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1 Introduction

The financial economics literature on risk-return trade-off and risk compensation is volumi-
nous and growing. Most of the theoretical developments in this area focus on short or even
instantaneous time frames. Very little is known about risk and its compensation for agents
who invest over a long time span. The main interest of this paper is the premium on the
asset dividends that are paid beyond an immediate next period. In numerous attempts to
resolve conflicts between theory and empirics, asset pricing models have been extended to
include a variety of different preference structures. As Hansen (2011) shows, many of these
preferences have only transient implications and make no difference in pricing payoffs with
long maturity. Examples of these include recursive utility of Epstein & Zin (1989), habit
formation models of Constantinides (1990), Campbell & Cochrane (1999), Santos & Veronesi
(2010), or the model of temporal risk aversion of Van den Heuvel (2008).1 Here I show that
the generalized disappointment aversion2 model of Routledge & Zin (2010) brings a new
important dimension into analysis of risk compensation at long horizons.

The main result of this paper is that the generalized disappointment aversion (GDA)
utility function amplifies risk premia at all investment horizons in comparison to the simple
expected utility function. Instead, Epstein-Zin utility delivers very similar long-term premia,
but different short-term premia compared to expected utility. In other words generalized
disappointment aversion is a permanent transformation of the expected utility function, in
that it amplifies risk premia at all investment horizons. Instead, Epstein-Zin utility is ap-
proximately transient transformation of expected utility, implying very similar long-term,
but different short-term premia.

The main feature of the GDA utility that produces substantially different risk premia for
any horizon is its asymmetric response to different economic outcomes through the implied
skewed risk-neutral probabilities. In contrast, Epstein-Zin model, although makes investors
forward looking, shares the same risk-neutral distribution with expected utility, at least
in continuous time (Hansen, 2011). Investors with GDA recursive preferences, besides be-
ing forward-looking, are disappointed disproportionately more by a recession than they are
pleased with an equally positive economic outcome. This attitude toward risk shifts risk-
neutral probabilities toward the bad outcomes of the economy. The risk-neutral probability
shift reduces asset prices, and it increases expected risky returns. Routledge & Zin (2010)
and later Bonomo et al. (2011) in a different model with long run risks show that GDA
preferences are able to amplify returns at the short investment horizon. Here I extend this
conclusion to the long horizon. Empirical analysis supports this finding.

1Also see Backus et al. (2004) for other preference structures.
2Disappointment aversion concept was introduced by Gul (1991).
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I also analyze the risk premium term structure implied by the three utilities and find
that its slope critically depends on the volatility of the transient payoff component with high
enough volatility leading to negatively sloped term structure. In this sense the paper is related
to Daniel & Marshall (1997); Lemke & Werner (2009); Berg (2010) and Van Binsbergen et al.
(2011). But at the same time the distribution of the transient component only plays a role
in the short run while in the long run state dependence of the premium disappears. The long
run limit of the term structure only depends on the growth characteristics of the cash flows
and the risk-neutral distribution implied by a particular preference structure.

In this paper I consider only three utility functions, expected utility, Epstein-Zin, and
GDA. One reason for this choice is that each preference structure in this list is a one step
more general than the previous which make a very appealing comparison between the three.
Besides, Epstein-Zin utility became a workhorse model for financial economics. Finally, GDA
model has superior ability to reproduce financial market phenomena.

The main result of the paper is based on the methodology of Hansen & Scheinkman (2009)
and Alvarez & Jermann (2005) who propose multiplicative decomposition of stochastic dis-
count factors into exponential growth, a permanent component, and a transient component.
Exponential growth determines long-term returns. The permanent component alters the
probability distribution and incorporates the preference structure into risk-neutral probabil-
ities. This component is the main factor in the pricing of the long-dated cash flows. The
transient component only affects pricing at short investment horizons. Bansal & Yaron (2004)
use this short-term feature of Epstein-Zin utility to build a consumption-based model and
solve an equity premium puzzle at the short investment horizon. But in the long run many
asset differences disappear and leave an investor’s portfolio exposed to a few defining trends
similar for many utility specifications.

In this paper I consider an economy with a finite number of states and construct a
consumption-based asset pricing model of dividend cash flows with alternative maturities.
My approach generalizes the model of Mehra & Prescott (1985) in two directions. First, the
number of states is any finite number, including two. Second, it allows for pricing not only
consumption flow, but also any dividend process with its unique characteristics. The last
but the most important generalization is that the model allows for pricing of payoffs at any
future horizon. The discrete time finite state model considered here has two tightly linked
advantages. First, the implications are very robust to the number of states of the economy.
Second, in the two-state model all the parameters have a clear and intuitive interpretation in
terms of preference parameters, consumption persistence, means and variances of cash flows.

I document the parametric sensitivity of the model for short- and long-term risk premia.
In particular, I show that the Epstein-Zin and GDA implied risk premia are not sensitive to

3



the elasticity of intertemporal substitution (EIS). Hansen et al. (2008) price a cross-section of
stock returns at long horizons and find that the EIS is not a significant factor in determining
long-term portfolio returns. In this paper I generalize this finding to a framework in which
the stochastic discount factor is not approximated around unit EIS. Moreover, I document
that the weak dependence on EIS pertains to more general recursive GDA utility. This result
is interesting in the light of active debate on the range of values for EIS.

Here I show that in a discrete time model the Epstein-Zin modification of expected utility
is not exactly transient. This goes in contrast to the continuous time model of Hansen (2011)
where he shows that Epstein-Zin modification only affects the transient component. In my
model it modifies risk-neutral probabilities, or the permanent component, as well. Empirical
analysis confirms this finding although it shows that the deviation is negligible.

The paper is organized as follows. Section 2 introduces basic assumptions on the model
economy. In the same section I outline asymptotic results for pricing of long-dated payoffs.
Section 3 presents theoretical analysis of the model and shows that GDA modification of
the expected and Epstein-Zin utilities has a permanent effect and amplifies premia at any
horizon. Section 4 gives a description of the data and estimation method. Section 5 presents
the analysis of empirical implications of the model and its sensitivity analysis.3 Section 6
concludes.

2 Asset Pricing Model

2.1 Consumption and dividend dynamics

In this section I describe the joint dynamics of consumption and asset dividends. Then I
show how to price any asset given its dividend stream and probability distribution.

The aggregate consumption stream Ct grows at rate equal to xt. The dividend stream
Dt growth rate is yt. Each state of the economy is characterized by a pair of consumption
and dividend growth rates, zt = (xt, yt), taking values in a finite set, {(λ1, ν1) , . . . , (λn, νn)}
with each state characterized by a pair zi = (λi, νi). The finite state probability transition
n×n matrix P = [pij]ni,j=1 describes the evolution of a two-dimensional random variable, with
elements corresponding to consumption and dividend growth rates,

pi,j = P [ (xt+1, yt+1) = (λj, νj)| (xt, yt) = (λi, νi)] .
3The numerical study considers for simplicity of exposition only two-state economy. However, additional

numerical work immediately expandable to an arbitrary number of states is available upon request. It shows
that the main conclusions are robust to the number of states.
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For future convenience define separately the vector of consumption growth rates λ =
(λ1, . . . , λn)T and dividend growth rates ν = (ν1, . . . , νn)T . Along with that define two
diagonal matrices: Λ = diag (λ), and Θ = diag (ν).

With this first order Markov structure it is rather easy to redefine conditional expectation
through the matrix language. For any function ψ (zi) of a state we can define the conditional
expectation operator in matrix language as

E [ψ (zt+1)| zt = zi] =
n∑
j=1

P [zt+1 = zj| zt = zi]ψ (zj)

=
n∑
j=1

pijψ (zj) = [Pψ]i ,

where I denote the vector ψ = [ψ (z1) , . . . , ψ (zn)]T , and [Pψ]i is the ith element of n-vector
Pψ. In other words, the conditional expectation can be fully described by defining conditional
expectation operator as Etψ = Pψ, the product of probability transition matrix and a vector
of possible future outcomes. Now recall that the solution, if it exists, of the system of
linear equations π = PTπ is the marginal probability distribution of the state vector, πi =
P [zt = zi]. Using this definition one could also define unconditional expectation Eψ = πTψ

which in other words is an inner product of two vectors.
Consider the cash flow decomposed into a growth component yt+1 and a transient com-

ponent ft+1 so that the future time t + 1 payoff is given by their product (yt+1ft+1). Then
the current conditional expectation is computed as

n∑
j=1

pijνjfj = [PΘf ]i = [Gf ]i .

This formula provides for the definition of a new matrixG. I would call it a conditional growth
matrix. The intuition behind this definition is the following. Say we have fixed probabilities of
transition between economy states and dividend growth rates νj that are common for several
assets. At the same time these assets differ in stationary payoff component f . Then one
can compute the expected value of future payoffs by simply multiplying by the conditional
growth matrix G. This approach allows separate analysis of growth component on pricing of
future cash flows.

The canonical asset pricing model is

Pt = Et [St,t+1 × (yt+1ft+1)] ,

where Pt is the current value of the future payoff (yt+1ft+1) growing at the rate yt+1, and
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St,t+1 is the stochastic discount factor. Expectation is taken with respect to the current
information set. In the context of this paper, that is, in a finite state economy, the price of
a future asset payoff is given by a weighted sum of the possible future outcomes:

Pi =
n∑
j=1

pijsijνjfj = [SΘf ]i = [Qf ]i , or P = Qf.

The weights are given by conditional transition probabilities and possible values of the
stochastic discount factor. After all each state dependent price value is an element of a
vector itself represented as a product of the matrix Q and the vector of transient component
f of the future payoff. The matrix Q may be understood as a conditional growth adjusted
pricing matrix. Applying this transition matrix to extracted current payoff component one
obtains its current price. Once again, this approach makes it possible to analyze the effect
of cash flow stochastic growth rates on asset prices and returns of several assets.

The above equation may be used to price the unit riskless payoff, which is simply a vector
of one, corresponding to each state of nature. Besides, such a payoff does not have a growth
component, only state-independent component. Hence, the price of a riskless payoff is

P f
i =

n∑
j=1

pijsij = [S1n]i , or P f = S1n.

This is essentially the price of a plain vanilla bond. The formula presents a third definition
of a useful transition matrix S. This matrix is also a conditional pricing matrix as the above
defined Q. But the critical difference is the absence of growth component in its definition.
Simply put, this transition matrix maps future stationary payoffs to their current prices.

At this point I defined the expectation of growing payoffs, their price, and a price of a
riskless bond. This information is sufficient to define expected returns of risky and riskless
cash flows. Taking the element-wise reciprocal of the bond price vector, Rf

1 = (S1n)−1, and
transforming to log scale I obtain generic formula for the log risk-free return:

logRf
1 = − log (S1n) .

Subscript 1 is a reference to the unit horizon of the return. The above definitions make it
natural to define a one period return in log scale as a ration between expected payoff and its
current price:

logRe
1 = log (Gf)− log (Qf) .

The natural extension of computing prices for securities paying off in one period is pricing
of cash flows over different horizons. In finite space this extension reduces to taking matrix
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powers. With a slight abuse of notation this statement is proven below using the law of
iterated expectations:

Pt,t+h =Et
[
St,t+h ×

(
h∏
i=1

yt+ift+h

)]

=Et
[
St,t+h−1

h−1∏
i=1

yt+i × Et+h−1 [St+h−1,t+h × (yt+hft+h)]
]

=Et
[
St,t+h−1

h−1∏
i=1

yt+i × SΘf
]

=Et
[
St,t+h−2

h−2∏
i=1

yt+i × (SΘ)2 f

]

· · ·

= (SΘ)h f = Qhf.

The above formula is the application of canonical asset pricing model to the cash flow ma-
turing in h periods. The payoff is decomposed into transient component ft+h and stochastic
multiplicative growth component ∏h

i=1 yt+i which is simply an accumulation of stochastic
growth rates yt+i over h consecutive periods. This payoff is discounted by an appropriate
stochastic discount factor St,t+h. Finally, the conditional expectation with respect to a cur-
rent information set is taken to obtain the price denoted by Pt,t+h. The second line above uses
the law of iterated expectations to isolate the last period before the maturity. It also uses the
multiplicative property of the stochastic discount factor. The conditional expectation with
respect to information set at time t+ h− 1 of the discounted growing payoff may be written
in matrix form as SΘf or simply Qf . Repeating the cycle I obtain the final expression of
Qhf which matches the future stochastically growing payoff with its current price given a
specific stochastic discount factor.

The above defined prices of distant cash flows or dividends may be used to define the fa-
miliar price of security paying growing dividend stream into the infinite future. The definition
is simply the infinite sum of the prices indexed by payoff horizon,

Pt =
∞∑
i=1

Pt,t+i =
∞∑
i=1

Qif = (Q− I) f.

Using the above defined prices of horizon specific cash flows we can compute corresponding
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log return, risk-free rate, and premium indexed by horizon h, respectively:

logRe
h = 1

h

[
log

(
Ghf

)
− log

(
Qhf

)]
,

logRf
h = −1

h
log

(
Sh1n

)
,

RP e
h = E

[
logRe

h − logRf
h

]
.

These values give a characterization of returns and premia for any general though finite
horizon. It turns out that the limit of the risk premium expression above for the infinite payoff
horizon has a precise mathematical expression. Defining ρ (M) as a principal eigenvalue of a
matrix M, namely the eigenvalue of logM with the largest real part, it can be shown that

RP e
∞ = lim

h→∞

1
h

[
log

(
Ghf

)
− log

(
Qhf

)
+ log

(
Sh1n

)]
=ρ (G)− ρ (Q) + ρ (S) .

Here each term in the sum converges to its corresponding infinite horizon limit represented
by the principal eigenvalue ρ (·). This convergence result does not exhaust the importance of
principal eigenvalues for asset pricing. Following Hansen & Scheinkman (2009) I show that
they play an important role in decomposition of asset returns at any payoff horizon.

2.2 Pricing with expected utility

Define intertemporal expected utility function (or simply expected utility further in the text)
as

U0 = E0

[ ∞∑
t=0

βt
C1−γ
t − 1
1− γ

]
,

where β is subjective discount factor and γ is a coefficient of relative risk aversion. Stochastic
discount factor (SDF) can be written as

St,t+1 = β
(
Ct+1

Ct

)−γ
.

Take for the purpose of illustration β = 1 and γ = 0. This combination of parameters
implies linear utility function U0 = ∑∞

t=0 E0Ct, and a constant stochastic discount factor.
This is exactly the case of a risk-neutral investor who does not discount different states of
the economy differently and derives her utility from the expected aggregate consumption over
infinite time.

The Euler equation that prices next period random payoff ft+1 for this particular SDF is
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Pt = Et

[
β
(
Ct+1

Ct

)−γ
ψt+1

]
.

Given the finite state model described above, I can write the price as

Pi = β
n∑
j=1

pijλ
−γ
j ψj, or P = βPΛ−γψ.

This expression shows that the power utility model is characterized by the following condi-
tional state price matrix:

SX = βPΛ−γ. (1)

2.3 Pricing with the Epstein-Zin utility

In this section I obtain pricing operators implied by a particular case of the Epstein-Zin
utility function.

Define the Kreps-Porteus special case of Epstein-Zin (EZ thereafter) recursive utility
function (Kreps & Porteus, 1978; Epstein & Zin, 1989) as:

Vt =
[
C

1− 1
σ

t + β [Rt (Vt+1)]1−
1
σ

] 1
1− 1

σ ,

where risk adjustment or certainty equivalent is given by4

Rt (Vt+1) =
(
Et
[
V 1−γ
t+1

]) 1
1−γ .

SDF implied by such a utility function can be written as

St,t+1 = β
(
Ct+1

Ct

)− 1
σ

(
Vt+1

Rt(Vt+1)

) 1
σ
−γ

.

Compare this SDF with the corresponding expression for the power utility function. Note
that if one imposes the restriction that the risk aversion parameter is the reciprocal of the
intertemporal substitution coefficient5, γ = 1

σ
, then Epstein-Zin SDF reduces to the one

implied by the expected utility function.
As it was shown by Epstein & Zin (1989) the EZ utility implies the following SDF in

4Some authors use another parametrization such as ρ = 1− 1
σ and a = 1− γ. Such definitions are useful

for reconciliation of results from different sources.
5σ > 1/γ (< 1/γ) corresponds to preferences for early (late) resolution of uncertainty, respectively.
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terms of the well-known and measurable quantities:

St,t+1 = β
(
Ct+1

Ct

) 1−γ
1−σ (

βRm
t,t+1

) 1−γσ
σ−1 ,

where Rm
t,t+1 is the total one-period return on market portfolio. Hence the conditional state

price matrix is
SZ =βPΛ

1−γ
1−σ � (βRm)

1−γσ
σ−1

=SX �
(
βRmΛ−1

) 1−γσ
σ−1

=SX �K,

(2)

As it is commonly used in the literature (see, e.g., Garcia & Renault, 1998), market payoff is
the total endowment of the economy, Ct. Hence, the return is expressed as Rm

t,t+1 = Pmt+1+Ct+1
Pmt

,
where Pm

t is the price of market portfolio. In the context of the current model consumption
growth rates are known but market returns necessary for asset pricing are not. I postpone
the discussion on market return solution until all stochastic discount factors are introduced.

Clearly, the asset price computed using the EZ utility coincides with the one from the
expected utility with the restriction that 1/σ = γ. As a confirmation that SDF derived from
the EZ utility, (2) reduces to SDF in expected utility (1).

For the sake of illustration let β = 1 and γ = 0. This extreme case implies that the SDF
is not constant and equal to

St,t+1 =
(
Rm
t,t+1

Ct
Ct+1

) 1
σ−1

.

Note that γ = 0 corresponds to the risk-neutral agent. Even with such an agent, the SDF
remains random and will certainly covary with consumption equity and even with some
dividend streams. Thus, the risk premium is not expected to be zero even for a risk-neutral
agent.

2.4 Pricing with GDA utility

The SDF for Generalized Disappointment Aversion (GDA) developed by Routledge & Zin
(2010) is

St,t+1 =β
(
Ct+1

Ct

)− 1
σ

(
Vt+1

Rt(Vt+1)

) 1
σ
−γ 1 + (α− 1) I

(
Vt+1

Rt(Vt+1) < κ
)

1 + κ1−γ (α− 1)EtI
(

Vt+1
Rt(Vt+1) < κ

) ,
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where parameter α ≥ 1 is called disappointment aversion, and κ is called disappointment
threshold. They show that the SDF may be rewritten as

St,t+1 = h1−γ
t+1

(
Rm
t,t+1

)−1 1 + (α− 1) I (ht,t+1 < κ)
1 + κ1−γ (α− 1)EtI (ht,t+1 < κ) ,

where

ht,t+1 =
(
Ct+1

Ct

) 1
1−σ (

βRm
t,t+1

) σ
σ−1

depends on aggregate consumption growth rates and return on market portfolio.
In matrix notation that would look as follows:

SG = SZ �
[

1 + (α− 1) I (H < κ)
1 + κ1−γ (α− 1) [P� I (H < κ)] 1n1Tn

]
= SZ � G, (3)

where the division in the brackets is element-wise matrix division. Also, I (H < κ) stands
as an indicator function. If an element of matrix H is less than parameter κ, then the
corresponding element of the matrix I (H < κ) is equal to one, otherwise zero. Conditional
expectation EtI (ht,t+1 < κ) is represented by the n× 1 vector [P� I (H < κ)] 1n. Finally,

H = (βRm)
σ
σ−1 Λ

1
1−σ .

Note that whenever α = 1 we are back to the case of EZ utility.
In order to understand the inner workings of this utility function let me take γ = 0,

σ = ∞, κ = β = 1, and conditional on the current state of the economy, where market
return is equally likely to be above or below one. This combination of preference parameters
reduces the SDF to the following expression:

St,t+1 =
1 + (α− 1) I

(
Rm
t,t+1 < 1

)
1 + (α− 1)EtI

(
Rm
t,t+1 < 1

) =

1, if Rm
t,t+1 ≥ 1

α > 1, if Rm
t,t+1 < 1

(1 + α) /2 . (4)

Now everything depends on the market return. This implies only two possible values for
the SDF: 2/ (1 + α) and 2α/ (1 + α). The ratio between these two is α. As long as this
parameter is chosen to be greater than one, the ratio between two possible SDF values is
greater than one. Moreover, the larger SDF value corresponds to the negative outcome of the
economy, when consumption equity loses in value. Hence, the SDF becomes amplified for bad
outcomes. This creates negative covariance between SDF and a risky return. In addition,
even when other utilities imply constant SDF, GDA utility implies a truly stochastic discount
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factor.

2.5 Solution for market price-dividend ratio

In the previous sections I have introduced three particular utility functions each one being
more general than the other one. I have also shown how to represent stochastic discount
factors in the context of my model. There I postponed the discussion of an important piece
of the whole picture. Stochastic discount factors in two cases, EZ and GDA, depend on the
total one period return on the market portfolio. In this section I shown how to find this
missing piece.

According to the canonical pricing model the price of a claim to market portfolio or,
equivalently, to the claim on aggregate economy endowment, can be written as the conditional
expectation of a discounted future payoff (price plus dividend-consumption):

Pt = Et [St,t+1 (Pt+1 + Ct+1)] ,

which may rewritten as
Pt
Ct

= Et

[
St,t+1

Ct+1

Ct

(
Pt+1

Ct+1
+ 1

)]
.

Since the solution is time invariant (Mehra & Prescott, 1985), I can write the price indexed
by state and conditional on initial dividend value Ct = c as

P (c, i)
c

=
n∑
j=1

pijsijλj

[
P (cλj, j)

cλj
+ 1

]
.

Since price is homogeneous of degree one in c, the solution can be written as P (c, i) = wic.
Here wi is a state-dependent but time-homogeneous price-dividend ratio. This implies the
following n equations with n unknowns:

wi =
n∑
j=1

pijsijλj (wj + 1) .

Or with vector notation w = [w1, . . . , wn]T , these equations can be written as w = Q (w + 1n),
or explicitly as

w =
(
Q−1 − In

)−1
1n.

In order to solve the model with EZ or GDA utility it is first necessary to find the
expression for the market return Rm

t,t+1 or in matrix notation of the current model Rm.
Provided that the solution is time-invariant and homogeneous of degree one, the market
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return may be written in terms of consumption growth rates λj and market price-dividend
ratio wj:

Rm
ij = P (λjc, j) + λjc

P (c, i) = λj
wj + 1
wi

,

or in matrix notation
Rm = w−1 (w + 1n)T Λ, (5)

where w−1 corresponds to element-wise division
[

1
w1
, . . . , 1

wn

]T
. Plug this matrix to the ex-

pression of stochastic discount factor, EZ or GDA depending on the purpose, and write the
canonical pricing equation for the return once again:

1n = [S�Rm] 1n.

This system of n non-linear equations with n unknowns does not have a closed form solution
so numerical methods provided are used in the empirical section.

The solution for the matrix of market total one-period returns Rm completes the definition
of conditional state price matrices for EZ and GDA cases in (2) and (3), respectively.

3 Model Analysis

In this section I present the analytical investigation of the model. I intend to show that in
discrete time the EZ utility, which is a modification of expected utility, is very close to being
transient in the sense that it does not modify risk-neutral distribution implied by expected
utility. The distance is minimal for conventional levels of relative risk aversion and preferences
toward early resolution of uncertainty. I will also show that the GDA utility modification
is permanent in the sense that it modifies risk-neutral probability distribution implied by
expected utility. This will increase SDF variance and eventually the distance between the
long-term risky and riskless returns, the risk premium.

It turns out that under certain regularity conditions a matrix Mh that may stand for any
of conditional growth matrix, growth adjusted, or unadjusted state price matrices (Gh, Qh,
or Sh) is decomposed as follows:

Mh = exp (ρh) ΦM̂hΦ−1,

where ρ is the already introduced spectral radius of the matrix M, φ is the corresponding
n × 1 eigenvector, and Φ = diag (φ) is the diagonal matrix. More specifically, ρ and φ are
the solution of Mhφ = exp (ρh)φ.
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In particular, the multiplicative decomposition of a state price matrix takes the form

S = exp (ρ)× Φ× Ŝ× Φ−1. (6)

Here Ŝ is interpreted as a probability transition matrix but with risk-neutral probabilities
that take into account preference structure and attitudes toward risk. In the terminology of
Hansen & Scheinkman (2009) this matrix is a permanent component. This applies for the
following intuitive reason. Suppose we are interested in pricing dividend flow over a certain
horizon h. For that we have to take the power of the state price matrix and multiply it by
the vector of stationary payoffs. So the h’s power of a generic transition matrix is

Sh = exp (ρh)× Φ× Ŝh × Φ−1.

Notice that cumulative multiplication of the matrix cancels out Φ and Φ−1 in the middle so
that the only accumulated components are exponential growth and Ŝ. Hence, any change in
this matrix propagates to any horizon. At the same time, this justifies the terminology for
Φ, the transient component.

Now consider that we have a modification of the SDF transition matrix that fits into the
following form:

S̃ = W−1 × S×W, (7)

where W is a diagonal matrix. Using this modification multiply the original decomposition
(6) from the right by W and by its inverse on the left:

W−1SW = exp (ρ)×W−1Φ× Ŝ× Φ−1W.

The left-hand side should immediately be recognized as the modified matrix S̃. But does
the right-hand side maintain the multiplicative decomposition? The answer is yes due to the
same intuition I outlined above:

S̃h = exp (ρh)×W−1Φ× Ŝh × Φ−1W.

The diagonal matrices W−1Φ and Φ−1W are not compounded, while exponential growth and
Ŝ are. Even more important, growth and permanent components are unaltered. All of the
modification is gone to the transient component. Such a modification of a transition matrix
may be called transient.

From the definition of the EZ stochastic discount factor matrix in (2) and the conditional
market returns in (5) it is straightforward to see that the modification of the expected utility
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SDF takes the following form:

SZ = W−θ × SX × (W + I)θ ,

where θ = 1−γσ
σ−1 and W is the diagonal matrix of market price-dividend ratios. Normally in

the data we see price-dividend ratios larger that one, hence we can safely assume that each
element of the matrix W is larger than one, or W ≥ I. Suppose that the decomposition of
SX is the same as in (6).

Once again, our eventual target is pricing of the long dated payoffs. So, for a start take
the second power of the state prices matrix which would relate prices of assets that pay off
in two periods,

S2
Z = W−θ × SX ×

(
I +W−1

)θ
× SX × (W + I)θ .

Clearly, the term in the middle does not reduce to the identity. But it is possible to infer
some limiting cases that are summarized in Table 1 on page 29. The first column divides
two possible cases for the relative risk aversion γ. The second column branches two more
possibilities for the relation of elasticity of intertemporal substitution σ and risk aversion.
The case of σ > 1/γ corresponds to preferences for the early resolution of uncertainty, while
the reverse case corresponds to preferred late resolution of uncertainty. Then, there is another
interesting branching out depending on the side from which the elasticity converges to one,
form above or below. Each of these cases essentially leads to a particular limit for the
parameter θ. It turns out that for conventional values of relative risk aversion somewhere
above one and elasticity slightly above one, that is preferences toward early resolution of
uncertainty, the modification matrix (I +W−1)θ is expected to be close to identity, that is

S2
Z ≈W−θ × S2

X × (W + I)θ

= exp (ρXh)×W−θΦ× ŜhX × Φ−1 (W + I)θ .

In the last equation above I used multiplicative decomposition (6) with subscripts corre-
sponding to expected utility function.

So, given that risk aversion is above one and the agent prefers early resolution of uncer-
tainty I may write the approximate relationship for a general horizon h as

ShZ ≈ exp (ρZh)×W−θΦ× ŜhX × Φ−1 (W + I)θ .

I expect that the growth/decay ρZ of the EZ transition matrix will be different than that of
expected utility since it has to compensate for the growth/decay of the matrix (I +W−1)θ.
So the EZ modification is approximately transient in discrete time. Hansen et al. (2008) show
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that in continuous time the same modification is exactly transient. Here, the magnitude of
the transient effect depends on the magnitude and variation of market price-dividend ratios,
which are the entries of matrix W . The smaller and more variable they are, the closer the
modification to being transient.

We see that the growth rate of the EZ discount factor may be different from the one
implied by the expected utility. Hence, long-term expected returns will be different in both
models. I intend to show that although long-term returns are different, the long-term risk
premia are the same. Consider a stream of payoffs with corresponding growth matrix Θ
and the growth adjusted state price matrix of the expected utility, QX = SXΘ. Using the
decomposition of the state price matrix matrix write

QX = SXΘ = exp (ρX)× ΦX × ŜXΘ× Φ−1
X .

Naturally, the matrix ŜXΘ does not possess the property of the probability transition matrix.
So, decompose it as

ŜXΘ = exp (ρ̃X)× Φ̃X × S̃X × Φ̃−1
X ,

and plug this decomposition back into the state price matrix:

QX = exp (ρX + ρ̃X)× ΦXΦ̃X × S̃X × Φ̃−1
X Φ−1

X .

Similarly, decompose the state price matrix of the EZ utility function:

QZ ≈ exp (ρZ + ρ̃X)× ΦXΦ̃XW
−θ × S̃X × (W + I)θ Φ̃−1

X Φ−1
X .

Notice that both pricing matrices, QX and QZ , have exactly the same modification ρ̃X in
the growth rate. In this notation the long-term risk-free rate is defined as (−ρX) and (−ρZ)
for EU and EZ models, respectively. Long-term expected asset return is determined by
dividend growth matrix, which is unaltered, and by pricing matrix growth rates (ρX + ρ̃X)
and (ρZ + ρ̃X) for each model. This leaves the difference between risky and riskless returns
equal to ρ̃X for each of the two models. In other words, this proves that the long-term risk
premia are very close to each other in EU and EZ models. This conclusion is solely due to the
fact that the permanent component, or risk-neutral probability transition matrix, is shared
by both models.

Consider the modification of SDF implied by the GDA utility function which is rep-
resented in matrix form by (3). Clearly, this modification may not be represented in the
symmetric form in (7) or even the one implied by the EZ utility which is close to being sym-
metric under certain combination of preference parameters. Take for example the extreme
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case where risk aversion is zero, γ = 0, elasticity of intertemporal substitution is infinite,
σ =∞, discount rate and disappointment threshold are one, κ = β = 1, and conditional on
the current state of the economy market return is equally likely to be above or below one.
This restriction produces SDF as in (4):

SGDAt,t+1 = G =

1, if Rm
t,t+1 ≥ 1

α > 1, if Rm
t,t+1 < 1

(1 + α) /2 .

Note that for a given current state of the economy the SDF, up to a constant 2
1+α , takes only

two values, 1 and α. In order for this modification to be symmetric in the sense of (7), the
SDF has to take at least three values, one of which should be 1/α, which is not the case here.
Hence, the modification is not symmetric and does not admit the form in (7).

So, the decomposition of the SDF is

ShG = exp (ρGh)× ΦG × ŜhG × Φ−1
G .

Each component in this decomposition is potentially different from its counterpart of other
utilities. Most importantly, the permanent component, the risk-neutral probability transition
matrix, is modified. So the GDA utility modification may be considered permanent. Recall
that GDA is constructed in such a way that it is amplified when the future outcome is
perceived to be bad for an investor. This implies that the risk-neutral probabilities will
be skewed towards possible economic downturns. Inevitably such a tilt in probabilities will
amplify the negative covariance of the SDF and risky returns. This in turn will lead to the
increased distance between growth rates in risky and riskless returns. Hence, the long-term
risk premium is expected to be amplified along with the short one.

4 Data and estimation

In this section I briefly describe the data and estimation technique that are used to provide a
quantitative illustration of the theoretical result of this paper. The general idea is to estimate
consumption growth rates and probability transition matrix over finite set of economy states.
Then, solve for market price-dividend ratios and compute model implied one-period dividend
returns.

The data for the US annual aggregate real consumption and the US population is obtained
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from the Federal Reserve Bank of St. Louis6. Dividing aggregate consumption by population
and converting to growth rates, I obtain real consumption per person growth rate, which plays
the role of economy endowment growth series. The data range spans almost 80 years from
1930 to 2009. The data on risk-free and market returns were obtained from the Fama-French
data library7.

In order to quantify implications of the model I have chosen an approach that differs from
the one used by Mehra & Prescott (1985). They used a simple calibration to match model
parameters and growth rate moments computed from historical US consumption data. There
are three parameters to match in their model, µ, δ, p, and three empirical moments: mean,
standard deviation, and first order autocorrelation of consumption growth. Here the model
is much more flexible since it allows a general number of economy states and unrestricted
probability transition matrix.

In this paper I use instead the methodology suggested by Tauchen (1986) to estimate
Markov transition matrix and growth rates of consumption. Two features of their estimation
procedure are decisive factors in my choice. First, the method works for any finite number
of states, not just two. Second, the method works for both univariate and multivariate time
series, which allows estimation of joint dynamics of consumption and dividends.

The essence of the method is to fit VAR(1) to the data and estimate model errors that
are assumed to be independent. These errors are used to estimate its univariate densities,
for example, by non-parametric kernel methods. I used the non-parametric density estimator
with default bandwidth and Gaussian kernel provided by MatLab. An equally spaced grid
is then used to assign probabilities to the finite number of intervals on the grid. Transi-
tion probabilities for the original processes are backed out from the VAR structure and its
parameter estimates. For a more detailed algorithm see Tauchen (1986).

5 Results

The analysis of the model implications is performed through the sensitivity analysis of one
period dividend return moments. Table 2 on page 29 shows the benchmark parameter values.
Given these values I vary each parameter over the large intervals in order to demonstrate the
effects of each one on asset pricing implications.

For illustrative purposes I perform sensitivity analysis for the following simple case. Let
6Federal Reserve Bank of St. Louis data library: http://research.stlouisfed.org/fred2/
7Fama-French data library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html
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the probability transition matrix is

P =
 p 1− p

1− q q

 .
Consumption growth rates are mean µc, standard deviation δc, that is λ = (µc − δc, µc + δc)T .
Similarly, for dividend growth rates ν = (µe − δe, µe + δe)T . The transient component of the
payoff is assumed to be (1− δp, 1 + δp)T .

This section is organized as follows. Section 5.1 analyzes numerical decomposition of
the SDF matrix. Section 5.3 breaks down market return into permanent and transitory
components and shows their dependence on model parameters. Section 5.2 looks at the term
structure of risk premia.

5.1 Transition matrix decomposition

In this section I discuss numerical results of the state price matrix decomposition. It will
show that the permanent component, or risk-neutral probability transition matrix, is almost
the same for expected and EZ utility functions. On the other hand, the subjective probability
distribution implied by GDA is tilted toward bad economic outcomes.

Table 3 on page 30 reports state price matrices and its decomposition for each of the
three utility functions. The first row and first column of each matrix correspond to the low
consumption growth.

First of all note that the modification matrix of the EZ utility, K, has the diagonal ele-
ments very close to one and off-diagonal elements being almost reciprocal of each other. This
numerical result simply follows from construction of this matrix as a ratio of market price-
dividend ratios. As it was shown in Section 3 this modification of the SDF is representable
in the form

SZ = W−θ × SX × (W + I)θ ,

where W is the diagonal matrix with market price-dividend ratios, and θ = 1−γσ
σ−1 is the

function of preference parameters. In the same section I have argued that as long as relative
risk aversion is above one (γ > 1), and agents prefer early resolution of uncertainty (σ > 1/γ),
the modification is very close to being perfectly transient as in continuous time. But in
discrete time it is not exactly transient as evident from the table that shows some difference
in ŜZ and ŜX .

Also note that the decay rate of the SDF matrix in case of EZ utility is -1.02, whereas
in case of expected utility it is -6.08. This is expected since for the benchmark parameter
estimates θ is negative (in fact it is -28), which makes the matrix (I +W−1)θ less than identity
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and that makes it contribute to state price matrix decay. Hence, in order to compensate for
this decay, the growth rate of the EZ discount factor has to be larger. But at the same time,
since the risk-neutral conditional distribution is negligibly different for both utility functions,
and its variance is almost the same, 0.35 for EU against 0.34 for EZ, the distance between
two growth rates, SDF and pricing transition, is only slightly different, 0.84 against 0.82.

To wrap up comparison between the EU and EZ utilities, notice almost twice the difference
between the variances of their state price matrices, 0.14 against 0.32, respectively. This large
variance contributes to the elevated risk premium in the short term implied by the EZ utility
function.

Now look at the modification of the EZ utility by the matrix G corresponding to GDA
utility. This matrix does not have diagonal elements close to one, and off-diagonal elements
are far from being reciprocal of each other, which is a sign of asymmetry. This makes it
impossible to decompose this matrix into the product of stationary components as it was
done for EZ preferences. As it was shown in Section 3 such a modification should inevitably
alter risk-neutral probabilities. This theoretical intuition is fully supported by empirical
results. Notice the permanent component of the GDA discount factor is heavily skewed
toward future possible recession. This implies almost a threefold increase in the variance of
the permanent component, 0.99 for GDA against 0.34 for EU and EZ. Hence, the difference
in growth speed between SDF and the pricing matrix is amplified, 1.89 against 0.82.

Finally, note the threefold increase in the variance of the SDF itself, 0.96 for GDA against
0.32 for EZ. This contributes another increase in the magnitude of the short-term risk pre-
mium, in addition to the EZ implied premium. So it is clear that the GDA modification of
the previous two utility functions has a permanent effect and is reflected in the amplified
long-term risk premium.

5.2 Term structure of risk premia

Here I analyze the term structure of market risk premium shown in Figure 1 on page 31. The
time horizon goes from one month to ten years. All three utilities imply different risk premia
at short horizons. With increase in time horizon all three premia increase monotonically but
with decreasing speed. At horizon of 10 years the change in premia is barely noticeable and
the level is very close to the asymptotic value of the long-run premia. What is important
and clear from previous considerations is that the EZ implied premium converges to the one
implied by expected utility. This brings up the main result of the paper again. Namely,
EZ utility modifies expected utility only to a degree that short term payoffs imply different
compensation. In the long run EZ utility does not imply anything different. On the other
hand GDA utility modifies expected utility so that the risk-neutral distribution is even more
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skewed towards bad economy outcomes.
Once again, Figure 1 on page 31 shows that the term structure implied by all three

utility functions is positively sloped. But this result was obtained under the assumption that
transient payoff component is the same across all economy states, that is δp = 0. It turns
out, as will be seen later, term structure depends a lot on the volatility of the transient
component. In fact I will show that with high enough volatility the term structure may be
reversed which means that short term dividends are riskier than the long term ones.

5.3 Sensitivity analysis

In this section I concentrate on sensitivity analysis of the premia. There are two values to
track, the average premium on the asset paying off a dividend next period, and on the asset
that pays off a dividend indefinitely far into the future, RP e

1 and RP e
∞, respectively. I set the

default parameter values to those listed in Table 2 on page 29 and vary each in some wide but
reasonable range. This gives me an almost complete picture of main factors affecting both
short and long risk premia. To simplify the analysis I have chosen an aggregate endowment
as a benchmark dividend process which is clear from the choice of benchmark parameters
µe and δe that are equal to µc and δc. The effects of differences in the dividend process are
analyzed separately.

Each figure in Section B (except for the term structure discussed above) is a panel of
two graphs. Left graph represents next period market risk premium, while the right one
corresponds to infinite horizon risk premium. All three utility models are included in the
analysis. In essence, these two figures correspond to two opposite ends of the term structure
of the risk premium.

5.3.1 Sensitivity to risk aversion

I start with the effect of the conventional risk aversion parameter depicted in Figure 2 on
page 31. The parameter changes between 0 and 10 which is widely accepted to be reasonable
bounds. Naturally, all implied premia increase with higher risk aversion parameter. The
maximum values of short market premia are 1.5%, 2.1%, and 3.6% for EU, EZ, and GDA
utilities, respectively. The maximum values of long market premia are 3.2%, 3.2%, and 4.3%
for EU, EZ, and GDA utilities, respectively.

First of all note that the expected utility implied infinite horizon risk premium coincides
with the one implied by the EZ utility. At the same time implied short-term premia are
quite different for each model. This empirical result supports the main theoretical finding
of this paper which says that GDA implied premium is amplified at all payoff horizons. On
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the other hand, EZ utility amplifies premium only in the short horizon relative to expected
utility. The root cause of this amplification as I have shown in Section 3 is in altered risk-
neutral distribution in the case of GDA. At the same time, EZ utility does not change
risk-neutral distribution relative to expected utility even though it decreases the covariance
between returns and stochastic discount factor.

5.3.2 Sensitivity to elasticity of intertemporal substitution

Figure 3 on page 32 shows the effects of elasticity of intertemporal substitution that varies
from 0.2 to 2. First of all, expected utility is not a function of σ, or rather risk aversion
parameter in this model is fixed to be the reciprocal of it. So, the implied premia are not
expected to be changing with respect to this parameter in case of expected utility. This is
confirmed by the flat lines corresponding to expected utility implied short and long premium.

Elasticity has some effect on next period premium for EZ and GDA cases. Especially for
values smaller than one the premium somewhat decreases for both utilities. It seems that
unless this parameter is very close to zero, there is not much impact on the implied premia.
These results play well with similar findings of Bonomo et al. (2011).

In the long run elasticity does not have any effect on any of the three implied premia.

5.3.3 Sensitivity to generalized disappointment aversion

Disappointment aversion α shows up as an input only to the GDA utility function, so in
Figure 4 on page 32 we see only one set of implied values changing. At the point where α = 1
we know that GDA utility collapses to the special case of EZ. This is confirmed on the graph
where two lines are intersected. For parameter greater than one the preferences become
increasingly asymmetric and put much more weight on negative economic outcomes. This
asymmetry increases negative correlation between stochastic discount factor and returns.
This channel leads to increased risk premium.

In the long run similar trend is in place but the remaining channel is different. With
increase in α and asymmetry in investor’s preferences the risk-neutral distribution of con-
sumption/dividend growth rates becomes more skewed relative to expected utility. Since this
change is permanent it affects all future horizon returns which is illustrated on the right-hand
side figure where premium increases from 3.2% to 4.2%.

5.3.4 Sensitivity to disappointment threshold

One more parameter that affects only implications of the GDA utility is the disappointment
threshold. The effects are shown in Figure 5 on page 33. The broken line for GDA implied
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risk premia is the reflection of the fact that there are only two states of the economy in this
empirical exercise. Specifically, discontinuities appear at the points where one more condi-
tional return becomes below the threshold of disappointment κ. For the specific interval of
parameter values there is enough variation in market returns to say that some are disap-
pointing and some are not. This duality increases the risk premium both in the short and
long run.

5.3.5 Sensitivity to transition probability

Now look at the effect of transition probability parameter p depicted in Figure 6 on page
33. Here I assume that q = p. In the left graph we see that the premium implied by ex-
pected utility is almost symmetrical U-shaped line with the maximum reached for conditional
probability being 0.5. This means that the riskiest payoffs in this utility are those that are
completely unpredictable. The case of EZ utility is more complicated. Here most of the pre-
mium is paid for p close to one. These values mean that the economy growth with the same
rate for a long period of time consecutively and switches infrequently. For forward-looking
investors this situation is clearly riskier than simple uncertainty about the next period growth
rates. GDA utility premium has some discontinuities that are explained in the previous sec-
tion. In the interval where the premium is amplified, the line has a U-shaped form with
a maximum somewhere above p = 0.5. This is due to the negative market returns that
correspond to future recessions. Unpredictable growth is coupled with unpredictable market
returns and hence, maximum risk compensation.

In the long run all of the premia are monotonically increasing with decreasing frequency of
regime switches. The intuition is the following. The risk premium of payoffs on any horizon is
equal to absolute value of covariance between stochastic discount factor and stochastic growth
compounded over this period. Increased persistence of economy states and compounding of
growth and stochastic discount factor increases the variance of resulting variables over the
long period of time, hence, increasing absolute value of covariance. In other words, the risk
of investing over distant horizons is the risk of being caught in one economy state for a
prolonged period of time. This conclusion applies to all three utility functions.

5.3.6 Sensitivity to consumption growth parameters

Mean consumption µc growth does not change the covariance between stochastic discount
factor and compounded consumption growth simply by design of covariance as a statistical
measure. It only affects the scale of net market return and risk-free rate, but not their
difference. This observation applies to any investment horizon. This intuition is confirmed
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in Figure 7 on page 34.
Figure 8 on page 34 shows the effect of the second parameter affecting consumption

dynamics, standard deviation δc. Both ends of the term structure of risk premium for all
three utility functions depend positively on variation in consumption growth. Recall from
Section 2 that all stochastic discount factors contain inverse power function of consumption
growth. Then, the dividends so far are equal to consumption endowment. Hence, the absolute
value of covariance would increase with an increase in consumption variability. EZ and GDA
utility functions modify expected utility in such a way that it does not change the direction of
dependence which is obvious from the plot. Still, the covariance is changed which is reflected
in different premia for a given value of δc.

Also note the corner case, where standard deviation is equal to zero. There the consump-
tion stream is a constant and this case becomes trivial since there is no randomness in such
a model.

5.3.7 Sensitivity to dividend growth parameters

The model is general enough to price not only aggregate endowment but also dividend streams
that differ from consumption in their conditional distribution. So far I looked only at market
premium which corresponds to risk embedded in claims to aggregate consumption stream.
In the two state model there are two degrees of freedom with respect to dividend dynamics,
mean and standard deviation of dividend growth rates, µe and δe, respectively. Varying each
one of them I leave the other the same as in consumption growth series.

Sensitivity with respect to mean growth is represented by Figure 9 on page 35. Note that
both plots are indistinguishable from Figure 7 on page 34 where market premium was ana-
lyzed. This means that the level of growth rates does not change the riskiness of investments
in this framework.

Figure 10 on page 35 shows the dependence on standard deviation of dividend growth. In
this particular model and a particular choice of parameters, dividend growth series covaries
positively with consumption growth. Hence, it is expected that the standard deviation of
dividends which is greater than the respective value for consumption would produce a larger
absolute covariation between stochastic discount factor and dividend growth over any horizon.
Therefore, the premium should be greater which is confirmed by the plot. In general, both
left and right panel show almost linear positive dependence on standard deviation of dividend
growth rates which may be interpreted as risk-return trade-off. Again zero standard deviation
means constant dividend series and no risk which results in zero risk premia for all utilities.
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5.3.8 Sensitivity to the transient component of the payoff

As it is clear from the analytical expression of risk premium over alternative horizons the
transient component may be normalized to have mean one. Then, the definition of this com-
ponent (1− δp, 1 + δp)T is justified. In addition, |δp| corresponds to the standard deviation
of the transient component. Figure 11 on page 36 shows how premia depends on this param-
eter. In particular, if δp = 0.1 it means that the transient payoff in the good/bad state of
the economy is 10% larger/smaller than the mean, respectively. In the case of next period
return (left panel) zero parameter matches the benchmark case with transient component
being equal across the states. For values higher than zero the payoff is higher in good state
of the economy which translates into higher premia for all utilities. On the other hand,
when the relation between transient component and economy state is completely reversed,
the premium is lower than in benchmark case. At some point when the payoff in good state
of the economy is so low that it overshadows any growth prospects, the premium becomes
negative.

For an increasingly long horizon the dependence on the state is eliminated which is re-
flected by the flat lines for all utility functions in case of infinite horizon. This result is ex-
pected since what matters for the long-run return is the asymptotic growth rate of stochastic
components of the model which do not depend on the state dependent transient component
of the payoff.

It is interesting to note that this state dependence of expected premia may generate the
term structure of the risk premia that is different from what is shown in Figure 1 on page 31.
In particular, if the transient component of the next period payoff deviates from the mean by
more than 1%, then the term structure will be downward sloping from the GDA utility. If δp is
greater than approximately 2%, then both GDA and EZ would imply negatively sloped term
structure while the one implied by expected utility will remain positively sloped. Finally,
after about 5% deviation from the mean all three term structures will be negatively sloped.
This means that higher volatility of payoffs, especially when there is a positive correlation
with consumption growth, generates higher excess returns on short horizon dividends. At
the same time long term premium remains that same and does not depend on the economy
state.

6 Conclusion

This paper builds on several strands of literature. In contrast to Mehra & Prescott (1985)
I build the asset pricing model with an arbitrary finite number of economy’s states. This
assumption leads to convenient matrix representations of several asset pricing features. Op-
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erator methods introduced by Hansen & Scheinkman (2009) and their multiplicative decom-
position result provide a way to directly compute model-implied long-term risk premium. I
also consider differences in implications of the three utility preference structures: expected
utility, recursive utility of Epstein & Zin (1989), and generalized disappointment aversion by
Routledge & Zin (2010).

My main contribution is to demonstrate that the GDA utility is a modification of expected
utility that has both permanent and transitory effects. GDA preferences put excess weight on
the bad outcomes of economy, thus altering risk-neutral probabilities of the future economy
outcomes. This increases the variance of SDF and consequently the risk premia at any
horizon. This is in contrast with the Epstein-Zin utility, which is a transient modification of
expected utility as shown by Hansen (2011). It implies different short-term risk premia but
is identical in the long run.

I also show that the term structure of risk premium critically depends on the variance of
the transient component of the payoff function. If this component is volatile and increases
the payoff in times of high consumption growth the term structure of payoff is negatively
sloped. This makes short dividends riskier than long ones. In the long run the dependence on
the transient component disappears and leaves only growth characteristics and risk-neutral
distribution to determine the long run risk premium.
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A Tables

γ σ σ θ (I +W−1)θ

> 1 > 1
γ

↗ 1 → +∞ →∞

↘ 1 → −∞ → I

< 1
γ
< 1 < 0 < (I +W−1)

< 1 < 1
γ

↗ 1 → −∞ → I

↘ 1 → +∞ →∞

> 1
γ
> 1 < 0 < (I +W−1)

Table 1: Relation between EZ preference parameters and state price matrix modification.
Here γ is relative risk aversion, σ is elasticity of intertemporal substitution, parameter θ is
equal to 1−γσ

σ−1 , I is an identity matrix, W is the diagonal matrix of price-dividend ratios.

Description Notation Value
Estimated parameters

Transition probability (recession) p 0.69
Transition probability (boom) q 0.72
Mean consumption growth, % µc 2.18
Standard deviation of consumption growth, % δc 4.32

Non-estimated parameters
Mean dividend growth, % µe 2.18
Standard deviation of dividend growth, % δe 4.32
Deviation of the transient component of the payoff, % δp 0
Discounting factor β 0.98
Risk aversion γ 10
Elasticity of intertemporal substitution σ 1.5
Disappointment aversion α 5
Disappointment threshold κ 1.05

Table 2: Benchmark model parameters.
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EU EZ GDA

S
[

0.8435 0.1602
0.3452 0.3742

] [
0.8861 0.1058
0.5816 0.3964

] [
0.9551 0.0273
0.8440 0.1378

]

K
[

1.0505 0.6605
1.6851 1.0596

]

G
[

1.0778 0.2583
1.4510 0.3477

]

Ŝ
[

0.8963 0.1037
0.6024 0.3976

] [
0.8952 0.1048
0.5995 0.4005

] [
0.9722 0.0278
0.8597 0.1403

]

φ
[

0.8541 0.5201
] [

0.7141 0.7000
] [

0.7073 0.7069
]

−ρ (S), % 6.0759 1.0212 1.7774

−ρ (Q), % 6.9118 1.8391 3.6621

ρ (S)− ρ (Q), % 0.8359 0.8179 1.8847

Cov (S, Rm) -0.0015 -0.0263 -0.0420

V [S] 0.1407 0.3203 0.9633

V
[
Ŝ
]

0.3469 0.3413 0.9993

Table 3: State price matrix decomposition. Model-implied SDF transition matrix S, modifi-
cation matrices K and G, SDF permanent component Ŝ, principal eigenvector φ, growth rate
of SDF ρ (S), growth rate of the pricing matrix ρ (G) = 2.4415%, the difference between the
last two, unconditional variance of SDF V [S] and of its permanent component V

[
Ŝ
]
. First

row of the matrix corresponds to the low current consumption growth. First column of the
matrix corresponds to the low future consumption growth.
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B Figures
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Figure 1: Term structure of the market risk premium. Horizontal axis is measured in years.
On the vertical axis risk premium is annualized percent.
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Figure 2: Sensitivity of the risk premia to the risk aversion parameter. Left panel depicts
one period premia. Right panel depicts infinite horizon premia.
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Figure 3: Sensitivity of the risk premia to the elasticity of intertemporal substitution param-
eter. Left panel depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 4: Sensitivity of the risk premia to the generalized risk aversion parameter. Left panel
depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 5: Sensitivity of the risk premia to the disappointment threshold parameter. Left
panel depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 6: Sensitivity of the risk premia to the probability transition parameter. Left panel
depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 7: Sensitivity of the risk premia to the mean consumption growth rate parameter.
Left panel depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 8: Sensitivity of the risk premia to the consumption growth standard deviation pa-
rameter. Left panel depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 9: Sensitivity of the risk premia to the mean dividend growth rate parameter. Left
panel depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 10: Sensitivity of the risk premia to the dividend growth standard deviation parameter.
Left panel depicts one period premia. Right panel depicts infinite horizon premia.
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Figure 11: Sensitivity of the risk premia to the deviation δp of the transient payoff component
from its mean. In the two state model |δp| coincides with standard deviation parameter of
the transient payoff component. Left panel depicts one period premia. Right panel depicts
infinite horizon premia.
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