

i (E ∩Ci) = 1 for all i ∈ I . Then, σ2

i (A ∩Ci) = 1 and, hence, A ∩Ci ⊆M2
+(E) for all i ∈ I

by Lemma 14 again, which implies that A ⊆M2
+(E).

(i) ⇒ (iii) Suppose that M2
−(E) ⊆ M1

−(E) for all E ⊆ Ω such that ≿1E and ≿2E are

nondegenerate. Fix arbitrary i ∈ {1, . . . ,m} and A ⊆ Ci. Our goal is to prove that σ2

i (A) = 0

implies σ1

i (A) = 0. Assume that σ2

i (A) = 0, let E ∶= (Ω/Ci) ∪ A, and note that ≿E must

be nondegenerate because representations with subjective contingencies must have at least

three cells. Observe that A ⊆ M2
−(E) by Lemma 14. By assumption, we have A ⊆ M1

−(E)
and, therefore, σ1

i (A) = 0 by Lemma 14 again.

(ii)⇒ (iii) Suppose that M1
+(E) ⊆M2

+(E) for all E ⊆ Ω such that ≿1E and ≿2E are non-

degenerate. Fix arbitrary i ∈ {1, . . . ,m} and A ⊆ Ci. Our goal is to prove that σ1

i (A) = 1

implies σ2

i (A) = 1. Assume that σ1

i (A) = 1. If A = Ci then σ2

i (A) = 1 by normalization.

Otherwise, let B ∈ Π2 be such that B ≠ Ci, E ∶= A∪B, and note that ≿E must be nondegen-

erate. By Lemma 14, we have Ci/A ⊆M1
+(E) and, therefore, Ci/A ⊆M2

+(E) by assumption.

Then, it must be that σ2

i (A) = 1 by Lemma 14 again.
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B Proofs of the Results of Section 4

Proof of Theorem 6. Only if part. Step 1. Since ≿ satisfies the Anscombe-Aumann ax-

ioms, it admits a SEU representation via the map f ↦∑ω∈Ω u(f(ω))p(ω) for some noncon-

stant affine function u ∶ X → R and a probability measure p ∈∆(Ω) (see, e.g., Fishburn, 1970, Theorem 13.3

Moreover, u is continuous and has a compact range by the Continuity and Best and Worst

Outcomes axioms, respectively.

Step 2. By Theorem 1, there exist S ∶= {1, . . . , n}, a collection Π = {C1, . . . ,Cn} of

nonempty disjoint subsets of Ω, and functions Vi ∶ F → R and σi ∶ 2Ci → {0,1} satisfying

the conditions listed in the theorem such that functions V ′ ∶ F → R and V ′(⋅ ∣ E) ∶ F → R

defined as

V ′(f) =∑
i∈S

Vi(f)
V ′(f ∣ E) = ∑

i∈S∶σi(E∩Ci)=1

Vi(f)
are utility representations of ≿ and ≿E for all E ⊂ Ω, respectively. By the uniqueness of

additively separable representations (see, e.g., Wakker, 1989, Obs. III.6.6′), there exist

k > 0 and bi ∈ R for all i ∈ S such that Vi(f) = k∑ω∈Ci
u(f(ω))p(ω) + bi, and we also have

p (∪i∈SCi) = 1.

Step 3. Let µ ∈ ∆(S) be defined as µi = p(Ci) for each i ∈ S , and note that, for all i ∈ S ,

µi > 0 because Vi is nonconstant. For each i ∈ S , let pi ∶ Ω → R+ be defined as

pi(ω) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

p(ω)/µi, if ω ∈ Ci,

0, otherwise.

By the previous step, we can represent ≿E as a positive affine transformation V (⋅ ∣ E) of
V ′(⋅ ∣ E) as

V (f ∣ E) = ∑i∈S(E)∑ω∈Ω u(f(ω))pi(ω)µi

∑i∈S(E)µi

,

where S(E) ∶= {i ∈ S ∶ σi(E ∩Ci) = 1}. Given any f ∈ F , define f∗ ∶ S → X as f∗(i) =
∑ω∈Ω pi(ω)f(ω) for all i ∈ S . Then, we have that V (f ∣ E) = ∑i∈S(E) u(f∗(i))µi∣E , where

µi∣E = µi

∑j∈S(E) µj
, is also a utility representation of ≿E for all E ⊂ Ω.

Step 4. For each i ∈ S , let αi ∶= min{p(E)/µi ∣ E ⊆ Ci and σi(E) = 1}. We claim that,

for any i ∈ S and E ⊆ Ci, if p(E) ≥ αiµi then σi(E) = 1. Indeed, fix arbitrary i ∈ S and
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E ⊆ Ci, and let E0 ⊆ Ci be such that σi(E0) = 1 and αi = p(E0)/µi. Note that PE0
(ω) holds

for all ω ∈ Ci because Ci is the support of pi. Hence, we can apply the Admissibility of

Valuable Events axiom to outcomes x∗ and x∗ and events E0 and E to obtain that ≿E is

nondegenerate. Since E ⊆ Ci, it follows from Lemma 14 that σi(E) = 1.

Recalling the definition of pi for i ∈ S , we conclude that ∑ω∈E pi(ω) ≥ αi⇔ σi(E) = 1 for

all E ⊆ Ci and i ∈ S . Thus, S(E) = {i ∈ S ∶ ∑ω∈E pi(ω) ≥ αi}.
If part. Assume that there exist a set S = {1, . . . , n}, a collection Π = {C1, . . . ,Cn}

of subsets of Ω, a utility index u ∶ X → R, a probability measure µ ∈ ∆(S), collections of

probability measures pi ∶ Ω → R+ and numbers αi ∈ (0,1] for i ∈ S as described in Theorem 6

and such that statements (i)–(ii) hold.

Clearly, functions Vi ∶ F → R and σi ∶ 2Ci → {0,1} for i ∈ S defined as

Vi(f) = u(f∗(i))µi and σi(E) = 1⇔ ∑
ω∈E

pi(ω) ≥ αi

satisfy the conditions of Theorem 1, so Axioms (A1)–(A9) hold. Monotonicity and Inde-

pendence axioms follow from the representation by standard arguments.

It remains to show that Admissibility of Valuable Events holds. Let x, y ∈ X be such

that x ≻ y and A,B ⊆ Ω such that ≿A is nondegenerate, B ⊆ Q(A), and xBy ≿ xAy. By

contradiction, suppose that ≿B is degenerate, so that ∑ω∈B pi(ω) < αi for all i ∈ S . Since

B ⊆ Q(A), we observe that if B ∩ Ci ≠ ∅ for some i ∈ S , then, by Lemma 14 and the

definition of σi, we have ∑ω∈A pi(ω) ≥ αi and, hence, i ∈ S(A). We also have S(A) ≠ ∅

because ≿A is nondegenerate. Hence, we obtain:

V (xAy) = u(y) + (u(x) − u(y))∑
i∈S

∑
ω∈A

pi(ω)µi

≥ u(y) + (u(x) − u(y)) ∑
i∈S(A)

∑
ω∈A

pi(ω)µi

≥ u(y) + (u(x) − u(y)) ∑
i∈S(A)

αiµi

> u(y) + (u(x) − u(y)) ∑
i∈S(A)

∑
ω∈B

pi(ω)µi

≥ u(y) + (u(x) − u(y)) ∑
i∈S∶B∩Ci≠∅

∑
ω∈B

pi(ω)µi = V (xBy),
a contradiction.
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Proof of Proposition 7. The sufficiency of the conditions can be easily verified. We will

prove the necessity. Let (S , (Ci)i∈S , u, µ, (pi)i∈S , (αi)i∈S) and (S ′, (C ′i)i∈S ′, u′, µ′, (p′i)i∈S ′ , (α′i)i∈S ′)
be expected utility representations with subjective contingencies of the same system (≿,{≿A}A⊂Ω).
Since an expected utility representation with subjective contingencies is a special case of the

representation in Theorem 1, Proposition 2 implies that there exists a bijection π ∶ S → S ′

such that C ′πi
= Ci for all i ∈ S . The claimed relationships between u′ and u, µ′ and µ,

and (p′i)i∈S and (pi)i∈S follow easily from the uniqueness of the subjective expected utility

representation. It remains to prove the claim regarding the thresholds (α′i)i∈S ′ .
Let Vi ∶ F → R and σi ∶ 2Ci → {0,1} for i ∈ S be defined as

Vi(f) = ∑
ω∈Ci

u(f(ω))pi(ω)µi and σi(A) = 1⇔ ∑
ω∈A

pi(ω) ≥ α′πi
.

Clearly, (S, (Ci)i∈S , (Vi)i∈S , (σi)i∈S) is a representation with subjective contingencies of

(≿,{≿A}A⊂Ω). Therefore, for any i ∈ S and A ⊆ Ci, it must be that ∑ω∈A pi(ω) ≥ α′πi
if only if

≿A is nondegenerate (because Vi is nonconstant). Indeed, the situations α′πi
> ∑ω∈A pi(ω) for

some A ⊆ Ci such that ≿A is nondegenerate, or α′πi
≤ ∑ω∈A pi(ω) for some A ⊆ Ci such that

≿A is degenerate would result in a contradiction. This completes the proof that α′πi
≤ αmax

i

and α′πi
> αmin

i for all i ∈ S .

Proof of Observation 8. Suppose that there exists i ∈ S such that (α1min
i , α1max

i ] ∩
(α2min

i , α2max
i ] ≠ ∅. Without loss of generality, assume that α1min

i < α2min
i < α1max

i . Let

A ⊆ Ci be such that ∑ω∈A pi(ω) = α2min
i . We have ∑ω∈A pi(ω) > α1min

i , so it must be that

≿1A is nondegenerate by the definition of αmin
i , and, therefore, ∑ω∈A pi(ω) ≥ α1max

i by the

definition of αmax
i , a contradiction.

Proof of Proposition 9. By Proposition 5, Decision Maker 1 is more prone to exclusion

errors if and only if Decision Maker 2 is more prone to inclusion errors if and only if

∑
ω∈A

pi(ω) ≥ α1

i ⇒ ∑
ω∈A

pi(ω) ≥ α2

i ∀A⊆Ci
∀i∈S∶∣Ci∣≥2. (12)

Clearly, if α1

i ≥ α
2

i for all i ∈ S , then (12) holds.

Conversely, suppose that (12) holds and assume, by contradiction, that α1min
i < α2min

i

for some i ∈ S . Let A ⊆ Ci be such that ∑ω∈A pi(ω) = α2min
i and ≿2A is degenerate. As

follows from Proposition 7 and Observation 8, it must be that α1min
i < α1

i ≤ α
1max
i ≤ α2min

i
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and, therefore, ∑ω∈A pi(ω) ≥ α1

i . By (12), we have ∑ω∈A pi(ω) ≥ α2

i and, therefore, ≿2A is

nondegenerate, a contradiction. We conclude that α1min
i ≥ α2min

i for all i ∈ S , which, given

Observation 8, proves the proposition.
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