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Abstract

This paper proposes new parametric model adequacy tests for possibly nonlinear and nonsta-
tionary time series models with noncontinuous data distribution, which is often the case in applied
work. In particular, we consider the correct specification of parametric conditional distributions
in dynamic discrete choice models, not only of some particular conditional characteristics such as
moments or symmetry. Knowing the true distribution is important in many circumstances, in par-
ticular to apply efficient maximum likelihood methods, obtain consistent estimates of partial effects
and appropriate predictions of the probability of future events. We propose a transformation of data
which under the true conditional distribution leads to continuous uniform iid series. The uniformity
and serial independence of the new series is then examined simultaneously. The transformation
can be considered as an extension of the integral transform tool for noncontinuous data. We de-
rive asymptotic properties of such tests taking into account the parameter estimation effect. Since
transformed series are iid we do not require any mixing conditions and asymptotic results illustrate
the double simultaneous checking nature of our test. The test statistics converges under the null
with a parametric rate to the asymptotic distribution, which is case dependent, hence we justify a
parametric bootstrap approximation. The test has power against local alternatives and is consistent.
The performance of the new tests is compared with classical specification checks for discrete choice
models.
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1 Introduction

Dynamic choice models are important econometric tools in applied macroeconomics and finance.
These are used to describe the monetary policy decisions of central banks (Hamilton and Jordá,
2002; Basu and de Jong, 2007), for recession forecasting (Kauppi and Saikkonen, 2008; Startz, 2008)
and to model the behavior of agents in financial markets (Rydberg and Shephard, 2003). In the
simplest framework, a binary dynamic model explains the value of an indicator variable in period t,
Yt ∈ {0, 1} , in terms of an information set Ωt available at this period. Then Yt conditional on Ωt is
distributed as a Bernoulli variable with expectation pt = E (Yt|Ωt) = P (Yt = 1|Ωt) = F (πt) where
πt = π (Ωt) summarizes the relevant information and F is a cumulative probability distribution
function (cdf) monotone increasing. Typical specifications of the link function F are the standard
normal cdf, Φ, and the logistic cdf.

We can describe the observed values of Yt as Yt = 1 {Y ∗t > 0} where Y ∗t is given by the latent
variable model

Y ∗t = πt + εt

and εt ∼ F = Fε are iid observations with zero mean.
In a general specification πt is a linear combination of a set of exogenous variables Xt observable

in t, but not necessarily contemporaneous, plus lags of Yt and πt itself,

πt = α0 + α (L)πt + δ (L)Yt +X ′tβ,

where δ (L) = δ1L+ · · ·+ δqL
q and α (L) = α1L+ · · ·+ αpL

p. When q = 0, p = 1 and Fε = Φ this
leads to the dynamic probit model of Dueker (1997),

πt = π0 + δ1Yt−1 +X ′tβ,

and if the roots of 1−α (L) are out of the unit circle, πt can be represented in terms of infinite lags
of Yt and Xt.

Many nonlinear extensions have been considered in the literature, such as interactions with lags
of Yt, to describe the state of the economy in the past,

πt = π0 + δ1Yt−1 +X ′tβ + (Yt−1Xt)
′ γ

or with the sign of other variables in Xt, both stressing different reaction functions in several regimes
defined in terms of exogenous variables at period t. Other specifications consider heteroskedasticity
corrections, so that Var(εt) = σ2 (Ωt) , for example a two regimes conditional variance, Var(εt) =
σ2 (Yt−1) .

In the general ordered discrete choice model, the dependent variable takes J + 1 values in a
set J , and the parametric distribution P(Yt = j|Ωt) can be modeled using the unobserved latent
continuous dependent variable Y ∗t . In the typical case where Yt = j if µj−1 ≤ Y ∗t ≤ µj for j ∈ J ,
J = {0, 1, 2, ..., J} and εt ∼ Fε, with µ−1 = −∞ and µJ =∞, we have that

P(Yt = j|Ωt) = Fε(µj − πt)− Fε(µj−1 − πt)

with α0 = 0.
Forecasting is one of the main uses of discrete choice models. In that case for the calculation of

predictions it might be necessary to resource to recursive methods when δ (L) 6= 0. However in almost
all situations parameters are unknown, but conditional maximum likelihood (ML) estimation is
straightforward given the binomial or discrete nature of data, with typically well behaved likelihoods
and asymptotic normal estimates if the model is properly specified. The existence, representation
and probability properties of these models have been studied under general conditions by de Jong
and Woutersen (2011), who also report the consistency and asymptotic normality of ML estimates
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when the parametric model is correct. However, if not, estimates will be inconsistent and predictions
can be severely biased.

This leads to the need of diagnostic and goodness-of-fit techniques, which should account for the
main features of these models, discrete nature and dynamic evolution. The first property entails
nonlinear modeling and renders invalid many methods specifically tailored for continuous distribu-
tions. Though the latent disturbance εt is continuous and with a well specified distribution, it is
unobservable. Simulation methods could be used to estimate the distribution of such innovations,
but we follow an alternative route by ”continuing” the discrete observations Yt, so that they have
a continuous and strictly increasing conditional distribution in [−1, J ] given Ωt. This distribution
inherits the dependence on a set of parameters and on a conditional information set and can serve
as a main tool to evaluate the appropriateness of the hypothesized model.

Conditional distribution specification tests are often based on comparing parametric and non-
parametric estimation as Andrews’ (1997) conditional Kolmogorov test, or on the integral transform
(see Bai 2003, Corradi and Swanson 2006). The former approach is developed for different data
types, while the latter can be used only for data with continuous distribution. The integral trans-
form does not require strong conditions on the data dependence structure, so it is very useful in
testing dynamic models. However, applying the integral transform to noncontinuous data will not
bring to uniform on [0, 1] series, and therefore this approach can not be applied directly to dynamic
discrete choice models. To guarantee that adequacy tests based on the integral transform enjoy nice
asymptotic properties we propose the following procedure: first, make data continuous by adding
a continuous random noise and then apply the modified conditional distribution transformation to
get uniform iid series.

The first step can be called the continuous extension of a discrete variable which has been em-
ployed in different situations. For example Ferguson (1967) uses some type of extension for simple
hypothesis testing, Denuit and Lambert (2005) and Neslezhova (2006) use it to apply a copulas
technique for discrete and discontinuous variables. The second step is the probability integral trans-
form (PIT) of the continued variables, which we will call randomized PIT. Resulting uniform iid
series can be tested using Bai (2003) or Corradi and Swanson (2006) tests. However, in some cases
these tests can not distinguish certain alternatives, so we also propose test based on comparing joint
empirical distribution functions with the product of its theoretical uniform marginals by means of
Cramer-von Mises or Kolmogorov-Smirnov type statistics, developed by Kheifets (2011) for contin-
uous distributions.

In a general setup, we do not know the true parameters, while the integral transform using
estimated parameters does not necessary provide iid uniform random variates. Hence asymptotic
properties and critical values of the tests with estimated parameters have to be addressed. The
estimation effect changes the asymptotic distribution of the statistics and makes it data dependent.
Andrews (1997) proves that parametric bootstrap provides correct critical values in this case using
linear expansion of the estimation effect, which arises naturally under the ML method. The idea of
orthogonal projecting the test statistics against the estimation effect due to Wooldridge (1990) has
been used in parametric moment tests, see Bontemps and Meddahi (2006). The continuous version
of the projection, often called Khmaladze (1981) transformation, was employed in the tests of Koul
and Stute (1999) to specify the conditional mean, and of Bai and Ng (2001), Bai (2003), Delgado and
Stute (2008) to specify the conditional distribution. These projection tests are not model invariant
since they require to compute conditional mean and variance derivatives, and also projections may
cause a loss in power. In this paper we apply a bootstrap approach instead. In the case of ordered
choice models an extensive Monte Carlo comparison of specification tests has been done by Mora
and Moro (2008) in a static cross section context. They study two types of tests based on moment
conditions and on comparison of parametric and nonparametric estimates.

Despite that there is some work on nonstationary discrete data models, cf. Phillips and Park
(2000), we stress stationary situations, but some ideas could be extended to a more general set up as
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far as the conditional model provides a full specification of the distribution of the dependent discrete
variable.

The contributions of this paper are following: 1) a new specification test for dynamic discon-
tinuous models is proposed, 2) we show that the test is invariant to the choice of distribution of
the random noise added, 3) parameter estimation effect of the test is studied, 4) under standard
conditions we show the asymptotic properties of such tests, and 5) since asymptotic distribution
is case dependent, critical values can not be tabulated and we prove that a bootstrap distribution
approximation is valid.

The rest of the paper is organized as follows. Section 2 introduces specification test statistics.
Asymptotic properties and bootstrap justification provided in Section 3. Monte Carlo experiments
are reported in Section 4. Section 5 concludes.

2 Test statistics

In this section we introduce our goodness-of-fit statistics. Suppose that a sequence of observations
(Y1, X1), (Y2, X2), ..., (YT , XT ) is given. Let Ωt = {Xt, Xt−1, . . . ;Yt−1, Yt−2, . . .} be the information
set at time t (not including Yt). We consider a family of conditional cdf’s F (y|Ωt, θ), parameterized
by θ ∈ Θ, where Θ ⊆ RL is a finite dimensional parameter space. We could allow for nonstationarity
by permitting the change in the functional form of the cdf of Yt using subscript t in Ft. Our null
hypothesis of correct specification is

H0 : The conditional distribution of Yt conditional on Ωt is in the parametric family F (y|Ωt, θ)
for some θ0 ∈ Θ.

For example, for dynamic ordered discrete choice model the null hypothesis would mean that
∃θ0 ∈ Θ, ∀j = 0, . . . , J, P (Yt = j|Ωt) = pj(Ωt, θ0), i.e. that all conditional probabilities are in a
given parametric family.

For further analysis, we assume that the support of the conditional distributions F (y|Ωt, θ) is
a finite set of nonnegative integers {0, . . . , J} and F (y|Ωt, θ) =

∑
j≤y PF (j|Ωt, θ), where PF is the

probability function at the discrete points.
The first step is to obtain a continuous version of Y . For any random variable Z ∼ Fz with

support in [0, 1] and Fz continuous (but not necessary strictly increasing) define the continued by Z
version of Y ,

Y † = Y + Z − 1.

Then the distribution of the continued version of Y is

F † (y|Ωt) = P
(
Y † ≤ y|Ωt

)
= F ([y]|Ωt) + Fz(y − [y]) P ([y] + 1|Ωt) , (1)

which is strictly increasing on [−1, J ] . The typical choice for Z is the uniform in [0, 1] , so that

F † (y|Ωt) = F ([y]|Ωt) + (y − [y]) P([y] + 1|Ωt). (2)

The binary choice case renders F † (y|Ωt) = (y−[y]) (1− pt) for y ∈ [−1, 0) and F † (y|Ωt) = (1− pt)+
(y − [y])pt for y ∈ [0, 1] . Note, that F † coincides with F in the domain of F . We state next an
”invariance property”: for our purpose, it does not matter how to continue Y and what distribution
Fz of the noise Z to add. The unit support of Z is needed to get a simple expression for F † in (1),
otherwise the resulting distribution will be a convolution F † (y|Ωt) =

∑J
j=0 Fz (y + 1− j) P (j|Ωt).

Continuation idea has been used to deal with discrete distributions, for example, to work with
copulas with discrete marginals as in Denuit and Lambert (2005).

The following proposition generalizes results about the probability integral transform.
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Proposition 1 (a) Under H0 random variables Ut = F †(Y †t |Ωt, θ0) are iid uniform; (b) Invariant
property of randomized PIT: realizations of Ut are the same for any distribution Fz in (1) both under
H0 and under the alternative.

Part (a) is a property of usual PIT with a continuous distribution F †. Part (b) that realizations of
Ut are the same, means the following. Consider continuations of Yt by arbitrary Z ∼ Fz and uniform
Zu ∼ FU . Fix realizations {yt}, {zt} and {zut} from respective distributions. If zut = Fz(zt), then

F †Fz(yt + zt − 1|Ωt, θ0) = F †FU (yt + zut − 1|Ωt, θ0),

where F †Fz stresses dependence of F † on Fz in (1), F †FU is as F † in (2), continued by uniform,

and Ωt denotes here realized past. Therefore, although a continued variable Y †t and its distribution

F † depends on Fz, F
†(Y †t |Ωt, θ0) is not and we can always use uniform variables Z for continuation

without affecting any properties of tests based on Ut.
Now we can use the fact that under the null hypothesis Ut = F †(Y †t |Ωt, θ0), t = 1, . . . , T , are

uniform on [0,1] and iid random variables, so that P(Ut−1 ≤ r1, Ut−2 ≤ r2, ..., Ut−p ≤ rp) = r1r2 · · · rp,
for r = (r1, . . . , rp) ∈ [0, 1]p. This motivates us to consider the following empirical processes

VpT (r) =
1√

T − (p+ 1)

T∑
t=p+1

 p∏
j=1

I(Ut−j ≤ rj)− r1r2 . . . rp

 .
If we do not know θ0 either {(Yt, Xt), t ≤ 0}, we approximate Ut with Ût = F †t (Y †t |Ω̃t, θ̂) where θ̂

is an estimator of θ0 and the truncated information set is Ω̃t = {Xt, Xt−1, . . . , X1;Yt−1, Yt−2, . . . , Y1}
and write

V̂pT (r) =
1√

T − (p+ 1)

T∑
t=p+1

 p∏
j=1

I(Ût−j ≤ rj)− r1r2 . . . rp

 (3)

and
DpT = Γ(V̂pT (r))

for any continuous functional Γ(·) from `∞([0, 1]p), the set of uniformly bounded real functions on
[0, 1]p, to R. In particular we use the Cramer-von Misses and Kolmogorov Smirnov test statistics

DCvM
pT =

∫
[0,1]p

V̂pT (r)2dr or DKS
pT = max

[0,1]p

∣∣∣V̂pT (r)
∣∣∣ . (4)

One further possibility is to test for j-lag pairwise independence, using the process

V̂2T,j(r) =
1√
T − j

T∑
t=j+1

[
I(Ût ≤ r1)I(Ût−j ≤ r2)− r1r2

]
, (5)

and corresponding test statistics DCvM
2T,j and DKS

2T,j , say.
We can aggregate across p or j summing possibly with different weights k(·), obtaining generalized

statistics

ADPT =

T−1∑
p=1

k(p)DpT, or ADJT =

T−1∑
j=1

k(j)D2T,j . (6)

For p = 1, DKS
1T delivers a generalization of Kolmogorov test to discrete distributions. Usually

this test captures general deviations of marginal distribution but lacks power if only dynamics is
misspecified. In particular, it does not have power against alternatives where Ut are uniform on
[0,1] but not independent. For general p, VpT delivers a generalization of Kheifets (2011) to discrete
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distributions. This test should capture both deviations of marginal distribution and deviations in
dynamics.

A more direct approach is based in Box-Pierce (1970) type of statistics, we could consider

BPUm := T

m∑
j=1

ρ̂T,U (j)2 ,

m = 1, 2, . . . , and ρ̂T,U (j) are the sample correlation coefficients of the U ′ts at lag j. Noting that Ut

should be uniform continuous iid random variables under the null of correctly specified model, but
might be correlated under alternative hypothesis of wrong specification, BPUm is a good basis to
design goodness-of-fit tests. This idea is related to the tests of Hong (1998). Alternatively, we can
check autocorrelations of Gaussian residuals Φ(Ut)

BPNm := T
m∑
j=1

ρ̂T,Φ(U) (j)2 ,

and normality of Φ(Ut) with Jarque-Bera test. In addition we can check autocorrelations of discrete
innovations,

et =
Yt − E [Yt|Ωt]

(Var [Yt|Ωt])
1/2

,

which are just the usual standardized probit residuals. We can define

BPDm := T

m∑
j=1

ρ̂T,e (j)2

and other statistics based on autocorrelations of squares of different types of residuals. The asymp-
totic distribution of these statistics can be approximated by chi square distributions when the true
parameters θ0 are known. Unlike tests based on empirical process, these tests can not capture some
alternatives, for example if misspecification involves only higher order moments.

Parameter estimation affects the asymptotic distribution of these statistics, as well as that of
those tests based on the empirical distribution of the U ′ts. There are different bootstrap and sampling
techniques to approximate asymptotic distribution, see for example Shao and Dongsheng (1995),
Politis, Romano and Wolf (1999). Since under H0 we know the parametric conditional distribution,
we apply parametric bootstrap to mimic the H0 distribution. We introduce the algorithm now for
statistics Γ(V̂2T ).

1. Estimate model with initial data (Yt, Xt), t = 1, 2, ..., T , get parameter estimator θ̂, get test
statistic Γ(V̂2T ).

2. Simulate Y ∗t with F (·|Ω∗t , θ̂) recursively for t = 1, 2, ..., T , where the bootstrap information set
is Ω∗t = (Xt, Xt−1, . . . , Y

∗
t−1, Y

∗
t−2, ...).

3. Estimate model with simulated data Y ∗t , get θ∗, get bootstrapped statistics Γ(V̂ ∗2T ).

4. Repeat 2-3 B times, compute the percentiles of the empirical distribution of the B boostrapped
statistics.

5. Reject H0 if Γ(V̂2T ) is greater than the corresponding (1− α)th percentile.

We will prove that Γ(V̂ ∗2T ) has the same limiting distribution as Γ(V̂2T ). Bootstrapping other
statistics is similar.

6



3 Asymptotic properties of specification tests

In this section we derive asymptotic properties of the statistics based on V2T . We start with the
simple case when we know parameters, then study how the asymptotic distribution changes if we
estimate parameters. We provide analyses under the null, under the local and fixed alternatives.
We first state all necessarily assumptions and propositions, then discuss them.

Let ‖ · ‖ denote Euclidean norm for matrices, i.e. ‖A‖ =
√

tr(A′A) and for ε > 0, B(a, ε) is an
open ball in RL with the center in the point a and the radius ε. In particular, for some M > 0
denote BT = B

(
θ0,MT−1/2

)
= {θ : ||θ − θ0|| ≤ MT−1/2}. For any discrete distributions G and F,

with probability functions PG and PF , and r ∈ [0, 1] define

d (G,F, r) = G
(
F−1 (r)

)
− F

(
F−1 (r)

)
+
r − F

(
F−1(r)

)
PF (F−1(r) + 1)

(
PG

(
F−1(r) + 1

)
− PF

(
F−1(r) + 1

))
.

We have d (F, F, r) = 0, but d (G,F, r) is not symmetric in G and F .
Assumption 1 Uniform boundedness away from zero: ∀ε > 0, ∃δ > 0, such that |F (0|Ωt, θ)| > ε
and |F (j|Ωt, θ)− F (j − 1|Ωt, θ)| > ε for j = 1, . . . , J uniformly in θ ∈ B(θ0, δ).
Assumption 2 Smoothness with respect to parameters:

(2.1)

E max
t=1,..,T

sup
u∈BT

max
y
|F (y|Ωt, u)− F (y|Ωt, θ0)| = O

(
T−1/2

)
.

(2.2) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

max
y

1√
T

T∑
t=1

sup
||u−v||≤M2T−1/2−δ

u,v∈BT

|F (y|Ωt, u)− F (y|Ωt, v)| = op (1) .

(2.3) ∀M ∈ (0,∞), there exists a uniformly continuous (vector) function h(r) from [0, 1]2 to RL,
such that

sup
v∈BT

sup
r∈[0,1]2

∣∣∣∣∣ 1√
T

T∑
t=2

ht(r, v)− h(r)′
√
T (θ0 − v)

∣∣∣∣∣ = op(1),

where

ht(r, v) = d (F (·|Ωt−1, θ0) , F (·|Ωt−1, v) , r2) r1

+d (F (·|Ωt, θ0) , F (·|Ωt, v) , r1) I (F (Yt−1|Ωt−1, θ0) ≤ r2) .

Assumption 3 Linear expansion of the estimator: when the sample is generated by the null
Ft(y|Ωt, θ0), the estimator θ̂ admits a linear expansion

√
T (θ̂ − θ0) =

1√
T

T∑
t=1

` (Yt,Ωt) + op(1), (7)

with EFt (` (Yt,Ωt) |Ωt) = 0 and 1
T

∑T
t=1 ` (Yt,Ωt) ` (Yt,Ωt)

′ pFt→ Ψ.
Dynamic probit/logit and general discrete choice models considered in Introduction can easily

be adjusted to satisfy all these assumptions. Discrete support allows a simple analytical closed form
of conditional distribution of continued variable by any continuous random variable on unit support
as in (2). Assumption 1 in particular requires that F (0|Ωt, θ) and F (j|Ωt, θ) − F (j − 1|Ωt, θ) for
j = 1, . . . , J are bounded away from zero uniformly around θ0. To study parameter estimation effect
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we need to assume some smoothness of the distribution with respect to the parameter in Assumption
2 and a linear expansion of the estimator in Assumption 3. Note, the smoothness of the distribution
with respect to the parameter is preserved after continuation, therefore Assumption 2 is similar to
continuous case in Kheifets (2011); local Lipschitz continuity or existence of uniformly bounded first
derivative of the distribution w.r.t. parameter is sufficient. For bootstrap we will need to strengthen
Assumption 3 (see Assumption 3B below), although both conditions are standard and satisfied for
many estimators, for example for MLE. Note, that to establish the convergence of the process V2T

(with known θ0) under the null (the following Proposition 2), we do not need these assumptions.
We now describe the asymptotic behavior of the process V2T (r) under H0. Denote by ” =⇒ ”

weak convergence of stochastic processes as random elements of the Skorokhod space D
(
[0, 1]2

)
.

Proposition 2 Under H0

V2T =⇒ V2∞,

where V2∞(r) is bi-parameter zero mean Gaussian process with covariance

CovV2∞(r, s) = (r1 ∧ s1)(r2 ∧ s2) + (r1 ∧ s2)r2s1 + (r2 ∧ s1)r1s2 − 3r1r2s1s2.

To take into account the estimation effect on the asymptotic distribution, we use a Taylor ex-
pansion to approximate V̂2T (r) with V2T (r),

V̂2T (r) = V2T (r) +
√
T
(
θ̂ − θ0

)′
h(r) + op(1)

uniformly in r. To identify the limit of V̂2T (r), we need to study limiting distribution of
√
T (θ̂− θ0),

using the expansion from Assumption 3. Define

CT (r, s, θ) = E

(
V2T (r)

1√
T

∑T
t=1 ` (Yt,Ωt)

)(
V2T (s)

1√
T

∑T
t=1 ` (Yt,Ωt)

)′
and let (V2∞(r), ψ′∞)′ be a zero mean Gaussian process with covariance function C(r, s, θ0) =
limT→∞CT (r, s, θ0). Dependence on θ on right hand side (rhs) comes through Ut and ` (·, ·).

Suppose the conditional distribution function H(y|Ωt) is not in the parametric family F (y|Ωt, θ)
but has the same support. For any T0 ∈ {0, 1, 2, ..., } and T ≥ T0 define conditional on Ωt conditional
df

GT (y|Ωt, θ) =

(
1−
√
T0√
T

)
F (y|Ωt, θ) +

√
T0√
T
H(y|Ωt).

Now we define local alternatives:

H1T : Conditional cdf of Yt is equal to GT (y|Ωt, θ0) with T0 6= 0.

Conditional cdf GT (y|Ωt, θ0) allow us to study all three cases: H0 if T0 = 0, H1T if T =
T0, T0 + 1, T0 + 2, ... and T0 6= 0 and H1 if we fix T = T0. In the next proposition we provide the
asymptotic distribution of our statistics under the null and under the local alternatives.

Proposition 3 a) Suppose Assumptions 1-3 hold. Then under H0

Γ(V̂2T )
d→ Γ(V̂2∞),

where V̂2∞(r) = V2∞(r)− h(r)′ψ∞.
b) Suppose Assumptions 1-3 hold. Then under H1T

Γ(V̂2T )
d→ Γ

(
V̂2∞ +

√
T0k −

√
T0ξ
′h
)
,
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where

k(r) = plim
T→∞

1

T

T∑
t=2

{d (H (·|Ωt−1) , F (·|Ωt−1, θ0) , r2) r1

+ d (H (·|Ωt) , F (·|Ωt, θ0) , r1) I (F (Yt−1|Ωt−1, θ0) ≤ r2)} ,

and

ξ = plim
T→∞

1

T

T∑
t=1

` (Yt,Ωt) . (8)

UnderGT , the random variables Ut = F †(Y †t |Ωt, θ0) are not anymore iid, instead U∗t = G†T (Y †t |Ωt, θ0)
are uniform iid. The first term in k(r) controls for the lack of uniformity of Ut (and it is similar
to Bai’s (2003) k(r)), it is zero when Ut are uniform. The second term in k(r) adds control for
independence of Ut, cf. Kheifets (2011).

Under the alternative we may have also that (7) is not centred around zero, since EGT (` (Yt,Ωt) |Ωt) =√
T0√
T
EH (` (Yt,Ωt) |Ωt), therefore ξ may be nonzero, which stands for information from estimation.

This term does not appear in Bai (2003) method, since his method projects out the estimation effect.
For the case of the one parameter empirical process, we can provide the following corollary, which

is similar to Bai (2003)’s single parameter results.

Corollary 4 a) Suppose Assumptions 1-3 hold. Then under H0

Γ(V̂1T (·)) d→ Γ(V̂2∞(·, 1)),

where V̂1∞(·) = V1∞(·)− h(·, 1)′ψ∞ and V1∞(·) = V2∞(·, 1).
b) Suppose Assumptions 1-3 hold. Then under H1T

Γ(V̂1T (·)) d→ Γ(V̂1∞ (·) +
√
T0k1 (·)−

√
T0h(·, 1)′ξ),

where for r ∈ [0, 1]

k1(r) = plim
T→∞

1

T

T∑
t=2

d (H (·|Ωt) , F (·|Ωt, θ0) , r) .

Note then that tests based on V̂1T are not consistent against alternatives for which k1 = 0 and
h(·, 1) = 0 but k 6= 0 or h(·, 1) 6= 0 on some set of positive measure.

We will justify our bootstrap procedure now, i.e. we prove that Γ(V̂ ∗2T ) has the same limiting

distribution as Γ(V̂2T ). We say that the sample is distributed under {θT : T ≥ 1} when there
is a triangular array of random variables {YTt : T ≥ 1, t ≤ T} with (T, t) element generated by
F (·|ΩTt, θT ), where ΩTt = (Xt−1, Xt−2, . . . , YTt−1, YTt−2, . . .). Similar arguments can be applied to
other statistics.
Assumption 3B For all nonrandom sequences {θT : T ≥ 1} for which θT → θ0, we have

√
T (θ̂ − θT ) =

1√
T

T∑
t=1

` (YTt,ΩTt) + op(1),

under {θT : T ≥ 1}, where E [` (YTt,ΩTt) |ΩTt] = 0 and

1

T

T∑
t=1

` (YTt,ΩTt) ` (YTt,ΩTt)
′ p→ Ψ.

Note that the function ` (·, ·) now depends on θT and is assumed to be the same as in Assumption
3. We require that estimators of close to θ0 points have the same linear representation as the
estimator of θ0 itself.
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Table 1: Different scenarios for Monte Carlo experiments.

DGP Null
1 probit static probit static
2 probit dynamic probit dynamic
3 probit interactions probit interactions
4 logit static probit static
5 chi2 static probit static
6 logit dynamic probit static
7 chi2 dynamic probit static
8 logit interactions probit dynamic
9 chi2 interactions probit dynamic
10 logit interactions probit static
11 chi2 interactions probit static

Proposition 5 Suppose Assumptions 1, 2 and 3B hold. Then for any nonrandom sequence {θT :
T ≥ 1} for which θT → θ0, under {θT : T ≥ 1},

Γ(V̂2T (r))
d→ Γ(V̂2∞(r)).

4 Monte Carlo Simulation

In this section we investigate the finite sample properties of our bootstrap tests using Monte Carlo
exercise. We use a simple dynamic Probit model with one exogenous regressor with autoregressive
dynamics. We consider three specifications of dynamics

Static model : πt = π0 + βXt,

Dynamic model : πt = π0 + δ1Yt−1 + βXt,

Dynamic model with interactions : πt = π0 + δ1Yt−1 + γ1Yt−1Xt + βXt, γ1 = −2β,

where in all specifications Xt follows an AR(1) process,

Xt = α1Xt−1 + et, et ∼ IIN (0, 1) ,

and we set π0 = 0, β = 1, δ1 = 0.8, α1 = 0.8.
We try 11 different scenarios of data generating processes (DGP) and null hypotheses (see Table

1). In the first three we study the size properties of static, dynamic and dynamic with interactions
probit models. Other scenarios check power when dynamics and/or marginals are misspecified. We
take logit and

(
χ2

1 − 1
)
/21/2 as alternative distributions. We use sample sizes T = 100 (Table 2),

300 (Table 3) and 500 (Table 4) with 1000 replications. To estimate the Bootstrap percentages
of rejections we use a Warp bootstrap Monte Carlo (see Giacomini, Politis and White, 2007) for
all considered test statistics. For tests based on ”continued” residuals we consider one-parameter
(p = 1) and two-parameter empirical processes (p = 2) with j = 1 and j = 2 lags and Cramer-von
Misses (CvM) and Kolmogorov-Smirnov (KS) criterions. To make the results more readable, we
denote them as CvM0 = DCvM

1T , CvM1 = DCvM
2T,1 , CvM2 = DCvM

2T,2 and KS0 = DKS
1T , KS1 = DKS

2T,1,

KS2 = DKS
2T,2. We consider Box-Pierce type tests for Gaussian and discrete residuals with m =

1, 2, 25. We also check normality of Gaussian residuals with a bootstrapped Jarque-Bera test (JB).
The results of empirical process tests with further lags j = 3, 4, 5 and correlation tests on uniform
residuals do not provide additional information and are omitted.
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Table 2: Percentage of rejections of test statistics with T = 100.

CvM0 CvM1 CvM2 KS0 KS1 KS2 BPN1 BPN2 BPN25 JB BPD1 BPD2 BPD25

10% 8.8 7.4 10.4 8.4 10.1 9.2 9.5 9.6 9.3 8.3 10.1 10.6 8.8
1 5% 3.5 4.3 4.3 3.9 4.8 4.7 4.6 3.7 3.8 4.4 5.5 5.1 3.4

1% 0.3 0.9 0.4 0.5 1.1 1.7 1.5 0.8 0.3 2.1 0.8 0.6 0.3
10% 7.9 8.3 8.7 7.0 9.6 9.2 9.0 10.6 7.0 11.2 9.5 10.7 12.8

2 5% 3.0 3.6 4.0 2.8 4.9 4.5 6.0 4.0 2.1 5.9 4.0 4.4 6.1
1% 0.0 0.4 0.1 0.8 1.2 1.0 0.9 1.3 0.3 1.5 0.4 1.1 0.7

10% 8.9 10.0 9.5 7.7 10.6 9.4 10.1 11.3 8.9 10.7 9.2 9.2 10.1
3 5% 4.1 4.1 3.9 3.6 4.9 5.0 5.5 5.5 4.5 5.4 5.5 3.8 5.4

1% 0.1 0.1 0.2 1.1 0.5 0.8 1.2 1.1 0.5 1.1 0.6 0.8 0.5

10% 8.1 9.0 7.6 8.4 8.9 9.9 7.2 8.8 7.5 9.9 9.0 9.2 9.0
4 5% 3.9 4.6 3.5 3.6 4.1 3.7 3.5 4.1 3.6 3.0 5.1 4.6 4.1

1% 0.5 0.4 0.3 0.6 0.6 0.6 1.2 0.7 0.6 0.5 1.0 1.9 0.7
10% 10.4 9.5 10.2 12.0 10.1 11.1 9.2 11.5 10.7 20.3 8.0 7.5 9.2

5 5% 4.9 6.1 5.6 5.9 5.2 5.7 5.7 6.3 6.1 12.6 4.6 3.7 4.8
1% 0.5 0.9 0.3 0.8 1.2 0.3 1.0 1.0 0.7 4.3 1.8 1.6 0.9

10% 9.5 11.0 7.6 9.2 9.8 9.3 19.1 15.4 11.7 11.0 43.0 35.3 16.8
6 5% 4.6 4.9 3.5 3.5 5.2 4.6 10.7 9.0 6.6 4.7 29.4 20.5 9.4

1% 0.4 0.5 0.8 0.5 1.4 0.9 2.9 2.3 0.8 0.9 11.0 5.7 2.9
10% 10.3 10.9 9.4 9.2 10.0 9.3 28.3 26.4 14.5 13.7 60.0 50.6 24.6

7 5% 4.8 5.2 4.7 3.9 4.7 5.2 20.6 16.4 8.5 7.7 47.1 37.0 16.7
1% 0.1 1.5 0.1 1.2 1.3 0.5 9.4 6.0 2.6 2.3 26.0 16.4 5.6

10% 9.7 9.2 13.7 9.9 10.1 13.0 14.0 26.6 16.2 9.9 46.2 57.4 30.1
8 5% 4.0 3.7 7.8 3.6 5.5 7.8 6.5 18.8 10.1 3.8 36.9 45.1 18.6

1% 0.8 0.8 2.5 0.8 1.1 1.3 0.6 6.4 2.3 0.3 17.1 27.6 5.0
10% 14.4 16.9 29.1 16.0 20.6 34.4 18.1 55.7 33.5 20.0 79.0 82.2 64.9

9 5% 8.9 10.0 21.1 9.9 12.5 18.5 11.2 48.4 23.1 12.4 72.9 81.0 59.8
1% 0.9 1.8 3.9 1.4 4.2 3.8 3.4 26.9 11.6 3.1 58.1 77.2 43.8

10% 8.6 14.7 18.1 7.6 15.5 13.0 28.0 42.0 21.3 9.2 50.1 79.8 43.6
10 5% 2.8 8.5 9.5 3.8 7.6 6.6 17.5 29.0 12.9 3.9 35.7 69.8 30.4

1% 0.6 1.4 2.1 0.4 1.3 0.5 5.3 12.4 4.4 0.3 22.4 45.6 10.7
10% 9.0 28.1 33.6 8.1 29.2 28.4 53.1 85.1 60.3 8.8 72.0 99.9 94.2

11 5% 3.4 17.6 19.8 3.3 17.1 11.8 40.7 76.3 43.1 5.3 61.6 99.7 90.5
1% 0.2 6.1 4.2 0.2 3.4 1.4 23.2 57.1 22.0 0.6 40.8 98.4 72.3
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Table 3: Percentage of rejections of test statistics with T = 300.

CvM0 CvM1 CvM2 KS0 KS1 KS2 BPN1 BPN2 BPN25 JB BPD1 BPD2 BPD25

10% 8.3 9.2 9.2 9.1 9.0 10.4 8.0 8.3 8.6 8.0 8.3 8.2 10.2
1 5% 4.1 4.7 4.6 5.2 4.8 4.6 3.6 3.9 4.4 2.7 4.2 3.1 4.8

1% 0.7 1.0 0.6 0.8 0.6 0.4 0.6 0.7 1.1 0.6 0.6 0.6 1.0
10% 9.3 8.9 10.2 9.3 9.8 11.6 7.6 10.0 9.7 9.6 9.0 6.9 7.4

2 5% 5.5 4.4 5.9 5.2 4.9 6.4 3.8 4.6 4.8 3.8 3.7 3.6 3.2
1% 1.0 1.1 0.9 1.4 1.1 0.9 0.5 0.7 1.4 0.7 0.5 0.2 0.6

10% 8.5 12.3 8.7 8.7 12.2 9.9 8.1 9.9 10.1 9.0 10.1 9.4 13.5
3 5% 4.5 5.1 5.1 3.3 5.4 5.3 4.4 5.2 5.9 4.2 5.3 4.2 5.1

1% 1.1 1.0 1.5 1.2 0.6 0.9 0.9 1.0 1.3 0.5 0.6 1.2 1.5

10% 9.9 10.2 9.2 9.5 10.8 9.8 8.6 9.3 10.0 11.2 8.5 9.6 8.5
4 5% 4.8 4.9 4.6 5.3 5.2 4.9 4.4 5.1 4.0 6.1 3.3 3.2 3.6

1% 0.9 1.1 0.6 0.9 1.3 1.1 0.5 0.5 1.0 0.7 0.8 0.5 0.9
10% 16.5 15.1 14.9 15.8 14.9 14.4 11.8 11.2 8.7 41.4 6.0 7.2 9.0

5 5% 8.8 7.9 8.3 9.6 7.5 8.5 5.0 6.1 4.1 30.4 4.6 6.3 6.7
1% 1.6 2.0 1.8 1.8 2.2 1.4 0.9 1.4 1.0 9.6 3.0 3.1 2.9

10% 8.8 15.4 11.3 9.0 13.7 10.1 38.3 29.9 16.0 9.6 79.1 69.0 29.2
6 5% 4.7 9.8 4.8 5.4 7.9 6.1 25.1 21.8 8.5 5.8 65.2 58.1 19.3

1% 0.5 2.0 0.3 0.6 1.5 1.5 11.8 5.8 1.5 0.7 43.7 36.6 6.8
10% 11.8 12.2 14.4 12.3 8.8 13.2 42.5 35.1 15.6 24.5 55.6 47.1 24.0

7 5% 7.0 5.9 9.4 6.2 4.1 6.3 31.2 25.0 9.9 16.3 44.6 39.5 15.0
1% 1.1 1.3 1.9 1.2 1.2 2.0 15.3 9.2 2.6 3.3 35.3 20.2 5.8

10% 12.5 18.3 44.9 13.0 17.2 44.0 19.5 67.0 30.0 12.6 91.4 96.5 72.0
8 5% 6.3 12.5 31.6 6.4 10.3 28.9 10.6 55.7 19.3 6.2 85.6 94.0 59.5

1% 1.0 2.6 9.8 0.9 2.7 8.5 2.7 31.3 7.4 1.4 71.4 87.7 37.3
10% 32.9 42.5 81.0 29.5 46.9 88.8 34.3 92.0 71.3 24.8 99.0 99.7 98.8

9 5% 17.3 25.9 65.2 19.7 36.3 80.2 25.2 88.8 64.7 17.6 98.0 99.6 97.8
1% 3.0 7.8 36.3 3.9 14.3 56.4 12.3 77.1 42.1 4.0 94.5 99.1 95.6

10% 8.7 33.1 44.9 9.7 28.3 33.7 51.9 83.2 49.4 9.3 81.7 99.6 84.6
10 5% 4.4 22.4 30.0 4.7 17.7 21.4 36.8 74.5 35.2 5.5 69.5 98.8 78.7

1% 1.1 9.0 11.1 0.8 6.8 5.2 18.2 54.0 17.0 1.2 37.9 97.1 48.1
10% 8.6 46.2 76.7 9.1 46.7 76.9 63.8 99.5 89.7 11.0 81.5 100.0 100.0

11 5% 4.3 32.8 63.9 4.3 36.1 67.8 51.0 98.8 81.8 5.6 68.2 100.0 100.0
1% 0.4 11.7 37.3 0.4 18.4 42.8 31.7 94.9 63.9 0.9 39.4 100.0 99.3
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Table 4: Percentage of rejections of test statistics with T = 500.

CvM0 CvM1 CvM2 KS0 KS1 KS2 BPN1 BPN2 BPN25 JB BPD1 BPD2 BPD25

10% 10.2 8.1 9.2 9.8 8.6 8.0 11.9 11.7 11.1 11.3 10.1 8.6 9.8
1 5% 4.7 4.5 4.9 4.2 3.9 4.3 6.0 5.4 5.6 5.3 5.2 4.7 4.7

1% 0.5 1.0 0.7 0.7 0.6 1.0 0.6 0.8 0.8 1.2 1.1 0.4 1.1
10% 9.1 8.0 8.3 10.2 8.6 10.7 11.6 11.5 8.4 9.2 8.6 9.9 10.6

2 5% 4.3 4.9 4.4 4.7 3.8 4.1 5.6 4.8 3.9 4.6 4.3 5.7 5.6
1% 0.7 0.8 0.8 0.5 0.2 0.6 0.6 1.4 0.5 0.5 1.4 0.8 0.8

10% 9.1 8.9 9.9 9.2 8.6 8.5 10.0 11.6 10.7 11.0 10.7 10.2 10.0
3 5% 4.1 3.9 3.1 4.8 4.5 4.9 5.7 7.1 5.4 5.2 4.6 5.3 4.8

1% 0.7 1.1 1.0 1.0 0.4 0.4 1.1 1.0 1.9 1.5 1.5 2.0 1.6

10% 10.7 8.9 10.9 10.7 10.8 8.8 11.5 9.2 10.2 7.8 10.0 10.4 12.3
4 5% 5.2 4.3 4.8 5.2 3.9 4.1 6.1 3.5 5.2 4.4 5.1 6.7 7.2

1% 0.4 0.8 1.0 0.7 0.6 0.4 0.7 1.1 0.7 0.7 1.4 1.3 1.9
10% 17.1 16.8 17.0 20.0 19.4 17.8 11.8 12.1 8.5 53.2 7.9 8.0 14.0

5 5% 11.4 10.0 9.7 13.4 12.0 12.1 4.4 5.5 3.8 45.1 5.6 5.4 9.1
1% 3.6 3.7 3.2 4.5 4.9 3.3 1.3 1.7 0.7 23.6 3.4 3.7 5.3

10% 8.7 17.1 9.8 10.2 15.5 8.9 46.1 36.2 17.6 9.3 88.7 81.2 42.0
6 5% 5.3 8.9 4.9 4.9 6.9 3.4 32.9 27.3 11.8 3.7 82.9 69.0 29.5

1% 0.6 1.5 1.0 0.9 1.1 0.8 17.2 8.9 2.4 0.6 53.0 46.8 8.5
10% 15.2 11.9 14.8 13.3 11.3 15.9 39.9 36.3 18.0 38.0 53.7 42.6 21.5

7 5% 8.1 5.6 10.8 7.5 4.8 8.0 28.5 28.0 10.6 27.9 41.0 34.4 16.5
1% 2.2 1.3 2.8 2.5 1.7 3.0 12.0 9.4 3.0 8.2 18.2 19.5 9.4

10% 22.6 34.0 90.1 25.1 35.9 92.9 23.7 97.6 76.7 10.0 99.9 100.0 99.6
8 5% 12.6 23.3 83.8 14.7 25.9 86.5 16.7 95.9 65.1 5.0 99.7 100.0 99.2

1% 3.4 7.6 53.9 4.0 10.4 65.0 5.1 87.6 44.7 1.1 99.2 99.9 97.1
10% 56.1 73.2 98.8 58.3 78.1 99.6 62.6 99.5 96.9 30.4 100.0 100.0 100.0

9 5% 39.9 59.9 97.0 41.9 69.9 98.8 51.2 99.3 95.4 20.5 100.0 100.0 100.0
1% 13.4 38.7 88.5 16.1 48.2 95.6 31.1 98.6 91.4 10.7 100.0 100.0 99.8

10% 9.9 58.4 90.5 10.3 52.8 88.7 74.8 99.6 93.6 7.9 98.7 100.0 100.0
10 5% 5.2 43.1 82.2 5.0 38.2 79.8 65.2 99.3 89.4 4.5 95.9 100.0 100.0

1% 1.1 14.3 59.4 0.6 14.1 39.6 44.5 97.3 78.0 1.3 86.0 100.0 99.7
10% 10.0 74.7 99.1 11.3 81.3 98.0 86.8 100.0 100.0 9.4 99.6 100.0 100.0

11 5% 3.6 62.5 96.7 4.8 71.3 95.6 78.9 100.0 99.9 4.6 98.6 100.0 100.0
1% 0.5 38.5 87.5 0.8 33.1 80.7 64.0 100.0 99.9 1.3 87.1 100.0 100.0
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Now we discuss the performance of empirical process based tests in comparison with traditional
correlation tests. For T = 100 almost all test statistics are slightly undersized (cases 1-3). The
situation improves with larger T , and CvM statistics approach faster to nominal rates than KS.
Overall, empirical size at T = 500 is very good. The situation with power is not unambiguous.
No test can capture static logit alternative to the null hypothesis of static probit model even at
T = 500 (case 4). On the other hand, when static χ2 alternative to the null hypothesis of static
probit is considered (case 5), there is some power at T = 300 which improves with T = 500 for all
empirical process based tests. Since under the null and under the alternative we have static models,
correlation tests do not have power. Normality test (JB) is doing well only in the latter case. When
there is a slight dynamic misspecification added to logit (case 6), CvM1 and KS1 improve, but
when it is added to χ2 our tests and JB doing worse (case 7). Correlation tests, on the contrary
display power against these dynamic alternatives. When the alternative has dynamic interactions,
and the null is a dynamic probit (cases 8 and 9), all tests (but JB for logit) are doing well, and even
better if higher lags are taken into account. Finally, when dynamic interactions are taken versus
static model (cases 10 and 11), power is very good, and increases when more lags are considered.
Exceptions are ”marginal tests” CvM0, KS0 and JB. To summarize, dynamic misspecification can
be captured well by empirical process statistics and correlation tests. Misspecification in marginals,
on the contrary, can not be distinguished at all by correlation tests but empirical process statistics,
possibly multi-parameter, still work, although further research in improving power of these tests is
needed.

To develop our omnibus type tests we introduce additional continuous noise. An important
question is the effect of this noise on the power of the tests. Since correlation tests based on discrete
residuals BPDj do not use additional noise, while correlation tests based on continuous residuals
BPNj do, we can use the difference in rejection rates between these sets of statistics under dynamic
misspecification as an indirect measure of the effect of the introduced noise, though correlation tests
are not consistent against static alternatives. From our Monte Carlo simulations we see that for all
scenarios we consider, correlation tests based on discrete residuals perform better, indicating that
some power losses may indeed be attributed to the introduced noise. To overcome this problem, we
plan to develop tests for discrete models based on alternative transformations of the data without
introducing additional noise, but still consistent against a wide range of nonparametric alternative
hypotheses.

5 Conclusion

In this paper we have proposed new tests for checking goodness-of-fit of conditional distributions
in nonlinear discrete time series models. Specification of the conditional distribution (but not only
conditional moments) is important in many macroeconomics and financial applications. Due to the
parameter estimation effect, the asymptotic distribution depends on the model and specific param-
eter values. We show that our parametric bootstrap provides a good approximation to asymptotic
distributions and renders feasible and simple tests. Monte Carlo experiments have shown that tests
based on empirical processes have power if misspecification comes from dynamics. If misspecification
affects marginals alone, correlation tests are inconsistent, while tests based on empirical processes
have some power. Comparing to the continuous case, we may conclude that there is a reduction of
power due to the additional noise which distribution is known under the alternative too.
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Appendix

Proof of Proposition 1. Part (a) is a property of dynamic PIT with a continuous conditional

distribution F †t , the proof can be found in Bai (2003). Part (b) follows from the fact that (omitting
dependence on t, Ωt and θ)

F † (Y + Z − 1) = F ([Y + Z − 1]) + ZU
P ([Y + Z])

= F (Y − 1) + ZU
P (Y ) ,

where
ZU = Fz (Y + Z − 1− [Y + Z − 1]) = Fz (Z)

is uniform for any Z ∼ Fz continuous and with [0, 1] support, by the usual static PIT property.
Therefore, although a continued variable Y † and its distribution F † depends on Fz, F

†(Y †) does
not. �
Proof of Propositions 2. Assumption 1 in Kheifets (2011) is satisfied automatically after
applying continuation defined in (2), therefore Proposition 1 of Kheifets (2011) holds. �
Proof of Propositions 3. Follows from Kheifets (2011), we need only to check that Assumption
2 in Kheifets (2011) is satisfied.

Let r = F † (y) . Note that [y] = F−1(r) but F ([y]) = F
(
F−1(r)

)
equals r only when y = [y].

The inverse of F † is

y =
(
F †
)−1

(r) = [y] +
r − F ([y])

P ([y] + 1)
= [y] + 1 +

r − F ([y] + 1)

P ([y] + 1)

= F−1(r) +
r − F

(
F−1(r)

)
P (F−1(r) + 1)

.

Note also that (r − F ([y])) /P ([y] + 1) = y− [y] ∈ [0, 1]. Take distribution G with the same support
as F . We have different useful ways to write d (G,F, r):

d (G,F, r) = η† (r)− r = G†
((

F †
)−1

(r)

)
− r = G† (y)− r

= G ([y])− F ([y]) + (y − [y]) (PG ([y] + 1)− PF ([y] + 1)) (9)

= G ([y] + 1)− F ([y] + 1)

+ (y − [y]− 1) (PG ([y] + 1)− PF ([y] + 1)) (10)

= G
(
F−1 (r)

)
− F

(
F−1 (r)

)
+
r − F

(
F−1(r)

)
PF (F−1(r) + 1)

(
PG

(
F−1(r) + 1

)
− PF

(
F−1(r) + 1

))
. (11)

Thus, noting that P (·) is bounded away from zero, we have that Assumption 2 in this paper is
sufficient for Assumption 2 in Kheifets (2011):

(K2.1)

E sup
t=1,..,T

sup
u∈BT

sup
r∈[0,1]

∣∣∣η†t (r, u, θ0)− r
∣∣∣ = O

(
T−1/2

)
.

(K2.2) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
r∈[0,1]

1√
T

T∑
t=1

sup
||u−v||≤M2T−1/2−δ

u,v∈BT

∣∣∣η†t (r, u, θ0)− η†t (r, v, θ0)
∣∣∣ = op (1) .
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(K2.3) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
|r−s|≤M2T−1/2−δ

1√
T

T∑
t=1

sup
u∈BT

∣∣∣η†t (r, u, θ0)− η†t (s, u, θ0)
∣∣∣ = op (1) .

(K2.4) ∀M ∈ (0,∞), there exists a uniformly continuous (vector) function h(r) from [0, 1]2 to RL,
such that

sup
u∈BT

sup
r∈[0,1]2

∣∣∣∣∣ 1√
T

T∑
t=2

ht − h(r)′
√
T (u− θ0)

∣∣∣∣∣ = op(1).

where

ht =
(
η†t−1 (r2, u, θ0)− r2

)
r1 +

(
η†t (r1, u, θ0)− r1

)
I
(
F †t−1

(
Y †t−1|u

)
≤ r2

)
.

For Part a), take d
(
F (·|Ωt, θ0) , F

(
·|Ωt, θ̂

))
. Then (K2.1), (K2.2), (K2.4) follow from (2.1), (2.2)

and (2.3) because of representation (11). If we compare (9) and (10) we see that d(·) is not only
continuous in r, but piece-wise linear, so (K2.3) is satisfied automatically.

For Part b), take d
(
GT (·|Ωt, θ0) , F

(
·|Ωt, θ̂

))
and use the additivity of d(·) in the first argu-

ments:

d
(
GT (·|Ωt, θ0) , F

(
·|Ωt, θ̂

))
=

(
1−
√
T0√
T

)
d
(
F (·|Ωt, θ0) , F

(
·|Ωt, θ̂

))
+

√
T0√
T
d
(
H (·|Ωt) , F

(
·|Ωt, θ̂

))
.

�
Proof of Propositions 5. The proof is similar if we consider d

(
F (·|Ωt, θT ) , F

(
·|Ωt, θ̂T

))
under

{θT : T ≥ 1}. �
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