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Abstract

The existing dynamic models for realized covariance matrices do not account for

an asymmetry with respect to price directions. We modify the recently proposed

conditional autoregressive Wishart (CAW) model to allow for the leverage effect. In

the conditional threshold autoregressive Wishart (CTAW) model and its variations

the parameters governing each asset’s volatility and covolatility dynamics are

subject to switches that depend on signs of previous asset returns or previous market

returns. We evaluate the predictive ability of the CTAW model and its restricted

and extended specifications from both statistical and economic points of view. We

find strong evidence that many CTAW specifications have a better in-sample fit

and tend to have a better out-of-sample predictive ability than the original CAW

model and its modifications.

∗The article is forthcoming in Econometric Reviews. The expected year of publication is 2016.
†Corresponding author. Address: Stanislav Anatolyev, New Economic School, 100A Novaya Street,

Skolkovo, Moscow, 143026 Russia. E-mail: sanatoly@nes.ru
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1 Introduction

Modeling and forecasting covariance matrices of financial asset returns play an important

role in asset pricing, portfolio allocation and risk management. The usual approach

is to use Multivariate GARCH models, initially introduced in Bollerslev, Engle, and

Wooldridge (1988). In these models the covariance matrix, which is not directly

observable, is specified as a linear combination of lagged covariance matrices and lagged

outer products of returns. Many versions of such models have been proposed, including

popular BEKK from Engle and Kroner (1995) and DCC from Engle (2002). These models

allow for flexible dynamics of the covariance matrix and guarantee its positive definiteness

without imposing restrictions on model parameters. An alternative approach is to use

high-frequency return data to construct realized covariance matrices for low-frequency

returns. Initially Andersen, Bollerslev, Diebold, and Labys (2003) proposed an approach

to estimate a daily realized variance using intradaily data. Then the idea was expanded

to cover the multivariate case, see for example Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2011), Hautsch, Kyj, and Oomen (2012), Lunde, Shephard, and Sheppard

(2011). However, the existing literature on modeling has typically focused on the analysis

of univariate realized volatilities or single realized covariances. A problem that arises in

the multivariate case is that the predicted covariance matrices are not guaranteed to be

positive definite. A usual solution to this problem is to apply a special transformation

such that the inverse transformation would ensure positive definiteness of the covariance

matrix. In this case, one needs to predict the transformed object and then re-transform it

back to the covariance matrix. Andersen, Bollerslev, Diebold, and Labys (2003) proposed

to use the Cholesky decomposition of the covariance matrix, Bauer and Vorkink (2011)

proposed a matrix logarithmic transformation. One drawback of these approaches is

involvement of nonlinear transformations which cause various biases; in addition, they

bear a risk of heavy parameterization. Gourieroux, Jasiak, and Sufana (2009) and

Golosnoy, Gribisch, and Liesenfeld (2012) avoid such transformations by postulating a
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flexible dynamic distribution for the entire matrix of realized covariance, the conditional

Wishart distribution. The dynamic equation for parameters of this distribution (most of

which are related to the conditional mean) allows to guarantee positive definiteness of

the modeled object without imposing restrictions on parameters.

The univariate GARCH literatures incorporate the important stylized fact of stock

returns that large negative returns increase future volatility while positive returns do not

change or even decrease it (see, for example Hentschel, 1995). There are basically two

intuitive explanations of this asymmetry called the leverage effect. The first explanation

was proposed by Black (1976) and further developed by Christie (1982). According to

their approach, after the price of the stock of a firm experiences an unexpected decline,

its debt-to-equity ratio (financial leverage ratio) increases which in turn (assuming that

the volatility of the whole firm’s price remains constant) translates into an increase in

the stock return volatility. Choi and Richardson (2008) point out that financial leverage

plays a major role in explanation of stock volatility changes; Kroner and Ng (1998) assert

that conditional covariances between stocks are affected by the leverage effect as well.

Another explanation of the asymmetric effect is developed in French, Schwert, and

Stambaugh (1987), Campbell and Hentschel (1992) and Wu (2001). The authors argue

that there is strong evidence of a positive relationship between the market risk premium

and volatility. When the future volatility is expected to increase, the risk premium

increases as well, and risk averse investors sell the stock putting a downward pressure on

the stock price. Thus, an increase in expected future volatility leads to a negative stock

return, which is called volatility feedback. As Campbell and Hentschel (1992) argue, the

volatility feedback can also explain the asymmetric response of volatility to shocks of

different sign.

There are examples of introducing the asymmetry into multivariate GARCH models

as well, see Kroner and Ng (1998), De Goeij and Marquering (2004), Cappiello, Engle,

and Shephard (2006). However, the multivariate Wishart distribution-based models for

realized covariance matrices do not include leverage effects, and the purpose of this paper
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is to fill this gap. We modify the conditional autoregressive Wishart (CAW) model

of Golosnoy, Gribisch, and Liesenfeld (2012) to allow for asymmetry in the volatility

dynamics during episodes of upward and downward movements of asset prices. In our

most flexible specification a change in a price direction of each asset can shift the dynamics

of the this asset’s volatility and its covolatilities with the other assets. We refer to this

model as the conditional threshold autoregressive Wishart (CTAW) model. It guarantees

positive definiteness of the predicted covariance matrices and can be straightforwardly

estimated by maximum likelihood.

The general (i.e. unrestricted) CTAW model is very flexible, with the number of

parameters increasing faster with the number of assets than in the CAW model because,

in addition to the dimensionality of covariance matrices, the number of regimes1 is

increasing in the number of assets as well. In order to avoid possible overfitting and

enhance predictive ability we consider restricted specifications of the general CTAW

model. One direction of dimension reduction we exploit is to impose restrictions that

some parameters do not change when regime switches occur. In particular, we consider

versions where persistence parameters are kept constant across different regimes, versions

where only diagonal elements of parameter matrices are subject to switches, as well as

versions where one asset’s reversal of price direction is able to change only parameters

of its own dynamics. This leads to a variety of different specifications (diagonal,

diagonal-switching, etc.) with substantially different parameter counts. Another direction

of serious dimension reduction is to make regime switches be driven by some market

indicator (such as the S&P index) common to all assets under consideration, with entire

parameter matrices reacting to changes in price directions of this indicator. This leads to

variations of what we call a Market CTAW (MCTAW) model.

In addition to a number of restricted specifications, we also consider a mixed data

sampling (MIDAS, see Engle, Ghysels, and Sohn (2013)) extension of all CTAW models.

1From time to time we will use the terms ‘regime’, ’switch’ and the like adapted in the literature on
threshold autoregressions (Lanne and Saikkonen, 2002).
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In Golosnoy, Gribisch, and Liesenfeld (2012) the MIDAS-CAW model proved to enhance

the in-sample fit and out-of-sample predictive ability. Here, we too incorporate the

MIDAS component assuming that only short-run fluctuations are subject to regime

switching, while the long-run component is not.

We estimate all models using the dataset from Noureldin, Shephard, and Sheppard

(2012) containing daily realized variances and covariances of 5 assets for nearly 9 years.

Following Golosnoy, Gribisch, and Liesenfeld (2012), we employ the Bayesian Information

Criterion (BIC) and LM test for residual serial correlation as tools of in-sample model

selection. In doing out-of-sample forecasting experiments, we construct model confidence

sets (MCS) (Hansen, Lunde, and Nason, 2011) under several loss functions, both

statistical and economic, in order to make conclusions how statistically significant the

differences in predictive ability of different models are.

We find strong evidence that some restricted versions of the CTAW model have a

better in-sample fit and tend to have a better out-of-sample predictive abilities than the

benchmark CAW models, and so do most of their MIDAS versions compared to MIDAS

versions of the benchmark. These results indicate that a possibility to account for leverage

effect is important for forecasting realized covariance matrices. There is mixed evidence

though whether asset-wise regime switches or those driven by the market indicator deliver

better in-sample and out-of-sample performance.

The rest of the paper is organized as follows. Section 2 reviews the notion of a

realized covariance matrix and describes the benchmark CAW model and its variations

developed in Golosnoy, Gribisch, and Liesenfeld (2012). Section 3 introduces the general

CTAW model specification and briefly outlines model estimation. Section 4 describes

restricted and extended specifications of the general CTAW model. Section 5 presents

an extensive empirical study with details on data, estimation and forecasting strategies

and empirical results. Section 6 concludes. The appendix contains numerous tables and

graphs, particularly with results of the empirical study.
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2 Realized Covariance Matrices and Conditional

Autoregressive Wishart Model

Consider a continuous time model for the log-price vector of n assets P (t):

dP (t) = M(t)dt+ Ω(t)1/2dW (t),

where M(t) and Ω(t)1/2 denote n×1 instantaneous drift vector and n×n positive definite

‘square-root’ of the covariance matrix, respectively, and W (t) is n-dimensional vector of

independent Brownian motions. Further we put M(t) = 0, and assume that asset returns

are linearly independent, i.e. Ω(t) is positive definite.

Define the realized covariance matrix as

Yt(∆) ≡
N(∆)∑
j=1

Rt−1+j∆R
′
t−1+j∆,

where Yt(∆) is realized covariance matrix for day t, ∆ is interval length between intradaily

observations, N(∆) = 1/∆ is number of observations within one day, Rt−1+j∆ is j-th

intradaily return vector for the day t. In the absence of market microstructure noise, as

∆ goes to zero, Yt(∆) converges to the integrated covariance matrix of the continuous

time stochastic volatility process for day t:

ICovt =

∫ t

t−1

Ω(τ)dτ .

Now we review the conditional autoregressive Wishart (CAW) model for realized

covariance matrices introduced in Golosnoy, Gribisch, and Liesenfeld (2012), which we

extend in sections that follow. Another possibility for a point of departure could be

the Wishart autoregressive model (WAR) introduced in Gourieroux, Jasiak, and Sufana

(2009). However, the CAW model is more convenient to introduce the leverage effects

into the dynamics of realized covariance matrices.
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Consider a positive definite matrix Yt = (yij,t) of realized covariances of dimension

n × n computed for periods t = 1, . . . , T . Denote by Ft−1 = {Yt−1, Yt−2, . . .} the past

history of Yt up to period t− 1. Golosnoy, Gribisch, and Liesenfeld (2012) assume that

Yt|Ft−1 ∼ Wn(K,Σt), (1)

where K > n is (scalar) number of degrees of freedom, Σt is n × n symmetric positive

definite scale matrix, Wn(·) is density of the Wishart distribution. According to the

properties of the Wishart distribution,

Et−1[Yt] = KΣt,

covt−1(yij,t, ylm,t) = K(σil,tσjm,t + σim,tσjl,t), i, j,m = 1, . . . , n.

The dynamics in the CAW(p, q) model is introduced through the dynamics of St =

KΣt:

St = CC ′ +

p∑
i=1

BiSt−iB
′
i +

q∑
i=1

AiYt−iA
′
i, (2)

where C is n× n lower-triangular matrix, and Ai and Bi are n× n parameter matrices.

Further we address St as a scale matrix of the Wishart distribution. The equations (1)-(2)

define the general CAW(p,q) model. The authors argue that the above-defined model is

unidentified. The sufficient conditions for identification are that all the diagonal elements

of matrix C and first diagonal elements of the matrices Ai and Bi are positive.2 The total

number of parameters to estimate is (p+ q)n2 + n(n+ 1)/2 + 1, which for the CAW(1,1)

specification is 2n2 + n(n+ 1)/2 + 1. In the case of 5 assets (to be the case in Section 5),

CAW(1,1) has 66 parameters to estimate.

In the so called diagonal CAW(p, q) model the matrices Ai and Bi are diagonal. The

identification conditions in the diagonal model are the same as in the general one, but in

2This is a set of convenient restrictions. In fact, it is sufficient to fix a sign of any element of each of
the matrices Ai and Bi, not necessarily the first diagonal one and not necessarily at ‘positive’, see Engle
and Kroner (1995). It is, of course, natural to fix the sign to be positive.
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the diagonal (1,1) model one would expect the signs of all diagonal elements of A1 and

B1 to be the same, as both the persistence and impact coefficients are expected to be

positive for all realized covolatilities. The total number of parameters to estimate in the

diagonal CAW(p, q) model is (p+ q)n+n(n+ 1)/2 + 1, which for the diagonal CAW(1,1)

specification and 5 assets equals 26.

Finally, Golosnoy, Gribisch, and Liesenfeld (2012) consider the MIDAS (mixed data

sampling, see Engle, Ghysels, and Sohn (2013)) versions of the general and diagonal CAW

models which show advantage over baseline CAW models in their empirical application.

The idea of MIDAS is to decompose the volatility and covolatility movements into

short-run and long-run components. The MIDAS-CAW model reads

St = CtS
∗
tC
′
t, Mt = CtC

′
t,

where Mt is the long-run component specified according to the MIDAS weighted sum of

lagged m-period realized volatilities:

Mt = C̄C̄ ′ + θ
L∑
`=1

φ`(ω)

t−m(`−1)−1∑
τ=t−m`

Yτ .

The short-run component S∗t follows the CAW dynamics

S∗t = In +

p∑
i=1

Bi(S
∗
t−i − In)B′i +

q∑
i=1

Ai(C
−1
t−iYt−i(C

′
t−i)

−1 − In)A′i.

In the diagonal MIDAS-CAW model the matrices Ai and Bi are diagonal. The

identification issues regarding the matrices Ai and Bi described above still hold. Either

MIDAS-CAW model has two more parameters (θ and ω) than the corresponding baseline

CAW model.
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3 Conditional Threshold Autoregressive Wishart

Model

In this section we formulate the conditional threshold autoregressive Wishart (CTAW)

model. Even though the primary target of our novelty is to account for leverage in

the form of a non-symmetric volatility dependence, we follow the tradition and add the

qualifier ‘threshold’ to the name of the model. As in the general CAW model we assume

that

Yt|Ft−1 ∼ Wn(K,Σt), (3)

where, as previously, Σt = St/K.

We change the volatility equation by allowing for separate changes of the volatility

dynamics for different assets depending on signs of their daily returns. That is, the

coefficients in the dynamic equation for St are different for different directions of past

price changes for each asset. However, the ‘satiated’ model that takes into account all

combinations of directions for all assets would have 2n variations of matrices Ai and Bi,

which in the case of CAW(1,1) and 5 assets would result in 25+1n2+n(n+1)/2+1 = 1, 616

parameters which is practically infeasible. To achieve a much higher degree of parsimony

at the same time keeping the degree of generality high, we invoke a priori restrictions that

a change in price direction (or equivalently, a change in sign of return) for a particular

asset (‘individual leverage effect’) changes only those coefficients in Ai and Bi that impact

only those realized volatility and covolatilities that are related to this asset. This results

in the following general AB-flexible CTAW specification:

St = CC ′ +

p∑
i=1

(
Bi +

n∑
j=1

Hi,jIj,t−i

)
St−i

(
Bi +

n∑
j=1

Hi,jIj,t−i

)′

+

q∑
i=1

(
Ai +

n∑
j=1

Gi,jIj,t−i

)
Yt−i

(
Ai +

n∑
j=1

Gi,jIj,t−i

)′
,

(4)

9



where

Ij,t = I{rj,t<0}, j = 1 . . . n

are asset-wise directional indicators3 indicating whether the price of asset j went down

in the previous periods; Hi,j and Gi,j are n×n matrices of parameters that contain zeros

except for the elements on the j-th column and j-th row. We call the state when the past

sign is negative regime 2 and refer to the opposite as regime 1. The qualifier ‘AB-flexible’

emphasizes that all A and B matrices are subject to switches. This specification allows

for flexible changes in dynamics for different assets, guarantees positive definiteness of

the predicted realized variance matrices, and adds only (2n− 1)(p+ q)n+ n parameters

to the original CAW model. In case of (1,1) model for 5 assets this results in a total

of 2n2 + n(n + 1)/2 + 2n(2n − 1) + 1 = 156 parameters which is practically feasible to

estimate.4

As in the case of the general CAW model, it is sufficient for identification are that

all diagonal elements of the matrix C and first diagonal elements of the matrices Ai and

Bi are positive. No extra restrictions on elements of matrices Hi,j and Gi,j are needed

for identification provided that no two regimes collapse into one (which is highly unlikely

with the current definition of indicators and a long enough sample).

In order to gain some insight into the dynamics implied by equation (4), consider the

first sum in the equation (denoted S̃t) in the 3 × 3, p = q = 1 case, when only the first

asset switches its regime and the other two stay in regime 1. The dynamics of the second

sum in equation (4) is the same up to notation. From now on we consider only (1,1)

specifications, so in order to simplify notation we omit indices of B1 and A1, the first

3In Section 4 we consider a model with another indicator variable – a market-wide directional indicator.
4For comparison, in Golosnoy, Gribisch, and Liesenfeld (2012) the Schwarz criterion preferred

specification is the unrestricted CAW(2,2) model having 116 parameters; the leading one-step-ahead
predicting model in the subprime crisis is the unrestricted CAW(3,2) model having 141 parameters.
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index of H1,1, and time indexes of I1,t−1 and of elements of St−1. Thus consider

S̃t = (B +H1I1)St−1 (B +H1I1)′

= BSt−1B
′ + (H1St−1H

′
1 +BSt−1H

′
1 +H1St−1B

′) I1,

(5)

where

B =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 , H1 =


h11 h12 h13

h21 0 0

h31 0 0

 , St−1 =


s11 s12 s13

s21 s22 s23

s31 s32 s33

 .

Now we analyze how the dynamics of the elements of S̃t change when the first asset

switches from regime 1 to regime 2 and all other assets stay in regime 1. Denote the

(i, j)-th element of matrix S̃t by s̃i,j. The equation for s̃11 can be written as

s̃11 =
3∑

k=1

b1k

3∑
m=1

skmb1m+

(
3∑

k=1

h1k

3∑
m=1

skmh1m +
3∑

k=1

b1k

3∑
m=1

skmh1m +
3∑

k=1

h1k

3∑
m=1

skmb1m

)
I1.

(6)

The first term would describe the dynamics if all assets were in regime 1. The next three

terms appear due to the switch of the first asset to regime 2. Therefore, the coefficients

on each element skm, k,m = 1, 2, 3 change due to the switch of the first asset.

Consider the dynamics for the other elements in, say, the first row of S̃t The equations

for the elements s̃1,j, j = 2, 3 are

s̃1j =
3∑

k=1

b1k

3∑
m=1

skmbjm+

(
3∑

k=1

h1ksk1hj1 +
3∑

k=1

b1ksk1hj1 +
3∑

k=1

h1k

3∑
m=1

skmbjm

)
I1, j = 2, 3.

Again, the coefficients on all elements skm, k,m = 1, 2, 3 change due to the switch of the

first asset, but in a different manner than in equation (6).

The fact that in case the daily return for the first asset in period t − 1 is negative

the dynamics of all conditional covariances associated with the first asset changes was

documented in De Goeij and Marquering (2004) where the leverage effect was studied
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in the framework of the MGARCH model. Apart from unobservable vs. observable

definition of multivariate volatility, there are two more differences between the CTAW

model and leverage augmented MGARCH model of De Goeij and Marquering (2004).

First, in the CTAW each element of the matrix modeled depends on all lagged elements

of this matrix, while in the leverage augmented MGARCH each element of the matrix

modeled depends only on its own lags. Second, the coefficients in different equations of

the CTAW model are not fully independent, while in the leverage augmented MGARCH

model they are.

Consider the dynamics for the elements that are neither in the first row nor in the

first column of S̃t. The equations for elements s̃i,j, i, j = 2, 3 are

s̃ij =
3∑

k=1

bik

3∑
m=1

skmbjm +

(
hi1s11hj1 +

3∑
k=1

biksk1hj1 + hi1

3∑
m=1

s1mbjm

)
I1, i, j = 2, 3.

As one can see only the coefficients on covariances with the first asset change.5 This is

reasonable since if the first asset switches to regime 2 and its dynamics change, then its

impact on the other assets should also change.

The dynamics of the second sum in equation (4) is the same as the dynamics of the

first sum with a change in notation. In case the other assets are in regime 2, a similar

analysis may be carried out, while a simultaneous switch can be modeled as a combination

of such cases.

The CTAW model may be estimated by maximum likelihood with the following

log-likelihood function:

L(θ) =
T∑
t=1

(
−Kn

2
log 2− n(n− 1)

4
log π −

n∑
i=1

log Γ

(
K + 1− i

2

)

− K

2
log

∣∣∣∣StK
∣∣∣∣+

(
K − n− 1

2

)
log |Yt| −

1

2
tr(KS−1

t Yt)

)
,

where K is the number of degrees of freedom, Γ(·) is the gamma function, | · | is the

5Covariances with the first asset are represented by the elements sk1, k = 1, 2, 3 and s1m, m = 1, 2, 3.
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determinant operator, and tr(·) is the trace operator. The set of parameters θ contains

K and parameter matrices.

We also consider the diagonal AB-flexible CTAW model which introduces leverage

effects into the diagonal CAW(p, q) model. In the diagonal AB-flexible CTAW

specification the form of the dynamic equation for the scale matrix is given by equation (4)

but the parameter matrices Ai, i = 1, . . . , p, Bi, i = 1, . . . , q are diagonal, while the

parameter matrices Hi,j, i = 1, . . . , p, j = 1, . . . , n, Gi,j, i = 1, . . . , q, j = 1, . . . , n now

have zero elements except for the j-th element on the main diagonal:

(Hi,j)mk = δmkδjmhi,j, i = 1, . . . , p, j,m, k = 1, . . . , n (7)

(Gi,j)mk = δmkδjmgi,j, i = 1, . . . , p, j,m, k = 1, . . . , n (8)

where (A)mk denotes the (m, k)th element of the matrix A, and δmk is Kronecker’s delta.

The identification conditions in the diagonal model are the same as in the general one,

but in the diagonal (1,1) model one would expect the signs of all diagonal elements of

A1, A1 +
∑n

j=1G1,j, B1 and B1 +
∑n

j=1H1,j to be the same, as both the persistence and

impact coefficients are expected to be positive for all realized covolatilities in all regimes.

Consider the dynamics implied by this model again in the 3×3, p = q = 1 case, when

only the first asset switches its regime and the other two stay in regime 1. Denote by h

the only element in the matrix H1. Consider S̃t, given by the equation (5). The equation

for the element s̃11 reads

s̃11 = b11s11b11 + h [h(s11 + s12 + s13) + b11s11 + s11b11] I1.

The equations for the other elements from the first row of the matrix S̃t read

s̃1j = b11s1jbjj + hs1jbjjI1, j = 2, 3.
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The equations for the elements s̃i,j, i, j = 2, 3 read

s̃ij = biisijbjj, i, j = 2, 3.

As one can see only the dynamics for the covariances with the first asset change, and the

coefficients only on the lagged covariances with the first asset change, and these changes

are characterized by one parameter h.

The total number of parameters in the diagonal AB-flexible CTAW specification is

(p + q)n + n + (p + q)n + 1. In case of the (1,1) model for 5 assets this results in

2n+ n+ 2n+ 1 = 26 parameters.

4 Restricted and extended CTAW models

The general CTAW model is very flexible, and it is possible that it would overfit the

in-sample data. In order to mitigate this possibility we also consider restricted versions of

the general AB-flexible CTAW model. We also consider MIDAS extensions of all models.

4.1 A-flexible CTAW

In the general A-flexible CTAW specification the coefficients on the lagged scale matrices

St−i in equation (4) do not depend on the regimes of assets so that the dynamics of the

scale matrix are as follows:

St = CC ′ +

p∑
i=1

BiSt−iB
′
i

+

q∑
i=1

(
Ai +

n∑
j=1

Gi,jIj,t−i

)
Yt−i

(
Ai +

n∑
j=1

Gi,jIj,t−i

)′
.

(9)

Such specification can be motivated by the fact that realized covariances Yt are observable

and can be used as proxies for news about the assets. Investors first of all react on news

about the stocks, so the leverage effect should affect the coefficients on Yt. On the
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contrary, St are unobservable and therefore investors cannot react to its changes, thus the

coefficients on St need not be affected.

The total number of parameters to estimate in this specification is (p+ q)n2 + n(n+

1)/2 + qn(2n− 1) + 1. In case of the (1,1) model for 5 assets this results in 2n2 + n(n+

1)/2 + n(2n− 1) + 1 = 111 parameters.

Likewise, in the diagonal A-flexible CTAW specification we impose the restrictions on

the diagonal AB-flexible CTAW model that the parameter matrices Bi are the same in

all regimes. That is, the form of the dynamic equation for the scale matrix is given by

equation (9) but the parameter matrices Ai, i = 1, . . . , p and Bi, i = 1, . . . , q are diagonal,

and the parameter matrices Hi,j, i = 1, . . . , p, j = 1, . . . , n, Gi,j, i = 1, . . . , q, j =

1, . . . , n are given by equations (7) and (8). The total number of parameters in this

specification is (p+ q)n+ n+ pn+ 1. In case of the (1,1) model for 5 assets this implies

2n+ n+ n+ 1 = 21 parameters.

4.2 Diagonal-switching CTAW

In the diagonal-switching AB-flexible CTAW specification the form of the dynamic

equation for the scale matrix is the same as for the general AB-flexible CTAW model given

by equation (4), but the parameter matrices Hi,j, i = 1, . . . , p, j = 1, . . . , n, Gi,j, i =

1, . . . , q, j = 1, . . . , n are given by equations (7) and (8).

Denote the only element in the matrix H1 by h. Consider S̃t given by equation (5).

The equation for its element s̃11 reads

s̃11 =
3∑

k=1

b1k

3∑
m=1

skmb1m + h

[
h(s11 + s12 + s13) +

3∑
k=1

b1ksk1 +
3∑

m=1

s1mbm1

]
I1.

The equations for the other elements from the first row of the matrix S̃t read

s̃1j =
3∑

k=1

b1k

3∑
m=1

skmbjm + h
3∑

m=1

s1mbmjI1, j = 2, 3.
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The equations for the elements s̃i,j, i, j = 2, 3 read

s̃ij =
3∑

k=1

bik

3∑
m=1

skmbjm, i, j = 2, 3.

As one can see, only the dynamics for the covariances with the first asset change, and

the coefficients only on lagged covariances with the first asset change. In addition, these

changes are characterized by only one parameter h.

The total number of parameters in this specification is (p+ q)n2 + n(n+ 1)/2 + (p+

q)n+1. In case of the (1,1) model for 5 assets this results in 2n2 +n(n+1)/2+2n+1 = 76

parameters.

Likewise, in the diagonal-switching A-flexible CTAW specification we impose the

restrictions on the diagonal switching AB-flexible CTAW model that the parameter

matrices Bi are the same in all regimes. That is, the form of the dynamic equation for

the scale matrix is given by equation (9) but the matrices Gi,j are given by equation (8).

4.3 Market CTAW

Finally, we consider a restriction on the switching mechanism. In the baseline

CTAW model and its variations the changes of volatility dynamics of all assets under

consideration are driven by changes of all assets’ price directions. In the Market CTAW

(MCTAW) specification the changes in volatility dynamics of all assets are driven by

changes in price directions of a single portfolio representing the market. This may

prove useful if individual volatilities and covolatilities are largely driven by the whole

market condition which may be characterized by the market portfolio return, and not

by idiosyncracies of individual prices. If individual assets often change their direction

along with directional changes of the market portfolio,6 the model parameters describing

volatility dynamics in some states may be estimated imprecisely, and pooling these states

6Indeed, in our dataset the correlation between the signs of the market return and individual returns
varies from 0.46 to 0.55; the correlation between the sign of the market return and the indicator that
most of individual returns have the same sign is 0.69.
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may have a beneficial effect on precision of estimation and quality of forecasting.

Of course, because such restriction in the switching mechanism deems a lot of

parameters in the matrices Hi,j and Gi,j in (4) separately unidentifiable, appropriate

restrictions must be placed on their elements.

Denote the return on the portfolio representing the market at t by rm,t, and let Im,t =

I{rm,t<0} be the corresponding directional indicator. As with the other CTAW models

we consider a number of specifications. Again, all specifications may be broadly divided

into two classes: AB-switching and A-switching. In the AB-flexible MCTAW model the

dynamics for the scale matrix is driven by the following equation:

St = CC ′ +

p∑
i=1

(Bi +Hi,mIm,t−i)St−i (Bi +Hi,mIm,t−i)
′

+

q∑
i=1

(Ai +Gi,mIm,t−i)Yt−i (Ai +Gi,mIm,t−i)
′ .

(10)

In the A-flexible MCTAW model the parameter matrices Bi are not subject to switching:

St = CC ′ +

p∑
i=1

BiSt−iB
′
i

+

q∑
i=1

(Ai +Gi,mIm,t−i)Yt−i (Ai +Gi,mIm,t−i)
′ .

(11)

For both classes we consider the general specification, where no restrictions are

placed on the parameters (except for the identification restrictions, see below), the

diagonal-switching specification, where matrices Gi,m, i = 1, . . . , p and Hi,m, i = 1, . . . , q

(if applicable) are diagonal, and finally, the diagonal specification, where matrices

Ai, Gi,m, i = 1, . . . , p and Bi, Hi,m, i = 1, . . . , q (whichever applicable) are diagonal.

As in the case of the CTAW models, it is sufficient for identification that all diagonal

elements of the matrix C and first diagonal elements of the matrices Ai and Bi are

positive, and no extra restrictions on elements of matrices Hi,m and Gi,m are needed

for identification provided that the market portfolio exhibits both positive and negative

17



price changes. Analogously to the diagonal (1,1) CTAW, in the diagonal (1,1) MCTAW

specification one would expect the signs of all diagonal elements of A1, A1 +G1,m, B1 and

B1 +H1,m to be the same.

The total number of parameters to estimate in the general AB-switching specification

is 2(p+q)n2 +n(n+1)/2+1, in the general A-switching specification – (p+2q)n2 +n(n+

1)/2 + 1. In case of the (1,1) model for 5 assets this results in 116 and 91 parameters,

respectively.

4.4 MIDAS-CTAW

Golosnoy, Gribisch, and Liesenfeld (2012) combine their CAW model with the MIDAS

approach to volatility modeling of Engle, Ghysels, and Sohn (2013) and empirically show

that the MIDAS-CAW model is able to yield a better in-sample fit and out-of-sample

predictability than the baseline CAW model. Motivated by these findings, we also consider

MIDAS extensions of all specifications of CTAW models (which we call ‘baseline’, as

opposed to their MIDAS versions), reasonably assuming that regime switches driven by

daily returns manifest themselves only in short-run dynamics. We modify equation (2)

so that the matrices Ai, i = 1, . . . , p and possibly Bi, i = 1, . . . , q are subject to

the same switches and restrictions as in the baseline versions. We set the auxiliary

MIDAS parameters as in Golosnoy, Gribisch, and Liesenfeld (2012): m = 20, L = 12 and

φ`(ω) ∝ (1− `/L)ω−1 subject to
∑L

`=1 φ`(ω) = 1. Any MIDAS-CTAW model has two

more parameters (θ and ω) than the corresponding baseline CTAW model.

For readers’ convenience, Table 1 summarizes the restrictions placed on model

parameters in the baseline versions of the CAW, CTAW and MCTAW models. The

restrictions placed on their MIDAS versions are analogous.
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5 Empirical Application

5.1 Data Description

In order to compare predictive abilities of the models described above we exploit

the dataset constructed by Noureldin, Shephard, and Sheppard (2012). These are

5-min realized covariance matrices for returns of five stocks: American Express (AXP),

JPMorgan (JPM), General Electric (GE), DuPont (DP) and International Business

Machines (IBM). Realized covariance matrices are calculated with 1-min offset and then

averaged in order to cope with microstructure noise and to fully exploit the data. In

directional indicators, we use daily returns on the same assets and the S&P500 return

(SPY) as a return on the market portfolio. The sample period is from February 2001

to December 2009. The total number of observations is 2,242. Summary statistics on

realized variances and covariances and returns are shown in Table 2. As one can see, all

variances and covariances are positive-skewed and leptokurtic. The asset returns exhibit a

typical pattern, with light skewness and serious excess kurtosis. There are approximately

as many positive returns as there are negative ones for each individual asset, while for

the market portfolio positive returns exceed negative ones by about 13%.

We divide the whole sample into two parts: in-sample and out-of-sample. The

in-sample part is from February 1, 2001 to January 1, 2006. The total number of

observations7 in this part is 1,236. The out-of-sample part is from January 2, 2006 to

December 31, 2009. The total number of observations in this part is 1,006. The realized

variances for AXP and realized covariances for AXP-JPM are plotted on Figure 1; the

out-of-sample part is shaded. As one can see, during the sample period there are both

volatile and non-volatile subperiods, the patterns for variance and covariance being quite

similar. The out-of-sample part also has volatile and non-volatile episodes. To be able to

compare forecasting results during periods of different degree of turbulence, we separately

consider two out-of-sample subperiods: the calm one (from January 4, 2006 to August

7Each observation is a 5× 5 realized covariance matrix.
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28, 2008) and the highly volatile one (from August 29, 2008 to June 6, 2009), both are

shaded in Figure 1 with different intensity.

5.2 Estimation methodology

We estimate the general specification of the CAW and CTAW model and all

restricted and extended specifications listed in Section 4, for orders (p, q) from the

list (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3). For each model we compute values

of the Bayesian Information Criterion (BIC), as well as minimal and median (across

15 different volatilities and covolatilities) p-values for the Lagrange multiplier test for

serial correlation in the residuals with 20 lags corrected for conditional heteroskedasticity

(20min and 20med).8 Recall that the MIDAS versions in contrast to the baseline versions,

employ many lags (mL = 20 × 12 = 240). To make comparison of all models on the

same footing, we estimate them and compute corresponding values of BIC over the last

T −mL = 1, 236− 240 = 996 in-sample observations.

In order to guarantee that the number of degrees of freedom, diagonal elements of

matrices C, and first elements on main diagonals of matrices Ai and Bi are all positive,

we use their square roots as parameters for ML estimation. In a similar way, for MIDAS

models we constrain θ to be positive and ω to be greater than 2.

We use a consecutive estimation procedure similar to the bottom-up procedure

proposed in Golosnoy, Gribisch, and Liesenfeld (2012). We refine the latter by exploiting

multiple starting parameter values in order to exclude dependence on them. We start

with CAW(0,1) for which we use diagonal matrices C, Ai and Bi with different sets of

diagonal elements as starting parameter values; the model with the highest likelihood is

selected in the end. Next we estimate CAW(1,1) for which we try, in addition to diagonal

matrices C, Ai and Bi, the optimal solution from CAW(0,1) as well as its value scaled by

weights varying from 0.5 to 1.0. Again, the model with the highest likelihood is selected

8Golosnoy, Gribisch, and Liesenfeld (2012) instead report p-values for the Ljung–Box test; these
values, in contrast to ours, are very close to zero.
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in the end. Higher order models are processes in a similar way. For CTAW models

the procedure is analogous except that to estimate CTAW(0,1) we additionally try the

optimal solution from CAW(0,1) and its scaled versions. Not only does such a strategy

explore the regions around optimal solutions of lower order models but also it exploits

independent starting parameter values to inspect other areas where the optimal solution

can lie.9

All standard errors are constructed using the ‘sandwich’ formula that uses numerically

estimated Hessian and Jacobian.

5.3 Estimation results

The diagnostics for all versions and specifications of the CAW and CTAW models are

shown in Tables 3–8. All models except baseline ones with orders (0, 1) have no problems

with residual serial correlation: even minimal p-values of the LM test exceed 10%, while

their median values exceed 40%.10 The presence of the MIDAS component, however,

removes the residual autocorrelation even when the order is (0,1). That is, the order (1,1)

is sufficient to take care of serial correlation, but yet higher orders are generally needed to

adequately describe the dynamics of realized variances and covariances. According to the

BIC, in most specifications the orders (2,1) turn out to be optimal, while some diagonal

versions (those that have much fewer parameters overall) require orders (3,2).

Inspection of Tables 4–5 and Tables 7–8 reveals that for the baseline versions of general

CTAW models the A-flexible specifications fare better than the AB-flexible ones uniformly

in model orders, but this is not the case for diagonal-switching and diagonal models and/or

9This proves to be crucial for relatively lower order models because some too parsimonious models
like those of orders (0,1) or (1,1) are usually unable to capture all richness of the dynamics thus having
their optimal solutions quite far from optimal solutions of higher order models. As a result, the simple
bottom-up strategy may lead to suboptimal estimates of the whole category of models. Indeed, estimates
that started from diagonal parameter matrices are chosen quite often.

10A visual inspection of LM test p-values in ‘problematic’ models indicates that errors in both
variance and covariance equations may be equally subject to residual serial correlation, and that such
autocorrelation tends to be present in the same equations for different ‘problematic’ models. At the
same time, given the autoregressive orders, the CTAW structure by itself does not necessarily correct
autocorrelation compared to CAW; it is an increase in orders that helps whiten the errors.
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MIDAS versions. That is, except for most general (and highly parameterized) models,

additional switches in the persistence matrices Bi may improve or may reduce the quality

of in-sample fit.

Another interesting observation comes from comparing general and diagonal

specifications in all models from each of Tables 3–8. For CAW models, both baseline

(Table 3) and MIDAS (Table 6) versions, the diagonal specification is uniformly better

than the general specification, which is more unambiguous than the evidence presented

in Golosnoy, Gribisch, and Liesenfeld (2012). Somewhat analogously, in cases of both

individual asset driven (Table 4) and market driven (Table 5) baseline CTAW models, the

BIC favors diagonal-switching specifications over general ones, and diagonal specifications

over diagonal-switching ones. That is, the reductions in the likelihood caused by

restrictions on diagonals of the matrices Ai, Bi, Gi and Hi are sufficiently small to

justify reductions in the degrees of freedom. However, such unambiguity vanishes when

it comes to MIDAS versions: while the same tendency remains, some diagonal-switching

specifications fare better than corresponding diagonal ones despite a big difference in

degrees of parameterizations (see Table 7 in particular).

Table 9 summarizes information about the optimal orders and values of BIC across

all model specifications. Among baseline versions, only the heavily parameterized (226

parameters) general AB-flexible CTAW is dominated by the original general CAW model

(91 parameters). All baseline diagonal-switching and diagonal CTAW models (some

containing more than 100 parameters) are better than the original diagonal CAW model

(41 parameters). Among MIDAS versions, the same tendencies are observed, although

the dominance is less sharp: not all diagonal MIDAS-CTAW models are better than the

original diagonal MIDAS-CAW. Evidently, separating long-run and short-run movements

by incorporating the MIDAS structure is more important for CAW than for CTAW in

which the mechanism of regime switching itself is able to partially explain some long-run

dynamics.11

11Similarly, one can explain strongly persistent behavior of stationary series using threshold
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Interestingly, according to BIC, a best model in each CTAW category is necessarily

diagonal with respect to regime switches, i.e. the parameter matrices Ai andBi in different

regimes differ only by their diagonals. That is, extending the degree of parameterization

to switching the entire parameter matrices is not worth the improved quality of fit, but

extending it to switching their diagonals is.

Tables 10 and 11 contain parameter estimates of the optimal (in-sample, according to

BIC) models of both versions (baseline and MIDAS) – diagonal AB-flexible MCTAW(2,1)

and diagonal-switching AB-flexible MIDAS-CTAW(2,1) (those that are highlighted in

bold in Table 9). Note that both ‘winners’ are AB-flexible, so that eventually regime

switching in the persistence matrices Bi turns out to be important.

In Tables 10 and 11 the statistically significant coefficients at the 1% level are

highlighted in bold, those at the 5% level in italic. In the diagonal AB-flexible MCTAW

model, the elements of the (diagonal) matrices Ai and Bi are big and highly statistically

significant, while the elements in the matrices Gi and Hi that are added to the former are

rather heterogenous though relatively small, and most are individually insignificant. In

the diagonal-switching AB-flexible MIDAS-CTAW model, the matrices Ai and Bi are all

filled by non-zero elements, and the pattern of statistical significance is quite blurry, while

the situation with Hi and somewhat with Gi, on the contrary, is clearer. Incorporation of

the MIDAS component seems to reduce the degree of persistence, which is to be expected.

Interestingly, the estimates of the slope parameter θ and the decay parameter ω for these

particular data, although statistically significant, are notably smaller than those for the

data of Golosnoy, Gribisch, and Liesenfeld (2012).

One can see in Figures 2 and 3 how the in-sample predictions from the diagonal

A-flexible CTAW(3,2) model fit the real realized variance for AXP and realized covariance

for AXP-JPM.12

autoregressions (Lanne and Saikkonen, 2002).
12Recall that the earliest 240 observations are used only in MIDAS models for estimating long-run

components, hence no predictions at the beginning of the sample.
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5.4 Forecasting methodology

To compare forecasting ability of different models, we construct model confidence sets

(MCS) of Hansen, Lunde, and Nason (2011). A model confidence set is a subcollection

of models that contains the ‘best’ (according to a specified loss function or another

performance criterion) model with an assigned coverage probability. The MCS procedure

also delivers, for all models under consideration, their individual p-values which can be

roughly interpreted as their chances to be ‘best’.

We use, because of high computational duty, the fixed estimation scheme of generating

forecasts when a model is estimated once on the in-sample part, and then one-step-ahead

predictions are made using the estimated model and incoming information. After the

predictions are made, we compute values of the loss function for the out-of-sample portion

of the data. Then we apply the MCS methodology (Hansen, Lunde, and Nason, 2011)

using the block bootstrap with length B = 25.13 As performance criteria, we use several

statistical loss functions listed below, as well as one economic criterion, the excess return

from a mean-variance efficient portfolio. Denote the prediction of Yt by Ŷt.

One criterion is the Stein loss (James and Stein, 1961):

LS(Yt, Ŷt) = tr[Ŷ −1
t Yt]− log |Ŷ −1

t Yt| − n. (12)

This is a scale-invariant loss function based on the standardized error. This loss function is

asymmetric with respect to over/under-predictions: under-predictions are penalized more

heavily than over-predictions. It is implied by the Wishart density, i.e. this prediction

criterion is coherent with the estimation step. Moreover, it is robust to the unobservable

nature of volatility in the sense of Patton (2011).

Another criterion is the Frobenius loss

LF (Yt, Ŷt) = tr[(Yt − Ŷt)′ (Yt − Ŷt)]. (13)

13We use Kevin Sheppard’s MFE Toolbox for MATLAB, please find more details at http://www.

kevinsheppard.com/MFE_Toolbox
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This is a multivariate extension of the familiar quadratic loss in the scalar case. It

is symmetric with respect to over- and under-predictions. It is also robust to the

unobservable nature of volatility in the sense of Patton (2011).

In addition we make a comparison of economic significance of predictions of realized

covariance matrices. We follow the procedure described in De Goeij and Marquering

(2004) where the authors propose to use these predictions in order to construct a

mean-variance efficient portfolio. An investor wants to construct a portfolio with the

smallest possible variance but with some fixed required expected return. That is, he or

she solves the following problem:

min
wt+1

w′t+1Y
−1
t+1wt+1,

s.t. w′t+1µ+ (1− w′t+1ι)rf,t+1 = µp,

where wt+1 are portfolio weights on n assets at moment t + 1, µ is vector of expected

returns for these n assets, ι is vector consisting of n ones, rf,t+1 is risk free rate at the

moment t + 1, µp is required expected portfolio return. The solution to this problem is

given by the following formula:

w∗t+1 =
(µp − rf,t+1)Y −1

t+1(µ− rf,t+1ι)

(µ− rf,t+1ι)Y
−1
t+1(µ− rf,t+1ι)

.

The authors use constant expected returns for all assets, since it is difficult to predict

asset returns and they want to concentrate on volatility forecasts rather than on return

forecasts. In case of a highly volatile out-of-sample period it seems that constant expected

returns are unlikely as the environment and the market change quickly. Therefore we

modify their approach. As predictions for day t we use an average ex-post realized daily

return calculated for the next 3 days. On the one hand such approach can be seen as a

“perfect foresight” by the investor and give good return predictions; on the other hand,

3 days is a long period, so only incomplete information is given to the investor, and
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large uncertainty is still present. This approach allows us to concentrate on evaluation of

predictions of covariance matrices and not on predictions of returns.

Having one-step-ahead predictions of Yt+1 in hand, we calculate the portfolio return

as a value weighted return:

rp,t = w∗t rt,

where rp,t is portfolio return at moment t, and rt is ex-post realized return vector at

moment t. Following De Goeij and Marquering (2004) we set the target return µp equal

to 20%. As a performance measure that captures the trade-off between risk and return

of the portfolio the authors use the following average utility function:

Ûp(γ) =
1

T

∑
t

[
rp,t −

1

2
γr2

p,t

]
,

where γ captures investor’s risk aversion. In order to test economic significance of

differences in forecasts for different models, we again use MCS, with the loss at moment

t being equal to minus utility at moment t. As in De Goeij and Marquering (2004) we

use the following values of γ: 3, 6, and 9, but report prediction results only for γ = 6;

the experiments with the other values yield qualitatively similar results.

5.5 Forecasting results

Tables 12 and 13 contain, for the highly volatile and calm subperiods respectively, best

performing models according to their predictive abilities. For each specification and loss

function separately they show best autoregressive orders, MCS p-values and average loss

values. Table 14 shows similar statistics, but for the autoregressive orders that are optimal

in the BIC sense (see Table 9).

The conclusions that can be drawn from these tables are less clear-cut than when

in-sample performances are compared, and almost every ‘rule’ has its exceptions.

Nevertheless, one can see that for both subperiods and all loss functions, to each

benchmark CAW model correspond some CTAW specifications, often several or many,
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that have equal or more chances to predict better. The same is also true with the CAW

and CTAW models selected by BIC.

The optimal autoregressive orders are generally less stable than when BIC is used to

select orders, they happen to be all allowed pairs, including (0,1) and (3,3). Comparing

different specifications, one can see an expected tendency that more parsimonious models

are likely to predict more successfully. However, for some loss functions prediction is

better with even higher orders than BIC would prescribe. For instance, in the calm

subperiod the orders are quite large with the Frobenius loss but are quite small with the

economic loss. Except under the economic loss, the optimal orders tend to be smaller in

the calm subperiod than in the highly volatile one.

The BIC-optimal specifications tend to be more successful in prediction the more

diagonal their structure is. Recalling that the same tendency is observed in-sample,

one should certainly prefer diagonal CTAW specifications in empirical analysis, though

not necessarily of low autoregressive orders and not necessarily MIDAS versions. One

can hardly say for sure whether A-flexible or AB-flexible specifications predict better

(though the former seem a bit more attractive), or whether Market CTAW are better than

asset-wise CTAW. Whether baseline or MIDAS versions are preferred highly depends on

the loss function: for the Stein loss baseline versions have more chances to fare best, for

the economic loss – MIDAS versions.

To see whether it is volatilities or covolatilities that get predicted better as a result

of incorporating the leverage effects, we also split the Frobenius loss function into the

realized variance and covariance parts separately: LV (Yt, Ŷt) = (dg(Yt − Ŷt))′ dg(Yt − Ŷt)

and LC(Yt, Ŷt) = 1
2
(LF (Yt, Ŷt)−LV (Yt, Ŷt)), where dg(P ) denotes a vector containing the

main diagonal of square matrix P , and construct MCS (unreported) for both sublosses

as well. It turns out that the models that are best in predicting variances are also among

best in predicting covariances, and vice versa. For example, in the highly volatile period

the two LF -best predicting models (which are general CTAW(2,1) and CTAW(2,2)) with

LF -MCS p-values 100% and 81% respectively, are also LV -best with p-values 100% and
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87% and are LC-best with p-values 100% and 90%. All models with LF -MCS p-values

exceeding 70% (namely, 10 various CTAW and MCTAW) have LV -MCS p-values of at

least 79% and LC-MCS p-values of at least 63%.

Table 15 provides rankings of what type of models (whose total number is 224, viz. 16

CAW models, 48 CTAW models, 48 MCTAW models, and as many their MIDAS versions)

the MCS contain. For each model type (CAW, CTAW, MCTAW), model version (baseline

or MIDAS) and each of the three losses (Stein, Frobenius, economic) a corresponding cell

counts best models whose p-values belong to one of equal intervals (from [0%,20%] to

(80%,100%]). One can see immediately that for relatively small values of significance levels

(like 20%) Stein MCS are generally narrower than economic MSC and much narrower

than Frobenius MSC.14 Naturally enough, for the two statistical losses the volume of

MCS tends to be larger during the calm subperiod than during the turbulent subperiod,

but for the economic criterion the opposite is true.

Again, one can see that the benchmark CAW members never rise above the 60%

threshold, except for the MIDAS version with respect to the economic loss. At the same

time, there are always a few CTAW or MCTAW models that rise above the 80% bar.

Interestingly, during the volatile subperiod the best predicting models tend to be

baseline versions of asset-wise CTAW, while during the calm subperiod – the MIDAS

version of Market CTAW. In aggregate terms, incorporating the MIDAS component does

good for predictive abilities of the CAW and MCTAW classes but does no good or even

worsens performance of the CTAW class. This can be explained by the aforementioned

property of switching regimes (whose number for CTAW is 5 as opposed to 2 for MCTAW

and 1 for CAW) to implicitly account for some long-run volatility persistence without

explicit presence of the MIDAS component.

One can see in Figures 2 and 3 how the forecasts from the out-of-sample LS-best

diagonal A-flexible CTAW(3,2) model correspond to the realizations of the realized

14We conjecture that relative tightness of Stein MCS is due to the coherency of the Stein loss to the
Wishart likelihood.
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variance for AXP and realized covariance for AXP-JPM.

6 Conclusion

In this paper we extended the conditional autoregressive Wishart model from Golosnoy,

Gribisch, and Liesenfeld (2012) to incorporate the leverage effect. We considered

restricted specifications of the proposed CTAW model and studied the dynamics implied

by these models. Next, we estimated the new models along with the benchmark – the

original CAW model and its modifications – and evaluated their forecasting abilities using

the framework of model confidence sets.

We find strong evidence that some restricted versions of the CTAW model have a

better in-sample fit and tend to have a better out-of-sample predictive ability than the

benchmark CAW models, and so do most of their MIDAS versions compared to MIDAS

versions of the benchmarks. The results indicate that a possibility to account for leverage

effect is important for forecasting realized covariance matrices, and that the class of

CTAW models is flexible enough to capture this effect. There is hard to tell though

which of the restricted models, in particular one with asset-wise regime switches or one

with those driven by the market indicator, is universally better in balancing the degree

of complexity and quality of in-sample and out-of-sample fit.

Possible venues of future research include a search of other functions of price

movements or alternative variables driving regime switches, as well as accommodating

smoother transitions from one regime to another. Introducing threshold effects in the

long-run components in MIDAS versions may also constitute a useful research direction.
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Summary Statistics

Stock Mean Max. Min. Std. dev. Skewness Kurtosis

Realized Variances

AXP 4.42 201.88 0.08 9.15 8.54 130.99
JPM 5.06 176.48 0.11 11.09 7.52 84.69
GE 3.20 114.26 0.10 7.11 7.24 72.65
DP 2,53 63.87 0.16 3.72 6.44 68.05
IBM 1.93 57.54 0.08 3.36 7.32 82.19

Realized Covariances

AXP-JPM 2.46 64.4 −4.45 5.49 5.60 45.70
AXP-GE 1.76 72.84 −0.41 4.29 7.51 85.11
AXP-DP 1.45 56.52 −0.50 3.28 7.37 85.80
AXP-IBM 1.26 51.82 −0.76 2.98 8.27 97.84
JPM-GE 1.86 70.03 −5.22 4.54 7.56 85.33
JPM-DP 1.52 57.56 −0.88 3.34 7.17 80.12
JPM-IBM 1.33 56.58 −2.21 30.09 8.76 116.58
GE-DP 1.29 49.40 −0.63 2.83 7.55 88.42
GE-IBM 1.13 49.27 −0.78 2.57 8.45 109.61
DP-IBM 0.98 39.88 −0.53 2.22 8.44 102.03

Daily Returns

AXP 0.00 18.32 −17.02 2.72 0.11 7.90
JPM 0.00 22.77 −22.98 2.96 0.27 14.88
GE 0.00 17.36 −13.89 2.20 0.00 7.78
DP 0.00 10.26 −12.14 1.91 −0.22 8.49
IBM 0.00 10.97 −11.18 1.72 0.13 12.73
SPY 0.00 10.76 −9.60 1.38 −0.07 10.76

Table 2: Summary statistics for realized variances and covariances and daily stock returns.
The sample period is from February 2001 to December 2009.



p q Np BIC 20min 20med

General CAW

0 1 41 4311 0.00 0.10
1 1 66 431 0.19 0.65
1 2 91 306 0.17 0.59
2 1 91 232 0.29 0.62
2 2 116 285 0.30 0.64
2 3 141 398 0.27 0.62
3 2 141 378 0.30 0.68
3 3 166 509 0.30 0.62

Diagonal CAW

0 1 21 4214 0.00 0.06
1 1 26 228 0.16 0.59
1 2 31 212 0.19 0.57
2 1 31 162 0.17 0.57
2 2 36 181 0.20 0.57
2 3 41 161 0.22 0.57
3 2 41 123 0.22 0.62
3 3 46 154 0.23 0.62

Table 3: CAW models. The sample period is from February 2001 to December 2005.
Orders of autoregression are in columns p and q, number of parameters is in column Np,
value of BIC is in column BIC, and 20min and 20med denote minimum and median (across
5 variances and 10 covariances) p-values of heteroskedasticity-robust LM test with 20 lags
for residual serial correlation. Minimal values of BIC for each specification are highlighted
in bold.



p q Np BIC 20min 20med Np BIC 20min 20med Np BIC 20min 20med

AB-flexible CTAW

General Diagonal-switching Diagonal

0 1 86 4467 0.00 0.08 46 4287 0.00 0.05 26 4190 0.00 0.04
1 1 156 429 0.14 0.44 76 171 0.13 0.57 36 −32 0.14 0.53
1 2 226 529 0.16 0.46 106 92 0.15 0.57 46 −13 0.15 0.57
2 1 226 422 0.30 0.62 106 3 0.23 0.66 46 − 62 0.14 0.53
2 2 296 728 0.31 0.65 136 83 0.21 0.64 56 −12 0.17 0.57
2 3 366 1108 0.25 0.60 166 229 0.18 0.59 66 −1 0.17 0.56
3 2 366 1041 0.23 0.51 166 174 0.22 0.58 66 −51 0.21 0.52
3 3 436 1427 0.19 0.55 196 334 0.32 0.71 76 2 0.23 0.56

A-flexible CTAW

General Diagonal-switching Diagonal

0 1 86 4467 0.00 0.08 46 4287 0.00 0.05 26 4190 0.00 0.04
1 1 111 322 0.24 0.63 71 180 0.19 0.54 31 −24 0.18 0.55
1 2 181 399 0.25 0.56 101 104 0.18 0.61 41 −3 0.17 0.57
2 1 136 136 0.28 0.64 96 −2 0.26 0.62 36 −79 0.17 0.57
2 2 206 379 0.26 0.62 126 78 0.28 0.63 46 −36 0.23 0.59
2 3 276 739 0.22 0.66 156 219 0.24 0.60 56 −22 0.24 0.58
3 2 231 504 0.30 0.61 151 174 0.30 0.59 51 −80 0.25 0.60
3 3 301 865 0.16 0.63 181 317 0.35 0.67 61 −34 0.27 0.57

Table 4: CTAW models. The sample period is from February 2001 to December 2005.
Orders of autoregression are in columns p and q, number of parameters is in column Np,
value of BIC is in column BIC, and 20min and 20med denote minimum and median (across
5 variances and 10 covariances) p-values of heteroskedasticity-robust LM test with 20 lags
for residual serial correlation. Minimal values of BIC for each specification are highlighted
in bold.



p q Np BIC 20min 20med Np BIC 20min 20med Np BIC 20min 20med

AB-flexible MCTAW

General Diagonal-switching Diagonal

0 1 66 4217 0.00 0.06 46 4152 0.00 0.07 26 4057 0.00 0.01
1 1 116 252 0.23 0.49 76 58 0.20 0.53 36 −157 0.18 0.49
1 2 166 288 0.23 0.57 106 −23 0.16 0.59 46 −140 0.23 0.51
2 1 166 229 0.32 0.63 106 −76 0.30 0.61 46 −183 0.21 0.53
2 2 216 422 0.30 0.71 136 26 0.28 0.67 56 −134 0.22 0.51
2 3 266 670 0.32 0.77 166 153 0.23 0.66 66 −126 0.24 0.56
3 2 266 672 0.33 0.69 166 129 0.32 0.71 66 −178 0.25 0.58
3 3 316 973 0.36 0.71 196 300 0.29 0.71 76 −117 0.26 0.58

A-flexible MCTAW

General Diagonal-switching Diagonal

0 1 66 4217 0.00 0.06 46 4152 0.00 0.07 26 4057 0.00 0.01
1 1 91 250 0.21 0.60 71 132 0.19 0.58 31 −87 0.17 0.53
1 2 141 261 0.17 0.58 101 54 0.17 0.54 41 −68 0.17 0.52
2 1 116 74 0.26 0.61 96 −36 0.26 0.59 36 −153 0.20 0.53
2 2 166 261 0.23 0.59 126 44 0.27 0.58 46 −106 0.21 0.55
2 3 216 489 0.29 0.63 156 176 0.18 0.62 56 −102 0.21 0.56
3 2 191 330 0.33 0.63 151 130 0.26 0.58 51 −168 0.25 0.60
3 3 241 593 0.40 0.57 181 287 0.24 0.66 61 −118 0.24 0.60

Table 5: Market CTAW models. The sample period is from February 2001 to
December 2005. Orders of autoregression are in columns p and q, number of parameters
is in column Np, value of BIC is in column BIC, and 20min and 20med denote minimum
and median (across 5 variances and 10 covariances) p-values of heteroskedasticity-robust
LM test with 20 lags for residual serial correlation. Minimal values of BIC for each
specification are highlighted in bold.



p q Np BIC 20min 20med

General MIDAS-CAW

0 1 43 736 0.10 0.41
1 1 68 267 0.35 0.59
1 2 93 163 0.23 0.65
2 1 93 10 0.22 0.58
2 2 118 24 0.27 0.69
2 3 143 89 0.26 0.70
3 2 143 70 0.31 0.74
3 3 168 205 0.28 0.72

Diagonal MIDAS-CAW

0 1 23 668 0.06 0.36
1 1 28 −42 0.27 0.67
1 2 33 −99 0.24 0.62
2 1 33 −106 0.28 0.67
2 2 38 −125 0.32 0.67
2 3 43 −152 0.31 0.68
3 2 43 −171 0.35 0.75
3 3 48 −150 0.36 0.75

Table 6: MIDAS-CAW models. The sample period is from February 2001 to
December 2005. Orders of autoregression are in columns p and q, number of parameters
is in column Np, value of BIC is in column BIC, and 20min and 20med denote minimum
and median (across 5 variances and 10 covariances) p-values of heteroskedasticity-robust
LM test with 20 lags for residual serial correlation. Minimal values of BIC for each
specification are highlighted in bold.



p q Np BIC 20min 20med Np BIC 20min 20med Np BIC 20min 20med

AB-flexible MIDAS-CTAW

General Diagonal-switching Diagonal

0 1 88 950 0.17 0.35 48 754 0.15 0.41 28 686 0.09 0.38
1 1 158 333 0.18 0.60 78 108 0.23 0.65 38 −17 0.28 0.72
1 2 228 338 0.14 0.70 108 −77 0.17 0.72 48 −60 0.26 0.71
2 1 228 190 0.01 0.27 108 −230 0.18 0.51 48 −75 0.26 0.71
2 2 298 393 0.06 0.44 138 −209 0.18 0.46 58 −56 0.31 0.70
2 3 368 657 0.10 0.42 168 −114 0.07 0.43 68 −55 0.31 0.71
3 2 368 649 0.05 0.55 168 −122 0.11 0.56 68 −103 0.31 0.70
3 3 438 996 0.14 0.40 198 12 0.16 0.57 78 −51 0.33 0.68

A-flexible MIDAS-CTAW

General Diagonal-switching Diagonal

0 1 88 950 0.17 0.35 48 754 0.15 0.41 28 686 0.09 0.38
1 1 113 311 0.21 0.51 73 137 0.25 0.67 33 −23 0.27 0.70
1 2 183 353 0.11 0.57 103 19 0.24 0.73 43 −63 0.26 0.66
2 1 138 147 0.17 0.50 98 −20 0.18 0.54 38 −90 0.28 0.72
2 2 208 341 0.18 0.41 128 −1 0.24 0.59 48 −88 0.28 0.67
2 3 278 616 0.13 0.49 158 79 0.23 0.57 58 −86 0.35 0.72
3 2 233 399 0.15 0.45 153 56 0.25 0.66 53 −136 0.31 0.73
3 3 303 734 0.16 0.44 183 217 0.29 0.59 63 −86 0.29 0.72

Table 7: MIDAS-CTAW models. The sample period is from February 2001 to
December 2005. Orders of autoregression are in columns p and q, number of parameters
is in column Np, value of BIC is in column BIC, and 20min and 20med denote minimum
and median (across 5 variances and 10 covariances) p-values of heteroskedasticity-robust
LM test with 20 lags for residual serial correlation. Minimal values of BIC for each
specification are highlighted in bold.



p q Np BIC 20min 20med Np BIC 20min 20med Np BIC 20min 20med

AB-flexible MIDAS-MCTAW

General Diagonal-switching Diagonal

0 1 68 857 0.19 0.38 48 766 0.09 0.40 28 662 0.06 0.35
1 1 118 214 0.07 0.34 78 156 0.22 0.61 38 −11 0.24 0.60
1 2 168 189 0.21 0.44 108 54 0.29 0.62 48 −41 0.29 0.63
2 1 168 149 0.17 0.49 108 −94 0.21 0.48 48 −112 0.17 0.45
2 2 218 327 0.23 0.52 138 −46 0.22 0.49 58 −94 0.18 0.51
2 3 268 525 0.24 0.56 168 −4 0.18 0.50 68 −120 0.17 0.47
3 2 268 515 0.19 0.47 168 −24 0.20 0.54 68 −187 0.19 0.48
3 3 318 793 0.27 0.55 198 139 0.19 0.56 78 −141 0.20 0.50

A-flexible MIDAS-MCTAW

General Diagonal-switching Diagonal

0 1 68 857 0.19 0.38 48 766 0.09 0.41 28 662 0.06 0.35
1 1 93 217 0.15 0.52 73 151 0.24 0.59 33 −25 0.24 0.63
1 2 143 227 0.11 0.47 103 49 0.32 0.61 43 −56 0.24 0.61
2 1 118 100 0.13 0.43 98 −70 0.25 0.67 38 −91 0.26 0.68
2 2 168 82 0.22 0.61 128 −57 0.25 0.60 48 −93 0.26 0.61
2 3 218 383 0.20 0.59 158 127 0.25 0.59 58 −101 0.23 0.61
3 2 193 211 0.24 0.60 153 82 0.25 0.59 53 −144 0.33 0.63
3 3 243 551 0.24 0.60 183 289 0.25 0.59 63 −97 0.32 0.63

Table 8: MIDAS-MCTAW models. The sample period is from February 2001 to
December 2005. Orders of autoregression are in columns p and q, number of parameters
is in column Np, value of BIC is in column BIC, and 20min and 20med denote minimum
and median (across 5 variances and 10 covariances) p-values of heteroskedasticity-robust
LM test with 20 lags for residual serial correlation. Minimal values of BIC for each
specification are highlighted in bold.



Model specification p q Np BIC

Baseline versions

General CAW 2 1 91 232
Diagonal CAW 3 2 41 123
General AB-flexible CTAW 2 1 226 422
Diagonal-switching AB-flexible CTAW 2 1 106 3
Diagonal AB-flexible CTAW 2 1 46 −62
General A-flexible CTAW 2 1 136 136
Diagonal-switching A-flexible CTAW 2 1 96 −2
Diagonal A-flexible CTAW 3 2 51 −80
General AB-flexible MCTAW 2 1 166 229
Diagonal-switching AB-flexible MCTAW 2 1 106 −76
Diagonal AB-flexible MCTAW 2 1 46 −183
General A-flexible MCTAW 2 1 116 74
Diagonal-switching A-flexible MCTAW 2 1 96 −36
Diagonal A-flexible MCTAW 3 2 51 −168

MIDAS versions

General CAW 2 1 93 10
Diagonal CAW 3 2 43 −171
General AB-flexible CTAW 2 1 228 190
Diagonal-switching AB-flexible CTAW 2 1 108 −230
Diagonal AB-flexible CTAW 3 2 68 −103
General A-flexible CTAW 2 1 138 147
Diagonal-switching A-flexible CTAW 2 1 98 −20
Diagonal A-flexible CTAW 3 2 53 −136
General AB-flexible MCTAW 2 1 168 149
Diagonal-switching AB-flexible MCTAW 2 1 108 −94
Diagonal AB-flexible MCTAW 3 2 68 −188
General A-flexible MCTAW 2 2 168 82
Diagonal-switching A-flexible MCTAW 2 1 98 −70
Diagonal A-flexible MCTAW 3 2 53 −144

Table 9: Best CAW, CTAW and MCTAW models, according to BIC. The sample period
is from February 2001 to December 2005. Orders of autoregression are in columns p and
q, number of parameters is in column Np, value of BIC is in column BIC. Minimal values
of BIC for baseline and MIDAS versions are highlighted in bold.



Diagonal AB-flexible MCTAW(2,1)

C 0.159 0 0 0 0
0.085 0.187 0 0 0
0.065 0.054 0.132 0 0
0.080 0.052 0.041 0.185 0
0.069 0.064 0.048 0.032 0.155

B1 0.674 0.603 0.706 0.664 0.690
B2 0.437 0.478 0.464 0.502 0.411

A1 0.520 0.556 0.438 0.448 0.497

H1,m 0.117 0.095 0.054 0.074 0.103
H2,m −0.010 0.041 0.029 0.021 0.002

G1,m −0.017 −0.003 0.053 0.030 0.006

K 20.8

Table 10: Estimation results for diagonal AB-flexible MCTAW(2,1) model. Rows Bj, Aj,
Hj,m and Gj,m present diagonal elements of matrices Bj, Aj, Hj,m and Gj,m, respectively.
Sample period is from February 2001 to December 2005. Statistically significant at 1%
level coefficients are highlighted in bold, at 5% in italic, standard errors are constructed
with ‘sandwich’ formula using numerically estimated Hessian and Jacobian.



Diagonal-switching AB-flexible MIDAS-CTAW(2,1)

C 0.372 0 0 0 0 B1 0.694 −0.244 0.170 0.105 0.083
0.106 0.360 0 0 0 0.033 0.396 −0.092 0.392 0.084
0.086 0.089 0.291 0 0 −0.061 0.109 0.603 −0.289 −0.110
0.105 0.093 0.077 0.420 0 −0.028 −0.072 0.073 0.258 0.315
0.105 0.121 0.194 0.075 0.212 −0.028 0.076 0.187 −0.265 0.394

A1 0.443 0.085 0.016 0.012 −0.011 B2 0.000 −0.064 0.079 −0.031 0.058
0.012 0.484 −0.059 −0.026 −0.030 0.220 −0.179 0.418 −0.031 0.203
−0.013 0.009 0.333 0.066 0.074 0.066 0.023 0.321 0.188 −0.145
−0.049 0.004 0.021 0.440 −0.016 −0.025 0.057 −0.065 0.474 −0.220
−0.034 0.014 −0.047 0.006 0.466 0.091 −0.059 −0.330 0.163 0.471

H1 0.233 0.314 0.134 0.370 0.062 G1 0.006 −0.029 0.129 −0.051 0.129
H2 0.112 −0.066 0.194 0.224 0.135

K 21.3√
θ 0.151

ω 4.58

Table 11: Estimation results for diagonal-switching AB-flexible MIDAS-CTAW(2,1)
model. Rows Hj and Gj present diagonal elements Hj,i and Gj,i, i = 1, . . . , 5, respectively,
of corresponding matrices. Sample period is from February 2001 to December 2005.
Statistically significant at 1% level coefficients are highlighted in bold, at 5% in italic,
standard errors are constructed with ‘sandwich’ formula using numerically estimated
Hessian and Jacobian.
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Figure 1: Realized variance for AXP and realized covariance for AXP-JPM. Sample period
is from February 2001 to December 2009. The out-of-sample part of the sample is shaded.
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