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Abstract

Warm-glow refers to other-serving behavior that is valuable for the actor

per se, apart from its social implications. We provide axiomatic foun-

dations for warm-glow by viewing it as a form of preference for larger

choice sets, in the sense of the literature on freedom of choice. Speci�-

cally, an individual who experiences warm-glow prefers the freedom to be

sel�sh: she values the availability of sel�sh options even if she plans to act

unsel�shly. Our theory also provides foundations for empirically distin-

guishing between warm-glow and other motivations for prosocial behavior.

The implied choice behavior subsumes Riker and Ordeshook (1968) and

Andreoni (1990).
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1 Introduction

In the last decades, there has been a surge of interest in models of proso-

cial behavior which depart from the traditional approach that explains

such behavior with the classical notion of altruism. It has been argued,

for instance, that charitable donations may be motivated by a desire for

status, acclaim or self-satisfaction (e.g., Arrow, 1972; Becker, 1974; An-

dreoni 1989, 1990; Glazer and Konrad, 1996; Bénabou and Tirole, 2006).

In turn, in the voting literature, a remarkable example is the seminal pa-

per of Riker and Ordeshook (1968), which maintains that citizens may be

perceiving the act of voting as a civic duty, independently of the social

consequences of their individual decisions. More recently, Coate and Con-

lin (2004), and Feddersen and Sandroni (2006) envision citizens who deem

voting as an ethical duty whenever this is justi�ed from a rule utilitarian

perspective.

Conceptually, the non-altruistic decision makers considered in these

alternative models can be further classi�ed into at least two types: those

who are motivated by intrinsic pleasure associated with a particular form

of prosocial behavior, which is often referred to as warm-glow motivation;

and those who perceive such behavior as an unpleasant obligation because

acting sel�shly might lead to even more unpleasant experiences such as

losing self-respect, feeling guilty or ashamed.1

As noted by Andreoni (2006) and Diamond (2006), understanding the

real motivation behind a given form of prosocial behavior may have pro-

found implications in welfare analysis. For instance, an agent who enjoys

the act of giving per se would typically be worse o¤ upon an increase in

taxes for the (public) provision of a public good if government spending

happens to fully crowd out private contributions, and thereby, leave un-

altered the �nal allocation. In turn, non-altruistic agents of the second

type that we mentioned above might be better o¤ if paying taxes as a le-

1Dillenberger and Sadowski (forthcoming) suggest that there is a further distinction
between guilt and shame, as the former is a private experience while the latter requires
publicly observable behavior. Glazer and Konrad (1996) note that an analogous dis-
tinction exists between warm-glow motivation and one�s desire to signal her status. In
the present paper we abstract from this observability issue. However, we shall discuss
Dillenberger and Sadowski in more depth momentarily, as it has important re�ections
on the place of the present paper in the literature.
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gal obligation is preferable to �voluntarily�(but reluctantly) contributing

to the public good because of the unpleasant feelings associated with not

doing so. Finally, in stark contrast with both of these types, a purely altru-

istic agent, who solely cares about the implied allocation, would certainly

be neutral against such a policy.

Putting aside the di¢ culties regarding the two non-altruistic types,

even well-established, behavioral distinctions between pure altruism and

warm-glow motivation are often quite involved and demand some assump-

tions on the form of utility functions. Notably, in his seminal papers, An-

dreoni (1989, 1990) proposes a warm-glow model of public good provision

that can improve upon the predictions of the classical model of altruism

(which seem to be distant from empirical evidence).2 However, Andreoni�s

analysis relies on the assumption that agents�private consumption as well

as their contribution to public good are strictly increasing functions of

their wealth. This assumption, in turn, rules out quasi-linear utility func-

tions, among others.

Just as in Andreoni (1989, 1990), in the present paper we focus on

warm-glow driven behavior. Our starting point is that a typical person

would attach an intrinsic value to an other-serving action only when this is

an act of free will, but not if she is somehow forced to act unsel�shly.3 This

observation, which would seem self-evident on many occasions, points to a

connection with a separate line of research, pioneered by Sen (1985, 1988),

that is concerned with the measurement of freedom of choice associated

with menus (i.e., choice sets). Taking as primitive a preference relation

over menus, in a nutshell, this literature maintains that a large set of

alternatives, which o¤ers a certain degree of freedom of choice, may be

more valuable for the decision maker than the alternative that she would

select from that set (Sen, 1985, 1988; Puppe, 1996; Sugden, 1998, among

others).4

Inspired by this literature, we propose a theory of preference relations

2We elaborate more on Andreoni�s �ndings in Section 4.1.
3Indeed, in the aforementioned literature on prosocial behavior, the word �giving�

often refers to a voluntary act.
4This contention contrasts with the �preference for �exibility�approach that focuses

on the instrumental value of larger menus driven by choice uncertainty (Kreps, 1979;
Dekel, Lipman, and Rustichini, 2001). In Section 6, we relate the present paper to
Kreps (1979).
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over menus of social alternatives that provides foundations for a class

of warm-glow models, by relating the intrinsic value of an other-serving

action to the presence of freedom to be sel�sh, the option of �not giving.�

As we shall clarify momentarily, a major advantage of the menu choice

approach is that it arms us with clear-cut distinctions between warm-glow

giving, pure altruism and giving as an unpleasant obligation.

For a generic social allocation x in Rk+, let the �rst component x1
stand for the private consumption of the decision maker in question. In

its simpli�ed form, our main �nding is a characterization of preference

relations over menus of e¢ cient allocations A that can be represented

with an (indirect) utility function V which takes the form

V (A) = max
x2A

U(x;max
y2A

y1 � x1)

for a function U : Rk+ � R+ ! R. The term maxy2A y1 � x1 is the private
cost that the decision maker incurs if she decides to select the allocation x

from the menu A. In turn, we interpret U (x;maxy2A y1 � x1) as the utility
of selecting x from A. If the function U is constant in its last argument,

the representation reduces to standard utility maximization. In general,

however, U is weakly increasing in its last argument, implying that the

utility of selecting x from A increases with the di¤erence maxy2A y1 �
x1. Hence, the act of selecting a particular allocation x becomes more

enjoyable as the maximum possible private consumption increases, and

the least satisfying menu that admits the choice of x is the one that o¤ers

no option but x.

It seems reasonable to interpret the maximum possible private con-

sumption o¤ered by a menu as a measure of how sel�shly the decision

maker could have acted if she were not to select a given allocation. When

viewed in this way, our representation theorem establishes a tight relation

between the notions of warm-glow giving and freedom to be sel�sh, as we

suggested earlier.

The representation implies that given a menu A as above, the decision

maker would select the allocation that maximizes U (x;maxy2A y1 � x1)
over A. In Section 4.1, we show that this choice behavior subsumes An-

dreoni�s (1989, 1990) warm-glow model. In Section 4.2, we reinterpret
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the notion of an allocation as a vector that lists the (expected) material

payo¤s of the individuals in the society, which signi�cantly extends the

scope of our representation. In Section 4.3, we apply this extended rep-

resentation to the problem of voter turnout in large elections, and show

that the associated behavior subsumes the civic-duty model of Riker and

Ordeshook (1968). Thereby, we lay foundations for two prominent models

from di¤erent sub�elds of social choice theory.

Why does the menu choice approach help us distinguish the aforemen-

tioned motivations? The answer is simple enough to be explained here:

Firstly, those agents who enjoy giving as an act of free will exhibit prefer-

ence for larger menus. In particular, as we model here, they tend to enjoy

menus which facilitate a stronger perception of freedom to be sel�sh. By

contrast, purely altruistic agents are neutral against the size of the choice

set they face, because they solely care about the �nal outcome. In turn,

an agent who perceives giving as an unpleasant obligation would exhibit

preference for smaller menus that restrict other-serving options, for upon

removal of such options the agent could select self-serving options as she

actually wishes, without experiencing any negative feelings.

Economic agents�preferences over menus can be detected in consump-

tion-saving problems that we routinely encounter. In Section 4.1.1, we

provide an example of a bequest giving problem which illustrates this

point. The temporal utility functions in this example are quasi-linear,

which is at odds with Andreoni�s analysis as we noted earlier. Conse-

quently, for any given amount of saving, the giving behavior of the purely

altruistic agents in period 2 coincides with that of the agents motivated

by warm-glow (despite the presence of a policy variable that in�uences

intergenerational income distribution). Yet, since the two types evaluate

di¤erently budget sets which become available in period 2, their saving

behavior in period 1 is also distinct, pointing to added descriptive power

of the menu choice approach.

Another important issue that has attracted attention in the literature is

that providing extrinsic incentives for prosocial behavior, say by means of a

government policy, may actually crowd out intrinsic motivations. Bénabou

and Tirole (2006) cite mounting evidence that supports this observation,

and provide a suitable game-theoretic model. The present paper o¤ers an
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alternative perspective on this phenomenon within the framework of indi-

vidual decision making problems. Speci�cally, our representation implies

that a policy that decreases the payo¤ associated with the most sel�sh

option, such as a �ne on sel�sh behavior, may crowd out intrinsic motiva-

tions by e¤ectively reducing the value of giving as an act of free will. In

Section 4.3, we shall readdress this issue in relation to �nes on abstention

in elections.

In the decision theory literature, the closest paper to ours is due to

Dillenberger and Sadowski (forthcoming), which provides a dual theory

of preference relations over menus of social allocations. Their focus is

a negative form of prosocial behavior driven by shame associated with

sel�sh acts.5 Accordingly, their main representation result describes an

agent who exhibits preference for smaller menus, which provides a formal

basis for our related discussion above. The present paper has further

di¤erences in terms of the implied choice among social allocations for a

�xed menu. In fact, a most ethical option acts as a reference point in the

calculus of shame proposed by Dillenberger and Sadowski. Speci�cally,

the utility associated with the choice of an allocation is modeled as a

decreasing function of the distance between that allocation and the most

ethical option. However, sel�sh and ethical modes of behavior may well

coincide because the ethical behavior is determined by maximization of a

welfare function (that strictly increases in the decision maker�s material

payo¤). For instance, in a large election, the corresponding agent may

think that abstention is the ethical option, because voting is unlikely to

in�uence others�welfare but it incurs signi�cant private costs. By contrast,

our model includes those agents who always attach an intrinsic value to

costly actions that might help others, as in Riker and Ordeshook (1968)

and Andreoni (1989, 1990).

Another related paper is Cherepanov, Feddersen, and Sandroni (2011),

who propose an abstract model of choice among alternatives, holding �xed

the menu that the decision maker faces. The main point of Cherepanov

5Dillenberger and Sadowski focus on a two person set-up. In order to facilitate the
�shame� interpretation, they also assume that the recipient can observe the decision
maker�s behavior. However, their key ideas appear to be applicable in a multi-person
set-up, and general enough to capture unsel�sh behavior driven by other forms of
negative emotions (such as guilt).
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et al. (2011) is that, unlike pure altruism, the relevant forms of non-

altruistic behavior may lead to violations of the Weak Axiom of Revealed

Preferences. In concert with this observation, in our model the utility func-

tion that governs the choice of allocations is menu dependent.6 Yet, the

choice behavior that corresponds to our model is not within the scope of

Cherepanov et al. (2011), because that paper models �warm-glow payo¤�

as a �xed number that does not depend on the menu that the agent faces

or the allocation that leads to the warm-glow experience. By contrast, a

crucial feature of our approach is that the warm-glow payo¤ increases with

the private cost associated with the allocation in question. As we noted

earlier, this, in turn, implies a trade-o¤between extrinsic and intrinsic mo-

tivations. Moreover, and more important, the framework of Cherepanov

et al. (2011) is not suitable for distinguishing the negative and positive

types of non-altruistic agents that we discussed above. (More on this point

in Section 7.)

In the next section we introduce our model, while Section 3 contains a

behavioral characterization of our warm-glow representation. In Section

4, we discuss the applications of our representation. Section 5 is devoted

to a choice theoretic study of implied second stage behavior for a �xed

menu. Section 6 relates our representation to that of Kreps (1979), while

Section 7 concludes. All proofs and some other supplementary material

are relegated to appendices.

2 The Model

We consider a decision maker in a society. There is one private good and at

most one public good.7 Set X := Rk+ where k � 2 is an integer. We refer
to an element x := (x1; :::; xk) ofX as an allocation. The �rst component
x1 stands for the private consumption of our decision maker. In turn, any

other component xi represents either the private consumption of another

agent i or the amount of the public good (if it exists). Thus, k equals

the number of consumption variables related to the decision problem in

question and it can exceed the cardinality of the society at most by one.

6Our model is, however, rational as a theory of preference relations over menus.
7In Section 4.2, we discuss an extension that allows for multiple private and public

goods.
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In what follows, the agent refers to our decision maker.
The agent�s preferences are described by a binary relation % over a

collection of subsets of X. Let A denote this collection of sets, which will
be speci�ed momentarily. Each set in A represents a menu, that is, a set
of allocations from which the agent will make a choice in a subsequent

stage. Our analysis of % will build upon a suitable interpretation of how
the agent might be planning to behave in the second stage. Then, in

Section 5.2, we will explicitly model the associated second stage choice

behavior.

As usual, for a set A � X; we say that an element x of A is e¢ cient
(in A) if there does not exist a y 2 A such that yi � xi for i = 1; :::; k

with strict inequality for some i. The Pareto frontier of A; denoted as
P(A); consists of all e¢ cient allocations in A. In turn, a pair of distinct
allocations x; y are Pareto incomparable if P(fx; yg) = fx; yg.
Next, we de�ne A as the collection of all sets A � X which satisfy the

following two properties:

(i) P(A) is a nonempty, compact set.

(ii) There exists a y� 2 P(A) such that xi � y�i for every x 2 P(A) and
i = 2; :::; k.

Recall that the Pareto frontier of a nonempty, compact subset of X is

nonempty (and bounded). Property (i) rules out the cases in which the

Pareto frontier of such a set is not closed.8 In a slightly more general fash-

ion, a bounded subset of X that is not closed also quali�es if its Pareto

frontier is closed. Note that when k equals 2, property (ii) trivially follows

from (i). In this case, there is a unique e¢ cient allocation that maximizes

x1, which is at the same time the unique minimizer of x2 among e¢ cient

allocations. Property (ii) �lters higher dimensional sets that have an anal-

ogous feature: For each A 2 A, there exists a unique allocation y�(A) in
P(A) such that y�1(A) � x1 for every x 2 P(A) (or equivalently, for every
x 2 A). Moreover, y�(A) is also the unique allocation in P(A) that sat-
is�es (ii). (We omit the proof of this simple observation.) Naturally, we

view y�(A) as the most sel�sh option in the menu A, as it maximizes
the agent�s private consumption. The crucial implication of (ii) is that

8See Arrow, Barankin, and Blackwell (1953) for an example of a compact, convex
subset of an Euclidean space that has a non-closed Pareto frontier.
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in the second stage, if the agent decides to select an e¢ cient allocation

x with x1 < y�1(A), the private consumption that she thereby gives up is

converted into public good or private consumption of some other agents,

without reducing the goods available to any other agent. Thus, y�(A) can

also be seen as the least generous option available to the agent, in terms

of her in�uence on others�consumption.

In applied models of charity, the agent often has an initial endowment

of the private good, and the choice set A in question consists of all alloca-

tions that the agent can obtain by distributing her endowment among the

k consumption variables, given other factors such as government trans-

fers and subsidies, other agents�behavior, prices, and the technology that

transforms the private good into public good. Such choice sets are within

the scope of our analysis, for by privately consuming all her endowment,

typically, the agent can maximize her private consumption while minimiz-

ing her contributions to all other variables.

In passing, we de�ne a subcollection of A that is of particular impor-

tance:

AP := fA 2 A : P(A) = Ag:

This is the collection of all sets in A which consist of e¢ cient allocations.
It is worth noting that if a set A belongs to AP , then any nonempty,
closed subset of A that contains y�(A) also belongs to AP . Another useful
observation is that AP contains fxg for any allocation x.

3 The Representation Theorem

In this section, we formally introduce our representation and its behavioral

characterization. We start with a standard rationality requirement:

Weak Order (A1). % is a complete and transitive binary relation on A.

The next axiom states that increasing the size of the Pareto frontier

of a menu cannot harm the agent.

Pareto Monotonicity (A2). For any A;B 2 A, if P(A) � P(B), then
A % B.

Notice that P(A) 2 AP ; that is, P(P(A)) = P(A) for any A 2 A. Hence,
(A2) immediately implies P(A) � A for any menu A. Therefore, our
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remaining axioms focus on those sets in AP .
A crucial assumption in the standard model of menu choice is the

following:

A [B � A or A [B � B: (1)

The underlying idea is that if the agent can perfectly anticipate which

alternative she will select from A [ B, she would evaluate A [ B solely

with that particular alternative (which must belong to A or B). Thus,

property (1) describes a purely instrumentalist decision maker who views

a menu solely as a means toward her �nal choice. On the other hand, as

the literature on freedom of choice maintains, a menu may be valuable per

se, independently of the alternative that will eventually be selected. We

shall therefore allow a menu to be strictly better than any of its subsets.

While this is a starting point of all models on freedom of choice, our

representation requires an axiom that relaxes (1) in a special way:

Weak Instrumentalism (A3). Let A;B be nonempty, compact sets

such that A [ B 2 AP . If y�(A [ B) 2 A \ B, then A [ B � A or

A [B � B.

To gain insight, consider a set of three allocations C := fx; y; zg that
belongs to AP , and let y be the most sel�sh option in C. Then (A3)
implies C � fx; yg or C � fy; zg. If only the former equivalence holds,
in violation of (1) we may still have fy; zg � C � fxg. We interpret
such preference as follows: The agent will select x from the set C. This,

in itself, is a reasonable explanation of the pattern fy; zg � C. Moreover,
by construction, x is not the most sel�sh option in C: Hence, by selecting

x from C the agent experiences warm-glow. If, however, x were the only

available option, selecting x would merely be a necessity which would not

cause a warm-glow experience. In other words, selecting x from C with

her free will is more valuable for the agent than the mere consumption of

x; which explains C � fxg.
On the other hand, the above interpretation is also compatible with

C � fx; yg. After all, the menu C provides a higher degree of freedom

compared to fx; yg: Therefore, in principle, selecting x from C could be

more enjoyable than selecting x from fx; yg. Property (A3) rules out

such cases. Intuitively, this axiom requires that the strength of warm-
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glow experience should only depend on the most sel�sh option and the

alternative that the agent will eventually select.9 In line with this, Claim 2

in Appendix C shows that every menu A in AP contains an allocation
x such that A � fx; y�(A)g. Of course, here, x is interpreted as the

allocation that the agent will select from A.

While (A3) gives a special role to the most sel�sh option as a determi-

nant of the strength of warm-glow experience, the axiom is silent about

the nature of this relation. How does the agent�s welfare depend on the

most sel�sh option, holding �xed the alternative which will be selected?

Our next axiom answers this question.

Monotone Warm-Glow (A4). Let fx; yg 2 AP and y1 � x1. If

fxg � fx; yg � fyg, then fx; zg % fx; yg for all z 2 X such that z1 � y1
and fx; zg 2 AP :

Given a pair of allocations x; y as in this axiom, fxg � fx; yg �
fyg tells us that the agent would select x from fx; yg, as we discussed
earlier. Suppose that holding the �nal choice �xed, the strength of warm-

glow experience depends only on the maximum possible private consump-

tion and is an increasing function of it. Then, replacing y with an al-

location z as in (A4) could only make the agent better o¤. Indeed, the

agent can always select x from fx; zg, which is better than selecting x
from fx; yg by assumption. This is the content of the axiom.
Remarkably, (A4) implies a notion of warm-glow that does not depend

on how the agent�s choice of an allocation compares with other available

allocations in terms of other agents�welfare. For instance, if xi � yi is
substantially larger than xi � zi for i = 2; :::; k, selecting x over y can be
viewed as a much more generous act, in terms of what the others receive,

compared to selecting x over z. This, in turn, could reduce the appeal

of fx; zg relative to fx; yg, contrary to (A4). In Section 7, we discuss
an extension of the present model that relates the strength of warm-glow

experience to others�welfare. It should be noted, however, that the (more)

9In this regard, our approach is akin to several other papers, including Gul and
Pesendorfer (2001), Noor and Takeoka (2011) and Dillenberger and Sadowski (forth-
coming), albeit these papers are concerned with modeling preference for smaller menus.
It is also worth noting that, to the best of our knowledge, (A3) is a novel axiom, but in
the papers that we just mentioned an analogous property can be deduced from other
axioms. Needless to say, our axioms are independent of each other (see Appendix A).
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egoistic notion of warm-glow which corresponds to (A4) has found some

important applications in the literature (see Sections 4.1 and 4.3), perhaps

because the classical notion of altruism is already based on one�s concern

for others.

The following axiom rules out negatively interdependent preferences

over singletons. Throughout the remainder of the paper, � stands for the
usual partial order on a Euclidean space.

Nonnegative Interdependence (A5). fxg % fyg for any x; y 2 X with
x � y.

It is worth noting that (A5) also allows for a purely sel�sh attitude over

singletons as would be represented by the function fxg ! x1.

Finally, we assume that % is continuous on AP with respect to the
Hausdor¤ metric10 (induced by the Euclidean norm).

Continuity (A6). The sets fB 2 AP : B % Ag and fB 2 AP : A % Bg
are closed in AP , for each A 2 AP .

The next de�nition formalizes our representation notion.

De�nition 1. A binary relation % on A admits a warm-glow repre-
sentation if there exists a function U : X � R+ ! R that satis�es the
following two properties:

(i) U(x; �) is weakly increasing on R+ for each x 2 X, and U(�; 0) is weakly
increasing on X.

(ii) For each A;B 2 A;

A % B i¤ max
x2P(A)

U (x; y�1(A)� x1) � max
x2P(B)

U (x; y�1(B)� x1) .

We say that such a function U is a utility index for %. 11

The representation suggests that, when faced with a menu A in the sec-

ond stage, the agent will follow a two step choice procedure. First, she will

10The Hausdor¤ distance between two nonempty, compact sets A;B � Rk equals the
maximum of maxx2Aminy2B kx� yk and maxy2B minx2A kx� yk ; where k�k stands
for the Euclidean norm.
11On a technical note, let us emphasize that (when % is re�exive) this de�nition

requires the existence of maxx2A U (x; y�1(A)� x1) for any A 2 AP . Of course, in
practice, this forces one to demand some continuity properties from U , as we shall do
momentarily.
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eliminate those alternatives in A which are not e¢ cient. Then, she will se-

lect an e¢ cient allocation which maximizes the function U (x; y�1(A)� x1)
over P(A). The additional utility of selecting x from P(A) relative to the
mere consumption of x is given by U (x; y�1(A)� x1) � U (x; 0). We view
this di¤erence as the warm-glow payo¤ associated with the former act.
A crucial feature of the representation is that the warm-glow payo¤ is a

weakly increasing function of the di¤erence between the maximum possi-

ble private consumption that the agent can attain and her actual choice

of private consumption. We denote by � the last argument of U , which

corresponds to this di¤erence.

Remark 1. Our representation restricts the calculus of warm-glow to

e¢ cient allocations, so that, perforce, the agent does not get a warm-

glow payo¤ from �burning�her endowment of private good or reducing

the consumption of everyone. By contrast, given a menu A 2 A, the
allocation that solves the problem maxx2A U (x; y

�
1(A)� x1) may well be

ine¢ cient, unless U is constant in � (see Appendix A, Example A3).

Let us now de�ne X0 := fy 2 X : yi = 0 for i = 2; :::; kg. If it
belongs to X0, an e¢ cient allocation in a given menu can only be the

most sel�sh option. Since, according to our representation, the agent does

not experience warm-glow by selecting such allocations, the behavior of

U (y; �) for y 2 X0 and � > 0 has no implications on the preference

relation %. The existence of a utility index which is continuous over this
irrelevant part of its domain is a technically challenging issue, which seems

to be of limited interest. We shall address this matter in Appendix B and

focus here on utility indices that are continuous over the relevant set,

(X � R+)n(X0 � R++).
We are now ready to state our representation theorem, which is the

main �nding of the paper.

Theorem 1. A binary relation % on A satis�es (A1)-(A6) if, and only if,
it admits a warm-glow representation with a utility index that is continuous

over (X � R+)n(X0 � R++).

Some particular forms of utility indices are of special interest. First,

if the utility index U is constant in � for each x, then the agent never

experiences warm-glow. In this case, the representation reduces to classical

12



utility maximization: A % B i¤ maxx2A U (x; 0) � maxx2B U (x; 0) for

every A;B 2 A. Of course, % admits such a utility index if and only if

(1) holds for any pair of menus. While this is a special case of Theorem 1,

curiously, the particular utility index that we construct in the proof of

Theorem 1 is not necessarily constant in �; even if property (1) holds for

any pair of menus. The di¢ culty stems from the fact that when fxg �
fx; yg � fyg and y1 > x1, the representation does not impose a tight

restriction on the value U(x; y1�x1). Roughly speaking, in such instances
all we know is that U(x; y1 � x1) must be between U(x; 0) and U(y; 0).
From this perspective, the classical representation corresponds to setting

U(x; y1 � x1) := U(x; 0); whenever �one can.�
In the next proposition, we establish the existence of a general utility

index of this sort. While it provides a tight characterization of the role

that property (1) plays, this approach leads to additional continuity issues.

Speci�cally, the obtained utility index is only upper semi-continuous if

the agent violates (1) at some instances. In what follows, we say that an

allocation x is critical if there exists an allocation y such that fx; yg 2 A;
y1 > x1 and fxg � fx; yg � fyg.

Proposition 1. Let % be a binary relation on A that satis�es (A1)-(A6).
Then, % admits a utility index U : X � R+ ! R such that:

(i) U(x; �) is constant unless x is the limit of a sequence of critical alloca-
tions.

(ii) U(x; �) is not constant whenever x is a critical allocation.
(iii) U is upper semi-continuous over (X � R+)n(X0 � R++).

Of course, if % admits a utility index that is constant in �, the agent
can be considered as purely altruistic unless the utility index is merely a

function of x1. Another case of special interest is when the utility index

depends only on x1 and �. This corresponds to a purely egoistic agent

who is solely motivated by warm-glow and her private consumption. Part

(i) of the next proposition characterizes this case, while part (ii) clari�es

when we can �nd a utility index that is weakly increasing on X � R+.

Proposition 2. Let % be a binary relation on A that satis�es (A1)-(A6).
Then:

(i) % admits a utility index that solely depends on x1 and � if, and only

13



if, for any fx; yg 2 A and fx0; y0g 2 A such that x1 = x01 and y1 = y
0
1,

we have fx; yg � fx0; y0g.
(ii) % admits a utility index that is weakly increasing on X � R+ if, and
only if, for any fx; yg 2 A and fx0; y0g 2 A such that x � x0, y � y0 and
y1 � x1 � y01 � x01 � 0, we have fx; yg % fx0; y0g.

As we noted earlier, a given preference relation % may admit a multi-
tude of utility indices. The particular utility indices that we construct in

the proofs of Theorem 1 and Proposition 1 have quite simple forms and

they appear to be relatively well-behaved. For instance, they are both

compatible with both parts of Proposition 2 (see Claims 6 and 7 in Ap-

pendix C). But this is not to mean that these particular utility indices are

guaranteed to be compatible with all properties that one might demand

in a given application. In Appendix C (Claim 5), therefore, we provide a

full characterization of the class of all utility indices which are compatible

with a given utility function over menus. We hope that this may facilitate

alternative (and perhaps, more sophisticated) constructions that might be

useful in future research. It should be emphasized, however, that given the

preference relation %, the choice of a utility index does not have a strong
in�uence on the implied second stage behavior, and the identi�cation of

second stage choices becomes perfect for those utility indices which satisfy

a mild regularity condition (see Section 5.1 below).

We conclude this section with a technical note which proves useful in

what follows.

Lemma 1. Let % be a binary relation on A that satis�es (A1)-(A6).

Then, for any function V : A ! R that represents %, there exists a utility
index U such that V (A) = max

x2P(A)
U (x; y�1(A)� x1) for every A 2 A.

4 Applications

4.1 Andreoni�s Model

Andreoni (1989, 1990) studies a game on public good provision between a

set of individuals f1; :::; Ig. He assumes that there is one public good and
one private good, and that one unit of the private good can be converted

into one unit of the public good with a linear technology. Each individual
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i is endowed with an amount wi of the private good (or, equivalently, wi
units of dollars) that she can allocate between her private consumption,

xi, and her gift to the public good, gi. In turn, the government subsidies

private giving at a rate si < 1 (for the individual i) and levies lump

sum taxes �i. So, G :=
PI

i=1 gi is the total private contributions to the

public good, and T :=
PI

i=1 �i � sigi is the net tax receipts which is fully
used for the provision of public good. A generic agent, say agent 1, takes

as given the private consumption and gifts of others, (x2; g2); :::; (xI ; gI),

and chooses a consumption-gift pair (x1; g1) that solves a problem of the

following form:

maxU(x1; G+ T; g1) subject to x1 + (1� s1)g1 + �1 = w1
and 0 � x1 � w1 � �1.

(2)

Here, U is a weakly increasing function on R3+, which captures altruistic
concerns12 and warm-glow experience by its second and third arguments,

respectively.

In our terminology, then, agent 1 faces the menu

A := f(x1; x2; :::; xI ; G+ T ) : 0 � x1 � w1 � �1; x1 + (1� s1)g1 + �1 = w1;
G+ T = �1 + (1� s1)g1 +

PI
i=2 �i + (1� si)gig.

Clearly, with X := RI+1+ ; this menu belongs to AP and the most self-
ish allocation, y�(A), equals (w1 � �1; x2; :::; xI ; �1 +

PI
i=2 �i + (1� si)gi).

Thus, upon solving for g1 in the budget constraint, we see that g1 =

(y�1(A)� x1) = (1� s1). That is, g1 is simply proportional to y�1(A) � x1,
the last argument of a utility index in our terminology. So, the func-

tion U(x; �) := U(x1; xI+1; �
1�s1 ), de�ned on X � R+, would qualify as a

utility index for a preference relation as in our theory, and the allocations

that solve the problemmaxx2A U (x; y�1(A)� x1) would coincide with those
12As Andreoni (1989, 1990) points out, the private consumption of a given individual

would act as if it is a public good from others�perspective when they are altruistic in
the classical sense. Therefore, in the literature on philanthropy, it is customary to view
one�s concern for the public good as a form of altruism. By the same token, often the
models either take into account one�s concern for others�private consumption, as in
Roberts (1984), or one�s concern for the public good, as in Andreoni (1989, 1990), but
not both. For conceptual clarity, in the present paper we have chosen to refer to a
public good separately.
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solving (2). 13 To summarize, second stage behavior implied by our theory

subsumes Andreoni�s model upon a minor adjustment for subsidies.

Remark 2. When s1 > 0, the gift g1 does not precisely coincide with

y�1(A) � x1, because x1 is the subsidized consumption. Put formally, at
the moment of giving, the agent can actually consume ex1 := x1 � s1g1,
which satis�es g1 = y�1(A)� ex1, but subsequently the government subsidy
increases the corresponding consumption to x1.

The main contribution of Andreoni�s model is that, under suitable

assumptions, it makes the equilibrium amount of the public good sensi-

tive to �scal policies and income distribution, unlike the corresponding

models of pure altruism which predict that government grants and sub-

sidies should crowd out voluntary contributions dollar-for-dollar and that

the total supply of the public good should be independent of income dis-

tribution.14 Andreoni�s approach is supported by substantial empirical

evidence on incomplete crowding out (Abrams and Schmitz, 1978, 1984;

Clotfelter, 1985; Steinberg, 1989) and non-neutrality of income distribu-

tion (Hochman and Rodgers, 1973).

While Andreoni�s �ndings are based on some reasonable assumptions

on the form of the utility indices, from a foundational point of view these

assumptions might be restrictive. For instance, Andreoni assumes that the

private consumption and gift of an agent are both strictly increasing func-

tions of her wealth, which rules out quasi-linear utility indices. Indeed, it

can easily be seen that the allocation choice implied by the purely altru-

istic utility index u(x1) +G+ T would simply coincide with that induced

by the purely egoistic utility index u(x1) + g1 if there are no subsidies.

On a related note, Bergstrom, Blume, and Varian (1986, Section 2) em-

13Although we have set k := I + 1 for the domain of the preference relation, upon
an obvious transformation one could also let k = 2, since the agents cannot in�uence
the private consumption of others.
14For theoretical �ndings on crowding out under pure altruism, see Warr (1982),

Roberts (1984), Bernheim (1986), and Andreoni (1988), among others. In turn, neu-
trality of income distribution under pure altruism has been demonstrated by Warr
(1983) and Bergstrom et al. (1986). However, these �ndings are subject to some
exceptions: if only a subset of the agents make donations, government spending as
well as income distribution may in�uence the equilibrium amount of the public good
(Bergstrom et al., 1986). Moreover, under alternative tax schemes (as opposed to
lump-sum taxes that we discussed above), government subsidies may also be e¤ective
(Andreoni and Bergstrom, 1996).
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phasize that with quasi-homothetic utility indices, income transfers would

be neutral even in a model of impure altruism, as that of Andreoni (for

a related �nding, see also Proposition 2 of Andreoni (1990)). Finally, we

should recall that taking into account the boundary solutions complicates

further the task of distinguishing pure and impure altruism (see footnote

14).

In view of these remarks, our menu choice approach does not only

provide foundations for Andreoni�s model, but it also arms us with a clear-

cut distinction between purely altruistic agents and those motivated by

warm-glow. Indeed, to test the hypothesis of pure altruism, in a suitable

experiment one can simply check whether the subjects violate property (1)

systematically. In turn, one can detect economic agents�preferences over

menus in consumption-saving problems that we routinely encounter. We

provide such an example below that demonstrates the added descriptive

power of our approach, which might be important for the purposes of

welfare analysis as we noted in the introduction.

4.1.1 Bequest Giving with Quasi-Linear Utility Indices

Consider two generations within a family, parents and a heir. In period 1,

the parents allocate their wealth, w0, between their private consumption,

x0, and saving, w1 = w0�x0. At the beginning of period 2, they receive an
income support �(w1) which is �nanced by a tax on the heir. We assume

that � : R+ ! [0; w0] is a di¤erentiable function. The parents allocate their

adjusted income between their period 2 consumption, x1, and a bequest,

g1 = w1 + �(w1)� x1. The heir�s initial wealth also equals w0. She moves
last and consumes all of her adjusted income, x�2 = w0 + g1 � �(w1) =
w0 + w1 � x1. We now examine parents�behavior in a subgame perfect
equilibrium.

First of all, the menu that the parents face in period 2 takes the form

A(x0; w0) := f(x1; x�2) : 0 � x1 � w1 + �(w1); x�2 = w0 + w1 � x1g:

This menu belongs to AP with X := R2+, and the most sel�sh allo-
cation is given by (w1 + �(w1); w0 � �(w1)). Thus, we also see that

g1 = y
�
1(A(x0; w0))� x1.
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In turn, the parents�problem in period 1 is to make a choice among

the pairs of the form (x0; A(x0; w0)). Let W be a utility function over

f(x0; A) : x0 2 R+; A 2 Ag that represents the parents�preferences. In
view of Lemma 1, if these preferences restricted to f(x0; A) : A 2 Ag
satisfy the properties (A1)-(A6) for each x0, we can �nd a utility index

Ux0 : R3+ ! R such that

W (x0; A(x0; w0)) = maxfUx0(x1; x2; g1) : (x1; x2) 2 A(x0; w0)g: (3)

Let us now consider a purely egoistic utility index U ex0 = u(x0) +

u(x1) + g1; and a purely altruistic one Uax0 = u(x0) + u(x1) + x2; where

u : R+ ! R+ is a function that satis�es the Inada conditions. Just as
in the corresponding model of Andreoni, after substituting for g1 and x�2;

we immediately see that for any �xed (x0; w0), the maximizers of Uax0 and

U ex0 over the set A(x0; w0) coincide. That is, in this setup, we cannot

distinguish the two types of parents based on period 2 behavior.

On the other hand, the saving behavior of the two types are typically

di¤erent, because the income support in�uences the marginal value of

saving for egoistic parents by altering their perception of freedom in period

2. Indeed, among the interior solutions of period 2 (which correspond to

large values of adjusted income w1 + �(w1)), the value on the right side

of (3) takes the form u(x0) + u(x1) +w1 + �(w1)� x1 for egoistic parents,
while it takes the form u(x0) + u(x1) +w0 +w1 � x1 for altruistic parents
(here, x1 is the number that satis�es u0(x1) = 1). Thus, the marginal

value of saving equals 1 for altruistic parents while it equals 1 + �0(w1)

for egoistic parents. In particular, if � is a decreasing function of w1
(which corresponds to a progressive income support), the marginal value

of saving for egoistic parents is smaller, and hence, they save less than

altruistic parents. If w1 + �(w1) is increasing in w1; this also implies that

egoistic parents leave a smaller bequest. Moreover, while � is neutral in

the case of altruistic parents, the saving of egoistic parents increases with

an upward shift in �0(�).
Of course, the comparative statics of this narrowly tailored model does

not point to a serious economic �nding. Rather, the exercise demonstrates

how the menu choice approach provides additional means of distinguishing

purely altruistic agents from those motivated by warm-glow, which directly
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build upon the fact that government policies may in�uence agents�welfare,

even when they are neutral in terms of second stage behavior.

4.2 Alternative Sets of Social Outcomes

Before discussing another application, we need to clarify how our theory

can be extended to alternative sets of social outcomes. To this end, sup-

pose that the set of allocations X is of the form X = X1�� � ��Xk; where

Xi is a separable metric space for each i. Then, under suitable assump-

tions on the behavior of % over the collection of singletons ffxg : x 2 Xg,
we can �nd an aggregator ' : Rk ! R and functions �i : Xi ! R for

i = 1; :::; k; such that fxg % fyg if and only if '(�1(x1); :::; �k(xk)) �
'(�1(y1); :::; �k(yk)). 15 If we abstract from public goods so that xi cor-

responds to the private consumption of individual i (which may also be

a random variable), just as in Harsanyi�s (1953, 1955) theory of utilitar-

ianism, on occasion it may be appropriate to interpret �i as a measure

of well-being of individual i from the perspective of the decision maker

in question, who acts as a social planner. In fact, that �i depends solely

on xi would suggest one to view this function as the material payo¤ of

individual i.

Once we agree on this interpretation, we could restate properties (i)

and (ii) that de�ne the collection of relevant menus and the axioms (A1)-

(A6), in terms of the payo¤ vectors (�1(x1); :::; �k(xk)) and utility possi-

bility sets of the form f(�1(x1); :::; �k(xk)) : x 2 Ag � Rk. In particular,
we could let y��(A) be an allocation that maximizes the function �1 over

a qualifying menu A, and give the role of y�1(A) � x1 in the basic theory
to the di¤erence �1(y��1 (A)) � �1(x1). By pursuing this approach, it is a
straightforward exercise to obtain an extension of Theorem 1 that delivers

a utility representation of the form

V�(A) := max
x2P(A)

U (�1(x1); :::; �k(xk); �1 (y
��
1 (A))� �1(x1))

for a function U : Rk � R+! R (we omit the details of this derivation).
15A large body of literature is devoted to the study of axiomatic foundations of such

representations that also demand the aggregator to be additive (see Wakker (1989,
Chapter 3) and references therein). In turn, a nonadditive form of the representation
can be derived by imposing a weak separability property along the lines of Mak (1984).
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Remark 3. When individuals�utility from private and public goods can

be separated from each other, the above argument can also be applied in

a framework with a �nite number of public goods.

4.3 Voting as a Civic Duty

Explaining voter turnout in large elections has been a major challenge for

political economists. The di¢ culty stems from the fact that when many

people vote, the probability of being decisive (pivotal) for a single voter is

close to zero, whereas voting incurs signi�cant costs. In an earlier attempt

to resolve this paradox, Riker and Ordeshook (1968) suggested that the

act of voting may be valuable per se, as the citizens may perceive it as a

civic duty.

Suppose there are two candidates, ` and r, and that the agent in

question prefers candidate `. Speci�cally, let us assume that the victory

of ` will bring a material payo¤ u > 0 to our agent, whereas victory of r

is worth 0. Given other voters�behavior, let pj > 0 be the probability of

being pivotal for the agent if she votes for candidate j, and let P be the

probability of winning for candidate ` if she abstains. Finally, let c denote

the cost of voting, and d the payo¤ associated with the act of voting, as

posited by Riker and Ordeshook.

The implied expected payo¤ scheme reads as follows:

(P + p`) u� c+ d if the agent votes for `,

Pu if the agent abstains,

(P � pr) u� c+ d if the agent votes for r.

Thus, the agent would never vote for r, while the decision between ab-

staining and voting for ` is determined by the following simple rule:

vote for ` if and only if p`u+ d � c:

In particular, no matter how small p` might be, our agent would vote if

d � c.
While that voters may be motivated by a sense of duty is a widely ac-

cepted view, recently scholars proposed some extensions which can explain

several other aspects of voters�behavior as well as the high turnout rates
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themselves (see, e.g., Coate and Conlin, 2004; Feddersen and Sandroni,

2006). These alternative models are sensitive to the speci�cation of vot-

ers�statistical distribution, for they relate the turnout rate of a group of

individuals to their likelihood of in�uencing the election outcome.16 Riker-

Ordeshook approach, on the other hand, is compatible with high turnout

rates irrespective of how an individual or a group of individuals might in-

�uence the election outcome. We shall now show how our representation

can reproduce the calculus of voting suggested by Riker and Ordeshook.

Following Section 4.2, let Xi be the space of lotteries over the real

line, and �i be the expectation operator over Xi. Each action a avail-

able to the agent in question, individual 1, induces a vector of lotteries

x(a) 2 X1 � � � � � Xk; given the behavior of other k � 1 voters. So,
the agent evaluates action a with the associated expected payo¤ vector

(�1(x1(a)); :::; �k(xk(a))).

The agent believes that the victory of ` will contribute to the (mate-

rial) payo¤ of everyone in the society, implying that �i(xi(vote for `)) >

�i(xi(vote for r)) for every i. Moreover, as before, the victory of candidate

` is worth u > 0 for the agent herself, so that

�1(x1(vote for `)) = (P + p`) u� c and �1(x1(abstain)) = Pu.

It follows that when p` is small, as would be the case in a large election,

and if c > 0, the agent�s expected payo¤ would be higher if she abstains.

On the other hand, the agent believes that if she were to vote for `, she

would be contributing to the expected payo¤ of everyone else. Thus,

the menu of lottery vectors fx(vote for `); x(abstain)g belongs to AP in
our extended theory, and x(abstain) is the most sel�sh option. In turn,

the corresponding warm-glow component is given by �1(x1(abstain)) �
�1(x1(vote for `)) = c� p`u > 0.
As a �nal step, let us suppose that the utility index of the agent is

of the form U = �1 + f(�), so that we have a purely egoistic agent at

hand. Then, according to our extended theory, the agent should solve the

16Evren (2010) provides a discussion of the role of voters�distribution in these recent
models.
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following problem:

maxf�1(x1(vote for `)) + f(c� p`u); �1(x1(abstain)) + f(0)g:

That is, the agent should vote if, and only if, p`u+ f(c� p`u)� f(0) � c.
Also note that if f is continuous, f(c�p`u) will be approximately equal to
f(c) for small values of p`. Thus, the parameter d in the Riker-Ordeshook

model simply corresponds to the warm-glow payo¤ f(c � p`u) � f(0) �
f(c)� f(0).
Beyond the technical details, our theory endogenizes the parameter d of

Riker and Ordeshook by viewing the act of voting as a sel�ess action taken

by free will. Indeed, if citizens were forced to vote, say by a prohibitively

high �ne on abstention, it would seem reasonable to assume that they

would not attribute an intrinsic value to the act of voting. This is precisely

what our model predicts: Given a �ne � on abstention, the di¤erence

�1(x1(abstain)) � �1(x1(vote for `)) reduces to c � p`u��; leading to a
smaller warm-glow payo¤ f(c � p`u � �) � f(0). Put di¤erently, in line
with our earlier remark, our model implies that a �ne on abstention may

crowd out voters� intrinsic motivation. In a dual fashion, a policy that

aims to reduce voting costs may crowd out intrinsic motivations through

the same mechanism. As Bénabou and Tirole (2006) also point out, this

phenomenon seems to underlie Funk�s (2010) �ndings which show that the

introduction of mail voting in Switzerland failed to raise the turnout rates

in some communities.17

5 On Second Stage Choice Behavior

As we have seen in the previous section, in applied warm-glow models, the

focus is often the social consequences of individuals�behavior. Thus, in

view of the multiplicity of the utility indices that we noted in Section 3,

it is of major importance to determine the extent of uniqueness of the

implied second stage choice behavior. In this section, we �rst address

this issue and then provide an axiomatic characterization of second stage

17Studying re�ections of these observations on voters�welfare may be an interesting
venue for future research, for, to our knowledge, the existing models on voter welfare
simply focus on extrinsic motivations (see Börgers, 2004; Krasa and Polborn, 2009).
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choices associated with a given preference relation over menus.

5.1 Uniqueness

As in Section 3, let % be a binary relation on A that satis�es properties

(A1)-(A6), and let U be a utility index for %. Our representation suggests
that when faced with a menu A 2 A, in the second stage the agent�s
potential choices would coincide with the following set:

CU(A) :=

�bx 2 P(A) : U (bx; y�1(A)� bx1) = max
x2P(A)

U (x; y�1(A)� x1)
�
.

As we noted earlier, when fxg � fx; yg � fyg and y1 > x1, we can-
not pin down how U (x; y1 � x1) compares with U (x; 0) and U (y; 0). In
particular, depending on the choice of the utility index, we may either

have U (x; y1 � x1) = U (y; 0) or U (x; y1 � x1) < U (y; 0). In both cases,
it would follow that the agent may select y from fx; yg, but whether x
could also be selected depends on the choice of the utility index. On

the other hand, when fx; yg � fyg and y1 > x1, we must certainly have
U (x; y1 � x1) > U (y; 0), so that x can be identi�ed as the unique choice
from fx; yg.
These observations readily extend to arbitrary menus. That is, for

any A 2 A, if the most sel�sh option does not belong to CU(A), then

we have CU(A) = CeU(A) for any other utility index eU . In particular,
CU(A) contains the most sel�sh option if and only if this is the case for

any other utility index. What remains undetermined is if (and which)

other allocations can be selected along with the most sel�sh option when

the latter belongs to the choice correspondence:

Proposition 3. Let U and eU be a pair of utility indices for %. Then,
for any A 2 A,
(i) y�(A) =2 CU(A) implies CU(A) = CeU(A);
(ii) y�(A) 2 CU(A) if, and only if, y�(A) 2 CeU(A).
The level of identi�cation determined by Proposition 3 seems to be

quite satisfactory. In particular, the intersection of all compatible choice
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correspondences is always nonempty. Put formally, for any A 2 A, the set

T
fCU(A) : U is a utility index for %g

either contains y�(A) , or it equals CU(A) for an arbitrary utility index U .

It also follows that for any pair of utility indices U and eU; whenever both
CU(A) and CeU(A) consist of single allocations, we must, in fact, have
CU(A) = CeU(A).
Yet, it may be of interest to note that we can obtain perfect identi�-

cation for utility indices which satisfy the following additional property.

Regularity. Let fx; yg 2 AP be such that U(x; y1 � x1) = U(y; 0) and
y1 > x1. Then, any neighborhood of fx; yg contains a pair of allocations
fx0; y0g 2 AP such that U(x0; y01 � x01) > U(y0; 0) and y01 > x01.

In what follows, we say that a utility index is regular if it satis-
�es the above property. The notion of regularity is a variant of the lo-

cal non-satiation property familiar from the classical consumer theory.

On a related note, the next example shows that in the classical model,

monotonicity of a utility index implies its regularity.

Example 1 (Classical Case). Let U be a utility index that is constant
in � and suppose that U(bx; 0) > U(x; 0) whenever bxi > xi for i = 1; :::; k.
Given any x 2 X and " > 0, set x0 := (x1 + "; x2 + "; :::; xk + "). Then,

for any fx; yg in AP with y1 > x1 and any " < y1�x1, the pair fx0; yg also
belongs to AP . Moreover, U(x; y1�x1) = U(y; 0) implies U(x0; y1�x01) =
U(x0; 0) > U(x; 0) = U(y; 0). So, with y0 := y, as " ! 0, the pair fx0; y0g
satis�es the requirements for regularity of U .

As we shall see momentarily, the regularity notion proves quite general

even outside the classical model. Before presenting some examples in this

direction, we state our identi�cation result for regular utility indices:

Proposition 4. Let U and eU be a pair of regular utility indices for %
which are also continuous over (X � R+)n(X0 � R++). Then, CU(A) =

CeU(A) for any A 2 A.
In view of this proposition, when % admits a regular utility index that

is also continuous over (X�R+)n(X0�R++), we denote by C% the unique

choice correspondence associated with such utility indices.
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5.1.1 More on Regularity

The next two examples show that (1) under pure egoism, strict quasi-

concavity implies regularity; and (2) even an impure form of altruism

su¢ ces for regularity.

Example 2 (Pure Egoism). Consider a utility index U and a strictly

quasi-concave function u : R2+ ! R such that U(x; �) = u(x1; �) for every
(x; �) 2 X � R+. Let x; y 2 X be such that y1 > x1 and U(x; y1 �
x1) = U(y; 0), i.e., u(x1; y1 � x1) = u(y1; 0). Put �� := y1 � x1; and
(x0; �0) := �(x; ��) + (1 � �)(y; 0) for an arbitrary � 2 (0; 1), so that

(x01; �
0) = �(x1; �

�)+(1��)(y1; 0). By strict quasi-concavity of u, we then
have u(x01; �

0) > u(y1; 0); that is, U(x0; �0) > U(y; 0). Moreover, if fx; yg
belongs to AP , so does fx0; yg. Finally, note that y1�x01 = �(y1�x1) = �0

and x0 ! x as � ! 1. Thus, as � ! 1, the pair fx0; yg satis�es the
requirements for regularity of U .

Remark 4. Given a strictly concave function f on R+, both of the
functions u1 = f(x1) + � and u2 = x1+ f(�) are strictly quasi-concave on

R2+. Hence, Example 2 also includes such quasi-linear functions. Quasi-
linearity of the latter form might be especially important in an extended

version of our model based on expected material payo¤s, as we discussed

in Section 4.3 above.

Example 3 (Impure Altruism). Let U be a utility index such that

U(bx; �) > U(x; �) whenever bx1 � x1 and bxi > xi for i = 2; :::; k. Given

any x 2 X and " > 0, set x0 := (x1; x2 + "; :::; xk + "). Then, for any pair

fx; yg in AP with y1 > x1, the pair fx0; yg also belongs to AP . Moreover,
U(x; y1 � x1) = U(y; 0) implies U(x0; y1 � x01) = U(x0; y1 � x1) > U(y; 0).
Since " can be selected arbitrarily small, it follows that U is regular.

When we combine Examples 1-3, it appears that one would rarely

encounter a non-regular utility index in applications. We should note,

however, that it is a nontrivial problem to obtain a characterization of

preference relations which admit a regular utility index, for the de�nition

of regularity refers to the condition U(x; y1 � x1) = U(y; 0). In turn,

this equality implies fx; yg � fyg, but the converse does not hold as we
discussed earlier. We do not pursue this problem further in the present

paper.
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5.2 A Joint Characterization of Second Stage Be-

havior

Given a choice correspondence18 C on A, in this section we study some
joint properties of C and % that allow us to relate C to choice correspon-
dences of the form CU . Because of the uniqueness issue that we have

just discussed, for a non-regular utility index U , we will seek only a par-

tial relation between C and CU that is analogous to Proposition 3. In

turn, when % admits a regular utility index that is also continuous over

(X �R+)n(X0�R++), we will be able to obtain a full characterization of
the case C = C%.

We start with two basic assumptions:

E¢ ciency (H1). C(A) = C(P(A)) for any A 2 A.

Weak WARP (H2). Let A 2 AP and pick a nonempty, compact set
B � A. Then, y�(A) 2 B and C(A) \B 6= ; imply C(A) \B = C(B).

Since, in our model, the most sel�sh option acts as a reference point

that in�uences the agent�s second stage behavior, (H2) asserts that the

conclusion of classical WARP holds necessarily, only when the most sel�sh

option inB coincides with the most sel�sh in the larger setA. On the other

hand, for such pair of sets A and B, instances of the form C(A) \ B = ;
must correspond to those cases in which the agent strictly prefers A to B.

The next axiom formalizes this observation.

Sophistication (H3). Let B � X be a nonempty, compact set such that

B [fxg 2 AP for an allocation x 2 XnB. Then, y�(B [fxg) 2 B implies

B [ fxg � B if and only if C(B [ fxg) = fxg.

By de�nition of a utility index U , for such B and x, the conditions

B [ fxg � B and CU(B [ fxg) = fxg are equivalent to each other. So,
(H3) requires the equality of CU(B [ fxg) and C(B [ fxg) in such cases.
The following result extends this equality to all instances in which the

agent does not select the most sel�sh option.

18As usual, a choice correspondence on A refers to a set valued function C on A such
that ; 6= C(A) � A for every A 2 A.
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Proposition 5. Let U be a utility index for %, and C be a choice cor-

respondence on A that satis�es (H1) and (H2). Then, the pair (C;%)
satis�es (H3) if, and only if, the following two properties hold for any

A 2 A:
(i) y�(A) =2 CU(A) implies CU(A) = C(A).

(ii) y�(A) 2 CU(A) if, and only if, y�(A) 2 C(A).

The next item in our agenda is to obtain a characterization of C%. To

this end, we �rst restate the regularity property in terms of second stage

choices:

Choice Regularity (H4). Take any fx; yg 2 AP with y1 > x1, and

suppose that there exists a neighborhood N of fx; yg in AP such that
fx0; y0g � fy0g for every fx0; y0g 2 N with y01 > x

0
1. Then, we must have

C(fx; yg) = fyg.

Remark 5. It is readily veri�ed that a given utility index U for % is

regular if, and only if, the pair (CU ;%) satis�es (H4). Hence the term
�choice regularity.�

We also assume that second stage choices are continuous in a standard

sense:

Closed Graph (H5). f(x;A) : x 2 C(A); A 2 APg is a closed subset of
X �AP .

The promised characterization of C% reads as follows.

Proposition 6. Let C be a choice correspondence on A and suppose

that % admits a regular utility index that is continuous over (X � R+) n
(X0 � R++). Then, the pair (C;%) satis�es (H1)-(H5) if, and only if,
C = C%.

It should be noted that Noor and Takeoka (2011, Section 4) present a

closely related discussion of second stage behavior associated with a class

of temptation driven preference relations over menus. In their model,

the most tempting option acts as a reference point that in�uences the

agent�s choice of an alternative: Holding �xed the alternative x that will

be selected, the agent�s welfare decreases with the di¤erence between the

maximum possible temptation utility and that of x, giving rise to pref-

erences for smaller sets. Thus, the two models are quite distinct, and
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yet, curiously, our axioms that link second period choices to preference

relation % are very similar to those of Noor and Takeoka. In particular,

they postulate conceptually equivalent versions of Weak WARP and So-

phistication, under the same names. In turn, one of their axioms (Ex Post

Decreasing Self Control) ensures that a functional in their representation

is strictly increasing, and thereby, takes the role of regularity property

in our model.19 Thus, it appears that, rather than the linking axioms,

mainly it is the properties of % that distinguish the two models.
In passing, let us emphasize that the main merit of this section has

been the partial identi�cation results, Propositions 3 and 5, as Noor and

Takeoka do not report comparable �ndings. Moreover, as we will see in

the next section, the Sophistication axiom provides a clear-cut distinction

between our theory and a corresponding model of menu choice based on

the notion of preference for �exibility.

6 Relations to Kreps�Model of Preference

for Flexibility

Following Kreps�(1979) pioneering work, the literature on preference for

�exibility also focuses on decision makers who prefer a menu to all of its

subsets (see, e.g., Dekel et al., 2001; Epstein et al., 2007; Ahn and Sarver,

2011). This literature attributes violations of property (1) to uncertainty

of future preference relations over the set of alternatives. The decision

maker in question is solely concerned about her �nal choices just as in

the case of pure altruism. Yet, she still exhibits preference for larger

sets, since, on occasion, she cannot precisely predict which alternative she

would select from a given menu in period 2. In particular, instances of

the form B � B [fxg � fxg correspond precisely to those cases in which
the agent is unsure whether she would select x or an element of B when

19When discussing this axiom, Noor and Takeoka (p. 17) assert that �if he [the agent]
can pick � from f�; �g �albeit not uniquely if he is on the margin between exerting
self-control or not �then he can pick � uniquely in f�; ���g.�Here, � is a number in
(0; 1) and ��� stands for the mixture �� + (1 � �)� of the lotteries � and �. When
adapted to our setting, this quotation amounts to saying that U(x; y1 � x1) � U(y; 0)
implies U(x; y01�x1) > U(y0; 0) for y0 := �x+(1�y) and � 2 (0; 1); which is a stronger
property than regularity of U .
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faced with B [ fxg.
By stark contrast, unless x is the most sel�sh option in B[fxg, when-

ever B � B[fxg our model predicts that the agent would certainly select
x from B [ fxg. In turn, if x is the most sel�sh option, B [ fxg � fxg
implies that the agent would not select x from B [ fxg. These obser-
vations point to a clear-cut distinction between the two models, to the

extent that in period 2, one can verify the random choice behavior that

the preference for �exibility model predicts. More generally, holding �xed

the most sel�sh option, the second stage behavior implied by our theory

is within the scope of the standard choice model, whereas preference for

�exibility approach predicts a stochastic behavior as in McFadden and

Richter (1991) or McFadden (2005).

On the other hand, if one solely focuses on preferences over menus, the

di¤erence between the two approaches becomes less stark. In particular, a

preference relation lies at the intersection of our model with that of Kreps

(1979) if it admits a utility function as follows:

VK(A) := �max
x2A

ua(x) + (1� �)ue(y�1(A));

where � 2 (0; 1), ua : Rk+ ! R is weakly increasing (and continuous), and
ue : R+ ! R is strictly increasing. While the corresponding preference
relation satis�es the properties (A1)-(A6), this representation describes an

agent who believes that in period 2, she may either wish to act unsel�shly

as guided by the function ua (which will happen with probability �), or

select the most sel�sh option in a purely egoistic manner.

It should be noted, however, that preference relations in our model do

not always admit a representation à la Kreps, for such a representation

requires the submodularity axiom which posits that A [ C � A [ B [ C
whenever A � A [ B. By contrast, in our model, we may well have

A [ C � A [ B [ C and A � A [ B, as the most sel�sh options (i.e.,
reference points) in A [B and A [B [C may be di¤erent. For example,
we may have fx; yg � fyg for some x; y with y1 > x1, but the agent may
strictly prefer a menu of the form fx; y; zg to fy; zg whenever z1 > y1, as
the stronger warm-glow experience associated with the sacri�ce z1 � x1
may convince the agent to select x uniquely from fx; y; zg.
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7 Concluding Remarks

In this paper we proposed a representation notion for preference relations

over menus of social allocations. Inspired by the literature on preference

for freedom of choice, the main idea of our model is that a menu that allows

the decision maker to select an other-serving option by her free will may

be more valuable than a menu which leaves no choice but that particular

option. We have also shown that the second stage behavior implied by

our representation subsumes that modeled by Riker and Ordeshook (1968)

and Andreoni (1989, 1990).

Our representation describes an agent who experiences warm-glow only

when her actions (might) help others. However, the strength of warm-glow

experience (i.e., the warm-glow payo¤) is solely a function of the agent�s

private cost, irrespective of how strongly the other agents are in�uenced.

While in Andreoni�s framework there is a linear relation between one�s

sacri�ce of private consumption and her contribution to the public good,

in that of Riker and Ordeshook, warm-glow payo¤ is driven by a sense of

civic duty, independently of the social consequences of the act of voting,

just as our representation predicts. This is not to mean, however, that the

warm-glow experience should truly be independent of others�welfare. In

particular, one can think of a more general version of our representation

that models the warm-glow payo¤ as an increasing function of the agent�s

contribution to every other individual�s payo¤, as well as her private cost

(see Appendix A, Example A1). This alternative model is consistent with

all of our axioms except for (A4), but at present we do not know how the

corresponding class of preference relations can be characterized. We leave

this as an open problem for future research.

If one views �giving�as an act of free will, as opposed to a compulsory

transfer of resources, our model can simply be seen as a theory of �pref-

erence for giving.�On the other hand, social pressure or negative feelings

such as shame may also motivate other-serving actions even if the deci-

sion maker in question dislikes such mode of behavior. Dillenberger and

Sadowski (forthcoming) focus on this phenomenon. Their key idea is that

such a decision maker would dislike the presence of other-serving options,

and hence, exhibit preference for commitment, as opposed to preference

for larger sets that we model in this paper.
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In Dillenberger and Sadowski, the utility associated with the choice

of an allocation decreases with the distance between that allocation and

a most ethical option. As we have noted in the introduction, in this ap-

proach, sel�sh and ethical modes of behavior can coincide, whereas our

model is consistent with those agents who always value the act of giving.

It is also worth noting that the most ethical option in Dillenberger and

Sadowski can be viewed as the maximizer of an altruistic utility func-

tion. Consequently, it appears that the implied second stage behavior

has a closer relation with classical altruism.20 In view of these remarks,

we consider the present paper and that of Dillenberger and Sadowski as

complements.

Following a fundamentally di¤erent approach, Cherepanov et al. (2011)

focus on a standard choice theoretic framework. In their model, each

menu contains a special alternative that the agent �aspires�to choose. If

a given alternative x is the aspiration in the menu that the agent faces,

selecting x brings a payo¤ D > 0 in addition to the utility of x. In

choice situations that involve a con�ict between the material well-being

of the decision maker and that of the society, it may be suitable to think

of the aspiration as an other-serving option. While several prominent

models, including Riker and Ordeshook (1968), Coate and Conlin (2004)

and Feddersen and Sandroni (2006), are within the scope of this theory,

Cherepanov et al. (2011) do not address the problem of distinguishing be-

tween the negative and positive versions of non-altruistic agents that we

have discussed above. Does the agent experience a penalty D upon sel�sh

behavior because of psychological or social reasons, although normatively

she has nothing against such mode of behavior? Or, does she attach an

intrinsic value D to the act of selecting her aspiration with her free will?

Unlike the present paper and Dillenberger and Sadowski (forthcoming),

the model of Cherepanov et al. (2011) is consistent with both scenarios.

20In particular, second stage behavior induced by Theorem 2 of Dillenberger and
Sadowski is consistent with the classical model. One can also think of an analogous
re�nement of our representation that implies WARP-consistent second stage behavior.
However, unlike the classical model, the corresponding second stage �utility�function
would not be increasing in the agent�s material payo¤. (The details are available upon
request from the authors.) We do not pursue this modi�ed approach here, because it
could be restrictive when applied to models of public good provision.

31



Appendix A. Independence of the Axioms

In this appendix, we show that none of the axioms (A2)-(A5) can

be dropped from the statement of Theorem 1. (Interested readers may

contact the authors for further examples that demonstrate necessity of

(A1) and (A6).)

Example A1 (Monotone Warm-Glow). Let U : X � Rk+ ! R be a
weakly increasing, continuous function. De�ne V : A ! R as

V(A) := max
x2P(A)

U(x; y�1(A)� x1; x2 � y�2(A); x3 � y�3(A); :::; xk � y�k(A)):

Denote by % the preference relation on A induced by V. Notice that
given a pair of nonempty compact sets A;B with A [ B 2 AP ; whenever
y�(A [ B) 2 A \ B; we have y�(A) = y�(A [ B) = y�(B). It obvi-

ously follows that % satis�es (A3). It is also easy to verify axioms (A1),

(A2), (A5) and (A6). To see that (A4) may fail, let k := 3 and suppose

U(x; 10; 5; 5) > U(x; 11; 1; 1) for some x 2 X with minfx2; x3g > 5. Put
y := (x1+10; x2�5; x3�5), z := (x1+11; x2�1; x3�1) and suppose also
that U(x; 10; 5; 5) > maxfU(x; 0; 0; 0); U(y; 0; 0; 0); U(z; 0; 0; 0)g. 21 Then,
V (fx; yg) = U(x; 10; 5; 5) > maxfV (fxg); V (fyg); V (fx; zg)g, implying
that % violates (A4).

Example A2 (Weak Instrumentalism). Set k := 2 and put y�1(A) :=
minfx1 : x 2 P(A)g for A 2 A. De�ne a function V : A ! R as

V(A) := max
x2P(A)

x1x2(y
�
1(A)� x1)(y�1(A)� y�1(A)):

That the induced preference relation % satis�es (A1), (A5) and (A6) is

obvious. Moreover, P(A) � P(B) implies y�1(A)�y�1(A) � y�1(B)�y�1(B)
and y�1(A)� x1 � y�1(B)� x1 for any x 2 B. This veri�es (A2). Also note
that for any fx; yg 2 AP with y1 � x1; we have V(fx; yg) = x1x2(y1�x1)2.
In turn, (A4) is readily deduced from this observation. Next, set A :=

f(2; 0); (1; 2)g andB := f(2; 0); (0; 3)g so thatA[B = f(2; 0); (1; 2); (0; 3)g
which belongs to AP . Notice that y�(A [ B) = (2; 0) 2 A \ B. Yet,
V(A) = 2; V(B) = 0 while V(A [B) = 4. This contradicts (A3).
21For instance, with x := (6; 6; 6), the function U(x; �1; �2:�3) := x1x2x3�1�2�3

satis�es all of the conditions mentioned above.
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Example A3 (Pareto Monotonicity). Given a weakly increasing func-
tion U : X � R+ ! R; for any A 2 A set

V(A) := max
x2A

U (x; y�1(A)� x1) :

It is clear that the corresponding preference relation satis�es (A1) and

(A3)-(A6). Now, set U (x; �) := x1� for (x; �) 2 X � R+. Put y :=
(2; 1); x := (1; 1) and A := fx; yg. Then U (y; y�1(A)� y1) = U (y; 0) =

0 < U(x; y�1(A) � x1) = 1. Thus, V(A) > V(fyg) while fyg = P(A), a
contradiction to (A2).

Example A4 (Nonnegative Interdependence). In De�nition 1, if we
drop the condition that U(�; 0) is weakly increasing, the obtained repre-
sentation would still satisfy (A1)-(A4) and (A6). Moreover, whenever the

said condition fails, (A5) would also fail. An example of such a function

is U(x; �) := x1 � x2 + � for (x; �) 2 R3+.

Appendix B. On the Existence of Continuous Utility Indices

As we discussed in Section 3, the behavior of a utility index U over

the set X0 � R++ has no implications on the corresponding preference
relation. Put di¤erently, if U is a utility index for %; so is any other real
map on X �R+ that coincides with U over X �R+n(X0�R++) and that
satis�es part (i) of De�nition 1. Therefore, in principle, one can obtain a

utility index that is continuous over the entire set X�R+ by an extension
procedure. Specially, after �nding a utility index that is continuous over

X�R+n(X0�R++); one can hope to extend this function continuously to
X � R+ (without violating part (i) of De�nition 1). However, this is not
a straightforward issue because the set X �R+n(X0�R++) is not closed,
making it impossible to appeal to known results (such as Tietze extension

theorem). In fact, unless the utility index in question is uniformly contin-

uous over a speci�c collection of bounded subsets of X �R+n(X0�R++),
such an extension does not exist.22 Thus, the problem of �nding a contin-

uous utility index seems to boil down to the problem of �nding a utility
22Indeed, a continuous function over a compact set is uniformly continuous. So, if

A is a bounded and relatively closed subset of X � R+n(X0 � R++), we can �nd a
continuous extension of the utility index in question only if it is uniformly continuous
over A.
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index that is uniformly continuous over a speci�c collection of sets. On

the other hand, to the best of our knowledge, axiomatic foundations of

uniformly continuous utility functions is an unexplored area. While this

might be an interesting question for future research, it is beyond the scope

of the present paper.

Appendix C. Proofs

As it is straightforward, we omit the �only if�part of the proof of The-

orem 1. To prove the �if�part of Theorem 1 and Proposition 1, let % be a
binary relation on A that satis�es (A1)-(A6). We start with the following
claim, which is an immediate consequence of Pareto Monotonicity, as we

noted earlier.

Claim 1. A � P(A) for any A 2 A:

Recall that if a set A belongs to AP , any nonempty, closed subset of
A that contains y�(A) also belongs to AP . So, for each A 2 AP , the set
A := ffx; y�(A)g : x 2 Ag is contained in AP . In fact, A (equipped with

the Hausdor¤ metric) is homeomorphic to A, and compact in particular.

Thus, % admits a maximal set in A by Continuity axiom. That is, there

exists an allocation x(A) in A such that fx(A); y�(A)g % fx; y�(A)g for
every x 2 A. The following claim proves a related observation that we

mentioned earlier.

Claim 2. For any A 2 AP ; we have A � fx(A); y�(A)g.

Proof. Fix a set A that belongs to AP , and let fx1; :::; xn; :::g be a
countable, dense subset of A. For every n 2 N, put An := fx1; :::; xng [
fx(A); y�(A)g. Pareto Monotonicity implies A1 % fx(A); y�(A)g. More-
over, y�(A1) = y�(A), and hence, either A1 � fx1; y�(A)g or A1 �
fx(A); y�(A)g byWeak Instrumentalism. As fx1; y�(A)g - fx(A); y�(A)g,
either equivalence impliesA1 - fx(A); y�(A)g ; that is, A1 � fx(A); y�(A)g.
Similarly, either A2 � fx2; y�(A)g or A2 � A1, and in both cases, we have
A2 � fx(A); y�(A)g. Inductively, it follows that An � fx(A); y�(A)g for
every n. Moreover, since the sequence A1; A2; ::: is uniformly bounded

in Euclidean norm and increases with respect to set inclusion, it is well

known that An ! cl(
S1
n=1A

n) in Hausdor¤ metric (see, e.g., Dekel et al.,
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2001, Lemma 5). In turn, cl(
S1
n=1A

n) equals A by construction. Hence,

Continuity axiom implies A � fx(A); y�(A)g, as we sought. �

Next, we establish the existence of a utility function over menus.

Claim 3. There exists a function V : A ! R, which is continuous over
AP , such that A % B i¤ V (A) � V (B), for every A;B 2 A:

Proof. It is well-known that when endowed with Hausdor¤ metric, the
space of all nonempty, compact subsets of Rk is separable. Therefore, as
a subspace, AP is also a separable metric space. Hence, Debreu�s classical
theorem implies that there exists a continuous function eV : AP ! R that
represents % over AP . In view of Claim 1, we can complete the proof by

setting V (A) := eV (P(A)) for every A 2 A. �

In what follows, 0 stands for the origin of Rk�1; and given an x 2 X;
we write x�1 instead of (x2; :::; xk). It is important to note that for any

� 2 R+ and x 2 X; the set fx; (x1 + �;0)g belongs to A. Moreover,
Pareto Monotonicity and Nonnegative Interdependence imply

B % fxg for every B 2 A and x 2 B:

We utilize these facts without further mention throughout the remainder

of the proof.

The next claim proves useful.

Claim 4. Let x; y; y0 2 X be such that fx; yg 2 AP ; fx; y0g 2 A; y � y0

and y1 � x1: Then,
V (fx; yg) � V (fx; y0g). (4)

Proof. As V (fx; yg) � max fV (fxg); V (fyg)g � max fV (fxg); V (fy0g)g,
(4) trivially holds if V (fx; y0g) = max fV (fxg); V (fy0g)g. In turn, if

V (fx; y0g) > max fV (fxg); V (fy0g)g, the allocations x and y0 must be dis-
tinct and Pareto incomparable (by Pareto Monotonicity), so that fx; y0g
belongs to AP . Moreover, y01 must be larger than x1, as we also have
x�1 � y�1 � y0�1. Therefore, in this case, (4) follows from Monotone

Warm-Glow. �

We now characterize the class of utility indices compatible with V .

Claim 5. Let U : X�R+ ! R be a function that satis�es De�nition 1(i).
Then, the following two conditions are equivalent:
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(i) V (A) = max
x2A

U (x; y�1(A)� x1) for all A 2 AP .

(ii) V (fx; (x1 + �;0)g) � U (x; �) � V (fxg) for all (x; �) 2 (X � R+) n
(X0 � R++), and the former inequality holds with equality whenever fxg �
fx; (x1 + �;0)g � f(x1 + �;0)g.

Proof. First, suppose that (i) holds. Then, V (fxg) = U (x; 0) for x 2 X.
Hence, the latter inequality in (ii) follows from the weak monotonicity of

U(x; �). Now, take any (x; �) 2 (X � R+)n(X0 � R++). If � > 0; the

point x does not belong to X0, meaning that x�1 6= 0: So, we must have
fx; (x1+ �;0)g 2 AP : Therefore, in this case, upon setting A := fx; (x1+
�;0)g, (i) immediately implies the �rst inequality in (ii), which must hold
with equality whenever V (fx; (x1+�;0)g) > U ((x1 + �;0); 0) = V (f(x1+
�;0)g). In turn, if � = 0; Claim 1 implies V (fx; (x1 + �;0)g) = V (fxg),
and hence, (ii) reduces to the equality V (fxg) = U (x; 0), which we veri�ed
earlier.

We shall now show that (ii) implies (i). To this end, take any A 2 AP .
Let us write x instead of x(A); and y� instead of y�(A).

From Claim 2 and the de�nition of x; it follows that

V (A) = V (fx; y�g) � V (fx; y�g) for x 2 A: (5)

Moreover, Claim 4 implies

V (fx; y�g) � V (fx; (y�1;0)g) for x 2 A. (6)

Next, we note that for any x 2 A; the vector (x; y�1 � x1) cannot belong
to X0 � R++; as otherwise y� would strictly Pareto dominate x; which
contradicts the assumption that A consists of e¢ cient allocations. Hence,

the former inequality in (ii) implies V (fx; (y�1;0)g) � U (x; y�1 � x1) for
x 2 A. Combining this observation with (5) and (6), we see that V (A) �
sup
x2A

U (x; y�1 � x1).
To prove the converse inequality, obviously, it su¢ ces to show that

V (fx; y�g) � max
x2fx;y�g

U (x; y�1 � x1) : (7)

Clearly, max fV (fxg); V (fy�g)g � max
x2fx;y�g

U (x; y�1 � x1) by the latter in-

36



equality in (ii). Thus, (7) trivially holds whenever max fV (fxg); V (fy�g)g
= V (fx; y�g). Assume therefore thatmax fV (fxg); V (fy�g)g < V (fx; y�g).
Then, x and y� must be distinct as well as Pareto incomparable, im-

plying that x�1 6= 0 and y�1 > x1. Hence, fx; (y�1;0)g belongs to AP .
So, we can apply Monotone Warm-Glow, which implies V (fx; y�g) �
V (fx; (y�1;0)g). Since V (f(y�1;0)g) � V (fy�g); it therefore follows that
max fV (fxg); V (f(y�1;0)g)g < V (fx; (y�1;0)g). By the �nal statement in
(ii), we must then have U (x; y�1 � x1) = V (fx; (y�1;0)g). We thus conclude
that V (fx; y�g) � U (x; y�1 � x1). This proves (7).
It follows that V (A) = sup

x2A
U (x; y�1 � x1) = max

x2fx;y�g
U (x; y�1 � x1). Fi-

nally, the latter equality implies that the function x ! U (x; y�1 � x1) at-
tains its maximum over A (either at x or y�), which completes the proof.

�

Another useful observation related to the construction of utility indices

is that whenever fxg � fx; (x1+�;0)g for some x 2 XnX0; we must have

U(x; �) = U(x; 0) = V (fxg) = V (fx; (x1+�;0)g); in view of Claim 5. On
the other hand, when fxg � fx; (x1 + �;0)g � f(x1 + �;0)g; any value
of U(x; �) between V (fxg) and V (fx; (x1 + �;0)g) quali�es, subject to
monotonicity and continuity conditions demanded from the function U .

In such cases, we shall set U(x; �) := V (fx; (x1 + �;0)g) in the proof of
Theorem 1, and U(x; �) := V (fxg) in the proof of Proposition 1 upon a
minor modi�cation required for upper semi-continuity of U .

The next claim completes the proof of Theorem 1.

Claim 6. De�ne U : X � R+ ! R as U(x; �) := V (fx; (x1 + �;0)g)
for every (x; �) 2 X � R+. Then, the function U is a utility index for %
which is continuous over (X � R+)n(X0 � R++).

Proof. Note that U trivially satis�es the conditions in Claim 5(ii). More-
over, U(x; 0) = V (fx; (x1;0)g) = V (fxg) for every x 2 X; so, U(�; 0) is
weakly increasing on X by Nonnegative Interdependence. Now, �x an

x 2 X; and a pair of numbers �; �0 such that � > �0 � 0. If x�1 = 0;

Claim 1 and Nonnegative Interdependence imply V (fx; (x1 + �;0)g) =
V (f(x1+�;0)g) � V (f(x1+�0;0)g) = V (fx; (x1 + �0;0)g). On the other
hand, if x�1 6= 0, the set fx; (x1 + �;0)g belongs to AP , and Claim 4

implies V (fx; (x1 + �;0)g) � V (fx; (x1 + �0;0)g). Therefore, in either
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case, U(x; �) � U(x; �0); which proves that U(x; �) is weakly increasing.
In view of Claims 1 and 5, we conclude that U is a utility index for %.
To verify continuity of U , take a sequence (xn; �n) in (X �R+)n(X0�

R++) that converges to a point (x; �) which also belongs to (X�R+)n(X0�
R++). Note that the sequence fxn; (xn1 + �n;0)g converges to fx; (x1 +
�;0)g in Hausdor¤ metric.
First, let us suppose � > 0 so that x�1 6= 0 and fx; (x1 + �;0)g 2 AP .

It also follows that �n > 0, xn�1 6= 0 and fxn; (xn1 + �n;0)g 2 AP for
all su¢ ciently large n. Therefore, the continuity of V over AP implies
limn V (fxn; (xn1 + �n;0)g) = V (fx; (x1 + �;0)g); that is, limn U(x

n; �n) =

U(x; �).

Suppose now � = 0 so that U(x; �) = V (fxg). Recall that U(xn; �n) �
V (fxng) for every n. Moreover, V is continuous over the set ffxg : x 2 Xg
which is contained in AP . Thus, it follows that lim infn U(xn; �n) �
limn V (fxng) = U(x; �). Since �n = 0 implies U(xn; �n) = V (fxng);
without loss of generality we can assume �n > 0 for every n, so that

xn�1 6= 0. Then, An := fxn; (xn1 + �n; n
n+1
xn�1)g belongs to AP for every n.

Moreover, by construction An ! fxg in Hausdor¤ metric, and V (An) �
V (fxn; (xn1 + �n;0)g) = U(xn; �n) by Claim 4 and the de�nition of U .

Since V is continuous over AP , we therefore conclude that U(x; �) =

limn V (A
n) � lim supn U(xn; �n); that is, U(x; �) = limn U(x

n; �n). �

Remark C1. In the proof of continuity above, it is important that

the limit point (x; �) does not belong to X0 � R++: For example, sup-
pose that % admits a utility index eU which is continuous over X � R+.
Let V be the associated utility function over menus so that V (A) :=

maxx2A eU(x; y�1(A) � x1) for A 2 AP . Fix a vector (x; �) 2 X0 � R++;
and note that V (fx; (x1 + �;0)g) = V (f(x1 + �;0)g) = eU((x1+ �;0); 0);
as (x1 + �;0) Pareto dominates x. But it may well be the case thateU(x; �) > eU((x1 + �;0); 0); implying limx0!x eU(x0; �) > eU((x1 + �;0); 0).
In particular, for x0 2 X with x0�1 6= 0 and x01 = x1; we may have

limx0!x V (fx0; (x01 + �;0)g) > V (fx; (x1 + �;0)g): So, the utility index
in Claim 6 need not be upper semi-continuous at a point that belongs

to X0 � R++; even if V is induced by a continuous utility index. As we

discussed in Appendix B, the characterization of the existence of a utility

index that is also continuous over X0 � R++ appears to be a challenging

38



problem, which we leave open.

We now prove Proposition 1 :

Claim 7. Let Xc be the set of critical allocations, and de�ne a function

U : X � R+ ! R as

U(x; �) :=

(
V (fx; (x1 + �;0)g) if x 2 cl(Xc);

V (fxg) otherwise.

Then, U is a utility index for % which satis�es conditions (i)-(iii) of Propo-
sition 1.

Proof. It is obvious that U satis�es the conditions in Claim 5(ii) and

that U(�; 0) is weakly increasing on X. Moreover, the proof of Claim 6

shows that the function � ! V (fx; (x1 + �;0)g) is weakly increasing on
R+ ; which implies that U(x; �) is also weakly increasing on R+ for each
x 2 X. It follows that U is a utility index for %. By de�nitions, it is also
clear that part (ii) of Proposition 1 is true for any utility index, and that

the function U that we constructed satis�es part (i).

To prove that U is upper semi-continuous, take a sequence (xn; �n) in

(X �R+)n(X0�R++) that converges to a point (x; �) which also belongs
to (X �R+)n(X0 �R++). Recall that by continuity of V over singletons,
we have limn V (fxng) = V (fxg).
Without loss of generality, we can assume either (a) xn 2 Xn cl(Xc) for

every n; or (b) xn 2 cl(Xc) for every n. In case (a), we have U(xn; �n) =

V (fxng) for every n; and hence, limn U(x
n; �n) = V (fxg) � U(x; �); where

the weak inequality follows from the de�nition of U . On the other hand,

in case (b), the point x also belongs to cl(Xc). So, we have U(x; �) =

V (fx; (x1 + �;0)g) and U(xn; �n) = V (fxn; (xn1 + �n;0)g) for every n.
Thus, in this case, Claim 6 implies that U(x; �) = limn U(x

n; �n). �

Proposition 2 can easily be veri�ed using the utility indices in Claims

6 or 7. In turn, Lemma 1 holds since in the above construction, we have

utilized continuity of V only to deduce the desired continuity properties

of the utility indices. So, it only remains to prove Propositions 3-6.

Proof of Proposition 5. We omit the �if�part of the proof, which is a
routine exercise. For the �only if�part, by E¢ ciency it su¢ ces to focus
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on a menu A that belongs to AP . Let us write y� instead of y�(A), and
suppose y� =2 CU(A). Pick any x 2 CU(A). Then, U(x; y�1�x1) > U(y�; 0),
so that fx; y�g � fy�g. But then, Sophistication implies C(fx; y�g) =
fxg. So, by Weak WARP, we must have y� =2 C(A). Now, pick any

x0 2 C(A), and suppose by contradiction that x =2 C(A). Then, from
Weak WARP it follows that C(fx0; x; y�g) = fx0g, while Sophistication
implies fx0; x; y�g � fx; y�g. In turn, the latter condition would imply
U(x0; y�1 � x01) > U(x; y�1 � x1); which contradicts the hypothesis that x
belongs to CU(A). So, we conclude that CU(A) � C(A). To prove the

converse inclusion, suppose now that x0 =2 CU(A). Then, U(x; y�1 � x1) >
maxfU(y�; 0); U(x0; y�1 � x01)g. But this amounts to saying fx; x0; y�g �
fx0; y�g, while Weak WARP implies x0 2 C(fx; x0; y�g), a contradiction
to Sophistication. So, we also have C(A) � CU(A), as we sought. This

completes the proof of (i).

It remains to show that y� =2 C(A) implies y� =2 CU(A). To this end,
suppose y� =2 C(A) and, as before, pick an arbitrary x0 2 C(A). Then,
C(fx0; y�g) = fx0g byWeakWARP, and fx0; y�g � fy�g by Sophistication.
So, it follows that U(x0; y�1 � x01) > U(y�; 0), and hence, y� =2 CU(A). �

Note that Proposition 3 is an immediate consequence of Proposition

5, because a choice correspondence of the form CeU satis�es (H1)-(H3) for
any utility index eU . We proceed to:
Proof of Proposition 6. Let U be a regular utility index that is con-

tinuous over (X � R+)n(X0 � R++) so that CU = C%. We omit the

�if� part. For the �only if� part, suppose that (C;%) satis�es (H1)-
(H5). By E¢ ciency, without loss of generality we can focus on a set

A that belongs to AP . Moreover, in view of Proposition 5, we can as-

sume y�(A) 2 CU(A) \ C(A). Now, take any x 2 C(A) that is dis-

tinct from y�(A), and suppose by contradiction that x =2 CU(A). Then,

U(x; y�1(A) � x1) < U(y�(A); 0). By continuity of U and de�nition of a

utility index, clearly, it then follows that there exists a neighborhood N
of fx; y�(A)g in AP such that fx0; y0g � fy0g for every fx0; y0g 2 N with

y01 > x1. But then, Choice Regularity implies C(fx; y�(A)g) = fy�(A)g,
whereas Weak WARP implies C(fx; y�(A)g) = fx; y�(A)g, a contradic-
tion. Conversely, take any bx 2 CU(A) that is distinct from y�(A) so

that U(bx; y�1(A) � bx1) = U(y�(A); 0). From regularity of U , it then
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follows that there exists a sequence fxn; yng in AP that converges to

fbx; y�(A)g such that U(xn; yn1 � xn1 ) > U(yn; 0) and yn1 > xn1 for every

n. Clearly, we must also have limn x
n = bx. Moreover, Proposition 5(i)

implies C(fxn; yng) = fxng for every n. So, by Closed Graph, we see
that bx 2 C(fbx; y�(A)g). Thus, the desired conclusion follows from Weak

WARP: bx 2 C(A). �

For the sake of completeness, we also provide a proof of Proposition 4,

which simply follows the second part of the proof of Proposition 6.

Proof of Proposition 4. In view of Proposition 3, it su¢ ces to show
that CU(A) = CeU(A) for any A 2 AP such that y�(A) 2 CU(A)\CeU(A).
Let A be such a set, and take any bx 2 CU(A) that is distinct from y�(A) so

that U(bx; y�1(A)� bx1) = U(y�(A); 0). Then, as in the proof of Proposition
6, regularity of U and Proposition 3(i) imply that there exists a sequence

fxn; yng in AP that converges to fbx; y�(A)g such that limn x
n = bx and

CeU(fxn; yng) = fxng for every n. Since CeU satis�es Closed Graph, it
follows that bx 2 CeU(A). So, CU(A) � CeU(A); and symmetrically, we also
have CU(A) � CeU(A). �
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